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Abstract-We present a framework to cluster nodes in directed 
networks according to their roles by combining Role-Based 
Similarity (RBS) and Markov Stability, two techniques based 
on flows. First we compute the RBS matrix, which contains 
the pairwise similarities between nodes according to the scaled 
number of in- and out-directed paths of different lengths. The 
weighted RBS similarity matrix is then transformed into an 
undirected similarity network using the Relaxed Minimum
Spanning Tree (RMST) algorithm, which uses the geometric 
structure of the RBS matrix to unblur the network, such that 
edges between nodes with high, direct RBS are preserved. Finally, 
we partition the RMST similarity network into role-communities 
of nodes at all scales using Markov Stability to find a robust set 
of roles in the network. We showcase our framework through a 
biological and a man-made network. 

I. INTRODUCT ION 

Among the many systems that can be formalised as net
works, there are important examples where the directionality 
of the network is crucial, e.g., the web, ecological systems, 
information and transport networks. However, directional
ity brings in subtle mathematical complexities and is often 
neglected in many approaches for network analysis. Such 
directed networks naturally lend themselves to be analysed 
from the perspective of flows. An important aspect of directed 
networks is the notion of roles, e.g., leader vs follower or hub 
vs authority. Here we show that a nuanced classification of 
nodes in terms of their role in the network may be obtained 
from the analysis of directed flows. In other words, we seek 
to find nodes that are similarly positioned in the network-with 
respect to flows-and obtain broad categories into which they 
can be classified. In this paper, we present a method to find 
role clusters in directed networks based on the analysis of flow 
patterns, and show examples of its application to a selection 
of networks. Section II contains a brief introduction and 
references to the specific techniques we use and an overview 
of the method. Section III provides examples of our method. 

II. MET HODOLOGY 

Let 9 = {N, E} be an unweighted and directed network 
with node set N, INI = N, edge set E, and adjacency matrix 

A where ai,j = 1 denotes the existence of a directed edge 
from node i to j. Each node has in-degree kin (the number of 
nodes that link to it) and out-degree kout (the number of nodes 
to which it links). The N x 1 vectors of in- and out-degrees 
are denoted by kin and kout. 

We find the role-communities of 9 following three steps: 

1) From the adjacency matrix A, construct a N x N 
node similarity matrix based on the directed connectivity 
profile of the nodes, as given by RES (Sec. II-A). 

2) From this RBS matrix, obtain a (new) undirected simi
larity network using the RMST algorithm such that two 
nodes are connected if their connectivity profiles are 
highly similar (Sec. II-B). 

3) Find robust partitions of this RMST similarity network 
into communities of nodes with the same roles at several 
levels of resolution using Markov Stability, a multi scale 
community detection method (Sec. II-C). 

A. Role-Based Similarity in directed networks 

In a directed network the in- and out-connectivities of the 
nodes contain information about the role of each node in the 
network. The simplest categorisation of nodes into "leaders" 
and "followers", according to the predominance of their in- or 
out-degree, is often illustrative but limited as it neglects the 
full topology and complexity of the network. Other methods 
that harness further information from the network structure 
can be used to compute the "status" index [1], PageRank [2], 
or the "Hub"/"Authority" score [3]. Though powerful, these 
methods are limited by the fact that they split the nodes into 
at most two categories (or further categories according to a 
one-dimensional classification). 

To go beyond the 'leader-follower' dichotomy, we employ 
Role-Based Similarity (RES) [4], [5], a method that calculates 
how similar nodes are to each other in terms of the scaled 
number of adjacent directed paths of all meaningful lengths 

(i.e., no longer than N). The idea is to create a 1 x 2Kmax fea
ture vector for each node, Xi, whose entries are the weighted 
number of paths of lengths from 1 to Kmax < N originating 
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and ending in node i. All the feature vectors Xi are stored as 
the rows of the N x 2Kmax matrix: 

X = [ ... , (,6AT )k li, ... 1 ... , (,6A)
k li, ... J ' (1) 

where k = 1, ... ,Kmax. Note that the number of orifinating 
paths of length k from all nodes is given by (,6A) li, and 

the number of arriving paths (,6A T ) k li, where li is the N x 1 
vector of ones. Here, we use,6 = a/ )'1, where Al is the largest 
eigenvalue of A and a E ( 0, 1) ,  which assures convergence 
of the sequence ,6k A k as k ---+ 00. Hence the columns of X 
contain the number of in- (or out-) paths of length k for each 
node weighted by ,6k. 

