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Cells adapt their metabolic fluxes in response to changes in the environment. We present a sys-
tematic flux-based framework for the construction of graphs to represent organism-wide metabolic
networks. Our graphs encode the directionality of metabolic fluxes via links that represent the flow
of metabolites from source to target reactions. The methodology can be applied in the absence
of a specific biological context by modelling fluxes probabilistically, or can be tailored to different
environmental conditions by incorporating flux distributions computed from constraint-based mod-
elling such as Flux Balance Analysis. We illustrate our approach on the central carbon metabolism
of Escherichia coli, and on a larger metabolic model of human hepatocytes, and study the pro-
posed graphs under various environmental conditions and genetic perturbations. The results reveal
drastic changes in the topological and community structure of the metabolic graphs, which cap-
ture the re-routing of metabolic fluxes under each growth and genetic condition. By integrating
constraint-based models and tools from network science, our framework allows for the interrogation
of context-specific metabolic responses beyond fixed, standard pathway descriptions.

I. INTRODUCTION

Metabolic reactions enable cellular function by converting nutrients into energy, and by assembling macromolecules
that sustain the cellular machinery [1]. Cellular metabolism is usually thought of as a collection of pathways comprising
enzymatic reactions associated with broad functional categories. Yet metabolic reactions are highly interconnected:
enzymes convert multiple reactants into products with other metabolites acting as co-factors; enzymes can catalyse
several reactions, and some reactions are catalysed by multiple enzymes, and so on. This enmeshed web of reactions
is thus naturally amenable to network analysis, an approach that has been successfully applied to different aspects
of cellular and molecular biology, e.g., protein-protein interactions [2], transcriptional regulation [3], or protein struc-
ture [4, 5].

Tools from network theory [6] have previously been applied to the analysis of structural properties of metabolic
networks, including their degree distribution [7–10], the presence of metabolic roles [11], and their community struc-
ture [12–15]. A central challenge, however, is that there are multiple ways to construct a (mathematical) graph from
a metabolic network [16]. For example, one can create a graph with metabolites as nodes and edges representing
the reactions that transform one metabolite into another [7, 8, 17, 18]; a graph with reactions as nodes and edges
corresponding to the metabolites shared among them [19–21]; or even a bipartite graph with both reactions and
metabolites as nodes [22]. Importantly, the conclusions of graph-theoretical analyses are highly dependent on the
chosen graph construction [23].

A key feature of metabolic reactions is the directionality of flux: metabolic networks contain both irreversible and
reversible reactions, and reversible reactions can change their direction depending on the cellular and environmental
contexts [1]. Many of the existing graph constructions, however, lead to undirected graphs that disregard such
directional information, which is central to metabolic function [8, 16]. Furthermore, current graph constructions are
usually derived from the whole set of metabolic reactions in an organism, and thus correspond to a generic metabolic
‘blueprint’ of the cell. However, cells switch specific pathways ‘on’ and ‘off’ to sustain their energetic budget in
different environments [24]. Hence, such blueprint graphs might not capture the specific metabolic connectivity in a
given environment, thus limiting their ability to provide biological insights in different growth conditions.

In this paper, we present a flux-based approach to construct metabolic graphs that encapsulate the directional
flow of metabolites produced or consumed through enzymatic reactions. The proposed graphs can be tailored to
incorporate flux distributions under different environmental conditions. To introduce our approach, we proceed in
two steps. We first define the Probabilistic Flux Graph (PFG), a weighted, directed graph with reactions as nodes,
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edges that represent supplier-consumer relationships between reactions, and weights given by the probability that a
metabolite chosen at random is produced/consumed by the source/target reaction. This graph can be used to carry out
graph-theoretical analyses of organism-wide metabolic organisation independent of cellular context or environmental
conditions. We then show that this formalism can be adapted seamlessly to construct the Metabolic Flux Graph
(MFG), a directed, environment-dependent, graph with weights computed from Flux Balance Analysis (FBA) [25],
the most widespread method to study genome-scale metabolic networks.

Our formulation addresses several drawbacks of current constructions of metabolic graphs. Firstly, in our flux
graphs, an edge indicates that metabolites are produced by the source reaction and consumed by the target reaction,
thus accounting for metabolic directionality and the natural flow of chemical mass from reactants to products. Sec-
ondly, the Probabilistic Flux Graph discounts naturally the over-representation of pool metabolites (e.g., adenosine
triphosphate (ATP), nicotinamide adenine dinucleotide (NADH), protons, water, and other co-factors) that appear
in many reactions and tend to obfuscate the graph connectivity. Our construction avoids the removal of pool metabo-
lites from the network, which can change the graph structure drastically [26–30]. Finally, the Metabolic Flux Graph
incorporates additional biological information reflecting the effect of the environmental context into the graph con-
struction. In particular, since the weights in the MFG correspond directly to fluxes (in units of mass per time),
different biological scenarios can be analysed using balanced fluxes (e.g., from different FBA solutions) under different
carbon sources and other environmental perturbations [16, 25, 31, 32].

After introducing the mathematical framework, we showcase our approach with two examples. Firstly, in the
absence of environmental context, our analysis of the PFG of the core model of Escherichia coli metabolism [33]
reveals the importance of including directionality and appropriate edge weights in the graph to understand the modular
organisation of metabolic sub-systems. We then use FBA solutions computed for several relevant growth conditions
for E. coli, and show that the structure of the MFG changes dramatically in each case (e.g., connectivity, ranking
of reactions, community structure), thus capturing the environment-dependent nature of metabolism. Secondly, we
study a model of human hepatocyte metabolism evaluated under different conditions for the wild-type and in a
mutation found in primary hyperoxaluria type 1, a rare metabolic disorder [34], and show how the changes in network
structure of the MFGs reveal new information that is complementary to the analysis of fluxes predicted by FBA.

II. RESULTS

A. Definitions and background

Consider a metabolic network composed of n metabolites with concentrations xi (i = 1, . . . , n) that participate in
m reactions

Rj :

n∑
i=1

αijxi −−⇀↽−−
n∑

i=1

βijxi, j = 1, 2, . . . ,m, (1)

where αij and βij are the stoichiometric coefficients of species i in reaction j. We can then define the n-dimensional
vector of metabolite concentrations: x(t) = (x1(t), . . . , xn(t))T . Each reaction takes place at a rate vj(x, t), measured
in units of concentration per time [35].

The mass balance of the system can then be represented compactly by the system

ẋ = Sv, (2)

where we have defined v(t) = (v1(t), . . . , vm(t))T , the m-dimensional vector of reaction rates. The n×m matrix S is
the stoichiometric matrix with entries Sij = βij − αij , i.e., the net number of xi molecules produced (positive Sij) or
consumed (negative Sij) by the j-th reaction. To illustrate the different schemes and graphs described in this paper,
we use a toy example [32] of a metabolic network including nutrient uptake, biosynthesis of metabolic intermediates,
secretion of waste products, and biomass production (Figure 1A).

Starting from the stoichiometry S, there are several ways to construct a graph for a given set of metabolic reac-
tions [16]. A common approach [16] is to define the unipartite graph with reactions as nodes and the m×m adjacency
matrix

A = ŜT Ŝ, (3)

where Ŝ is the boolean version of S (i.e., Ŝij = 1 when Sij 6= 0 and Ŝij = 0 otherwise). In this Reaction Adjacency
Graph (RAG), two reactions (nodes) are connected if they share metabolites, either as reactants or products, and
self-loops represent the total number of metabolites that participate in a reaction (Fig. 1B).
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FIG. 1. Graphs for metabolic networks. (A) Toy metabolic network describing nutrient uptake, biosynthesis
of metabolic intermediates, secretion of waste products, and biomass production [32]. The biomass reaction is

R8 : x3 + 2x4 + x5. (B) Bipartite graph associated with the boolean stoichiometric matrix Ŝ, and the standard

Reaction Adjacency Graph (RAG [16]) with adjacency matrix A = ŜT Ŝ. The undirected edges of A indicate the
number of shared metabolites among reactions. (C) The Probabilistic Flux Graph (PFG, D) and two Metabolic
Flux Graphs (MFG, M(v∗)) are constructed from the unfolded consumption and production stoichiometric
matrices (5). Note that the reversible reaction R4 is unfolded into two nodes. The PFG (7) is a directed graph with
weights representing the probability that the source reaction produces a metabolite consumed by the target
reaction. The MFGs (11) are constructed from two Flux Balance Analysis solutions (v∗1 and v∗2) obtained by
optimizing a biomass objective function under different flux constraints representing different environmental or
cellular contexts (see Sec. SI 2 in the Supplementary Information for details). The edges of the MFGs represent
mass flow from source to target reactions, with weights in units of metabolic flux. The computed FBA solutions
translate into different connectivity in the resulting MFGs.

Though widely studied [8, 16], the RAG has known important limitations, as it overlooks key aspects of the
connectivity of metabolic networks. In particular, the RAG does not distinguish between forward and backward
fluxes, nor does it incorporate information on the irreversibility of reactions (A is a symmetric matrix). Furthermore,
the structure of A is dominated by the large number of connections introduced by pool metabolites (e.g., water,
ions or enzymatic cofactors) that appear in many reactions. Although computational schemes have been designed to
ameliorate the pool metabolite bias [27], their justification does not follow from biophysical considerations. Finally,
the construction of the graph A from rigid topological criteria is not easily extended to incorporate the effect of
varying environmental contexts.

