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S1. MULTISCALE COMMUNITY STRUCTURE OF THE C. ELEGANS CONNECTOME WITH
MARKOV STABILITY
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Figure S1. Full analysis with Markov Stability (MS) across all Markov times, from the finest possible partition (every node in
its own partition) at small Markov times to the bipartition at large Markov times. The highlighted time interval corresponds
to Fig. 1 in the main text (Fig. 1), which focusses on the medium to coarse scales.

Full scan of Markov times: Figure S1 displays the full MS analysis of the C.elegans connectome, from the
finest to the coarsest scales. The analysis in the main text concentrates on the medium to coarse partitions A− E .

Quasi-hierarchical character of partitions: Figure S2 shows the conditional entropy of the partitions found
by MS. The normalized conditional entropy Ω(P(t′)|P(t))/ log(n) ∈ [0, 1] quantifies how much uncertainty there is
about the community assignment in P(t′), given the known partition P(t). If partition P(t′) can be predicted from
P(t), i.e. if P(t′) is a strictly hierarchical agglomeration of the communities of P(t), then the conditional entropy
will be zero. As seen in Figure S2, Ω(P(t′)|P(t))/ log(n) has a strong upper-triangular character, implying that the
communities are almost hierarchical.

Comparison with other partitions: The flow-based MS partitions obtained here are distinct from partitions
obtained by several other methods. In particular, we have compared against partitions obtained with Modularity,
Stochastic Block models, and Infomap.

Modularity has been used to obtain optimised partitions in Refs. [1, 2]. The partition found in Ref. [1] is closest
to our 4-way Partition B (VI = 0.185), whereas the partition found in Ref. [2] is closest to our 3-way Partition C
(VI = 0.186). Modularity optimisation imposes a particular intrinsic scale (or resolution) to the partition, so that
partitions found with modularity are well matched to a particular scale (i.e., a particular Markov time) in the Markov
Stability framework, as shown previously [3, 4]. On the other hand, as discussed in the main text, the Markov Stability
framework is based on a systematic scanning across Markov times [5] allowing the intrinsic multiscale organisation to
became apparent.

The partitions based on stochastic block models [6] and hierarchical Infomap [7] are less similar to the ones found
by MS: the partition found by stochastic block models in [6] is closest to our 3-way Partition C (but with a higher
VI =0.272), and the partition found by hierarchical Infomap in [7] is closest to our 6-way Partition A (yet with an even
higher VI =0.282). These differences in the outcomes are expected due to the contrasting methodological approaches.
In particular, Infomap is known to impose a clique-like structure to the modules leading to groupings where strong
local density is favoured [8].
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Figure S2. Normalised conditional entropy of the optimised MS partitions A − E . The observed asymmetry in this measure
implies a quasi-hierarchical organisation (see text).
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S2. ROLES OF NODES: THE RBS FRAMEWORK

Extracting flow roles in directed networks using RBS: Figure S3 summarises schematically the procedure
to obtain flow roles using RBS analysis, as discussed in detail in [9]. First, a similarity network is created by computing
a similarity score between each node in the network, based on their incoming and outgoing path-profiles, as described
in the main text. Second, a similarity graph is obtained using the RMST method, which subsequently prunes out
uninformative links (see Ref. [9] for details). Third, the resulting similarity graph is clustered using MS to obtain
relevant groups of nodes that have similar in- and out-flow profiles at all scales.
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Figure S3. Role extraction with RBS, RMST, and Markov Stability. Left to right: From the original directed network of the C.
elegans connectome we obtain a similarity matrix using the RBS metric. This similarity matrix is transformed into a similarity
matrix using the RMST method. When Markov Stability is applied to the similarity graph, we find a robust partition into four
communities, corresponding to four flow roles. The roles are then shown on the original connectome layout.

Comparison with other analyses of roles: Our flow roles are fundamentally different from notions of roles
used in social networks based on Structural Equivalence (SE) [10], and Regular Equivalence (RE) [11]. Figure S4
presents the comparison of our RBS roles versus those obtained based on RE by the REGE algorithm [12] (see also
the Supplementary Data). Because both RE and SE consider only one-step neighbourhoods and do not incorporate
information about the long scales of the network [5], they are less applicable to complex networks such as the C. elegans
connectome [13]. In particular the roles produced by REGE show undifferentiated PageRank and connectivity profiles.

