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Squeeze-and-breathe evolutionary
Monte Carlo optimization with local
search acceleration and its application

to parameter fitting
Mariano Beguerisse-Dı́az1,2,*, Baojun Wang1, Radhika Desikan2

and Mauricio Barahona1,*
1Department of Mathematics, and 2Department of Life Sciences, Imperial College London,

London SW7 2AZ, UK

Estimating parameters from data is a key stage of the modelling process, particularly in bio-
logical systems where many parameters need to be estimated from sparse and noisy datasets.
Over the years, a variety of heuristics have been proposed to solve this complex optimization
problem, with good results in some cases yet with limitations in the biological setting. In this
work, we develop an algorithm for model parameter fitting that combines ideas from evol-
utionary algorithms, sequential Monte Carlo and direct search optimization. Our method
performs well even when the order of magnitude and/or the range of the parameters is
unknown. The method refines iteratively a sequence of parameter distributions through
local optimization combined with partial resampling from a historical prior defined over
the support of all previous iterations. We exemplify our method with biological models
using both simulated and real experimental data and estimate the parameters efficiently
even in the absence of a priori knowledge about the parameters.

Keywords: parameter fitting; optimization; evolutionary algorithms;
ordinary differential equation models; Monte Carlo methods
1. INTRODUCTION

The increasing drive towards quantitative technologies
in biology has brought with it a renewed interest
in the modelling of biological systems. Models of
biological systems and other complex phenomena are
generally nonlinear with uncertain parameters, many
of which are often unknown and/or unmeasurable
[1,2]. Crucially, the values of the parameters dictate
not only the quantitative but also the qualitative be-
haviour of such models [3,4]. A fundamental task in
quantitative and systems biology is to use experi-
mental data to infer parameter values that minimize
the discrepancy between the behaviour of the model
and experimental observations. The parameters thus
obtained can then be cross-validated against unused
data before employing the fitted model as a predic-
tive tool [2]. Ideally, this process could help close the
modelling experiment loop by: suggesting specific
experimental measurements; identifying relevant par-
ameters to be measured; or discriminating between
alternative models [5–7].

The problem of parameter estimation and data fitting
is classically posed as the minimization of a cost function
correspondence (m.beguerisse-diaz08@imperial.ac.uk;
imperial.ac.uk).
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(i.e. the error) [8]. In the case of overdetermined linear
systems with quadratic error functions, this problem
leads to least-square solutions, convex optimizations
that can be solved efficiently and globally based on the
singular value decomposition of the covariance matrix
of the data [9]. However, data fitting in nonlinear systems
with small amounts of data remains difficult, as it usually
leads to non-convex optimizations with many local
minima [10].

A classic case in biological modelling is the description
of the time evolution of a system through ordinary differ-
ential equations (ODEs), usually based on mechanistic
functional forms. Examples include models of biochemi-
cal reactions, infectious spread and neuronal dynamics
[1,11]. Typically, optimal parameters of the nonlinear
ODEs must be inferred from experimental time courses
but the associated optimization is far from straight-
forward. Standard optimization techniques that require
an explicit cost function are unsuitable for this problem
because of the difficulty in obtaining full analytical
solutions for nonlinear ODEs [4,12,13]. Spline-based
methods, which approximate the solution through an
implicit integration of the differential equation [10],
require linearity in the parameters and are therefore
not applicable to models with nonlinear parameter
dependencies, e.g. Michaelis–Menten and Hill kinetics.

Implicit techniques, such as direct search methods
[14], simulated annealing [15], evolutionary algorithms
This journal is q 2012 The Royal Society
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(EAs) [16,17] or sequential Monte Carlo (SMC) [18], do
not require an explicit cost function. However, if as is
usually the case, the cost function is a complicated
(hyper)surface in parameter space with many local
minima; gradient and direct search methods tend to
get trapped in local minima because of their use of
local information. Although still a local method, simu-
lated annealing alleviates some of the problems
related to local minima through the use of stochasticity.
However, this comes at the cost of high computational
overhead and slow convergence and, yet, with no
guarantee of finding the global minimum.