B. Metabolic graphs that incorporate flux directionality and context

To address the limitations of the standard reaction adjacency graph A, given in Eq. (3), and aiming at enhanced
biophysical and biological interpretability, we propose a graph formulation that follows from a flux-based perspective.
To construct our graph, we unfold each reaction into separate forward and reverse directions, and redefine the presence
of links between reaction nodes to reflect producer-consumer relationships, i.e., two reactions are connected if one
produces a metabolite that is consumed by the other. As shown below, this definition leads to graphs that naturally
account for the reversibility of reactions and allows for a seamless integration of different biological contexts modelled
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through FBA.
Inspired by matrix formulations of chemical reaction network kinetics [36], we unfold the reactions into forward and

backward components. Specifically, let us rewrite the reaction rate vector introduced in (2) as:

v := v+ − v− = v+ − diag (r) v−,

where v+ and v− are non-negative vectors containing the forward and backward reaction rates, respectively, and r is
the m-dimensional reversibility vector with components rj = 1 if reaction Rj is reversible and rj = 0 if it is irreversible.
The m ×m matrix diag (r) contains r in its main diagonal. With these definitions, we rewrite the metabolic model
in Eq. (2) in terms of the unfolded 2m-dimensional vector of reaction rates, v2m := [v+ v−]T , to obtain:

ẋ = Sv =
[
S −S

] [Im 0
0 diag (r)

]
︸ ︷︷ ︸

S2m

[
v+

v−

]
:= S2m v2m , (4)

where Im is the m×m identity matrix, and S2m is an unfolded version of the stoichiometric matrix corresponding to
the 2m forward and reverse reactions.

1. Probabilistic Flux Graph: a directional blueprint of metabolism

The unfolding into forward and backward fluxes leads us to the definition of production and consumption stoichio-
metric matrices:

Production: S+
2m =

1

2
(abs (S2m) + S2m)

Consumption: S−2m =
1

2
(abs (S2m)− S2m) ,

(5)

where abs (S2m) is the matrix whose entries are the absolute values of the corresponding entries of S2m. Note that
each entry of the matrix S+

2m, denoted s+ij , gives the number of molecules of metabolite xi produced by reaction Rj .

Conversely, the entries of S−2m, denoted s−ij , correspond to the number of molecules of metabolite xi consumed by
reaction Rj .

Within our directional flux framework, it is natural to consider a probabilistic description of producer-consumer
relationships between reactions, as follows. Given a stoichiometric matrix S, and in the absence of further biological
information, the probability that metabolite xk is produced by reaction Ri and consumed by reaction Rj is:

P (a molecule of xk is produced by Ri and consumed by Rj) =
s+ki
w+

k

s−kj

w−k
,

where w+
k =

∑2m
h=1 s

+
kh and w−k =

∑2m
h=1 s

−
kh are the total number of molecules of xk produced and consumed by all

reactions.
We thus define the weight of the edge between reaction nodes Ri and Rj as the probability that any metabolite

chosen at random is produced by Ri and consumed by Rj . Summing over all metabolites and normalizing, the edge
weight is defined as

Dij =
1

n

n∑
k=1

s+ki
w+

k

s−kj

w−k
. (6)

These edge weights are the entries of the adjacency matrix of the

Probabilistic Flux Graph (PFG): D =
1

n

(
W†

+S+
2m

)T (
W†
−S−2m

)
, (7)

where W†
+ = diag(S+

2m12m)†, W†
− = diag(S−2m12m)†, 12m is a vector of ones, and † denotes the Moore-Penrose

pseudoinverse. The PFG is a weighted, directed graph with a double-stochastic adjacency matrix (
∑

i,j Dij = 1). It
provides a directional blueprint of the whole metabolic model, and naturally scales the contribution of pool metabolites
to flux transfer. In Figure 1C we illustrate the creation of the PFG for a toy network. Note that our PFG is distinct
from a directed graph directly comparable to the RAG A, and with similar shortcomings, which can be constructed
from boolean versions of the production and consumption stoichiometric matrices as shown in Sec. SI 1.

We now extend the idea behind the construction of the PFG to account for specific environmental context or growth
conditions.
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2. Metabolic Flux Graphs: incorporating information of the biological context

Cells adjust their metabolic fluxes to respond to the availability of nutrients and environmental requirements. Flux
Balance Analysis (FBA) is a widely used method to predict environment-specific flux distributions. FBA computes
a vector of metabolic fluxes v∗ that maximise a cellular objective (e.g., biomass, growth or ATP production). The
FBA solution is obtained assuming steady state conditions and subject to constraints that describe the availability of
nutrients and other extracellular compounds [16]. The core elements of FBA are briefly summarised in Section A 1.

To incorporate the biological information afforded by FBA solutions into the structure of a metabolic graph, we
again define the graph edges in terms of production and consumptions fluxes. Similarly to Eq. (4), we unfold the FBA
solution vector v∗ into forward and backward components, so that positive entries in the FBA solution correspond to
forward fluxes, while negative entries in the FBA solution correspond to backward fluxes. From the unfolded fluxes

v∗2m =

[
v∗+

v∗−

]
=

1

2

[
abs (v∗) + v∗

abs (v∗)− v∗

]
,

we compute the vector of production and consumption fluxes as

j(v∗) = S+
2mv∗2m = S−2mv∗2m. (8)

The k-th entry of j(v∗) is the flux at which metabolite xk is produced and consumed. Note that production and
consumption fluxes are identical because of the steady state condition (ẋ = 0 in Eq. (2)).

We now construct the flux graph by defining the weight of the edge between reactions Ri and Rj as the total flux
of metabolites produced by Ri that are consumed by Rj . Assuming that the amount of metabolite produced by one
reaction is distributed among the reactions that consume it in proportion to their flux, the flux of metabolite xk from
reaction Ri to Rj is given by

Flux of xk from Ri to Rj = (flux of xk produced by Ri)×
(

flux of xk consumed by Rj

total consumption flux of xk

)
. (9)

For example, if the total flux of metabolite xk is 10 mmol/gDW/h, with reaction Ri producing xk at a rate
1.5 mmol/gDW/h and reaction Rj consuming xk at a rate 3.0 mmol/gDW/h, then the flux of xk from Ri to Rj

is 0.45 mmol/gDW/h. Summing Eq. (9) over all metabolites, we then obtain the edge weight relating reactions Ri

and Rj as

Mij(v
∗) =

n∑
k=1

s+kiv
∗
2mi ×

(
s−kjv

∗
2mj∑2m

j=1 s
−
kjv
∗
2mj

)
. (10)

The edge weights are collected into the adjacency matrix of the

Metabolic Flux Graph (MFG): M(v∗) =
(
S+
2mV∗

)T
J†v
(
S−2mV∗

)
, (11)

where V∗ = diag (v∗2m), Jv = diag (j(v∗)) and † denotes the matrix pseudoinverse. The MFG is a directed graph
with weights in units of mmol/gDW/h. Self loops describe the metabolic flux of autocatalytic reactions, i.e., those in
which products are also reactants.

The MFG provides a versatile framework to create environment-specific metabolic graphs from FBA solutions. In
Figure 1C we illustrate the creation of MFGs for a toy network. In each case we compute FBA solutions under a fixed
uptake flux and constrain the remaining fluxes to account for different biological scenarios. In scenario 1 the fluxes
are constrained to be strictly positive and no larger than the nutrient uptake flux, while in scenario 2 we impose a
positive lower bound on reaction R7. The graph in scenario 2 displays an extra edge between reactions R4 and R7

and distinct edge weights, as compared to scenario 1 (see Sec. SI 2). The results thus illustrate how changes in the
FBA solutions translate into different graph connectivities and edge weights.

C. Graphs of Escherichia coli metabolism

To illustrate our framework, we construct and analyse flux graphs (PFG and MFGs) of the core metabolic model
of E. coli [33]. This model (Fig. 2A) contains 72 metabolites and 95 reactions, grouped into 11 pathways, which
describe the main biochemical routes in central carbon metabolism [38–40]. See the Supplemental Spreadsheet for
details about the reactions and metabolites in this model.
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FIG. 2. Graphs for the core metabolism of Escherichia coli. (A) Map of the E. coli core metabolic model
created with the online tool Escher [33, 37]. (B) The standard Reaction Adjacency Graph A, as given by Eq. (3).
The nodes represent reactions; two reactions are linked by an undirected edge if they share reactants or products.
The nodes are coloured according to their PageRank score, a measure of their centrality in the graph. (C) The
directed Probabilistic Flux Graph D, as computed from Eq. (7). The reversible reactions are unfolded into two
overlapping nodes (one for the forward reaction, one for the backward). The directed links indicate flow of
metabolites produced by the source node and consumed by the target node. The nodes are coloured according to
their PageRank score. (D) Comparison of PageRank percentiles of reactions in A and D. Reversible reactions are
represented by two triangles connected by a line; both share the same PageRank in A, but each has its own
PageRank in D. Reactions that appear above (below) the diagonal have increased (decreased) PageRank in D as
compared to A.
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1. Probabilistic Flux Graph: the impact of directionality

To highlight the effect of flux directionality on the constructed graphs, Figure 2 compares the standard undirected
Reaction Adjacency Graph (A) and our proposed Probabilistic Flux Graph (D) for the same metabolic model. The
A graph has 95 nodes and 1,158 undirected edges, while the D graph has 154 nodes and 1,604 directed and weighted
edges. The increase in node count is due to the unfolding of forward and backward reactions into separate nodes.
Unlike the A graph, where the edges represent shared metabolites between two reactions, the directed edges of the
D graph represent the flow of metabolites from a source to a target reaction. A salient feature of both graphs is their
high connectivity, which is not apparent from the traditional pathway representation in Figure 2A.