In addition to guaranteeing convergence, the parameter a 

also determines the weight given to each path length: smaller 
values of a give more weight to shorter paths than to longer 
ones. If a « 1, the columns of X converge rapidly (because 
limk--+oo (,6A)k li = 0), which results in feature vectors based 
only on local properties based on short paths (i.e., in the limit 
a ---+ 0, the feature vector only contains kin and kout). As a is 
increased, we incorporate more global features of the network 
in our analysis. Results in [4] indicate that a = 0.95 provides 
a good balance between the information gathered from the 
local and global flow structure in the network. However, the 
systematic determination of a for each network is currently 
the focus of further investigation. 

From X we then compute the RES matrix Y, whose entries 
contain the cosine-similarity between all rows of X: 

T 
_ XiXj Yi,j - . 

IIxil12 11xj l12 
(2) 

When nodes i and j have an identical pattern of path flows 
at all lengths in g, then Xi and Xj are collinear and Yi,j c=: 1. 
On the contrary, when nodes i and j do not have any number 
of paths in common at any length (e.g., when i is a source 
and j a sink node) then Yi,j = O. The RES matrix Y is 
symmetric, usually full, and could be used to find groups 
of nodes with similar connectivity. However, as is usually 
the case with correlation or distance matrices, clustering Y 
directly is problematic because of its lack of sparsity and the 
unstructured nature of geometric distances in high-dimensional 
spaces. To unblur the structure of Y, we extract a similarity 
network that select links between nodes with strong similarity 
while discarding weak similarities that can be explained in 
terms of other relationships in the network, as we explain now. 

B. Obtaining the similarity network from the RBS matrix 

The N feature vectors containing the flow profiles of the 
nodes are defined in a high-dimensional space of 2Kmax 
dimensions. However, because the coordinates of the vectors 
are smoothly related to each other, we expect that the vectors 
of all nodes will lie in a lower dimensional manifold whose 
structrure can be well captured by a graph with a geometric 
structure. Here we use the Relaxed Minimum-Spanning Tree 
(RMST) algorithm, a method that incorporates local and global 
features of the data to recover such a network from the RBS 
matrix. 

First, we define the 'dissimilarity' (or 'distance' ) matrix Z, 
with Zi,j = 1 - Yi,j , i.e., the more similar i and j are to 
each other, the smaller the value of Zi,j and the closer i and j 
lie. The RMST algorithm constructs a network with adjacency 
matrix E from Z as follows. First, consider Z to be the 
adjacency matrix of a weigthed graph and obtain a Minimum 
Spanning Tree (MST) in it, setting ei,j = 1 if nodes i and j 
are neighbours in the tree. Each node pair (i, j) is connected 
by a path (or sequence of edges) {(i, k), (k, h), ... , ( m, j)} 
in the MST. We then find the maximal weight in Z along the 
MST path: 

mlinkij = max{ Zi,k, Zk,h, ... , Zm,j}' 

If mlinkij is significantly smaller than Zi,j then the MST-path 
is considered to be a good model to explain the similarity 
between nodes i and j and discard the direct link between 
them, i.e., we leave ei,j = O. If Zi,j is comparable to mlinkij 
then there is not sufficient evidence to believe that the MST
path is a better model and we include the direct link ei,j = 1. 
More precisely, we set ei,j = 1 when 

mlinkij + 1'( di + dj) > Zi,j , (3) 

where di = min Zi k and I' is a parameter (')' = 0.5 here). The 
k ' 

term 'Ydi approximates the local distribution of points (in Z) 
around i and is motivated by the Perturbed Minimum Spanning 
Tree algorithm [6]. 

