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Abstract

Stomata are tiny pores in plant leaves that regulate gas ater vwexchange between
plants and their environment. Abscisic acid and ethylemetao well-known elicitors
of stomatal closure. Yet when stomata are presented with nabication of both
signals, they fail to close; these observations are harddoncile biologically and their
explanation is not easily obtained by experimental meaoseal To shed light on this
unexplained behaviour, a combination of mathematical, mdational, and experimental
techniques are used. A differential equation model of stahwdosure is constructed from
known biochemical interactions; this modelling process heotivated the collection of
experimental measurements of components in the pathwdynatpoints beyond what
is usually found in the literature. The experimental obagons include stomatal aperture
and hydrogen peroxide productionAnabidopsis thalianguard cells treated with abscisic
acid, ethylene, and a combination of both. These measutsrakaw that sustained high
levels of hydrogen peroxide are required to achieve stdmbisure and that guard cells
exhibit increased antioxidant activity when treated witboabined dose of abscisic acid
and ethylene. Additionally, the experimental observatiand modelling suggest a distinct
role for two antioxidant mechanisms during stomatal clesar slower, delayed response
that is activated by a single stimulus (abscisic amicethylene) and another more rapid
mechanism that is only activated when both stimuli are presehe model indicates that
the presence of this ‘and’ mechanism in the antioxidantarse is crucial to explain the
lack of closure under a combined stimulus.

Estimating parameters from data is a key stage of the madgdliocess, particularly in
models of biological systems many parameters need to baasil from sparse and noisy
data sets, such is the case of the stomatal closure modehpeeshere. Over the years, a
variety of heuristics have been proposed to solve this cexngbtimisation problem, with
good results in some cases yet with limitations in the bimialgsetting. In this thesis,
an algorithm for model parameter fitting is developed conmgndeas from evolutionary
algorithms, sequential Monte Carlo methods and directhegptimisation. The method is
shown to perform well even when the order of magnitude artifrange of the parameters
is unknown. The method refines iteratively a sequence ohpeter distributions through
local optimisation combined with partial resampling fronmiatorical prior defined over
the support of all previous iterations. The method is testediological models using



both simulated and real experimental data, and it estinthéegarameters efficiently even

in the absence o priori knowledge about the parameters. Then, this method is used to
find the parameter values of the much larger stomatal clasweel from experimental
observations.

A classic model of linear activation cascades is studiechis thesis. In a special
but important case the output of an entire cascade can besesged analytically as a
function of the input and a lower incomplete gamma functitirthe inactivation rate of
any component is altered, the change induced at the outimgigpendent of the position in
the cascade of the modified component. These analyticdtsesiow how one can reduce
the number of equations and parameters in ODE models ofigelhding cascades, and
how delay differential equation models can sometimes beoxppated through the use
of simple expressions involving the incomplete gamma fonctThe expressions with the
lower incomplete gamma functions are used in the constmaf the model of stomatal
closure to represent the activation dynamics of the ardemti mechanisms in guard cells.
Fitting the stomatal closure model parameters to the datizates that the antioxidant
responses should have two different timescales, whichxjalaie the lack of closure under
a combined ABA and ethylene stimulus.
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Chapter 1

Introduction

1.1 Overview

Plants are important organisms for a variety of reasons,abrtbem is that ultimately
we all depend on them for survival, which makes understanthem a vital task. One
remarkable feature of plants is their ability to adapt todbiditions of their surroundings,
which allows them to cope and thrive in ever-changing anckttat environments.

This thesis is concerned with one of the most important mash@s plants exploit
to cope with environmental changes: stomatal closure. t®lpasses pores on their
leaves known astomata through these pores plants are able to exchange oxygen and
water-vapour for CQin the air. When the exchange of water for £® not advantageous
to the plant, eg when water is scarce, there is not enoughtbgberform photosynthesis,
or under pathogen attack, plants can regulate the aperttne pores to limit the loss of
water until conditions improve. Plants achieve stomatglil&ion by sending signals that
travel through a complex network of cellular interactionften, it is a hormonal signal
that initiates the process of stomatal closure. This wocki$es on two hormones: abscisic
acid (ABA) and ethylene, and their interactions in stomaBath hormones have been
widely studied in the literature; ABA is an important horneanvolved in seed dormancy
and dessication tolerance, and ethylene is a gas hormoakaavin fruit ripening, leaf
senescence and plant defence against pathogens. Splcifiesdre interested in knowing
why these two hormones, which on their own cause the stormatage, fail to do so when



they are present at the same time.

Understanding stomatal closure and why this seemingly radidting behaviour
occurs, invites an interdisciplinary approach. Given tAgé number of components
involved during stomatal closure and the large number @radtions among them, it is
difficult to understand the processes by experimental makme. Using mathematical
descriptions of what is understood to occur during ston@tesure, we can keep track of
what happens to the components of the system, make hypo#respredictions that can be
tested in the laboratory. New experimental results infdmmitnprovement of the models
which are able to make new predictions. The cycle of mathieadatiological cooperation
can go on indefinitely and new, fascinating avenues for reee@oth mathematical and
biological) can arise from this process.

1.2 Aims and thesis structure

For this work a combination of experimental, mathematiaatl computational approaches
are used to understand stomatal closure. The aims of this tres

e The development of a series of mathematical models thatitietify key elements
from the ABA-ethylene signalling pathway in guard cellsttage responsible for the
blocking of signals and subsequent lack of stomatal closure

e Development of mathematical techniques and frameworksdidh@ development
and analysis of models of stomatal closure.

e Collection of experimental data to validate the models.

¢ Providing new directions for future research, based on ¢selts obtained by the
modelling process and experimental observations.

To meet these aims, a thorough review of the current knowdedput stomatal closure
has been made, alongside a review of the mathematical tpasineeded to construct
models of stomatal closure. The modelling process in thiskwas highlighted the

need for a consistent data-set performed under unifornrdaay conditions, on a single
plant species, and for longer times. Data available fromlipled reports are obtained



Chapter 1
Introduction

Chapter 3
Mathematical
modelling

Chapter 2
Stomatal biology

Chapter 8
Conclusions

Figure 1.1: Structure of the thesis. In the blue balloonsthesintroduction and the
conclusions of the thesis. Background material is covenethé yellow balloons, and
results chapters are in green balloons. Appehndix A (in tdebedloon) contains additional
results.

under experimental conditions which vary considerabhaitmethodology, measurement
times, plant species and cell type. Therefore for this gtojevas necessary to gather new
data from experiments with uniform conditions and time p&in

The background information and the results of the thesistietured by chapters,
each dealing with a single topic. The dependencies amonghéigters are presented in

Fig.[11:

e ChaptefP (background): introduction to stomata, and aotigin review of what is
understood to happen after perception of the hormonal sgnéhe experimental
observations that are the motivation for this PhD projeetdiscussed in Selc. 2.5.

e ChaptefB (background): brief introduction to the mathecahbiology techniques



used in this thesis.

e Chapter# (results): development of an optimisation methsidig evolutionary
algorithms and Monte Carlo with applications to parameténg.

e Chaptef’b (results): analysis of activation cascade maaleish includes applica-
tions to model reduction, equation reordering, and suligiit of delay differential
equations.

e Chaptef b (results): experimental observations of gualtdsiggalling components
after treatments with ABA and ethylene.

e Chaptefl ¥ (results): ODE-modelling of stomatal closure.e Tevelopment of the
models is informed by biology in the introductory chaptersl dhe experimental
observations, and uses results from Chajtlers 4land 5.

e Chaptef 8: concluding remarks of the thesis and outlinestatwork should be
done to take further the research topics addressed in thigwent.

e Appendix[A (additional results): contains explorationsaotagonistic toy models
and network topologies. This approach has been used tosgnatynpetition among
kinases for protein activation in S&c. A.3.