The impact of directionality becomes apparent when comparing the importance of reaction nodes on the overall
connectivity of each graph, as measured by the PageRank score introduced in the original Google algorithm [41, 42].
Figure 2B–D shows that the PageRank of reactions is substantially different in A and D. The overall ordering is
maintained: exchange reactions tend to have low PageRank, whereas core metabolic reactions have high PageRanks
in both graphs—indeed, the biomass reaction has the highest rank in both cases (see Supplemental Spreadsheet).
However, we observe a dramatic change in the importance of some reactions. For example, the reactions for ATP
maintenance (ATPM, irreversible), phosphoenolpyruvate synthase (PPS, irreversible) and ABC-mediated transport
of L-glutamine (GLNabc, irreversible) drop from being among the top 10% most important reactions in the A graph
to the bottom percentiles in the D graph. Conversely, other reactions such as aconitase A (ACONTa, irreversible),
transaldolase (TALA, reversible) and succinyl-CoA synthetase (SUCOAS, reversible), and formate transport via
diffusion (FORti, irreversible) gain substantial importance in the D graph. For instance, FORti is the sole consumer
of formate, which is produced by pyruvate formate lyase (PFL), a reaction that is highly connected to the rest of
the network. Importantly, in most of the reversible reactions, such as ATP synthase (ATPS4r), there is a wide gap
between the PageRank of the forward and backward reactions, suggesting a marked asymmetry in the importance of
metabolic flows.

Community detection is a technique that is frequently used for the analysis of complex graphs: nodes are clustered
into tightly-related communities in order to reveal the coarse-grained structure of the graph, potentially at different
levels of resolution [45–47]. Indeed, the community structure of graphs derived from metabolic networks has been the
subject of several analyses [12, 14, 45]. However, most existing community detection methods are only applicable to
undirected graphs and fail to capture the directionality of the edges, a key feature in metabolism. In order to account
for directionality, we use the Markov Stability community detection framework [47–49], which employs diffusions
on graphs to detect groups of nodes where flows are retained persistently across time scales. Due to its use of
diffusive dynamics, Markov Stability is ideally suited to find multi-resolution community structure [46], and naturally
incorporates edge directionality, if present [47, 50] (see Sec. A 2). When applied to metabolic graphs, Markov Stability
can thus reveal groups of reactions that are tightly linked by the flow of metabolites they produce and consume.

Figure 3 highlights the strong differences between the community structure of the undirected RAG and the directed
PFG of the core metabolism of E. coli, underscoring the importance of directionality in these graphs. When applied
to the A graph, Markov Stability reveals a robust partition into seven communities (Figure 3B, see also Sec. SI 3).
The reaction communities obtained are largely determined by the edges created by abundant pool metabolites. For
example, community C1(A) is mainly composed of reactions that consume or produce ATP and water. Note, how-
ever, that the biomass reaction (the largest consumer of ATP) is not a member of C1(A) because, in the A graph
construction, any connection involving ATP has equal weight. Other communities in A are also determined by pool
metabolites, e.g. C2(A) is dominated by H+, and C3(A) is dominated by NAD+ and NADP+, as shown by the word
clouds representing the relative frequency of metabolites that appear in the reactions contained in each community.
The community structure in A thus reflects the limitations of this graph construction due to the absence of biological
context and the large number of uninformative links introduced by pool metabolites.

In contrast, we found a robust partition into five communities for the D graph (Figure 3C, see also Sec. SI 3).
These communities comprise reactions related consistently by biochemical pathways. Community C1(D) contains
the reactions in the pentose phosphate pathway together with the first steps of glycolysis involving D-fructose, D-
glucose, or D-ribulose. Community C2(D) contains the main reactions that produce ATP from substrate level as
well as oxidative phosphorylation and the biomass reaction. Community C3(D) includes the core of the citric acid
cycle, anaplerotic reactions related to malate syntheses, as well as the intake of cofactors such as CO2. Community
C4(D) contains reactions that are secondary sources of carbon (such as malate and succinate), as well as oxidative
phosphorilation reactions. Finally, community C5(D) contains reactions that are part of the pyruvate metabolism
subsystem, as well as transport reactions for the most common secondary carbon metabolites such as lactate, formate,
acetaldehyde and ethanol. Altogether, the communities of the D graph reflect metabolite flows associated with specific
cellular functions, a key benefit and consequence of including flux directionality in the graph construction. As seen in
Fig. 3C, the communities are no longer exclusively determined by pool metabolites (e.g., water is no longer dominant
and protons are spread among all communities). For a more detailed explanation and comparison of the communities



8

C5

C4

C3

C2

C1

Exchange

Transport

Glycolysis/
gluconegenesis

Oxidative
phosphorylation

Citric acid cycle

Pentose phosphate
pathway

Anaplerotic reactions

Pyruvate metabolism
Glutamate metabolism

Inorg. ion transp. and metab.
Growth

Reaction communities

Reaction Adjacency Graph 

A

B

E. coli core metabolism

C Probabilistic Flux Graph 
ACALD

ACALDt

ACKr

ACONTa
ACONTb

ACt2r

ADK1

AKGDH
AKGt2r

ALCD2x

ATPM

ATPS4r

Biomass

CO2t

CS

CYTBD

D_LACt2

ENO

ETOHt2r

EX_ac(e)
EX_acald(e)

EX_akg(e)

EX_co2(e)
EX_etoh(e)

EX_for(e)

EX_fru(e)

EX_fum(e)EX_glc(e)

EX_gln_L(e)

EX_glu_L(e)

EX_h(e)

EX_h2o(e)EX_lac_D(e)

EX_mal_L(e)

EX_nh4(e)

EX_o2(e)

EX_pi(e)

EX_pyr(e)

EX_succ(e)

FBA

FBP

FORt2

FORti

FRD7

FRUpts2

FUM

FUMt2_2

G6PDH2r

GAPD

GLCpts

GLNS

GLNabc

GLUDy

GLUN
GLUSy GLUt2r

GND

H2Ot

ICDHyr

ICL

LDH_D

MALS

MALt2_2

MDH

ME1

ME2

NADH16

NADTRHD

NH4t

O2t

PDH

PFK

PFL

PGI

PGK

PGL

PGM

PIt2r

PPC

PPCK

PPS

PTAr

PYK

PYRt2r

RPE RPI

SUCCt2_2

SUCCt3SUCDi

SUCOAS

TALA

THD2TKT1

TKT2

TPI

C5
C4
C3
C2
C1

Reaction communities

C7
C6

C5

C4

C3

C2

C1

Inorg. ion transp. and metab.

Exchange

Transport

Glycolysis/
gluconegenesis

Oxidative
phosphorylation

Citric acid cycle

Pentose phosphate
pathway

Anaplerotic reactions

Pyruvate metabolism

Glutamate metabolism

Growth

Exchange

Pyruvate metabolism
Glycolysis/Gluconegenesis

Anaplerotic reactions
Pentose phosphate pathway

Citric acid cycle
Oxidative phosphorylation

Glutamate metabolism

Transport

Inorganic ion transport and metabolism
Growth

Pathways

C7
C6
C5
C4
C3
C2
C1

FIG. 3. Directionality and community structure of graphs for Escherichia coli metabolism. (A)
Reactions of the core model of E. coli metabolism grouped into eleven biochemical pathways. (B–C) Graphs A and
D from Fig. 2B–C partitioned into communities computed with the Markov Stability method; for clarity, the graph
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communities found in each graph. The word clouds contain the metabolites that participate in the reactions each
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found in the A and D graphs, see Section SI 3 and the Supplementary Spreadsheet.

2. Metabolic Flux Graphs: the impact of growth conditions and biological context

To incorporate the impact of environmental context in our graphs, we construct different Metabolic Flux
Graphs (11), using flux distributions obtained from Flux Balance Analysis applied to the core model of E. coli
metabolism under several growth conditions: aerobic growth in rich media with glucose or ethanol, aerobic growth in
glucose but phosphate- and ammonium-limited, and anaerobic growth in glucose.