Instead of an optimization based on local criteria,
EAs produce an ensemble of possible answers and
evolve them globally through random mutation and
cross-over followed by ranking and culling of the worst
solutions [16,17,19]. This heuristic has been shown to
provide an efficient protocol for parameter fitting in
the life sciences [20,21]. However, EA methods can
be inefficient when the feasible region in parameter
space is too large, a case typical of models with large
uncertainty in the parameters.

Probabilistic methods, such as SMC [18], propose a
different conceptual framework. Rather than finding a
unique optimal parameter set, SMC maps a prior prob-
ability distribution of the parameters onto a posterior
constructed from samples with low errors until reaching
a converged posterior. Recently, SMC has been com-
bined with approximate Bayesian computation (ABC)
and applied to data fitting and model selection [22].
However, methods such as ABC–SMC are not only
computationally expensive but also require that the
starting prior include the true value of the parameters.
This requirement dents its applicability to many
biological models, in which not even the order of magni-
tude of the parameters is known. In that case, the
support of the starting priors must be made overly
large (leading to extremely slow convergence) in order
to avoid the risk of excluding the true parameter
value from the search space.

In this work, we present a novel optimization
algorithm for data fitting that takes inspiration from
EA, SMC and direct search optimization. Our method
iterates and refines samples from a probability distri-
bution of the parameters in a ‘squeeze-and-breathe’
sequence. At each iteration, the probability distribution
is ‘squeezed’ by the consecutive application of local
optimization followed by ranking and culling of the
local optima. The parameter distribution is then
allowed to ‘breathe’ through a random update from
a historical prior that includes the union of all past sup-
ports of the solutions (figure 1). This iteration proceeds
until convergence of the distribution of solutions and
their average error. A key, distinctive feature of our
algorithm is the accelerated step-to-step convergence
through a combination of local optimization and of cul-
ling of local solutions. Importantly, the method can also
find parameters that lie outside of the range of the
initial prior, and can deal with parameter values that
extend across several orders of magnitude. We now pro-
vide definitions and a full description of our algorithm
and showcase its applicability to different biological
models of interest.
J. R. Soc. Interface
2. ALGORITHM

2.1. Formulation of the problem

Let X(t) ¼ [x1(t), . . . , xd(t)] denote the state of a system
with d variables at time t. The time evolution of the
state is described by a system of (possibly nonlinear)
ODEs:

_X ¼ f ðX; t; uÞ: ð2:1Þ

Here, u ¼ [u1, . . . , uN] is the vector of N parameters of
our model.

The experimental dataset is formed by M obser-
vations of some of the variables of the system:

D ¼ f ~XðtiÞji ¼ 1; . . . ;Mg; ð2:2Þ

where X̃(ti) corresponds to the real value of the system
plus observational error. Ideally, M . 2N þ 1 as 2N þ 1
experiments are enough for unequivocal identification
of an ODE model with N parameters when no measure-
ment error is present [23].

The cost function (i.e. the error) to be minimized is:

EDðuÞ ¼
XM
i¼1

k Xðti; uÞ � ~XðtiÞ k; ð2:3Þ

where k . k is a relevant vector norm. A standard choice
is the Euclidean norm (or 2-norm) that corresponds to
the sum of squared errors:

Eð2ÞD ðuÞ ¼
XM
i¼1

Xd0
j¼1

ðXjðti; uÞ � ~XjðtiÞÞ2; ð2:4Þ

where we assume that d 0 variables are observed. The
cost function ED: RN! Rþ maps an N-dimensional
parameter vector onto its corresponding error, thus
quantifying how far the data and the model predictions
are for that particular parameter set.

The aim of the data-fitting procedure is to find the par-
ameter vector u** that minimizes the error globally
subject to restrictions dictated by the problem of interest:

u�� ¼ min
u

EDðuÞ; subject to constraints on u: ð2:5Þ
2.2. Definitions

— Data set: D, a set of M observations, as defined in
equation (2.2).

— Parameter set: u ¼ [u1, . . . , uN] [ Rþ
N. Owing to the

nature of the models considered, ui � 0, 8i.
— Objective function: ED(u), the error function to be

minimized, as defined in equation (2.4).
— Set of local minima of ED(u): M ¼ fu*jED(u*) �

ED(u), 8u [ N(u*)g, where N(u*) is a neighbour-
hood of u*.