Note that in Figl_T.l Chaptelr$ 6 dad 7 depend on each othexd€piendency highlights the
iterative nature of the modelling process, where existiaig dhforms models and models
prompt new experiments.

An alternative to reading this thesis following the ordertbé chapters is to read
the biological introduction in chapter Chaplér 2, followeylthe experimental results in
Chaptei B, and stomatal modelling in Chagpfer 7; this endinasthe theme of stomatal
closure is not broken by the more mathematical/computatibemes in Chaptets [3,[4, 5,
and AppendixA.



Chapter 2
Biology of stomata

Stomata, guard cells, and their importance for the cornecttfoning and survival of
plants are introduced in this chapter. Then, a descrips@men of the cellular processes
involved in ABA and ethylene-induced stomatal closure rttan focus of this work. Some
guestions about the signalling processes that still nebéd emswered are mentioned here,
and will be addressed in later chapters.

2.1 Stomata, their function and importance

Unlike animals, plants cannot move to another place whergresource (such as water or
light) becomes scarce, conditions become unfavourablevhen attacked by predators
or disease. Plants possess several physiological meatsanes help them cope with
changes in their surroundings, spread their seeds, figkdisksand competitors, and defend
themselves from predators.

One of the most remarkable mechanisms of adaptation ingplarthe regulation of
water vapour and gas exchange. Such regulation respondseisa stimuli such as
changes in light conditions, water-availability, tempara or presence of pathogens. Key
players in response to environmental cues are the tiny pom@sn asstomata(singular:

stomg, located mostly on the lower surface of leaves’ epiderrﬁi:eémaln 2008; Taiz

and Zeiger, 2002). In the model organigknabidopsis thalianaeach stoma is formed

by two kidney-shapedjuard cells which are attached to each other by their extremes



Guard cell
CO,

H,O
02

Stomatal pore

\Hzo

Figure 2.1: Location of stomata on the lower epidermis ofed. I&\Vater absorbed by the
roots is transported into the leaves; if the pore is openpldat is free to exchange gas and
water vapour for CQto perform photosynthesis.

(Fig.[2.3). Although stomata cover only about 5% of the lemidermis area (Hetherington

and Woodward, 2003), their importance is difficult to ovéireate. Through stomata

plants transpire and exchange gases with the atmospherle@hepidermis is almost
impermeable to KO and other gases, so the main point of gas and water vapduaegye

between a plant and the environment is the stomatal rLQLe_e(Q.IJa.\LQD_QQ). When the
stomata are open, the plant exchange®©Hnd Q for CO, from the air, enabling

photosynthesis to perform optimally (Acharya and Assr M). Many environmental

factors such as blue-light availability, drought, humydi€O, concentration, or biotic
stresses (eg fungi or bacteria) can cause the plant to degeores, thus slowing its

metabolism and minimising water loss (Acharya and Assmbﬁﬂfl); Peiet all, 11997;
Taiz and Zeiger, 2002).
The pressure of the contents of a plant-cell against its @atermined by the amount of

water contained in the vacuoles, is knowntagor pressurgThoday, 1952). A decrease

of the cell's osmotic potential due to ion intake drives wateide the cell and into the
vacuoles. When the vacuoles fill with water, the guard cedslis(ie they becomeurgid).

Swelling causes the cells to expand in opposite directionsb they are coupled by their
extremes and the cell walls are thicker along their heig it the top, this results in the
opening of the pore (Fig. 2.2 A). Conversely, when the celebowater from the vacuoles



Figure 2.2: Stomata oArabidopsis thaliandeaves under the microscop@&: An open
stoma, the aperture marked by the bold line is/21bwide.B: A closed stoma, the visibly
smaller aperture, compared to the pore on the left, is mabokeithe bold line across the
opening of the pore.

(loss of turgor pressure due to a lower cytosolic ion corregion) their volume decreases,
becoming flaccid and ultimately resulting in the closurehef pore (Fid.2J]2 B) (Schroeder

etal, 200! ' iger, 2002). Thus, ionic content of theis&ky for controlling cell

volume and stomatal aperture. Note also that the shape ofl galis mean thatomplete
closure (ie no opening whatsoever) does not occur; a signifieduction in aperture is
enough to slow down gas and water exchange to acceptabls [gve exchange never
fully stops, as closure is not total).

The regulation of stomatal aperture is at the core of a @asdpacity to cope with
changes in its surroundings. Understanding how this peowesks is important for several
reasons:

e Climate change affects the conditions in which many fooghsrare grown (Gedney

et al, [2006). The role of stomata in the planet’s water and carlyateds a rather

important one. Evaporation of water through stomata ansaa™ x 10'° kg annu-
ally (nearly 65% of the precipitation on land). In the trapalone, stomata release
32 x 10% kg of water, twice the amount in the atmosphere. In additierrestrial
photosynthesis fixe$40 x 10> gCO, from the atmosphere annually (Hetherington

and Woodward, 2003). Understanding how plants will readtifterent (perhaps

more extreme) environmental conditions is paramount toaniaeing food security



for all.

e Knowledge of the mechanisms that regulate stomatal moviesteam inform us
of what to expect from plants as the conditions of growth gearand to help
engineer and design crops that are more resistant to achv@ndéions and are more

economical in their need for resources étial., [2006).

e Equally important is that guard cells provide a good framdwim study cell-
signalling. Hypotheses for possible mechanisms involnesignal transductior{ie
the relay of an external signal to the inside of the cell tadpice a response) can be
tested with relative ease by observing whether the stomataen or closed. The

mechanisms of signal transduction in guard cells are likelge common to many

other cell types where experiments are more difficult to qrenf(Schroedeet al,
2001), which is why it is useful to understand them first inrguzells.

¢ Finally, guard cell signalling networks are (as this workl @itempt to demonstrate)
fertile ground for interdisciplinary research where a wideay of approaches
from different branches of science (eg genetics, mathesjatiomputer science,
statistics) together with experimental biology have beemsssfully applied to solve
challenging and important problenl]s_(e:ﬂ_a.l, 2006; Sonet all, [2008).

2.2 Important signalling molecules

This section provides an introduction to some of the mostoitgmt molecular players
involved in the signalling pathways of stomatal closure.

2.2.1 Abscisic acid

Abscisic acid (ABA) is a well-known plant hormone involved many physiological
processes. ABA belongs to the isoprenoid class of metasalrhich includes carotenoids,
and is produced by most cells containing chloroplasts andiagptasts (Nambara and

Marion-Poll,|2005). It was initially thought that ABA wasdhhormone responsible for

leaf and organ abscission (hence the name abscisic acuighhit was later shown that
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abscission is caused by ethylene (Taiz and Zng_eL 2002) A aBs identified early
on as the compound responsible for seed dormancy and emlesgicdtion tolerance

(it is sometimes called dormin); ABA-deficient mutants dxha wilty phenotype and

vivipary (Razet all,[2001). In the absence of stress, ABA is produced in vastisksues,

and taken up and metabolised by mesophyll ce i@faall, |2004). Under stress

conditions such as drought or salinity, ABA levels in plaimsrease by biosynthesis and
redistribution. Dry roots produce ABA to send a chemicalnaigto the leaves before

drought stress and water deficit are able to cause damage pdatfit (Sauteet al., [2001).
The ABA signals cause the xylem sap to become more alkalisgutiing mesophyll cell
ABA-absorption, and facilitating ABA release which is thele to reach guard cells (Taiz

and Zeiger, 2002). In addition to being transported from rthets to the shoots and

leaves, ABA is also able to induce its own synthesis (&aal., [2003). Inactivation and

catabolism of ABA can be done by hydroxylation or conjugatid-or example ABA is
hydroxylated into phaseic acid (PA) by a cytochrome P450ang&ygenase, and PA levels
have been reported to rise after a drought-stressed plaritden re-hydrated, coinciding

with a decrease in ABA levels (Nambara and Marion{Poll, 3003 is also reported to be

physiologically activel(Mohr and Schopfer, 1995).