The results, summarised in Figure 4, reveal how changes in metabolite flows induced by different biological contexts
are reflected in our graph construction. In all cases, the MFGs have fewer nodes than the blueprint graph D because
the FBA solutions contain numerous reactions with zero flux. The different environments also affect the graph
connectivity and the relative node importance, as measured by their PageRank score. Furthermore, the community
structure of the MFGs for the four environmental conditions, as obtained with the Markov Stability framework, reflect
the distinct usage of functional pathways by the cell in response to growth requirements under specific environments.
We briefly describe the salient features of the analysis; a more detailed discussion can be found in Section SI 4 and
Fig. SI 2 in the Supplementary Information, and the Supplemental Spreadsheet.
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FIG. 4. Metabolic Flux Graphs for Escherichia coli in different growth conditions. The MFGs are
computed from Eq. (11) and the FBA solutions in four different environments: (A) aerobic growth in D-glucose, (B)
aerobic growth in ethanol, (C) anaerobic growth in D-glucose, and (D) aerobic growth in D-glucose but with limited
ammonium and phosphate. Each subfigure shows: (left) flux map obtained with Escher [37], where the increased red
colour of the arrows indicates increased flux; (centre) Metabolic Flux Graph with nodes coloured according to their
PageRank (zero flux reactions are in grey; thickness of connections proportional to fluxes); (right) community
structure computed with the Markov Stability method together with Sankey diagrams showing the correspondence
between biochemical pathways and MFG communities.
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a. Aerobic growth in D-glucose (Mglc). We observe a robust partition into three communities with an intuitive
biological interpretation (Fig. 4A and Fig. SI 2A). Firstly, C1(Mglc) can be thought of as a carbon-processing com-
munity, comprising reactions that process carbon from D-glucose to pyruvate including most of the glycolysis and
pentose phosphate pathways, together with related transport and exchange reactions. Secondly, C2(Mglc) harbours
the bulk of reactions related to oxidative phosphorylation and the production of energy in the cell, including the elec-
tron transport chain of NADH dehydrogenase, cytochrome oxidase, and ATP synthase, as well as transport reactions
for phosphate and oxygen intake and proton balance. The growth reaction is also included in community C2(Mglc),
consistent with ATP being the main substrate for both the ATP maintenance (ATPM) requirement and the biomass
reaction in this biological scenario. Finally, C3(Mglc) contains reactions related to the citric acid cycle (TCA) and the
production of NADH and NADPH (i.e., the cell’s reductive power), as well as routes that take phosphoenolpyruvic
acid (PEP) as a starting point, thus highlighting carbon intake routes that are strongly linked to the TCA cycle.

b. Aerobic growth in ethanol (Metoh). We found a robust partition into three communities that resemble those
found in Mglc, with subtle yet important differences (Fig. 4B and Fig. SI 2B). The most salient differences are
observed in the carbon-processing community C1(Metoh), which clearly reflects the switch of carbon source from
D-glucose to ethanol. This community contains gluconeogenic reactions (instead of glycolytic), due to the reversal
of flux induced by the change of carbon source, as well as anaplerotic reactions and reactions related to glutamate
metabolism. The main role of the reactions in this community is the production of bioprecursors such as PEP,
pyruvate, 3-phospho-D-glycerate (3PG), glyceraldehyde-3-phosphate (G3P), D-fructose-6-phosphate (F6P), and D-
glucose-6-phosphate, all of which are substrates for growth. Consequently, the biomass reaction is also grouped within
C1(Metoh) due the increased metabolic flux of precursors relative to ATP production in this biological scenario. The
other two reaction communities (energy-generation C2(Metoh) and citric acid cycle C3(Metoh)) display less prominent
differences relative to the Mglc graph, with additional pyruvate metabolism and anaplerotic reactions as well as subtle
ascriptions of reactions involved in NADH/NADPH balance and the source for acetyl-CoA.

c. Anaerobic growth in D-glucose (Manaero). The absence of oxygen has a profound impact on the metabolic
balance of the cell and the MFG captures the drastic changes in this new regime effectively (Fig. 4C and Fig. SI 2C).
Both the connectivity and the reaction communities in this MFG are different from the aerobic scenarios, with a
much diminished presence of oxidative phosphorylation pathways and the absence of the first two steps of the electron
transport chain (CYTBD and NADH16). We found that Manaero has a robust partition into four communities.
C1(Manaero) still contains carbon processing (glucose intake and glycolysis), yet these reactions are decoupled from
the pentose phosphate pathway, which is now part of community C3(Manaero) grouped with the citric acid cycle (now
incomplete) and the biomass reaction. C3(Manaero) includes the growth precursors in this scenario, including alpha-
D-ribose-5-phosphate (r5p), D-erythrose-4-phosphate (e4p), 2-oxalacetate and NADPH. The other two communities
are specific to the anaerobic context: C2(Manaero) contains the conversion of PEP into formate (more than half of
the carbon secreted by the cell becomes formate [51]); and C4(Manaero) includes NADH production and consumption
via reactions linked to glyceraldehyde-3-phosphate dehydrogenase (GAPD).

d. Aerobic growth in D-glucose but limited phosphate and ammonium (Mlim). Under these growth-limiting con-
ditions, we found a robust partition into three communities (Fig. 4D and Fig. SI 2D). The community structure
reflects overflow metabolism [52], which occurs when the cell takes in more carbon than it can process. As a conse-
quence, the excess carbon is secreted from the cell, leading to a strong decrease in growth and a partial shutdown
of the citric acid cycle. This is reflected in the reduced weight of the TCA pathway in C3(Mlim) and its grouping
with the secretion routes of acetate and formate. Hence, C3(Mlim) comprises reactions that would not be strongly
coupled in more favorable growth conditions, yet are linked together by metabolic responses appearing due to the
limited availability of ammonium and phosphate. Furthermore, the carbon-processing community C1(Mlim) contains
the glycolytic pathway, but detached from the pentose phosphate pathway, as in the Manaero graph, highlighting its
role in precursor formation. The bioenergetic machinery is contained in community C2(Mlim), including the pentose
phosphate pathway, with a smaller role for the electron transport chain (21.8% of the total ATP as compared to 66.5%
in Mglc).

3. Multiscale organisation of metabolic flux graphs

Another advantage of flux-based MFGs is the possibility of applying network-theoretic tools to detect natural
groupings of reactions at different levels of resolution, as well as their hierarchical relationship across scales. The
Markov Stability framework [48, 53] can be used to detect multi-resolution community structure in directed graphs
(Sec. A 2), thus allowing the exploration of the modular multiscale organisation of metabolic reaction networks.

Figure 5 illustrates this multiscale analysis on the metabolic flux graph of E. coli under aerobic growth in glucose
(Mglc). By varying the Markov time t, a parameter in the Markov Stability method, we scanned the community
structures at different resolutions. Our results show that, as we move from finer to coarser resolutions, the MFG can
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FIG. 5. Community structure of flux graphs across different scales. We applied the Markov Stability
method to partition the metabolic flux graph for E. coli aerobic growth in glucose (Mglc) across levels of resolution.
The top panel shows the number of communities of the optimal partition (blue line) and two measures of its
robustness (V I(t) (green line) and V I(t, t′) (colour map)) as a function of the Markov time t (see text and Methods
section). The five Markov times selected correspond to robust partitions of the graph into 11, 7, 5, 3, and 2
communities, as signalled by extended low values of V I(t, t′) and low values (or pronounced dips) of V I(t). The
Sankey diagram (middle panel) visualises the multiscale organisation of the communities of the flux graph across
Markov times, and the relationship of the communities with the biochemical pathways. The bottom panel shows the
five partitions at the selected Markov times. The partition into 3 communities corresponds to that in Figure 4A.

be partitioned into 11, 7, 5, 3, and 2 communities which have high robustness across Markov time (extended plateaux
of optimality over t, as shown by the low values of V I(t, t′)) and are highly robust within the optimisation ensemble
(as shown by dips in V I(t)). For further details, see Section A 2 and Refs. [46–48, 53].

The Sankey diagram in Fig. 5 allows us to visualise the pathway composition of the graph partitions and their
relationships across different resolutions. As we decrease the resolution (longer Markov times), the reactions in different
pathways assemble and split into different groupings, reflecting both specific relationships and general organisation
principles associated with this growth condition. A general observation is that glycolysis is grouped together with
oxidative phosphorylation across most scales, underlining the fact that those two pathways function as cohesive
metabolic sub-units in aerobic conditions. In contrast, the exchange and transport pathways appear spread among
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multiple partitions across all resolutions. This is expected, as these are enabling functional pathways in which reactions
do not interact amongst themselves but rather feed substrates to other pathways.

Other reaction groupings reflect more specific relationships. For example, the citric acid cycle (always linked to
anaplerotic reactions) appears as a cohesive unit across most scales, and only splits in two in the very final flux
grouping, reflecting the global role of the TCA cycle in linking to both glycolysis and oxidative phosphorylation.
The pentose phosphate pathway, on the other hand, is split into two groups (one linked to glutamate metabolism
and another one linked to glycolysis) across early scales, only merging into the same community towards the final
groupings. This suggests a more interconnected flux relationship of the different steps of the penthose phosphate
pathway with the rest of metabolism. Figure SI 2 contains a multiscale analyses of the communities for the other
three growth scenarios.

D. Hepatocyte metabolism in wild type and PH1 mutant human cells

To showcase the applicability of our framework to larger metabolic models, we analyse a model of human hepatocyte
(liver) metabolism with 777 metabolites and 2589 reactions [34], which extends the widely used HepatoNet1 model [54]
with 50 reactions and 8 metabolites. This model was used in Ref. [34] to compare wild-type cells (WT) and cells
lacking alanine:glyoxylate aminotransferase (AGT) as a result of a genetic mutation in the rare disease primary
hyperoxaluria type 1 (PH1). The enzyme AGT is found in peroxisomes and its mutation decreases the breakdown of
glyoxylate, with subsequent accumulation of calcium oxalate that leads to liver damage.

Following [34], we obtain 442 FBA solutions for different sets of metabolic objectives for both the wild type (WT)
model and the PH1 model lacking AGT (reaction r2541). We then generate the corresponding 442 MFGs for WT and
442 MFGs for PH1, and we obtain the averages over each ensemble: MWT and MPH1. Of the 2589 reactions in the
model, 2448 forward and 1362 reverse reactions are present in at least one of the FBA solutions. Hence the average
MFGs have 3810 nodes each (see the Supplementary Spreadsheet for details about the reactions).