— Global minimum of ED(u): u**, a parameter set
such that ED(u**) � ED(u), 8u. Clearly, u** [ M.

— Local minimization mapping: L : Rþ
N!M. Local

minimization maps u onto a local minimum:
L(u) ¼ u* [ M.

— Ranking and culling of local minima: fu †g1B ¼
RCB (fug1J). This operation ranks J parameter sets
and selects the B parameter sets with the lowest ED.

http://rsif.royalsocietypublishing.org/
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Figure 1. Steps of algorithm 1 exemplified through the BPM model (3.1). (a) The problem is defined by the dataset, the model
and the error function to be minimized. Note the rugged landscape of the error function in the parameter plane (a, b), with many
local minima. (b) In the first iteration, we simulate J points in parameter space from the uniform initial prior p0(u) (squares in
plot, top and left histograms) which are then minimized locally with a Nelder–Mead algorithm L(u) (triangles in plot, bottom
and right histograms). The local optimization aligns the parameter sets onto the level curves of ED. (c) The B best local minima
(top, light stars) are selected and considered to be samples from the posterior distribution (bottom, light histograms). (d) Con-
vergence of the error of the samples (top plot on the right, B lowest minima are the light stars) and of the posterior distributions
(bottom, lighter histograms) are checked against the errors of the sample (top plot on the left) and the priors (bottom, darker
histograms). (e) If convergence is not achieved, the historical prior is updated (previous historical prior in bold, updated in light)
and a new set of J points are simulated from the posterior with probability pm and from the historical prior with probability
1 2 pm (squares in plot). This new sample is fed back to the local minimization step (b). ( f ) The algorithm stops when conver-
gence is reached (after nine iterations, in this case) providing an optimal parameter set u‡ and a time course (top) and the
sequence of optimized posteriors at each iteration (bottom). (Online version in colour.)
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— Joint probability distributions of the parameters at
iteration k: pk(u) (prior) and 4k(u) (posterior).

— Marginal probability distribution of the ith com-
ponent of u: for instance, p(ui) ¼

Ð
p(u)

Q
r=i dur.

— Historical prior at iteration k: zk(u) ¼
Q

i¼1
N zk(ui)

where

zkðuiÞ � U ðminðIkðuiÞÞ;maxðIkðuiÞÞÞ: ð2:6Þ

Here U(a, b) is a uniform distribution with support
in [a, b] and Ik(ui) ¼ zk21

21 < 4k
21 is the union of the

supports of 4k(ui) and zk21(ui).
J. R. Soc. Interface
— Update of the prior at iteration k: pk(u) ¼Q
i¼1
N pk(ui) with

pkðuiÞ � pm4kðuiÞ þ ð1� pmÞzkðuiÞ; ð2:7Þ

that is, a convex mixture of the posterior and the
historical prior with weight pm, from which a new
population is sampled in iteration k þ 1.

— Re-population: obtain population of J random
points simulated from the prior pk21(u).

— Convergence criterion for the error: the difference
between the means of the errors of the posteriors

http://rsif.royalsocietypublishing.org/
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in consecutive iterations is smaller than the pre-
determined tolerance:

fk ¼ EDð4k�1ðuÞÞ � EDð4kðuÞÞ , Tol: ð2:8Þ

— Convergence criterion for the empirical distribu-
tions: the samples of the posteriors in consecutive
iterations are indistinguishable at the 5 per cent
significance level according to the non-parametric
Mann–Whitney rank sum test:

MWð4kðuÞ;4k�1ðuÞÞ ¼ 0: ð2:9Þ

2.3. Description of the algorithm

Algorithm 1 presents the pseudo-code for our method
using the definitions above. The iterations produce
progressively more refined distributions of the parame-
ter vector. At each iteration k, a population simulated
from the prior distribution pk21(u) is locally minimized
followed by ranking and culling of the local minima to
create a posterior distribution 4k(u) (squeeze step).
This distribution is then combined with an encom-
passing historical prior to generate the updated prior
pk(u) (breathe step). The iteration loop terminates
when the difference between the mean errors of consecu-
tive posteriors is smaller than the tolerance and
the samples of the posteriors are indistinguishable. We
now explain these steps in detail (figure 1) through
the Bliss–Painter–Marr (BPM) model (see 3.1).