The RMST similarity network is an un weighted, undirected 
graph where two nodes are connected only if their flow feature 
vectors are highly similar, regardless of whether they are 

neighbours in the original graph 9 or not. We can also obtain 
a weighted similarity graph by Hadamard-multiplying E and 
Y. The RMST network is sparse if the data in Y results 
from a local geometric structure (which the RMST tries to 
recover), and is more amenable to analysis using network 
analysis techniques such as the community detection method 
we describe below. 

C. Role-communities with Markov Stability 

Community detection in networks has been studied exten
sively and there exist a wide variety of methods, each with 
their own advantages [8]. Here, we use the method known as 
Markov Stability [9], [10] to detect 'role-communities' in the 
RMST similarity network. There are a number of advantages 
to using Markov Stability in this case, key among them is 
the ability to detect communities in the network at all scales 

via a continous-time Markov process evolving in time. Due 
to this dynamic zooming, Markov Stability does not impose 
an a priori number of roles (i.e., role-communities) in the 
network, but rather detects the presence of robust partitions at 
all levels of resolution. Hence we leam the number of roles 
by exploring the network with a continuous-time diffusion 
process and finding robust, optimised partitions across scales. 

Consider E, the adjacency matrix of the undirected RMST 
similarity network, which by construction is connected. Define 
k = Eli, the vector of degrees, and D = diag(k) so that 
D-1 E is a row-stochastic matrix. The normalised Laplacian 
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A (i) Directed neuronal network 

B Neuron type 
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Fig.!. Detecting role communities in the C. elegans neural network. A: (i): Directed neural network [7]. (ii): Heatmap of the RBS matrix (Y, Sec. II-A): 
the higher the similarity between two nodes, the lighter the cell. (Ui): Similarity network obtained from the RBS matrix with the RMST algorithm (Sec. II-B): 
only nodes with highly similar in- and out-flow patterns are connected. (iv): Community detection of the RMST similarity network using Markov Stability 
(Sec. II-C): robust partitions into 4, 3 and 2 role-communities are detected at different levels of resolution. B: Types of neurons in the C. elegans network, 
as given in Ref. [7]. C: The role-classes obtained using RBS+RSMT +Stability at different levels of resolution (Markov times). 

of the system is then L = IN - D-1 E, and the transltlon 
matrix of the continuous-time Markov process of duration t > 
o (the Markov time) is P(t) = e-tL (giving the probability of 
transitioning form node i to j in a process of duration t) [11]. 
A hard partition of the network into C groups of nodes can 
be encoded in a N x C matrix H (i.e., Hi,c = 1 is node i 
belongs to community c, and L:c Hi,c = 1 V i). The Markov 

Stability of the partition at time t is defined as the trace of the 
clustered autocovariance of the diffusion process [9]: 

r(t, H) = trace (HT [IIP(t) - JrJrT] H) , (4) 

where Jr is the steady-state distribution of the process, and 
II = diag( Jr). We find the communities in the similarity 
network for a given t by maximising r(t, H) over the space of 
partitions; that is, we find the network partitions that maximise 
the retention of flows over a timescale. 

Maximising equation (4) is an NP-hard problem, with no 
guarantees of global optimality. The optimised partitions are 
found using the Louvain algorithm [12], a greedy heuristic 
that has been shown to give good results in practice. To 
find the relevant partitions of the network at any time scale, 
we use a robustness criterion based on the consistency of 
the optimisation quantified through an information-theoretical 
measure. At each Markov time, we obtain optimised partitions 
of the network by running the Louvain method 100 times, each 
time using a random initial guess. To gauge the robustness of 
the set of optimised partitions, we calculate the mean pairwise 
Variation of Information (VI) of the ensemble of Louvain 
solutions [10]. The VI between two partitions Hl and H2 
is [l3]: 

with H(H) = - L:c p(c) logp(c) and p(c) = L:i H(i, c)/N. 
When the optimisation algorithm finds partitions of the net
work that are consistently similar (a hallmark of robust com
munity structure), the mean pairwise VI is low; when there 
is no clear community structure the optimisation produces 
partitions that are different to each other, resulting in a high 
mean VI. Finally, to make sure we detect all the relevant role
communities, we optimise equation (4) for all Markov times, 
keeping track of the mean VI as a function of t, and detecting 
communities that are also persistent across Markov times. 
We now provide examples of finding node roles in different 
networks using the RESIRMSTlMarkov Stability methodology 
explained in this section. 