Figure 6A shows the MFG for the wild type (MWT) coloured according to a robust partition into 7 communities
obtained with Markov Stability. The seven communities are broadly linked to amino acid metabolism (C0), energy
metabolism (C1 and C5), glutathione metabolism (C2), fatty acid and bile acid metabolism (C3 and C4) and choles-
terol metabolism and lipoprotein particle assembly (C6). As expected, the network community structure of the MFG
is largely preserved under the AGT mutation: the Sankey diagramme in Fig. 6A shows a remarkable match between
the partitions of MWT and MPH1 found independently with Markov Stability. Despite this similarity, our method
also identified subtle but important differences between the healthy and diseased networks. In particular, C3 in MPH1

receives 60 reactions, almost all taking place in the peroxisome and linked to mevalonate and iso-pentenyl pathways,
as well as highly central transfer reactions of PPi, O2 and H2O2 between the peroxisome and the cytosol (r1152,
r0857, r2577) .

Similarly, the network centrality of most reactions is relatively unaffected by the PH1 mutation. Figure 6B shows
a good overall correlation between the PageRank percentiles in MWT and MPH1 but with some notable exceptions.
Indeed, the reactions that exhibit the largest change in network centrality (labelled in Fig. 6B) provide biological
insights related to the disease state. Specifically, the reactions that undergo the largest decrease in centrality in the
PH1 network are largely related to VLDL-pool reactions, whereas the four reactions (r0916, r1088, r2384, r2374) that
have the largest increase in centrality in the PH1 network are related to the transfer of citrate out of the cytosol
in exchange for oxalate and PEP. Note that although oxalate and citrate reactions are directly linked to metabolic
changes associated with the PH1 diseased state, none of them exhibits large changes in their flux predicted by FBA,
yet they show large changes in network centrality.

These observations underscore that the information provided by our network analysis is complementary to the
analysis drawn from FBA predictions. As shown in Figure 6C, a group of reactions exhibit large gains or decreases
in their flux under the PH1 mutation with relatively small changes in their centrality scores. Closer inspection
reveals that most of these reactions are close to the AGT reaction (r2541) in the perturbed pathway and involve the
conversion of glycolate, pyruvate, glycine, alanine and serine. These observed changes in flux follow from the local
rearrangement of network flows consequence of the deletion of reaction r2541. On the other hand, the citrate and
oxalate reactions discussed above, which have large increases or decreases of centrality with small changes in flux,
reflect global changes in the flow structure of the network. Interestingly, the transport reactions of O2, H2O2, serine
and hydroxypyruvate between cytosol and peroxisome (r0857, r2577, r2583, r2543) undergo large changes both in
centrality and flux, highlighting the importance of peroxisome reactions in PH1. We provide a full spreadsheet with
these analyses as Supplementary Material for the interested reader.
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FIG. 6. MFG analysis of a model of human hepatocyte metabolism and the genetic condition PH1.
(A) Average MFG of hepatocytes in wild-type cells over 442 metabolic objectives. The reaction nodes are coloured
according to their community in a robust partition obtained with Markov Stability. The Sankey diagramme shows
the consistency between the communities independently found in the MFGs of the wild type and the mutated PH1
cells. The word clouds of the most frequent metabolites in the reactions of the communities in WT reveal functional
groupings (see text). The main reorganisation of the community structure under the PH1 mutation is summarised
by the word cloud of the metabolites that join C3’ in PH1 from other communities in WT. (B) Comparison of the
PageRank percentiles in the WT and PH1 MFGs. Reactions whose rank changes by more than 20 percentiles are
labelled and shown in colour. (C) Difference in average FBA flux between WT and PH1 vs difference in PageRank
percentile between WT and PH1. The reactions whose flux difference is greater than 100mmol/gDW/h or whose
change in PageRank percentile is greater than 20 are labelled and shown in colour. The differences in centrality
PageRank score provide complementary information revealing additional important reactions affected by the PH1
mutation which affects reaction r2541 (indicated with italics).
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III. DISCUSSION

Metabolic reactions are commonly understood in terms of functional pathways that are heavily interconnected to
form metabolic networks, i.e., metabolites linked by arrows representing enzymatic reactions between them [37] (Figs. 2
and 4). However, such standard representations are not amenable to rigorous graph-theoretic analysis. Importantly,
there are fundamentally different graphs that can be constructed from the metabolic reaction information depending
on the chosen representation of species/interactions as nodes/edges, e.g., reactions as nodes; metabolites as nodes;
or both reaction and metabolites as nodes [16]. Each one of these graphs can be directed or undirected, and with
weighted links computed according to different rules. The choices and subtleties in graph construction are crucial
both to capture the relevant metabolic information and to interpret their topological properties [10, 17].

Here, we have presented a flux-based strategy to build graphs for metabolic networks. Our graphs have reactions as
nodes and directed edges representing the flux of metabolites produced by a source reaction and consumed by a target
reaction. This principle can be applied to build both ‘blueprint’ graphs (PFG), which summarise the probabilistic
fluxes of the whole metabolism of an organism, as well as context-specific graphs (MFGs), which reflect specific
environmental conditions. The blueprint Probabilistic Flux Graph with edge weights equal to the probability that
the source/target reactions produce/consume a molecule of a metabolite chosen at random, naturally tames the over-
representation of pool metabolites without the need to remove them from the graph arbitrarily, as is often done in
the literature [26, 28–30]. The PFG can be used to construct networks when the stoichiometric matrix is the only
information available. The context-specific Metabolic Flux Graphs (MFGs) incorporate the effect of the environment,
as edge weights correspond to the total flux of metabolites between reactions as calculated by Flux Balance Analysis
(FBA). Computing FBA solutions for different environments allows us to build metabolic graphs systematically for
different growth media.

The two proposed graphs provide complementary tools for studying the organisation of metabolism and can be
embedded into virtually any FBA-based modelling pipeline. Specifically, the PFG relies on the availability of a well-
curated stoichiometric matrix, which is produced with metabolic reconstruction techniques that typically precede the
application of FBA. The MFG, on the other hand, explicitly uses the FBA solutions in its construction. Both methods
provide a systematic framework to convert genome-scale metabolic models into a directed graph on which powerful
analysis tools from network theory can be applied.

To exemplify our approach, we built and analysed PFG and MFGs for the core metabolism of E. coli. Through
the analysis of topological properties and community structure of these graphs, we highlighted the importance of
weighted directionality in metabolic graph construction and revealed the flux-mediated relationships between func-
tional pathways under different environments. In particular, the MFGs capture specific metabolic adaptations such
as the glycolytic-gluconeogenic switch, overflow metabolism, and the effects of anoxia. We note that although we have
illustrated our analysis on the core metabolism of E. coli, the proposed graph construction can be readily applied to
large genome-scale metabolic networks [12, 19, 21, 22, 38].

To illustrate the scalability of our analyses to larger metabolic models, we studied a genome-scale model of a large
metabolic model of human hepatocytes with around 3000 reactions in which we compared the wild type and a mutated
state associated with the disease PH1 under more than 400 metabolic conditions [34]. Our network analysis of the
corresponding MFGs revealed a consistent organisation of the reactions, which is highly preserved under the mutation,
but also indentified notable changes in the network centrality and community structure of certain reactions that could
be linked to key biological processes associated with PH1. Importantly, the network measures computed from the
MFGs reveal complementary information to that provided by the analysis of perturbed fluxes predicted by FBA.

Our flux graphs provide a systematic connection between network theory and constraint-based methods widely
employed in metabolic modelling [21, 22, 25, 32], thus opening avenues towards environment-dependent, graph-based
analyses of cell metabolism. An area of interest would be to use MFGs to study how the community structure of
flux graphs across scales can help characterise metabolic conditions that maximise the efficacy of drug treatments
or disease-related distortions, e.g., cancer-related metabolic signatures [55–58]. In particular, MFGs can quantify
metabolic robustness via graph statistics upon removal of reaction nodes [22].

The proposed graph construction framework can be extended in different directions. The core idea behind our
framework is the distinction between production and consumption fluxes, and how to encode both in the links of a
graph. This general principle can also be used to build other potentially useful graphs. For example, two other graphs
that describe relationships between reactions are:

Competition flux graph: Dc =
1

n
S−T
2m

(
W†
−

)2
S−2m (12)

Synergy flux graph: Ds =
1

n
S+T
2m

(
W†

+

)2
S+
2m. (13)

The competition and synergy graphs are undirected and their edge weights represent the probability that two reac-
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tions consume (Dc) or produce (Ds) metabolites picked at random. There exist corresponding FBA versions of the
competition and synergy flux graphs, which follow from (11), and the definitions (12) and (13). These graphs could
help reveal further relationships between metabolic reactions in the cell and will be the subject of future studies.

Our approach could also be extended to include dynamic adaptations of metabolic activity, e.g., by using dynamic
extensions of FBA [59–61], by incorporating static [62] and time-varying [63] enzyme concentrations, or by considering
full kinetic models to generate reaction fluxes. Of particular interest to metabolic modelling, we envision that MFGs
could provide a novel route to evaluate the robustness of FBA solutions [25, 64] by exploiting the non-uniqueness of
the MFG from each FBA solution in the space of graphs. Such results could enhance the interface between network
science and metabolic analysis, allowing for the systematic exploration of the system-level organisation of metabolism
in response to environmental constraints and disease states.

Appendix A: Methods

1. Flux balance analysis

Flux Balance Analysis (FBA) [25, 32] is a widely-adopted approach to analyse metabolism and cellular growth.
FBA calculates the reaction fluxes that optimise growth in specific biological contexts. The main hypothesis behind
FBA is that cells adapt their metabolism to maximise growth in different biological conditions. The conditions are
encoded as constraints on the fluxes of certain reactions; for example, constraints reactions that import nutrients and
other necessary compounds from the exterior.