— Formulation of the optimization: the dataset D and
the model equations parametrized by u allow us to
define an error function ED(u) whose global mini-
mum corresponds to the best model.

In our illustrative example, the BPM model (3.1)
has the parameter vector u ¼ [a, b] and the error
function is depicted in figure 1a. The global optim-
ization on the rugged landscape of this function is
computationally hard.

— Initialization:
(i) Set the running parameters of the algorithm: the

size of the simulated population, J; the size of
the surviving population after culling, B; the
update probability, pm; and the tolerance, Tol.
In this example, J ¼ 500, B ¼ 50, pm ¼ 0.95
and Tol ¼ 1025.

(ii) Choose p0(u), the initial prior distribution of the
parameter vector. In this case, we take a and b

to be independent and uniformly distributed:
p0(u) � U(0, 100) � U(0, 100).

(iii) Initialize z0(u) ¼ p0(u), the historical prior of
the parameters.

(iv) Simulate J points from p0(u) to generate the
initial sample fû0g1J.

— Iteration (step k): repeated until termination cri-
terion is satisfied. Figure 1 shows the first iteration
of our method applied to the BPM example.
(i) Local minimization: apply local minimization to

the simulated parameters from the ‘prior’
fûk21g1J and map them onto local minima of
ED(u) to generate fL(ûk21)g1J [ M.
J. R. Soc. Interface
Here, we use the Nelder–Mead simplex method
[24], though others can be used. Figure 1b shows
the simulated points from p0(u) (squares in
plot) and its corresponding histograms (top and
left). After local minimization, this sample is
mapped onto the dark triangles in figure 1b
(dark histograms bottom and right). Note how
the local minima align with the level curves of
ED with a markedly different distribution to the
uniform prior. Note also that many of the opti-
mized values of a lie outside the range of the
prior (0, 100) and are now distributed over the
interval (0, 200). On the other hand, the values
of b have collapsed inside (0, 1).

Algorithm 1. Squeeze-and-breathe optimization.

Set running parameters of algorithm:
B, J [ N, pm [ [0, 1], Tol
Choose initial priors p0(u) and z0(u).
Set H0 ¼ ; and k 1.
repeat

Let Hk ¼Hk21.
Simulate J points from pk21(u) through re-population.
for ‘ ¼ 1! J do

Obtain local minimum u‘
* ¼ L(u‘).

Store the pair [u‘
*, ED(u‘

*)] in Hk.
end for
Rank and cull the set of local minima:
Hk ¼RCB(Hk)
Define the posterior 4k(u) from the sample Hk.
Update zk(u) from zk21(u) and 4k(u).
Update the prior:
pk(u) � pm4k(u) þ (1 2 pm)zk(u).
k k þ 1.

until fk , Tol and MW(4k(u), 4k21(u)) ¼ 0

(ii) Ranking and culling: rank the J þ B local minima
from the k 2 1 and k iterations, select the B points
with the lowest ED and cull (discard) the rest:

RCBðfLðûk�1ÞgJ1 < fûyk�1g
B
1 Þ ¼ fû

y
kg

B
1 :

We consider fûk
†g1B to be a sample from the opti-

mized (‘posterior’) distribution, 4k(u) and we
denote the best parameter vector of this set as

uzk ¼ min
ED
ðf̂uykg

B
1 Þ:

The B ¼ 50 best parameter sets are shown (light
stars in plot) in figure 1c (bottom histograms).

(iii) Termination criterion: check that the difference
between the mean errors of the consecutive opti-
mized samples is smaller than the tolerance:
fk � Tol. We also gauge the ‘convergence’ of
the posteriors through the Mann–Whitney
(MW) test to determine if the samples from con-
secutive posteriors are distinguishable:

MWð4k�1ðuÞ;4kðuÞÞ ; MWðfûyk�1g
B
1 ; fû

y
kg

B
1 Þ;

where MW is a 0-1 flag. The MW test gives
additional information about the change of the

http://rsif.royalsocietypublishing.org/
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optimized posteriors from one iteration to
the next.