The effect of ABA on stomatal aperture under conditions ofudiht or salinity is well

documented and has been studied extensively in severdl spacies| (Bari and Jones,

2009:;) . Hubbasd a IZQlIbI_J_Qn&s_an Mansfield, 1970; Schroeder
et al, ! ,; Wasilewskat all, [2008). In Se€ 2Z]3 the signalling

events triggered by ABA that lead to loss of turgor and staebsure inArabidopsis

guard cells are described.

2.2.2 Ethylene

Ethylene is a gaseous hormone involved in several plantege@s. In plants ethylene
is produced when methionine (Met) is transformed into saadgl-methionine (AdoMet)
by AdoMet synthase (as part of the Yang cycle); AdoMet is gfarmed into the
ethylene precursor 1-aminocyclopropane-1-carboxyid GaCC) by ACC-synthase; ACC

)-

D

is transformed into ethylene by ACC-oxidase (Taiz and Z
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There are five known ethylene receptors: ethylene residtamd 2 (ETR1, ETR2),
ethylene insensitive 4 (EIN4), ethylene response sensod12g§ERS1, ERS2). In the
absence of ethylene the receptors activate the proteinatieat triple response 1 (CTR1),
a negative regulator of the pathway. Active CTR1 inactisatiylene insensitive 2 (EIN2),
a bottleneck in the ethylene pathway below which lie all theeoknown components and
targets. Ethylene inactivates the receptors and CTR1 islena inactivate EIN2 and the

signal is able to propagate downstream (Chang and BI =€21RQJ1,' Guo and Ecker, 2004;

Stepanova and Alonso, 2005)

The effects of ethylene in plants have been extensivelyetid seedlings, and include
the control of root elongation, swelling of the hypocotytacurvature of the apical hook
(collectively known as the triple response), fruit ripemiteaf senescence and abscission,

defence from pathogens, and seed dorszncv (Bari_and @hang and Bleecker,
2004 Cheret al.,12005] McCueet al.,[200¢ lalz_and_ZEnger 2002). In some species (such
as Arabidopsi3 ethylene has been found to elicit stomatal closure (Desstal., 12006;

Pallas and Kays, 1982), whereas in others\(eia fabg it is involved in auxin-mediated

stomatal opening (Levitt all, 11987).

2.2.3 Reactive oxygen species

Reactive oxygen species (ROS) are reactive molecules susiparoxide (©°), hydrogen
peroxide (HO,), hydroxyl radical (OH), and singlet oxygen!'(Q,) produced by the

incomplete reduction of molecular oxygen (Hancock, 199%hese reactive molecules

have in common the ability to cause oxidative damage to DNdtgins, and lipids, which

is why their concentrations in the cell are tightly contedl{Apel and Hirt, 2004). Another

common feature among these species (with the possible texeeh the hydroxyl radical)

is that in sub-toxic concentrations they can function asaimg molecules and second
messengers (Chet all, [2009b] Hancock, 1999; Wang and sitgoog)_
Chemically, ROS are the intermediary species in the prooéssducing molecular

oxygen to water via a series of single electron transferssgiark L, 12009):

024—67—)057—%67—)H202+€7—>OH.+€7—>H20.
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There are several mechanisms that mediate these reactigrasticular importance for this
work are NADPH-oxidases which catalyse the production giesoxide, and superoxide
dismutase (SOD) which catalyses the dismutation of supgearto hydrogen peroxide.
ROS are a normal by-product of respiration in many organismsplants ROS are
the product of photosynthesis and other metabolic prosesseurring in chloroplasts,

mitochondria and peroxisomes (Nedt all, 2002). Additionally, ROS are produced in

response to a variety of stimuli in plants, including alddieg light/dark, ozone (§),

ultraviolet radiation, and C€) and biotic (eg microbial invasion, fungi, and bacterid)dm
and Desikan, 2009).
As their name suggests ROS are highly reactive, partigulsuperoxide and the

hydroxyl radical. When ROS concentrations are not corddylicells can suffer from
oxidative stress which can lead to impaired physiologicaiction, random damage of

the cell machinery, and cell dea ' raok, 00Oxidative stress can

be a defence mechanism against pathogen invasion, duriredpwp to 15M H,0, are
produced to kill invading microbes, to trigger programmel cleath and limit tissue
damage. This production of hydrogen peroxide may be augd suppression of

antioxidants by salicylic acid and nitric oxide (NQ) (Klgs®t al., [2000). ROS are also

involved in other processes in plants such as plant devetopratomatal movements (see

below), root growth, and flowerina (Mclnnet al., 12006; Pham and Desikan, 2009; Zafra
et al, |2010).
Plants have a variety of mechanisms to keep ROS levels unu@rot and to

reduce them into less-harmful compounds. Non-enzymatimxadants include glu-

tathione (GSH), ascorbate (ASC), tocopherol, flavonoidsytenoids and NO; enzymatic
antoxidants include ascorbate peroxidase, superoxidautiise (SOD), and catalase
(CAT) (Chen and Gallie, 2004; Desik [L,[2007; Jahaet al.,[2008; Miaoet al., 12006;

Neill et al, 2002). Glutathione, ascorbate and their correspondimgxmiases reduce

hydrogen peroxide in the ascorbate-glutathione and ¢iata¢-peroxidase cycles, while

CAT reduces HO, producing water and molecular oxygen (Apel and |Hirt, 200%he

role of NO as an antioxidant in plants is less clear: on onellfas mentioned above) NO
suppresses the activity of catalase and ascorbate pesexiolat on the other hand NO can
enhance the activity of SOD and itself can react with supdesto form peroxynitrite (Neill
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et al,, 12008), so it would seem that NO acts against superoxiderafevour of hydrogen

peroxide. Other methods of ROS control may include curbimg@ioduction by NADPH-

oxidase dephosphorylation or allosteric inactivation riggosylation) (Belinet all, I2006;
Gostiet al,, [1999; Merlotet all, i2001; Yoshideet all,[2006; Yunet all,12011).
ROS function as signalling molecules in response to a waétstimuli such as

ABA, ethylene, salicylic acid (SA), ozone, or jasmonic agld) (Taiz and Zeiger, 2002).
Hydrogen peroxide is the most common redox signalling md&lbecause it is moderately
reactive (the other ROS are far more reactive and not ideai¢malling), has a relative
long half-life (1ms), it can diffuse across cell membrantsproduction can be induced
and stopped quickly, and can cause the post-translatioodification of proteins to

alter their activity (Markset all, [2009;|Wang and So 2008). In addition to baseline

&

metabolic production of ROS, cells have dismutases and NADFdases to produce

ROS specifically for signalling (Kwakt all, 12003). Furthermore, in specialised cells such

as guard cells with negligible photosynthetic activitye tthloroplasts can be used as a

source of ROS for signalling (Pham and Desikan, 2009). RG& baen found to alter

the activity of two-component systems in a thiol group-dejent way, which may result

in expression or repression of target genes (Apel an Desikaret al., 12006).