The mathematical formulation of the FBA is described in the following constrained optimisation problem:

maximise: cTv

subject to

{
Sv = 0

vlb ≤ v ≤ vub,

(A1)

where S is the stoichiometry matrix of the model, v the vector of fluxes, c is an indicator vector (i.e., c(i) = 1 when
i is the biomass reaction and zero everywhere else) so that cTv is the flux of the biomass reaction. The constraint
Sv = 0 enforces mass-conservation at stationarity, and vlb and vub are the lower and upper bounds of each reaction’s
flux. Through these vectors, one can encode a variety of different scenarios [33]. The biomass reaction represents the
most widely-used flux that is optimised, although there are others can be used as well [31, 65].

In our simulations, we set the individual carbon intake rate to 18.5 mmol/gDW/h for every source available in
each scenario. We allowed oxygen intake to reach the maximum needed in to consume all the carbon except in the
anaerobic condition scenario, in which the upper bound for oxygen intake was 0 mmol/gDW/h. In the scenario with
limited phosphate and ammonium intake, the levels of NH4 and phosphate intake were fixed at 4.5 mmol/gDW/h and
3.04 mmol/gDW/h respectively (a reduction of 50% compared to a glucose-fed aerobic scenario with no restrictions).

2. Markov Stability community detection framework

We extract the communities in each network using the Markov Stability community detection framework [48, 49].
This framework uses diffusion processes on the network to find groups of nodes (i.e., communities) that retain flows for
longer than one would expect on a comparable random network; in addition, Markov Stability incorporates directed
flows seamlessly into the analysis [47, 50].

The diffusion process we use is a continuous-time Markov process on the network. From the adjacency matrix G
of the graph (in our case, the RAG, PFG or MFG), we construct a rate matrix for the process: M = K−1outG, where
Kout is the diagonal matrix of out-strengths, kout,i =

∑
j gi,j . When a node has no outgoing edges then we simply

let kout,i = 1. In general, a directed network will not be strongly-connected and thus a Markov process on M will
not have a unique steady state. To ensure the uniqueness of the steady state we must add a teleportation component
to the dynamics by which a random walker visiting a node can follow an outgoing edge with probability λ or jump
(teleport) uniformly to any other node in the network with probability 1−λ [41]. The rate matrix of a Markov process
with teleportation is:

B = λM +
1

N
[(1− λ)IN + λ diag(a)] 11T , (A2)
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where the N × 1 vector a is an indicator for dangling nodes: if node i has no outgoing edges then ai = 1, and ai = 0
otherwise. Here we use λ = 0.85. The Markov process is described by the ODE:

ẋ = −LTx, (A3)

where L = IN −B. The solution of (A3) is x(t) = e−tL
T

x(0) and its stationary state (i.e., ẋ = 0) is x = π, where π
is the leading left eigenvector of B.

A hard partition of the graph into C communities can be encoded into the N ×C matrix H, where hic = 1 if node
i belongs to community c and zero otherwise. The C × C clustered autocovariance matrix of (A3) is

R(t,H) = HT
(
Πe−tL

T

− ππT
)

H, (A4)

and the entry (c, s) of R(t,H) measures how likely it is that a random walker that started the process in community
c finds itself in community s after time t when at stationarity. The diagonal elements of R(t,H) thus record how
good the communities in H are at retaining flows. The Markov stability of the partition is then defined as

r(t,H) = trace R(t,H). (A5)

The optimised communities are obtained by maximising the cost function (A5) over the space of all partitions for every

time t to obtain an optimised partition P̂(t). This optimisation is NP-hard; hence with no guarantees of optimality.

Here we use the Louvain greedy optimisation heuristic [66], which is known to give high quality solutions P̂(t) in an
efficient manner. The value of the Markov time t, i.e. the duration of the Markov process, can be understood as a
resolution parameter for the partition into communities [46, 48]. In the limit t→ 0, Markov stability will assign each
node to its own community; as t grows, we obtain larger communities because the random walkers have more time
to explore the network [49]. We scan through a range of values of t to explore the multiscale community structure of
the network. The code for Markov Stability can be found at github.com/michaelschaub/PartitionStability.

To identify the important partitions across time, we use two criteria of robustness [46]. Firstly, we optimise (A5)
100 times for each value of t and we assess the consistency of the solutions found. A relevant partition should be a
robust outcome of the optimisation, i.e., the ensemble of optimised solutions should be similar as measured with the
normalised variation of information [67]:

VI(P,P ′) =
2Ω(P,P ′)− Ω(P)− Ω(P ′)

log(n)
, (A6)

where Ω(P) = −
∑
C p(C) log p(C) is a Shannon entropy and p(C) is the relative frequency of finding a node in

community C in partition P. We then compute the average variation of information of the ensemble of solutions from
the ` = 100 Louvain optimisations Pi(t) at each Markov time t:

VI(t) =
1

`(`− 1)

∑
i 6=j

VI(Pi(t),Pj(t)). (A7)

If all Louvain runs return similar partitions, then VI(t) is small, indicating robustness of the partition to the opti-
misation. Hence we select partitions with low values (or dips) of VI(t) . Secondly, relevant partitions should also be
optimal across Markov time, as indicated by a low values of the cross-time variation of information:

VI(t, t′) = VI(P̂(t), P̂(t′)). (A8)

Therefore, we also search for partitions with extended low value plateaux of VI(t, t′) [46, 47, 53].
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Supplementary Information

Appendix S1: Relation of the PFG with a directed version of the RAG

A directed version of the RAG (3) could in principle be obtained from the boolean production/consumption matrices

Ŝ+
2m and Ŝ−2m as follows. Projecting onto the space of reactions gives the 2m× 2m (asymmetric) adjacency matrix

D = Ŝ+T
2m Ŝ−2m, (S1)

where the entries Dij represent the total number of metabolites produced by reaction Ri that are consumed by reaction
Rj . A directed version of the Reaction Adjacency Graph on m nodes (directly comparable to the standard RAG) is
then

Adir =
[
Im Im

]
D

[
Im
Im

]
. (S2)

Clearly, when the metabolic model contains only reversible reactions, (i.e., the reversibility vector is all ones, r = 1m),
it follows that Adir = A.

Although Adir does not include spurious edges introduced by non-existent backward reactions, its structure is still
obscured by the effect of uninformative connections created by pool metabolites.

Appendix S2: Details of the toy metabolic network

As an illustration of the graph construction, the toy metabolic network in Fig. 1 was taken from Ref. [32]. The
graph matrices for this model are as follows:

• Reaction Adjacency Graph, Eq. (3):

A = ŜT Ŝ =



1 1 0 0 0 0 0 0
1 2 1 1 0 0 0 0
0 1 2 1 1 0 0 1
0 1 1 2 0 1 1 1
0 0 1 0 2 1 0 2
0 0 0 1 1 2 1 2
0 0 0 1 0 1 1 1
0 0 1 1 2 2 1 3


.

• Probabilistic Flux Graph, Eq. (7):

D =
1

n
S+T
2m

(
W†

+W†
−

)
S−2m =



R1 R2 R3 R4 R5 R6 R7 R8 R4r

R1 0 0.2 0 0 0 0 0 0 0
R2 0 0 0.05 0.05 0 0 0 0 0
R3 0 0 0 0 0.1 0 0 0.1 0
R4 0 0 0 0 0 0.04 0.04 0.08 0.04
R5 0 0 0 0 0 0 0 0.1 0
R6 0 0 0 0 0 0 0 0.1 0
R7 0 0 0 0 0 0 0 0 0
R8 0 0 0 0 0 0 0 0 0
R4r 0 0 0.05 0.05 0 0 0 0 0


.

• Metabolic Flux Graph for FBA scenario 1, Eq. (11):

vlb1 vub1 v∗1
R1 : 10 10 10
R2 : 0 10 10
R3 : 0 10 4.992
R4 : −10 10 5.008
R5 : 0 10 2.492
R6 : 0 10 0.008
R7 : 0 10 0
R8 : 0 10 2.5
R4r : −10 10 0

M(v∗1) =



R1 R2 R3 R4 R5 R6 R8

R1 0 10 0 0 0 0 0
R2 0 0 4.992 5.008 0 0 0
R3 0 0 0 0 2.492 0 2.5
R4 0 0 0 0 0 0.008 5
R5 0 0 0 0 0 0 2.492
R6 0 0 0 0 0 0 0.008
R8 0 0 0 0 0 0 0


.
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• Metabolic Flux Graph for FBA scenario 2, , Eq. (11):

vlb2 vub2 v∗2
R1 : 10 10 10
R2 : 0 10 10
R3 : 0 10 3.877
R4 : −10 10 6.123
R5 : 0 10 1.877
R6 : 0 10 0.123
R7 : 2 10 2
R8 : 0 10 2
R4r : −10 10 0

M(v∗2) =



R1 R2 R3 R4 R5 R6 R7 R8

R1 0 10 0 0 0 0 0 0
R2 0 0 3.877 6.123 0 0 0 0
R3 0 0 0 0 1.877 0 0 2
R4 0 0 0 0 0 0.123 2 4
R5 0 0 0 0 0 0 0 1.877
R6 0 0 0 0 0 0 0 0.123
R7 0 0 0 0 0 0 0 0
R8 0 0 0 0 0 0 0 0


.