In Refs. [1, 2], roles were assigned to neurons according to the technique proposed by Guimera et al [14], identifying
certain interneurons as relevant hubs between predefined communities. In Ref. [1] command interneurons (e.g. AVA,
AVB, AVD, PVC) play the role of global hubs, whereas D-type motor neurons play the role of provincial hubs. These
features are in line of our ablation results, where D-type motor neuron ablations alter flows at finer scales and ablation
of interneurons modifies flow patterns at larger scales. Chatterjee and Sinha [15] explored the core-periphery structure
of the C. elegans connectome using a k-core decomposition based on in- and out- degree separately. The k-core of a
network is the subgraph with the property that all nodes have (in/out)degree at least k. As expected, motor neurons
are overrepresented in the k-cores based on in-degree, and sensory neurons are overrepresented in k-cores based on
out-degree. This distinction between neurons with upstream and downstream roles is also an inherent characteristic
in the RBS analysis, yet from a different perspective, i.e., based on the global characteristics of a node with respect
to the in- and out-flows in the network, rather than based on its local connections.
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Figure S4. A: Roles of the nodes according to RBS with the PageRank distribution for each role and the average in/out degree
for each role. B: Same for the roles obtained according to Regular Equivalence obtained using the REGE algorithm [12].
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S3. STYLISED SIGNAL PROPAGATION ANALYSIS

Summarising signal propagation: Signal propagation analysis can be analysed from different angles. In
Figure S5, we explain concisely our approach to detect pathways of signal flow exemplified on scenario (i1).
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Figure S5. Operational procedure of signal propagation analysis (see text).



7

For all neurons, we compute the time series φi(t), i.e., the amount of signal present at the node at Markov time t.
With increasing time the amount of signal at each node will converge to its stationary value (θi(t) = φ(t)− πi → 0).
The approach to stationarity can happen in two ways: i) the initially negative θi(t) approaches 0 from below; ii)
θi(t) ’overshoots’, i.e. exceeds its stationary temporarily before decaying towards its stationary value. We define
the relative amount of signal with respect to the stationary value as qi(t) = φ(t)/πi. We focus on nodes that have
overshoot above their stationary value πi, i.e., those with qmax := maxt φi(t)/πi > 1, and we collect the times at which
they reach their peak. To summarise the signal propagation more concisely, we focus on strong response neurons that
present a large overshoot, i.e., qmax > 5/3, and collect the peak times. The peak-time histogram and the particular
sequence of strong response neurons is used to characterise the different input-response biological scenarios. Analyses
by neuron type and by role groups is also carried out. See Figure S5 for an illustration of these steps applied to the
biological scenario (i1), corresponding to the posterior mechanosensory stimulus.

Comparison of signal propagation for the different biological scenarios: Figures S6, S7, and S8 sum-
marise the signal propagation results for the input-response case studies (i2)-(i4), in the same way as done in Figure
7 in the main text.
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Figure S6. Signal propagation: anterior mechanosensory stimulus (i2). Signal propagation evolving from an initial
condition localised at the mechanosensory neurons (i2). (a) As stationarity is approached (θ(t) → 0), the input propagates
from sensory to motor neurons through an intermediate stage when interneurons overshoot. (b) The propagation seen as a
cascade of strong response neurons ( qmax > 1 + 2/3) with peak times concentrated around two bursts. (c) The input (i2),
appears localised on R1 and to a lesser extent R2 neurons. The signal diffuses somewhat quicker out of R2 than R1 neurons,
but induces not collective overshoot of R3 or R4 neurons. (d) Stages of signal propagation in the network showing the strong
response neurons that have peaked at each time.
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Figure S7. Signal propagation: posterior chemosensory stimulus (i3). See Caption Figure S6.
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Figure S8. Signal propagation: anterior chemosensory stimulus (i4). See Caption Figure S6.
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Figure S9. Peak times of strong response neurons summarised by RBS roles for each of the four input scenarios
(i1)-(i4).

Figure S9 provides a comparison of the histograms of peak times for the strong response neurons in the four
biological scenarios from the perspective of flow roles. Note how the tail inputs induce strong responses on neurons
spreading from R2 to R1 and finally R4. On the other hand, the head inputs induce strong responses on neurons
heavily based on R1 spreading only to R3.
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