Hydrogen peroxide can also activate several MAPK-cascéddesvhich there are over
100 genes irArabidopsi3, regulate the activity of ion channels and proton pumpsctvhi

control pH and membrane polaritv_(Apel and Hirt, 2004: Ghiaall, 2009h; Pham and

Desikan| 2009). The sheer variety of targets for interaat@akes ROS a vital component

of many signal transduction pathways.

2.2.4 Nitric oxide

Nitric oxide (NO) is a reactive gas molecule and a free-raldijsometimes represented as
NO*®) present in many cells and tissues. In most cells NO is predifftom L-arginine by
the nitric oxide synthase (NOS) family of enzymes. Althougplants NOS-like enzymes
have not been found, NO production in plants has been showatia via nitrate reductase
(NR) enzymes such as NIA1 and NIA2 (Desilkatrall, 2002), and others such as AtNOAL1,
and nitrite reductase (Wilsaat al, [2008).
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As with ROS, NO has the attributes of a second messengermibderately reactive,
has a half life of 5-10s, can diffuse across membranes angichénvironments, and its
concentration can be controlled by the cell either by statiny its production (eg with
NOS or NR) or by accelerating its removal (Hancock, 1999s@fiket all, 2008).

As a signalling molecule NO acts on guanyl-cyclase by bigdim haem groups

to produce cyclic guanosine monophosphate (cGMP), anateeond messenger that
regulates serine threonine kinases. NO can induce confamaé change in proteins
by nitrosylation of cystenyl-SH groups which can activate deactivate an enzyme
(a conformational change analogous to phosphorylatiomjrol ion channels, elevate
cytosolic C&", and interact with ROS _(Markst al., [2009;| Wilsonet al., [2008). The

effect of NO depends critically on its concentration. Foample, in guard cells NO can

deactivate inwards Kchannels, but in higher doses it can deactivate outwardshiannels
as well vB_Lig_l:Jt 2006; Sokolovski and Blatt, 2004). A haltoh efflux can possibly block
stomatal movements. When NO is overproduced nitrosylatoroccur non-specifically (a

situation known as nitrosative stress, similar to oxidastress), and can trigger cell death;
NO induced cell death is used as a defence mechanism agaiading organisms (Marks
et al, [2009). In seeds, NO antagonises ABA by reducing seed dayreard stimulating
germination|(Bethket al., 12006 Libourelet all, [ 2006).
NO can be removed from cells by combining it with water, oxygend haemoglobins

to produce nitrites and nitrates. The antioxidant glutatkican bind to NO to from S-
nitrosylated glutathione (GSNO) which is converted to ammady GSNO-reductase. In
addition to reacting with an antioxidant, NO itself can haméioxidant activity by reacting
with superoxide to create peroxynitrite, normally a toxibstance but surprisingly plant

cells_can resist its toxicity and even use it as a messengdieffonneet al., 12001 ; Klotz
et al,2002).

2.2.5 Calcium

Calcium ions (C&") have important roles in signalling processes in all céflar{cock,

1999). The cytosolic concentration of €ais kept low in unstimulated conditions by

means of calcium pumps, channels, stores, and bufferirtgipso ATP-dependent pumps
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such as the Sarco/Endoplasmic Reticulum Calcium-depeémidrase (SERCA) and the
plasma membrane €adependent ATPase (PMCA) transport?€dons against their
gradient into the Endoplasmic Reticulum (ER) and the oetsifithe cell, respectively.
Naf—C&™* and H'—C&" exchangers use the gradient in the concentration of el H"
to transport C& either outside the mitochondria or outside the cell.?>'Gaptake into
the mitochondria occurs via a uniporter (UP) along a charmgelignt when required by
a cellular process. Ligand-controlled channels can releatcium ions into the cytosol
from the ER and the exterior of the cell. One of the best-kntigands controlling C&"
from the ER is inositol-3-phosphate (IP3). Although IP3ds\ee in guard cell signalling

its receptors in plant genomes have yet to be foun [, 2010). Additionally,

voltage-controlled channels can import?Caons from the exterior into the cytosol (Marks

et al, 12009). In plant cells, vacuoles also serve as calcium stgfaiz and Zeiger,

2002). In addition to stores and channels, cells also cbaytosolic C&" concentration

via buffering proteins such as calmodulin. All the above h@gsms assure that under
unstimulated conditions, the concentration of calciumsiamthe cytosol is four orders
of magnitude lower than outside the cell or in the stoids,” M in the cytosol versus
2 x 10~* M outside the cell and in the stores (Hancack, 1999).

Many C&™"-binding proteins contain a motif known as the EF-hand, isting of a

helix-loop-helix domain where calcium ions can bind. In &rabidopsiggenome there are
over 200 C&"-binding proteins, including 34 calcium-dependent prténases (CDPK)
and 10 calcineurin B-like (CBL) proteins (D’Angelet al., [2006;/ Kim et all, [2010).
Interestingly, inArabidopsisNADPH-oxidases have an EF-hand which is activated by

cytosolic Cd* (Ogasawaraet al., 2008). Many proteins upon binding €aundergo

conformational changes which might expose (or hide) ades, altering the activity of
the protein and downstream signalling components.

Calcium signalling does not exclusively depend on cyta@sobncentration. Many
signals induce transients, oscillations, and locaticgedfe changes that have different
effects on cell behaviour, making €asignalling an extremely versatile tool for signalling.
It has been hypothesised that some signals induce specdicitfm signatures” to

produce specific cellular respons s_s_(ﬁgaﬂ 2001;/ Taiz and Zeigle'. 2002). Further-
more, it has been shown that unstimulat&édbidopsisguard cells exhibit cytosolic
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Ca*-oscillations|(Yanget al.,, 12008), giving rise to the hypothesis that calcium signalli

may depend less than previously thought on concentratidmay involve the “priming”
of C&" sensors.(Kinet al.,12010; Younget al,, [2006).

2.2.6 lons

lons are particles with an imbalance in their numbers oftedes and protons which result
in an electric charge. If there are more protons than elesttiben the charge is positive,
if the reverse is true then the charge is negative. There \aarfain ions in cells: H,
Na*, K+, CI-, and C&" (Markset al.,[2009). lons are used by cells to control pH{(H
membrane potential (Na K, ClI-, C&"), and function as second messengers’*{Ea

Additionally, the concentration of K and CI in guard cells is regulated to establish
osmotic gradients to change the amount of water containgx ivacuoles which ultimately

determines cell volume and stomatal aperture (Taiz ander€ ).

The cytosolic concentration of Kions in guard cells is controlled by the inwards-
rectifying K and the outwards-rectifying K, channels, located in the plasma mem-

brane |(Blatt and Armstrong, 1993; Schroeder and 188tl)slow (SV) and voltage
independent (VK) K vacuolar channels (MaQRQbL) 1998; Ward and Schroedé#)19

The activity of these channels is controlled by pH, membrnaotential (and vacuolar
membrane potential), and cytosolic®aoncentration.
The channels regulating the concentration of @hions are located on the plasma
membrane and include the slow-activating (S-type) andapielitransient (R-type) (Hedrich

et al, [1990; Schroeder and Hagiwara, 1989). Vacuolar anion eiargontrolled by

CDPKs are reportedly active during stomatal closure (M 1998; Peet al, [1996).