Appendix S3: Reaction communities in context-free graphs of the core E. coli metabolic model

1. Reaction Adjacency Graph, A

A robust partition into seven communities in the RAG was found at Markov time t = 6.01 (Fig. S1A). The
communities at this resolution (Fig. 3E) are:

• Community C1(A) contains all the reactions that consume or produce ATP and water (two pool metabolites).
Production of ATP comes mostly from oxidative phosphorylation (ATPS4r) and substrate level phosphorylation
reactions such as phosphofructokinase (PFK), phosphoglicerate kinase (PGK) and succinil-CoA synthase (SU-
COAS). Reactions that consume ATP include glutamine synthetase (GLNS) and ATP maintenance equivalent
reaction (ATPM). The reactions L-glutamine transport via ABC system (GLNabc), acetate transport in the
form of phosphotransacetilase (PTAr), and acetate kinase (ACKr) are also part of this community. Addition-
ally, C1(A) (green) contains also reactions that involve H2O. Under normal conditions water is assumed to be
abundant in the cell, thus the biological link that groups these reactions together is tenuous.

• Community C2(A) includes the reactions NADH dehydrogenase (NADH16), cytochrome oxidase (CYTBD),
and transport and exchange reactions. These two reactions involve pool metabolites (such as H+) which create
a large number of connection. Other members include fumarate reductase (FR7) and succinate dehydrogenase
(SUCDi) which couple the TCA cycle with the electron transport chain (through ubiquinone-8 reduction and
ubiquinol-8 oxidation). Reactions that include export and transport of most secondary carbon sources (such as
pyruvate, ethanol, lactate, acetate, malate, fumarate, succinate or glutamate) are included in the community as
well. These reactions are included in the community because of their influence in the proton balance of the cell.
Most of these reactions do not occur under normal circumstances. This community highlights the fact that in
the absence of biological context, many reactions that do not normally interact can be grouped together.

• Community C3(A) contains reactions that produce or consume nicotinamide adenine dinucleotide (NAD+),
nicotinamide adenine dinucleotide phosphate (NADP+), or their reduced variants NADH and NADPH. The
main two reactions of the community are NAD(P) transhydrogenase (THD2) and NAD+ transhydrogenase
(NADTRHD). There are also reactions related to the production of NADH or NADPH in the TCA cycle
such as isocitrate dehydrogenase (ICDHyr), 2-oxoglutarate dehydrogenase (AKGDH) and malate dehydrogenase
(MDH). The community also includes reactions that are not frequently active such as malic enzime NAD (ME1)
and malic enzime NADH (ME2) or acetate dehydrogenase (ACALD) and ethanol dehydrogenase (ALCD2x).

• Community C4(A) contains the main carbon intake of the cell (glucose), the initial steps of glycolysis, and most
of the pentose phosphate shunt. These reactions are found in this community because the metabolites involved
in these reactions (e.g., alpha-D-ribose-5-phosphate (r5p) or D-erythrose-4-phosphate (e4p)) are only found in
these reactions. This community includes the biomass reaction due to the number of connections created by
growth precursors.

• Communities C5(A), C6(A) and C7(A) are small communities that contain oxygen intake, ammonium intake
and acetaldehyde secretion reactions, respectively.
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FIG. S1. Community structure in the template networks A and D. (A) Communities in A. Top plot:
Variation of Information (VI) of the best partition found at Markov time t with every other partition at time t′.
Bottom plot: Number of communities and VI of the ensemble of solutions found at each Markov time. A robust
partition into seven communities is found at t = 6.01. (B) Communities and VI in D. A robust partition into five
communities is found at t = 6.28.

2. Probabilistic Flux Graph, D

A robust partition into five communities in the PFG was found at Markov time t = 6.28 (Fig. S1B). The communities
at this resolution (Fig. 3C) are:

• Community C1(D) includes the first half of the glycolysis and the complete pentose phosphate pathway. The
metabolites that create the connections among these reactions such as D-fructose, D-glucose, or D-ribulose.

• Community C2(D) contains the main reaction that produces ATP through substrate level (PGK, PYK, ACKr)
and oxidative phosphorylation (ATPS4r). The flow of metabolites among the reactions in this community
includes some pool metabolites such as ATP, ADP, H20, and phosphate. However, there are connections created
by metabolites that only appear in a handful of reactions such as adenosine monophosphate (AMP) whose
sole producer is phosphoenolpyruvate synthase (PPS) and its sole consumer is ATPS4r. This community also
contains the biomass reaction.

• Community C3(D) includes the core of the citric acid (TCA) cycle such as citrate synthase (CS), aconitase
A/B (ACONTa/b), and anaplerotic reactions such as malate synthase (MALS), malic enzyme NAD (ME1), and
malic enzyme NADP (ME2). This community also includes the intake of cofactors such as CO2.

• Community C4(D) contains reactions that are secondary sources of carbon such as malate and succinate, as
well as oxidative phosphorilation reactions.

• Community C5(D) contains some reactions part of the pyruvate metabolism subsystem such as D-lactate de-
hydrogenase (LDH-D), pyruvate formate lyase (PFL) or acetaldehyde dehydrogenase (ACALD). In addition, it
also includes the tranport reaction for the most common secondary carbon metabolites such as lactate, formate,
acetaldehyde and ethanol.

Appendix S4: Reaction communities in Metabolic Flux Graphs of E. coli metabolism under different
biological scenarios

1. Mglc: aerobic growth under glucose

This graph has 48 reactions with nonzero flux and 227 edges. At Markov time t = 7.66 (Fig. S2A) this graph has
a partition into three communities (Fig. 4A):
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• Community C1(Mglc) comprises the intake of glucose and most of the glycolysis and pentose phosphate pathway.
The function of the reactions in this community consists of carbon intake and processing glucose into phospho-
enolpyruvate (PEP). This community produces essential biocomponents for the cell such as alpha-D-Ribose
5-phosphate (rp5), D-Erythrose 4-phosphate (e4p), D-fructose-6-phosphate (f6p), glyceraldehyde-3-phosphate
(g3p) or 3-phospho-D-glycerate (3pg). Other reactions produce energy ATP and have reductive capabilities for
catabolism.

• Community C2(Mglc) contains the electron transport chain which produces the majority of the energy of the cell.
In the core E coli metabolic model the chain is represented by the reactions NADH dehydrogenase (NADH16),
cytochrome oxidase BD (CYTBD) and ATP synthase (ATPS4r). This community also contains associated
reactions to the electron transport such as phosphate intake (EXpi(e), PIt2), oxygen intake (EXo2(e), O2t) and
proton balance (EXh(e)). This community also includes the two reactions that represent energy maintenance
costs (ATPM), and growth (biomass); this is consistent with the biological scenario because ATP is the main
substrate for both ATPM, and the biomass reaction.

• Community C3(Mglc) contains the TCA cycle at its core. The reactions in this community convert PEP into
ATP, NADH and NADPH. In contrast with C1(Mglc), there is no precursor formation here. Beyond the TCA
cycle, pyruvate kinase (PYK), phosphoenolpyruvate carboxylase (PPC) and pyruvate dehydrogenase (PDH)
appear in this community. These reactions highlight the two main carbon intake routes in the cycle: oxalacetate
from PEP through phosphoenol pyruvate carboxylase (PPC), and citrate from acetyl coenzyme A (acetyl-CoA)
via citrate synthase (CS). Furthermore, both routes begin with PEP, so it is natural for them to belong to
the same community along with the rest of the TCA cycle. Likewise, the production of L-glutamate from
2-oxoglutarate (AKG) by glutamate dehydrogenase (GLUDy) is strongly coupled to the TCA cycle.

2. Metoh: aerobic growth under ethanol

This graph contains 49 reactions and 226 edges. At Markov time t = 6.28 (Fig. S2B) this graph has a partition
into three communities (Fig. 4B):

• Community C1(Metoh) in this graph is similar to its counterpart in Mglc, but with important differences. For
example, the reactions in charge of the glucose intake (EXglc(e) and GLCpts) are no longer part of the network
(i.e., they have zero flux), and reactions such as malic enzyme NAPD (ME2) and phosphoenolpyruvate caboxyk-
inase (PPCK), which now appear in the network, belong to this community. This change in the network reflect
the cell’s response to a new biological situation. The carbon intake through ethanol has changed the direction of
glycolysis into gluconeogenesis [1] (the reactions in C1(Mglc) in Fig. 4A are now operating in the reverse direction
in Fig. 4B). The main role of the reactions in this community is the production of bioprecursors such as PEP,
pyruvate, 3-phospho-D-glycerate (3PG) glyceraldehyde-3-phosphate (G3P), D-fructose-6-phosphate (F6P), and
D-glucose-6-phosphate, all of which are substrates for growth. Reactions ME2 and PPCK also belong to this
community due to their production of PYR and PEP. Reactions that were in a different community in Mglc,
such as GLUDy and ICDHyr which produce precursors L-glutamate and NADPH respectively, are now part of
C1(Metoh). This community also includes the reactions that produce inorganic substrates of growth such as
NH4, CO2 and H2O.

• Community C2(Metoh) contains the electron transport chain and the bulk of ATP production, which is similar
to C2(Mglc). However, there are subtle differences that reflect changes in this new scenario. Ethanol intake and
transport reactions (EXetoh(e) and ETOHt2r) appear in this community due to their influence in the proton
balance of the cell. In addition, C2(Metoh) contains NADP transhydrogenase (THD2) which is in charge of
NADH/NADPH balance. This reaction is present here due to the NAD consumption involved in the reactions
ACALD and ethanol dehydrogenase (ALCD2x), which belong to this community as well.