Figure 1d shows the convergence check for the
first iteration of the BPM model: (i) top—errors
of the sampled prior (left) with errors of the local
minima (right) and the B surviving points (light
stars); (ii) bottom—histograms of the prior and
the posterior. Clearly, in this iteration neither
the error nor the distributions have converged
and so the algorithm does not stop.

(iv) Update of historical prior and generation of new
sample: if convergence is not achieved, update
the historical prior zk(u) as a uniform distribution
over the union of the supports of the existing his-
torical prior and the calculated posterior (2.6).
Equivalently, the support of the historical prior
extends over the union of the sequence of all his-
torical priors fz0(u), . . . , zk21(u)g and of all
posteriors f41(u), . . . ,4k(u)g.

As shown in figure 1e for the BPM example,
the marginal of the historical prior for a is
expanded to U(0, 200), as the optimized par-
ameter sets have reached values as high as 200.
Meanwhile, the b marginal of the historical
prior remains unchanged as U(0, 100) because
there has been no expansion of the support.

The historical prior is used to mutate the
updated prior before the next iteration by con-
structing a weighted mixture of the posterior
and the historical prior with weight pm, as
shown in (2.7). We re-populate from this updated
prior by simulating from the posterior with prob-
ability pm ¼ 0.95 and from the historical prior
with probability (1 2 pm) to generate the new
sample fûkg1J and iterate back.

Figure 1e shows the sample of J points simu-
lated from the new prior. The a-components
of most points are between 100 and 200 and the
b-components are between 0.1 and 1, but there
are a few that lie outside the support of the pos-
terior. The process in figure 1(b–e) is iterated
for this new set of points.

— Output of the algorithm: when the convergence criteria
have been met, the iteration stops at iteration k* and
the minimum of this last iteration, uk*

‡ , is presented as
the optimal parameter set for the model (i.e. the esti-
mation of the global minimum u** provided by the
algorithm). We can also examine the sequence of opti-
mized parameter distributions f41(u), . . . ,4k*(u)g
obtained for all iterations (figure 1f ).

3. APPLICATION TO BIOLOGICAL
EXAMPLES

We apply our algorithm to three biological examples of
interest. The first two correspond to simulated data
from models in the literature, while in the third
example, we apply our algorithm to unpublished exper-
imental data of the dynamical response of an inducible
genetic promoter constructed for an application in
synthetic biology.
J. R. Soc. Interface
3.1. Bliss–Painter–Marr model of
gene–product regulation

The BPM model [25] describes the behaviour of a
gene–enzyme–product control unit with a negative
feedback loop:

_R ¼ a

1þ P
� bR;

_E ¼ bðR� EÞ

and _P ¼ bE � cðtÞ P
1þ P

:

9>>>>>=
>>>>>;

ð3:1Þ

Here, R, E and P are the concentrations (in arbitrary
units) of mRNA, enzyme and product, respectively.
The degradation rate of the product has an explicit
time dependence, which in this case has the form of a
ramp saturation:

cðtÞ ¼ 5þ 0:2t 0 � t , 50;
15 t � 50:

�

The model represents a gene that codes for an
enzyme which in turn catalyses a product that inhibits
the transcription of the gene. This self-inhibition can
lead to oscillations, which have been shown to occur
in the tryptophan operon in Escherichia coli [25].

We construct a dataset from simulations of this model
with u real ¼ [a, b] ¼ [240, 0.15] and initial conditions
R(0) ¼ E(0) ¼ P(0) ¼ 0. The dataset D consists of 10
measurements of R(t) at particular times with added
Gaussian noise drawn from N(0, 152) (table 1 in the elec-
tronic supplementary material). The error function
ED(u) (2.4) corresponds to a non-convex optimization
landscape:1 a complex rugged surface with many local
minima making global optimization hard (figure 1a).