The concentration of H (and hence pH) in the cytosol is mainly controlled by proton
pumps located in the plasma membrane {ATPase) and in the vacuolar membrane
(V-ATPase). Variations in the pH of the cytosol has consaqes for the behaviour of
the cell and the activity of the proteins, eg more alkalineipéteases the availability of

K™ outwards channels (see below) (Blatt and Armstrong, 1993).




16

A withouwt ABA | B with aBA

ABA

Figure 2.3: Early events of ABA signalling in guard celfs. In the absence of ABA, PYR
molecules form dimers and do not interact with ABI1, whiclplesphorylates the kinase
OST1. The NADPH-oxidase AtrbohF does not produce ROS bec@$I1 activity is
blocked by ABI1. AtrbohD does not produce ROS in the abseh@dBad. B: The ABA-
bound PYR/PYL impede ABI1 inactivation of OST1, which phbepylates and induces
ROS production by AtrbohF. ABA also induces AtrbohD-meethproduction of ROS.

2.3 Abscisic acid-induced stomatal closure

2.3.1 ABA perception

The family of proteins pyrabactin resistance (PYR) and RKBR-(PYL), sometimes
also known as regulatory component of ABA receptor (RCAR)ehbeen shown to be

receptors of ABA in guard cells (Mat al., 2009; Parket all, 2009). The perception of

ABA and early events in ABA signalling form a module that imdés both positive and

negative regulators of the pathway (H L, 12010; Weineet all,12010). The protein
phosphatase 2C (PP2C) ABA insensitive 1 (ABI1) is known t@aleegative regulator of

ABA signalling, and lies upstream of all other known sigimgjl events and components

involved in stomatal closure (Alleet al., 11999; Gostiet all, 11999; Merlotet al., [2001;
Peiet all, [1997). ABI1 inactivates the kinase activity of the SNFIated protein kinase
2 (SNRK2) open stomata 1 (OST1) by removing phosphate gr@Mupstilli et all, 2002;
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Vlad et all,'2009; Yoshideet all, [2006). In the absence of ABA, proteins of the PYR/PYL
family form dimers|(Santiaget al.,[2009), and ABI1 prevents OST1 from activating other
components that lie downstream in the pathway (Eig. 2.3AE S$tructure of PYR/PYL

proteins contains a cavity where the ABA binding site is teda Upon arrival of the
ABA signal, ABA molecules bind to PYR/PYL proteins in the dgvwhich weakens
and possibly breaks the dimer; ABA molecules are securebde@totein by a gate and

lock mechanism|_(Melcheet all, 2009, 2010; Miyazonet all, [2009; Nishimuraet al,
2009; Santiaget al,, 2009). Binding of ABA, in addition to weakening the dimels@
changes the conformation of PYR/PYL molecules which ineesaheir affinity to PP2C
molecules/(Miyazonet al.,12009). ABA-bound PYR/PYL have high affinity to ABI1, and
inhibit its phosphatase activity, thus allowing OST1 todnee phosphorylated and activate
downstream components (F .3B) (Weieeal,, 2010). PYR/PYL molecules are small
and solublel(Hubbarelt al Iéﬁ)IZ

to its receptors. A mediator of ABA uptake into the cell is &A1& binding cassette (ABC)

, Which indicates that ABA must enter the cytosol tadbi

sometimes called\rabidopsis thalianapleiotropic drug resistance transporter (PDR12)

located on the plasma membra ,12010).
The Mg-Chelatase H-subunit (CHLH), located in the chloaspd has been identified
by!Shenet all (2006) as an ABA receptor iArabidopsisguard cells; however, this result

has been contested in barley (Muller and Hansson,|2009)ditiadally two G-protein

coupled receptor type G-proteins GTG1 and GTG2, locatedhenmiembrane, have
been identified as ABA receptors (Pandsyal, [2009). Although GTG1 and GTG2 are
involved in stomatal closure, loss-of-functigingl gtg2single and double mutants still
retain some ABA sensitivity (Pandest aIL 2009), possibly via PYR/PYL proteins. The
precise interaction between GTG1, GTG2, and the rest ofulhedgcell signalling pathway

remains to be uncovered.

It is perhaps worth mentioning that the search for the ABAeptors has not been
straightforward | (McCourt and Creelman, 2008). For examiiie RNA-binding protein
FCA was identified as an ABA receptor (Razexnall, 2006), which later was shown
to be incorrect/ (Razemt all, 12008;| Risket all, [2008). The role of CHLH needs also

to be clarified, given the negative result from the study indya So far, only the role
of PYR/PYL, via their interactions with ABI1 and OST1, is fiynestablished in the
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Figure 2.4: ABA-induced ROS and NO synthesis in guard cefis.In the absence of
ABA AtrbohD/F remain inactive so ROS are not produced. WithABA-induced ROS
NR remains in a phosphorylated state and there is no NO pealdioc signalling B: When
the ABA signal arrives AtrbohD/F phosphorylate and ROS isdpiced. ROS cause the
dephosphorylation of NR which produces NO. Gluthathion8Kscavenges both ROS
and NO.

ABA-induced stomatal closure signalling pathway.

2.3.2 ROS signalling in ABA-induced stomatal closure

ABI1 impedes the activation of OST1 in the absence of an ABal (Fig[2.BA). After
ABA perception by guard cells and the phosphatase actiiith®l1l has been halted,
OST1 is able to autophosphorylate and become active. Adttnan Arabidopsisthere
are at least ten members of the NADPH-oxida&esbidopsis thalianaespiratory burst
oxidase homolog (Atrboh) only two versions have been foorktactive in ABA-induced
ROS production: AtrbohF and AtrbohD. It is known that Atrisois phosphorylated by
OST1 to produce superoxide which quickly becomes dismditate hydrogen peroxide
(Fig.[2.3B) (Belinet al., [2006; Kwaket all, [2003; Mustilliet all, 12002). It is also known
that AtrbohD is active in ABA-induced stomatal closurehaligh its activation mechanism

is still unknown. Studies of loss-of-function mutaatsbohdandatrbohf have shown that
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the amount of ROS produced by AtrbohD is less than the amaaduped by AtrbohF, and
atrbohdmutants have sensitivity to ABA comparable to wild-type@pens|(Kwaket al.,
2003). ROS have also been reported to inhibit the phosphaitzssity of ABIL in vitro,

possibly creating a positive feedback loop (Meinhard an':l!|(ﬁ)_0;), whose existence

needs to be confirmad vivo. Hydrogen peroxide production in guard cells begins within

minute of exposure to ABA in an oxidative burst (Pei and K 2006} Peet all,12000;

Wang and Songd, 2008). The release of'Cand its effect on ion channels (see below),
and subsequent stomatal closure in response to ABA depard®8, and ROS-regulated
MAPK proteins (Jammest all, [2009; Kdhleret all, 2003; Peiet all, 2000). Other targets
of ROS include glutathione peroxidase (GPX), which actstagresducer and scavenger of
ROS (Miaocet al.,12006), and possibly cell pH.