• Community C3(Metoh) contains most of the TCA cycle. The main difference between this community and
C1(Mglc) is that here acetyl-CoA is extracted from acetaldehyde (which comes from ethanol) by the reaction
acetaldehyde dehydrogenase reaction (ACALD), instead of the classical pyruvate from glycolysis. The glycoxy-
late cycle reactions isocitrate lyase (ICL) and malate synthase (MALS) which now appear in the network, also
belong to this community. These reactions are tightly linked to the TCA cycle and appear when the carbon
intake is acetate or ethanol to prevent the loss of carbon as CO2.
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3. Manaero: anaerobic growth

This graph contains 47 reactions and 212 edges. At Markov time t = 6.01 (Fig. S2C) this graph has a partition
into four communities (Fig. 4C):

• Community C1(Manaero) contains the reactions responsible D-glucose intake (EXglc) and most of the glycolysis.
The reaction that represents the cellular maintenance energy cost, ATP maintenance requirement (ATPM), is
included in this community because of the increased strength of its connection to the substrate-level phosphori-
lation reaction phosphoglycerate kinase (PGK). Also note that reactions in the pentose phosphate pathway do
not belong to the same community as the glycolysis reactions (unlike in Mglc and Metoh).

• Community C2(Manaero) contains the conversion of PEP into formate through the sequence of reactions PYK,
PFL, FORti and EXfor(e). More than half of the carbon secreted by the cell becomes formate.

• Community C3(Manaero) includes the biomass reaction and the reactions in charge of supplying it with sub-
strates. These reactions include the pentose phosphate pathway (now detached from C1(Mglc)), which produce
essential growth precursors such as alpha-D-ribose-5-phosphate (r5p) or D-erythrose-4-phosphate (e4p). The
TCA cycle is present as well because its production of two growth precursors: 2-oxalacetate and NADPH.
Finally, the reactions in charge of acetate production (ACKr, ACt2r and EXac(e)) are also members of this
community through the ability of ACKr to produce ATP. Glutamate metabolism reaction GLUDy is also in-
cluded in this community. It is worth mentioning that the reverse of ATP synthase (ATPS4r) is present in this
community because here, unlike in Mglc, ATPS4r consumes ATP instead of producing it. When this flux is
reversed, then ATPS4r is in part responsible for pH homeostasis.

• Community C4(Manaero) includes the main reactions involved in NADH production and consumption, which
occurs via glyceraldehyde-3-phosphate dehydrogenase (GAPD). NADH consumption occurs in two consecutive
steps in ethanol production: in ACALD and ALCD2x. The phosphate intake and transport reactions EXpi(e)
and PIt2r belong to this community because most of the phosphate consumption takes place at GAPD. Inter-
estingly, the core reaction around which the community forms (GAPD) is not present in the community. It is
included in earlier Markov times but when communities start to get larger the role of GAPD becomes more
relevant as a part of the glycolysis than its role as a NADH hub. This is a good example of how the graph
structure and the clustering method are able to capture two different roles in the same metabolite.

4. Mlim: aerobic growth under limiting conditions

This graph has 52 nodes and 228 edges. At Markov time t = 13 this graph (Fig. S2D) has a partition into three
communities (Fig. 4D):

• Community C1(Mlim) contains the glycolysis pathway (detached from the pentose phosphate pathway). This
community is involved in precursor formation, ATP production, substrate-level phosphorylation and processing
of D-glucose into PEP.

• Community C2(Mlim) contains the bioenergetic machinery of the cell; the main difference to the previous
scenarios is that the electron transport chain has a smaller role in ATP production (ATPS4r), and substrate-
level phosphorylation (PGK, PYK, SUCOAS, ACKr) becomes more important. In Mlim the electron transport
chain is responsible for the 21.8% of the total ATP produced in the cell while in Mglc it produces 66.5%.
The reactions in charge of intake and transport of inorganic ions such as phosphate (EXpi(e) and PIt2r), O2

(EXO2(e) and O2t)and H2O (EXH2O and H2Ot) belong to this community as well. This community includes
the reactions in the pentose phosphate pathway that produce precursors for growth: transketolase (TKT2)
produces e4p, and ribose-5-phosphate isomerase (RPI) produces r5p.

• Community C3(Mlim) is the community that differs the most from those in the other aerobic growth networks
(Mglc and Metoh). This community gathers reactions that under normal circumstances would not be so strongly
related but that the limited availability of ammonium and phosphate have forced together; its members include
reactions from the TCA cycle, the pentose phosphate pathway, nitrogen metabolism and by-product secretion.
The core feature of the community is carbon secretion as formate and acetate. Reactions PPC, malate dehy-
drogenase (MDH) reverse and ME2 channel most of the carbon to the secretion routes in the form of formate
and acetate. The production of L-glutamine seems to be attached to this subsystem through the production of
NADPH in ME2 and its consumption in the glutamate dehydrogenase NAPD (GLUDy).
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Obtaining more meaningful pathways. Chemometrics and Intelligent Laboratory Systems. 2015;142:293–303.
[39] Schuster S, Fell DA, Dandekar T. A general definition of metabolic pathways useful for systematic organization and

analysis of complex metabolic networks. Nat Biotechnol. 2000 Mar;18(3):326–332. Available from: http://dx.doi.org/

10.1038/73786.
[40] Schilling CH, Letscher D, Palsson BO. Theory for the systemic definition of metabolic pathways and their use in interpreting

metabolic function from a pathway-oriented perspective. J Theor Biol. 2000 Apr;203(3):229–248. Available from: http:

//dx.doi.org/10.1006/jtbi.2000.1073.
[41] Page L, Brin S, Motwani R, Winograd T. The PageRank Citation Ranking: Bringing Order to the Web. Stanford InfoLab;

1999. 1999-66. Previous number = SIDL-WP-1999-0120. Available from: http://ilpubs.stanford.edu:8090/422/.
[42] Gleich DF. PageRank Beyond the Web. SIAM Review. 2015;57(3):321–363. Available from: http://dx.doi.org/10.

1137/140976649.
[43] Sankey HR. The Thermal Efficiency of Steam-Engines. Minutes of Proceedings of The Institution of Civil Engineers.

1896;125:182–242.
[44] Rosvall M, Bergstrom CT. Mapping change in large networks. PLoS ONE. 2010;5(1):e8694. Available from: http:

//dx.doi.org/10.1371/journal.pone.0008694.
[45] Girvan M, Newman MEJ. Community structure in social and biological networks. Proceedings of the National Academy

of Sciences. 2002;99(12):7821–7826. Available from: http://www.pnas.org/content/99/12/7821.abstract.
[46] Schaub MT, Delvenne JC, Yaliraki SN, Barahona M. Markov dynamics as a zooming lens for multiscale community

detection: non clique-like communities and the field-of-view limit. PLoS ONE. 2012;7(2):e32210. Available from: http:

//arxiv.org/abs/1109.5593.
[47] Lambiotte R, Delvenne J, Barahona M. Random Walks, Markov Processes and the Multiscale Modular Organization of

Complex Networks. Network Science and Engineering, IEEE Transactions on. 2014 July;1(2):76–90.
[48] Delvenne JC, Yaliraki SN, Barahona M. Stability of graph communities across time scales. Proc Nat Acad Sci USA.

2010;107(29):12755–12760. Available from: http://www.pnas.org/content/107/29/12755.abstract.
[49] Delvenne JC, Schaub MT, Yaliraki SN, Barahona M. The Stability of a Graph Partition: A Dynamics-Based Framework

for Community Detection. In: Mukherjee A, Choudhury M, Peruani F, Ganguly N, Mitra B, editors. Dynamics On and
Of Complex Networks, Volume 2. Modeling and Simulation in Science, Engineering and Technology. Springer New York;
2013. p. 221–242.

[50] Beguerisse-Dı́az M, Garduño Hernández G, Vangelov B, Yaliraki SN, Barahona M. Interest communities and flow roles
in directed networks: the Twitter network of the UK riots. J R Soc Interface. 2014 Dec;11(101). Available from: http:

//rsif.royalsocietypublishing.org/content/11/101/20140940.
[51] Sawers RG. Formate and its role in hydrogen production in Escherichia coli. Biochemical Society Transactions.

2005;33(1):42–46. Available from: http://www.biochemsoctrans.org/content/33/1/42.
[52] Vemuri GN, Eiteman MA, McEwen JE, Olsson L, Nielsen J. Increasing NADH oxidation reduces overflow metabolism in

Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2007 Feb;104(7):2402–2407. Available from: http://dx.doi.org/

10.1073/pnas.0607469104.
[53] Bacik KA, Schaub MT, Beguerisse-Dı́az M, Billeh YN, Barahona M. Flow-Based Network Analysis of the Caenorhabditis

elegans Connectome. PLoS Comput Biol. 2016 08;12(8):1–27. Available from: http://dx.doi.org/10.1371%2Fjournal.

pcbi.1005055.
[54] Gille C, Bölling C, Hoppe A, Bulik S, Hoffmann S, Hübner K, et al. HepatoNet1: a comprehensive metabolic reconstruction

of the human hepatocyte for the analysis of liver physiology. Molecular Systems Biology. 2010;6(1). Available from:
http://msb.embopress.org/content/6/1/411.
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