III. EXAMPLES 

A. C. elegans neural network 

The directed neural network of C. elegans records the 
chemical synapses and the junctions between 279 neurons [7]. 
Figure lA shows the steps of the analysis: the original 
unweighted directed neuronal network; computation of the 
RES matrix Y with a = 0.95 and Kmax = 116; generate 
the RMST similarity network; and find role-communities in it 
using Markov Stability. As shown in Fig. lA-(iv), our analysis 
finds meaningful partitions of the RMST network into up to 
four role-classes. 

C. elegans is known to have three types of neurons: sensory, 
motor, and interneurons [7], shown in Figure IB with different 
colours. We display the neural network on the plane as in 
Ref. [7]: the horizontal axis corresponds to the entries of 
the Fiedler vector reflecting mostly body position, and the 
vertical axis corresponds to processing depth with respect to 
information flow. Fig. Ie shows that the partition into four, 
three and two roles broadly reflects the biological groups. 
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Fig. 2. Roles in the US airport network. A: Number of role-communities 
found in the RMST similarity network at all Markov times (top) and the 
Variation of Information of the partitions (bottom). B: The two roles found 
in the US airport network at Markov time t = 714. 

Among the four roles, we find one group (Role 1, dark 
blue) which corresponds mostly to sensory neurons and some 
interneurons. Role 3 is formed by a subset of the interneurons. 
Interestingly, motor neurons are split in two classes (Roles 
2 and 4) clearly separated along the body of the worm (x
axis). The motor neurons in Roles 2 and 4 are merged into a 
common role when we cluster the RMST network into 3 role
communities. Finally, the partition into two roles separates 
the groups along the lines of sensory and motor neurons
interneurons are split in both, with slightly more interneurons 
in the sensory group. 

B. US airport network 

We also investigated the roles in the unweighted network of 
N = 957 airports in the United States [14], [15]. The analysis 
proceeds as before and we calculate the RES matrix with 
a = 0.92 and Kmax = 78. Figure 2A shows the number of 
roles found at different levels of resolution. We find partitions 
into seven or fewer role classes-the VI has pronounced dips 
at t = 20, t = 95, t = 235, and t = 714, corresponding to 7, 
4, 3 and 2 role-communities. Interestingly, there is always a 
distinctive role for a large group of Alaskan airports across 
all levels of resolution which persists separately up to the 
highest level of resolution. As shown in Fig. 2B, where we 
show the US map with nodes coloured according to the two 
role classes at t = 714, the most striking attribute is that 
practically all airports in Alaska (including the two largest, 
Anchorage and Fairbanks) belong to role class 2. Transport 
in Alaska, a large and sparsely populated region with many 
remote settlements scantily connected by roads, relies on local 
airports and airstrips. These ingredients contribute to create 
a distinct (and less reciprocal) air-transportation connectivity, 
which sets Alaska apart from most of the rest of the US. The 
few nodes in the mainland and Hawaii that belong to role class 
2 are mostly small airfields and industrial airports, which are 
embedded in local air route patterns. 

IV. CONCLUSION 

We show how directed flow patterns at all scales in directed 
networks can be harnessed using a combination of flow
based and structural approaches to uncover the different types 

of nodes that exist in a directed network. Both RES and 
Markov Stability at their core rely on flows but each from a 
different stance: the former compares how the similarly nodes 
are positioned with respect to incoming and outgoing flows, 
while the latter establishes where flows tend to be trapped 
on a given timescale. The RSMT algorithm allows us to 
project complex datasets with local structure as true networks, 
facilitating its analysis with graph theoretical tools. Together, 
these techniques form a powerful framework for the analysis 
of directed networks which, as the examples here show, is 
applicable to networks originating from different disciplines. 
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