Antioxidants ascorbate (ASC) and glutathione (GSH) hawenldeund in guard cells,

and are involved in the prevention of oxidative stress damtat might arise from
2004; Kw I8
2006). The expression of dehydroascorbate reductase (DMARNh produces ASC, for

excessive ROS accumulationin guard cells (Eig. 2.4B Ili

1Y%

example, is regulated by circadian rhythms to allow ROS eatrations to increase in the

evening to allow stomatal closure at night (Chen and g;&mi). As mentioned above,

GPX has a dual role in ROS signalling, its action is represibly Miaoet all (2006) as

a balance scale: when there is little ROS then GPX acts asiadinaer, once the ROS
concentration passes a tipping point then GPX becomes &sgar The exact way in
which these antioxidants interact with the rest of the congmds of the ABA signalling
pathway remains to be clarified. ROS are now firmly estabtistsean essential component
of the ABA-induced stomatal closure, but their regulatiod aemoval during stomatal
closure needs to be understood yet (Kweakl., 2006] Pham and Desikan, 2009; Wang and
Song/ 2008; Zhangt al.,12001b).

2.3.3 NO production

Nitric oxide signalling occurs during biotic and abioticests responses in plants, and ABA-

induced stomatal closure is not an exception (Garcia-Mathl amattina, 2002; Melotto
et al, 2006 Neillet al,,[2003). Production of NO in guard cells is observed afteattrent
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Figure 2.5: ABA-induced cytosolic alkalinisation.A: In the absence of ABA the
phosphatase ABI1 inactivates OST1, and cytosolic and Yacpbl are kept at equilibrium.
B: ABA-bound PYR/PYL blocks OST1 inactivation of ABI1. Phdepylated OST1
increases the activity of the vacuolar proton pump, makiregdH of the cytosol more
alkaline and the pH of the vacuole more acidic.

with ABA, and cells exposed to NO-scavengers become lepsnss/e to stimuli. Loss-of-
function single and double NR mutantg&lnia2fail to produce NO and show decreased

stomatal responses to ABA stimuli (Desikanall, |2002), and production of NO by NR

in vitro has been shown to be modulated by phosphorylation (Raetkel., 2002). In
ABA-induced stomatal closure NO production depends on ¢yein peroxide generated
by AtrbohD/F (Brightet al., [2006) (Fig[2.4). ROS-dependent NO production is intrigui
given that, as explained above, NO and superoxide reacteaith other. This interaction

suggests that ROS may modulate their own concentrationighr&lO. Additionally, NO

and hydrogen peroxide share GSH as a scavenger (Per i12006;/ Wilsonet all,
2008). ABA-induced NO in guard cells regulates the conediun of Kt and CI by

facilitating the release of Ga from intracellular stores (Fifl. 2.6, see below) (Garciatl
et al,2003).
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2.3.4 Cytosolic alkalinisation

During ABA-induced stomatal closure the pH of the cytosaldrmaes more alkaline, going
from around 7.0 to 7.5; whereas the pH in the tonoplast (Masyitstecomes more acidic,
decreasing from 5.5 to 5.0 (BI nd Armstro 1993:; Isimll, 12010; Miedema and

Assmann, 1996; Pait all, ;, 2001a). Changes to cytosolic pH during

stomatal closure are driven mainly by the vacuolar protomp{V—ATPase), given that

rises in C&" deactivate the plasma membrang-+ATPases (Se€._2.3.5). According to
what is described in SeE._2.B.1, OST1 is inactivated by ABIXhie absence of ABA
(Fig.[ZBA). When ABA-bound PYR/PYL prevents OST1 dephasplation, then OST1
is able to increase V-ATPase activity (Fig.12.5B), though details of this interaction

remain to be established (lsl [, 2010;/ Suhiteet al,, 2004). There are conflicting

reports in the literature about the involvement of ROS inrilse of cytosolic pH after
treatment with ABA, which suggests complex interactionsha&f signalling components

at this level! Suhiteet all (2004) report that alkalinisation of the cytosol preced€SR

production, whereas Zhargt all (20014a) find that to the contrary, pH rises in response

to ROS elevations. What is not disputed is that cytosolic @d &n important role in
ABA-induced stomatal closure, and the effects of it becagmmore alkaline include the
regulation on ion channels (see below).

2.3.5 C& release

The role of C&" in ABA-induced stomatal closure was established by McA iéjsmj)) in
a study where the cytosolic calcium levels were observedstoin 80% of cells treated
with ABA. ABA-induced ROS production activates plasma-nbeame C&" channels
(Fig. [2.8) (McAinshet all, 11996; Murataet all, [2001;| Peiet all, 2000). In addition,
OST1 is thought to interact with €a channels, affecting cytosolic €a levels in a

ROS-independent way (Kirst al., 12010; Siegekt all, 2009). NO also mobilises a

into the cytosol in a process that requires protein phospaiion (Garcia-Mateet al,
2003;/ Lamotteet al., [2005; Neill et all, [2008;| Sokolovsket all, 2005). As mentioned
in Sec[2.2.b, unstimulated cells have spontaneous cytdSal™ oscillations, and ABA-

induced calcium increases also feature oscillati irall, 2010). Furthermore, it has
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Figure 2.6: ABA-induced ion efflux and loss of turgé. In the absence of ABA the kinase
OST1 is inactive and ion levels and pH remain at equilibriewels.B: ABA-induced ROS
and NO mediate the rise in cytosolicCamembrane depolarisation, and ion efflux. Active
OST1 causes pH to rise and activates anion channels. THangasmotic gradient causes
the exit of water from the cell and the stomatal pore to close.

been shown that elevations in the cytosolic level of calcarenot required to successfully
complete ABA-induced stomatal closure, though the presehcalcium at least at resting

levels is required (Siegdt all, [2009). These observations have prompted the hypothesis

that ABA “primes” the C&" receptors to be more sensitive (K&hal.,,[2010). Downstream
in the ABA signalling pathway Cd controls ion channelk(%k_aﬂ, 2001) and membrane
polarity (see below). Observations|by L evchegkal. (2005), McAinsh|(1990) and Siegel
et al.(2009) also show that there are®Candependent branches in the guard cell signalling

network, eg via pH.

2.3.6 Membrane polarity, ion and anion efflux

ABA-induced rises in the levels of ROS and NO promote the infilCa* into the cytosol
through membrane channels and its release from intraaefitdres. This calcium elevation

down-regulates the activity of inwards-rectifying chalsn@:") (Fig.[2.8) (Garcia-Mata
et al, [2003; Kwaket all, [2008;| Peiet all, [2000;| Schr r and Hagiwara, 1989). A
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rise in cytosolic pH and an elevated NO concentration causelaction in the cytosolic
concentration of K by increasing the efflux through K and a reduced influx through
K. More alkaline levels of pH increase the number of availakjg, channels to

accelerate the rate of'Kion extrusioni(Blatt and Armstrong, 1993; Miedema and Assima

1996). Very high concentrations of NO>(100nM), however, can block K, directl

by nitrosylation [(Garcia-Matat al., [2003; Sokolovski and BIHL 2004; Sokolovsiall,

2005), possibly compromising the closure process. High RQ&entrations can block

K (Zhanget all,[2001c) and, surprisingly, K,. However, it has been suggested that the
blocking of K’ , by ROS may not be a feature in ABA-mediated stomatal closkiohler

et al,|2003). Anions such as Cland malate are released from the vacuole and out of the
cell during stomatal closure (Assmann and Shimazaki ]JM]g_el_a.l 2001). OST1
phosphorylates the slow anion channel-associated 1 (SLAG4nnel, causing an ClI

efflux which depolarises the cell membrane (Geigeal., [2009). Guard cells dispose

of malate during stomatal closure by extrusion and consiamjily the tricarboxylic acid

cycle (Dittrich and Raschke, 1977). An additional conseqgeeof the rise in cytosolic

Ca*, NO, and ROS is the deactivation of membrane proton pumpsXFPases), which

further contribute to depolarise the membrane (Wasileveskal, 2008), and allows K,

to increase its activity.