We use algorithm 1 to estimate the ‘unknown’ par-
ameter values from the ‘measurements’ of R, as
illustrated in §2c and figure 1. Feigning ignorance of
the true values, we choose a uniform prior distribution
with range [0, 100] for both parameters: p0(u) � [U(0,
100), U(0, 100)]. The rest of the parameters are set
to: J ¼ 500, B ¼ 50, pm ¼ 0.95 and Tol ¼ 1025. Note
that the true value of a falls outside of the assumed
range of our initial prior, while the range of b in our
initial prior is two orders of magnitude larger than its
true value. This level of uncertainty about parameter
values is typical in data fitting for biological models.

Figure 1 highlights a key aspect of our algorithm: the
local minimization can lead to local minima outside of
the range of the initial prior. Furthermore, our definition
of the historical prior ensures that successive iterations
can find solutions within the largest hypercube of opti-
mized solutions in parameter space. In this example,
the algorithm moves away from the U(0, 100) prior for
a and finds a distribution around 240 (the true value)
after three iterations, while in the case of b, the distri-
bution collapses to values around 0.15 after one
iteration. Although the algorithm finds the minimum
u‡ after five iterations, the algorithm is terminated after
nine iterations, when the posterior distributions are
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Table 1. Results of the fitting of the BPM model with algorithm 1: smallest error of iteration k; the best values ak
‡ and bk

‡;
whether the distributions have converged; and the difference of the mean errors of the optimized population.

min. conv. conv.
k error ak

‡
bk

‡
4k(a) 4k(b) fk

1 56.0941 193.7447 0.1304 — — —
2 28.2735 246.7510 0.1528 no no 133.9020
3 27.2083 248.7557 0.1532 no no 6.8542
4 26.9838 250.3593 0.1536 no no 0.6532
5 26.6504 251.7189 0.1538 no no 0.3281
6 26.6504 251.7189 0.1538 no no 0.1963
7 26.6504 251.7189 0.1538 yes yes 0.0118
8 26.6504 251.7189 0.1538 no no 0.0131
9 26.6504 251.7189 0.1538 yes yes 1.414 � 1026

Table 2. Parameter values obtained from gfp-30 and gfp-34 data. In the study of Wang [26], only the steady state solution was
used. Hence, only the ratio of k1 and d can be estimated.

Wang [26] algorithm 1

parameter gfp-30 gfp-34 gfp-30 gfp-34

a‡ 0.0012+0.027 1.4720 � 1029 0.0043 0.0024
k1
‡ n.a. n.a. 76.1354 63.6650

n1
‡ 1.3700+0.270 1.3690+ 0.021 1.4832 1.3879

K1
‡ 0.2280+0.039 0.2590+ 0.021 0.2467 0.2641

d‡ n.a. n.a. 0.0069 0.0052
k1
‡/d‡ 9456+487 7648+152 10983.34 12163.04
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similar (according to the MW test) and the mean errors
have also converged (table 1). The estimated parameters
for this noisy dataset are uk*

‡
¼ [251.7189, 0.1530]. In fact,

the error of the estimated parameter set is lower than that
of the real parameters: ED(u‡) ¼ 26.65 , ED(ureal) ¼
28.26, because of the noise introduced in the data.
When a dataset without noise is used, the algorithm
finds the true value of the parameters to nine significant
digits (not shown).
3.2. Susceptible–Infected–Recovered
epidemics model

Susceptible–Infected–Recovered (SIR) models are
widely used in epidemiology to describe the evolution of
an infection in a population [11]. In its simplest form,
the SIR model has three variables: the susceptible popu-
lation S, the infected population I and the recovered
population R:

_S ¼ a� ðgI þ dÞS;
_I ¼ ðgS � v � dÞI

and _R ¼ vI � R:

9>>>=
>>>;

ð3:2Þ

The first equation describes the change in the suscep-
tible population, growing with birth rate a and
decreasing by the rate of infection gIS and the rate of
death dS. The infected population grows by the rate
of infection gIS and decreases by the rate of recovery
vI and the rate of death dI. The recovered popula-
tion grows by the rate of recovery vI and decreases by
J. R. Soc. Interface
the death rate dR. Here, we use the same form of
the equations as performed by Toni et al. [22].