2.3.7 Loss of turgor and stomatal closure

The ion and solute efflux described above, and the resultvwwer ionic concentration in
the cytosol create an osmotic gradient that forces the watee vacuoles to exit the cell.
The loss of water leads to a decreased turgor pressure tflasrdpthe guard cells and
closing the pore (Kwalet al., [2008; Schroedegt all,(2001). The loss of turgor marks the
culmination of the stomatal closure signalling process, alggpending on circumstances,

may mark the beginning of inhibition of stomatal openingekated but distinct process

from stomatal closure (Kiret al.,[2010; Pandewt all,12009).
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A Without ethylene B With ethylene
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Figure 2.7: Ethylene reception and ROS production in guald.cA: ETRL1 is a negative
regulator of ethylene signalling3: Ethylene binding inactivates ETR1, ROS is produced
by AtrbohF. ETR1 senses ROS and relays the signal downstream

2.4 Ethylene-induced stomatal closure

2.4.1 Ethylene

As described in Se€._2.2.2, ethylene is an important and-stetlied plant hormone. In
addition to all the functions already mentioned, ethylenari effector of stomatal closure

in Arabidopsisthalianiliailas_and_lsa, 5,.1982). Intriguingly, in other plant speduch as

Vicia fabaethylene is an effector of stomatal opening as mentioneé@l&2.2, however

this work is focused only in ethylene effectsAnabidopsis Although the ethylene pathway
0, 2005), little
is known about itin guard cells. Below is described what isn so far about the ethylene

is arguably well-understood in seedlings and root cell va and Alon

[v2)

signalling pathway in guard cells leading to stomatal ctesu

2.4.2 Ethylene perception and ROS production

Of the five known ethylene receptors only ETR1, located in B and a negative
regulator of ethylene signalling, has been shown to be wagblin ethylene-induced
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stomatal closure (Desikaat all, [2005; Tanakaet all, 2005, 2006). The immediate events
after ethylene binding by ETR1 are still not known. Ethylenduces ROS production

by AtrbohF but, unlike in the ABA-pathway, not by AtrbohD ¢F[2.7) (Desikaret al.,
2006). The signalling steps between ethylene perceptioB iyl and ROS production

by AtrbohF are not yet clear. Given that ETR1 is a negativelleggr of the ethylene
pathway (ie ethylene inactivates ETR1), it is probable ttsaaction on AtrbohF (in the
absence of ethylene, Fig. 2.7A) is also negative. Enzymes asi ABI1 and OST1 could
be involved in the production of ROS by ethylene (which waulake the earliest events in
ethylene signalling resemble the early events in ABA silgmg), although that remains to
be confirmed. In addition to ethylene perception, ETR1 haadalitional role in ethylene
signalling: it senses ROS and relays the signal downstreasnprocess that depends on
the enzymes ethylene insensitive 2 (EIN2) ardbidopsis thalianaesponse regulator 2
(ARR2) (Fig.[2.8); however, their exact roles have not beeteminined so far (Desikan
et al, 2006).

2.4.3 Downstream of ROS

The events downstream of ethylene-induced ROS productidngistomatal closure have
not been fully verified experimentally. Preliminary resutidicate that NO is produced in

guard cells treated with the ethylene precursor ACC (D 2010), possibly in a pH-
dependent way (Liet al,[2010a). If indeed NO is produced, it is likely that at leashg

is produced by NIA1 via ROS as it occurs in the ABA pathway,dithier sources may also
be involved. The role of Ca, membrane polarity, and ion channels in ethylene-induced
stomatal closure has not been experimentally tested. Alntisgradient must be produced
so that water may exit the cells for stomatal closure to haphgs requires ion extrusion
(Fig.[2.8). Given the overlap of the ethylene and ABA pathsvaythe AtrbohF and ROS
level, itis likely that the components downstream of ABA als downstream of ethylene.
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Figure 2.8: Ethylene signalling downstream of ROS. At rest the cells maintains
equilibrium levels of ROS, and ion concentratiol®: Ethylene-induced ROS requires
ETR1, EIN2, and ARR2 so that stomatal closure can be contplethich implies that
the extrusion of ions from the cytosol and other cellular pantments must occur.

2.5 Lack of closure under combined ABA-ethylene treatment

Hormone interactions in plant cells are comrTJQn (A;ﬂar_ﬁnan .2009; Chang and
Bleecker, 2004} Liwet all, 12010 M 9a); Sectibnd 2.3[and 2.4
discuss the mode of action of ABA and ethylene in guard cdisth of these hormones

cause stomatal closure individually but, surprisinglygwlapplied simultaneously they fail

to produce full closure (Desik L, 2006;| Tanakaet all, [200%). These observations
are hard to reconcile; two signals that individually proelue particular response but
none when they are combined seems contrary to intuitiorgialhesince their signalling
pathways overlap. The mechanisms by which this cross-tedkirg are not yet known.
The signal transduction pathways presented in this cha@péeonly a partial description
of stomatal closure whose components are thought to be teeimportant ones vivo.
An exhaustive list of all known interactions, whose undanging is incomplete in many
cases and sometimes fuzzy at best, is not presented herexaaple, the roles of ARR,
EIN2, and ETRL1 in the ABA pathway so far have not been eluedlatIn addition,
there are components of the ethylene pathway that have bemwmkto interact with or
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antagonise ABA signals in other cell types, for example: EiNodulates ABA stress

responses iArabidopsisseeds.(\Wanet all, 2007), ABA can restrict ACC production also
in seeds illa, 2000; Yoshii and Imaseki, 1981), and attié stress (ie excess ROS)
and ethylene are suspected to suppress stomatal closuken@dh and Davies, 2009Db).

The picture of stomatal closure is much more complicated Wiaat is understood today.
Large and complex signalling systems which are almost away-linear are known to
produce strange and unexpected behaviour such as bistaistillations, and chaos (Carter
et al, 2010; Stark and Hardy, 2003; Stagkal.,, [2007; Strogatz, 1994). In a way, it is not
surprising to find seemingly contradictory behaviour in avoek with as many nodes and

interactions as the guard cell network.