The data generated from model (3.2) (table 2 in the
electronic supplementary material) were obtained
directly from the study of Toni et al. [22]. Hence, the
original parameter values were not known to us and
further we assumed the initial conditions also to be
unknown and fitted them as parameters. We used algor-
ithm 1 to estimate a, g, v and d, and initial conditions
S0, I0 and R0. The prior marginal distributions for all
parameters were set as U(0, 100). The other parameters
were set to: J ¼ 1000, B ¼ 50, pm ¼ 0.95 and Tol ¼
1025. The algorithm converged after six iterations.
Figure 2a shows the prediction of the model (3.2)
with the best parameters estimated by our algorithm.
The fit is good with little difference between the
curves obtained using the real initial conditions and
those estimated by our method.

The posterior distributions after six iterations of the
algorithm are shown in figure 2b. The errors obtained
after each local minimization in a decreasing order on
each iteration are shown on a semi-logarithmic scale
in figure 2c. We can observe how the errors decrease
by several orders of magnitude over the first three iter-
ations and converge steadily during the last three
iterations until fk � Tol.

3.3. An inducible genetic switch from
synthetic biology

The use of inducible genetic switches is widespread in
synthetic biology and bioengineering as building
blocks for more complicated gene circuit architectures.

http://rsif.royalsocietypublishing.org/


17 18 19 20
0

10

20

30

10 11 12 13
0

10

20

30

0.2 0.4
0

20

40

1.070 1.075 1.080
0

10

20

30

0.795 0.800 0.805
0

10

20

30

0.494 0.495
0

10

20

0.986 0.988
0

10

20

30

S0

iteration 1 iteration 2 iteration 3 iteration 4 iteration 5 iteration 6

I0 R0 d υ
I(

t)

0

5

10

15

20

25
S(

t)

0 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

5

10

15

20
(a)

(b)

(c)

time time time

R
(t

)

0

2

4

6

8

10

12
lo

g(
E

  −
1.

72
97

)

10–5

1

105

a g

fitted solution
data
using initial cond.
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An example is shown schematically in the inset of
figure 3a. This environment-responsive switch is used
to control the expression of a target gene G (usually
tagged with green fluorescent protein or gfp) through
the addition of an exogenous small molecule I1 (e.g.
isopropyl thiogalactopyranoside or IPTG). The
input–output behaviour of this system can be described
by the following ODE [2,27]:

_G ¼ ak1 þ
k1I

n1
1

Kn1
1 þ I n1

1
� dG: ð3:3Þ

Here, ak1 is the basal activity of the promoter P1 and dG
is the linear degradation term. The second term is a Hill
function that models the cooperative transcription acti-
vation in response to the inducer I1 with maximum
expression rate k1, constant K1 and Hill coefficient n1.

The lacI–Plac switch has been characterized exper-
imentally with response to different doses of IPTG in
different studies [26,28]. Equation (3.3) can be solved
explicitly and one can use nonlinear least squares and
the analytical solution to fit data at stationarity (i.e.
at long times) and estimate a, n1, K1 and the ratio
k1/d. These estimates have been obtained, from an ear-
lier study [28], assuming equilibrium (Ġ ¼ 0) and initial
condition G(0) ¼ 0 (table 2).

In fact, the experiments measured time series of the
expression of G every 20 min from t ¼ 140 to 360 min
for different doses of inducer I1 ¼ 0, 3.9 � 1024, 1.6 �
1023, 6.3 � 1023, 2.5 � 1022, 0.1, 0.4, 1.6, 6.4,
12.8 mM, with two different reporters (gfp-30 and
gfp-34; see tables 3 and 4 in the electronic supplemen-
tary material). Instead of assuming equilibrium and
J. R. Soc. Interface
using only the data for t . 300 min as done previously
[28], we apply algorithm 1 to all the data with the full
dynamical equation (3.3) to estimate u ¼ [a, k1, n1,
K1, d ]. In this case, we used initial priors U(0, 1) for
a and n1; and U(0, 20) for k1, K1 and d. The other
parameters were set to: J ¼ 1000, B ¼ 50, pm ¼ 0.95
and Tol ¼ 1025.

Our algorithm converged after five iterations to the
parameter values in table 2. The parameter estimates
provide good fits to both the time courses (figure 3b)
and to the dose–response data (figure 3a). The values
of K1

‡ and n1
‡ obtained here are similar to those obtained

from the study of Wang [26] by using only stationary
data. This is reassuring as these parameters are related
to the dose threshold to half-maximal response and to
the steepness of the sigmoidal response, both static pro-
perties. On the other hand, the values of a and the
ratio k1/d differ to some extent owing to the (imperfect)
assumption by Wang [26] that steady state had been
reached at t ¼ 300 min. As figure 3b shows, G is not at
steady state then. Hence, the parameter values obtained
with our method should give a more faithful representation
of the true dynamical response of the switch.
4. DISCUSSION

In this work, we have presented an optimization algor-
ithm that brings together ingredients from EAs, local
optimization and SMC. The method is particularly
useful for determining parameters of ODE models from
data. Our approach can also be used in other contexts
where an optimization problem has to be solved on com-
plex landscapes, or when the objective function cannot be
written explicitly. The algorithm proceeds by generating
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a population of solutions through Monte Carlo sampling
from a prior distribution and refining those solutions
through a combination of local optimization and culling.
A new prior is then created as a mixture of a historical
prior (which records the broadest possible range of
solutions found) and the distribution of the optimi-
zed population. This iterative process induces a strong
concentration of the Monte Carlo sampling through
local optimization which accelerates convergence and
increases precision, while at the same time the presence
of the historical prior allows the possibility that solutions
can be found outside of the initial presumed ranges for
the parameter values.

We have illustrated the application of the algorithm to
ODE models of biological interest and have found it to
perform efficiently. The algorithm also works well when
applied to larger problems with tens of parameters in a
signal transduction model (paper in preparation). The
efficiency of the algorithm hinges on selecting appro-
priate running parameters and priors. For instance, the
number of samples from the prior J should be large
enough to allow for significant sampling of the parameter
space while small enough to limit the computational cost.
We have found that simulating J ¼ 350–500 points in
models of up to 10 parameters and keeping the best 15
per cent of the local minima leads to termination within
fewer than 20 iterations. In our implementation, the
Nelder–Mead minimization is capped at 300 evaluations.
These guidelines would result in up to 300 000 evalu-
ations of the objective function per iteration. Therefore,
our method can become computationally costly if the
objective function is expensive to evaluate, e.g. in stiff
models that are difficult to solve numerically. In essence,
our algorithm proposes a trade-off: fewer but more
costly iterations. It is important to remark that, as with
anyother optimization heuristic for non-convex problems,
there are no strict guarantees of convergence to the global
minimum. Therefore, it is always advisable to run the
J. R. Soc. Interface
method with different starting points and different set-
tings with enough sampling points in parameter space
to check for consistency of the solutions obtained.

The generation of iterative samples of the parameters
draws inspiration from Monte Carlo methods [6,18,22]
but without pursuing the strict guarantees that the
nested structure of the distributions provides in
ABC–SMC. Our evolutionary approach adopts a
highly focused Monte Carlo sampling driven by a
sharp local search with culling. Hence, our iterative pro-
cedure generates samples that only reflect properties of
the set of local minima (up to numerical cutoffs) with-
out any focus on the global convergence of the
distributions. As noted from the study of Toni and co-
workers [22], the distributions of the parameters (both
their sequence and the final distributions) give infor-
mation about the sensitivity of the parameters:
parameters with narrow support will be more sensitive
than those with wider support. Future developments
of the method will focus on establishing a suitable
theoretical framework that facilitates its use in model
selection. Broadening the choice of historical priors
may be a way of establishing such framework. Cur-
rently, we make no assumptions about the parameter
space, hence we use uniform distributions over the sup-
port of all the posteriors. However, other distributions
(e.g. exponential or log-normal) may be considered as
a way to bias the historical prior towards regions of par-
ticular interest. Other work will consider the possibility
of incorporating a stochastic ranking strategy in the
selection of solutions, similar to the one present in
the SRES algorithm [17], in order to solve more general
optimization problems with complex feasible regions.
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