In the rest of this thesis we will endeavour to understandpibssible causes of the
ABA-ethylene cross-talk in guard cells. Chapiér 3 providesiinimal introduction to
mathematical modelling for cell-signalling systems. Giedd introduces a new method to
fit model parameters from data using Monte Carlo technigndssgolutionary algorithms.
Models of activation cascades are analysed in Chapter Bjtaah solutions are obtained,
and their uses in different contexts are discussed. Exgatithmeasurements are made in
guard cells treated with single and combined stimuli in Gedf; an ordinary differential
equation model of stomatal closure is constructed in Chéftancorporating the results
from the analysis of activation cascades and fit to the datagube new Monte Carlo
method.
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Chapter 3
Mathematical models in cell biology

Systems studied in the biological, physical, and sociaérsm@s usually contain many
components that interact in specific, yet complicated waften changing with time. In
biology, cell signalling systems (eg the regulation of g@imation in plants described in
Chapte 2 or the immune system) have numerous componentslimg nucleic acids,

proteins, hormones, reactive molecules and ions (Han ). These components

interact to elicit responses to external signals. For exemp section$ 2J3 and 2.4 we
discussed how when plants detect unfavourable conditemndrought or pathogen attack),
interactions between various cell signalling componecitscasiow down their metabolism
until conditions improve. Although many components of thegstems are known, the
size and complexity of the system often make detailed emprial investigations too
expensive or difficult to perform (Hardy and S alrk 002:rst@nd Hardy! 2003; Yates
et al, |2001). The use of tools from quantitative and physicalidlstes has helped to

overcome some of these limitations by abstracting and septeng biological systems
in a framework that allows the efficient exploration of hypeges, and the extraction of
conclusions that would be difficult to obtain by experimeiota alone. In biology, the

need for a quantitative understanding is specially acutath®matical modelling has been
successfully used to explain and predict system behawa@t experiments should be
performed, what are the 'rate-limiting’ components of ategs and whether or how a

system can be controlled (Howison, 2003; Keener and $Sneé&B)1 In many systems,

such as guard cells, many questions remain without an ansuar as what is the precise
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timing of events that lead to a response? Which components gooups of interaction,
when and for how long? What determines specificity to mudtgilmuli?

Broadly, a model is an abstract representation of a phenomasing in this case a
mathematical framework. There is no unique way to model tegysand rarely a model
is the modelthat answers all questions, nor is there a recipe for produciathematical
models; generally, the process involves making assumpébout what the most important
characteristics of a system are, and ignoring the othefitegertant aspects of it. A good
model will capture the essential characteristics of théesgsmake predictions, and guide
new experiments. Models can always be refined further asededdit should always be
kept as simple as possible.

The type of models that we use in this work are mechanisticdmterministic; they
describe a mechanism for the behaviour of a system. Onceuteg of the system are
set and we provide some necessary initial or boundary donditthe behaviour of the
system is determined for all time. Examples of determiaistodels include differential
equations (continuous time), and Boolean models and diffar equations (discrete time).
Other type of approaches are mechanistic but incorporatioraness, such as stochastic
models. Statistical models describe observations andbdéitdo not provide insights into
the mechanisms that drive systems.

3.1 Differential equation models

In our modelling, the state of a biological system is desaillby ann-dimensional
continuous functiox(t) = [z1(t), z2(t), . .., x,(t)], wheret is time, and the variables(¢)
are features of the system such as temperature or concemtrda substance. We represent
the change ok(¢) in time usingordinary differential equation€ODES), which describe the

rate of change of an unknown function along one dimensiamliystime (Kreyszigl, 2006).

Partial differential equationg$PDES) describe the change along more than one dimensions
(eg time and spatial dimensions). In this project we are eorerd mostly with the change
of a function in time, hence we will use ODEs. We write the af@ofx in time as

dx
- =[t.x.0), (3.1)
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Where% is the time-derivative ok. We relate the rate of changexin time to a function

of time ¢, its current statex(¢), and a set of parametefs Parameters are constants that
stand for the inherent properties of the system, and tylgiead non-negative real numbers
(the signs are prescribed by the equations). To solve equédil), we need to know the
initial conditions the state ok at some time,, ie x(ty) = xo.

Equation [(3.11) islinear wheneverf is a linear operator ox, ie when the following
properties hold

ft,x+y,0)=f(t,x,0)+ f(t.y.0),
f(t,ax,0) = af(t,x,0),

anda is a fixed constant. If does not have these properties then the equatiooribnear.
Most biological systems present nonlinear behaviour; vewedhere are several cases in
which a linear model or a linear approximation can be usednierstand the system.
Equation[(3.1l) reaches a steady state or an equilibriunt poiy, when:

f(t, Xssy 0) = 07

that is, the rate of change is zero and the state of the systes bt change. A steady
state can be stable, ie if the system is perturbed from tredgtstate it will return to
it, or unstable, ie if system does not return to the steadie stdien perturbed. Other
ODE systems may exhibit other more complex behaviour suae@sdar and irregular

oscillations z,1904).

Below, we present an example that is simple enough soif@atcan be written
explicitly.

Example 3.1.1.Suppose a one-dimensional systeft)y whose rate of change is given by

dz
— =ax
dt ’
wherexz(0) = 1. Here the rate of change is proportional to the state of teeeay. This is
a simple linear equation whose solution is the exponeniiattionz(t) = e**. The only
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steady state of this systemitg, = 0, and it is unstable.

Although many nonlinear models in biology cannot be solvedlically modellers
can rely on numerical methods to obtain accurate approiomsto the solutions (Suli
and Mayers, 2003). To that end, there are a plethora of acalyhethods and tools
(eg perturbation methods, bifurcation and stability asalythat help to understand and

approximate the dynamics of a system without having to ventexplicit solution (Bender
and Orszag, 1999; Kuznetsov, 1998; Seyldel, 2010; Strcmﬁ).

3.2 Reaction and enzyme kinetics

In cell biology many signals are transmitted by means of é¢balmand biochemical
reactions; in this section we introduce a few examples of th@se reactions are modelled.

3.2.1 Mass-action kinetics

One of the simplest and most convenient ways of modellingneted reactions is using
mass-action kineticéalso known as the law of mass action), first described in 1864

Waage and Gulberg (1986). Broadly, the law of mass-actatesthat the rate of reaction

of two components in a well-stirred container is propordioto their concentrations. The

use of the law of mass action is ubiquitous in biological sgst modelling (Cheet al.,
2010; Feliuvet all, 2010; Gunawarde Ia 2011; Higham, 2008).
If A andB are two substances that participate in the irreversibieticea

A+B SO,

the change in their concentration is given by the nonlingsiesn of equations

d[A]
o [A][B],
d[B]
oW - [A][B],
e

£ = ala)
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where[A], [B] and|[C] are the variables of the model and the parametstthe rate constant
of the reaction. The initial conditions of the equations [afg0) = Ay, [B](0) = By, and
[C](0) = 0. If the reaction is reversible, eg

A+ B % C,
then the equations are
di4]
——= = —alAJic] + 8(C],
d[B] _
o = ~olAlBl+ A,
d[C]
~— = al4][B] - B[C]

Note that in both sets of equations the negative terms arépired by the concentration
in whose equations it is found, egy[A][B] in the equations fofA] and[B], and—g[C] in
the equation fofC'; this guarantees that the variables in the equations caweobecome
negative, a good reality check for the model.

3.2.2 Enzyme kinetics

Many reactions inside cells are catalysed by enzymes. Tpiealymode of action of an
enzyme is described by the reaction

S+E—4~Ssp*pip (3.2)
k_1
where the substrate reversibly binds to enzymg to form the substrate-enzyme complex
SE, which either dissociates back foand £’ or reacts to create a produét The enzyme
is not changed by the reaction and can bind to a new moleculedubstrate to catalyse
another reaction.

The variablesE], [S], [SE], and[P] are concentrations of the reactants, the differential
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equations that describe the reactionl(3.2) (Cornish-B ) are
% — —k[S][E] + k_1[SE] + ko[ SE), (3:3)
% — —ky[S][E] + k_1[SE], (34)
LiE] — Li[S][E] — k_1[SE] — ko[SE], (3.5)
d(r]
e ko[SE], (3.6)

with initial conditions:
[E](0) = Eo, [S](0) = Sy [SE](0) =0, [P](0) = 0.

Equation[(3.B) is decoupled from the rest, ie depends onl\y @i} and no other equations
depend on it, so we will consider it separately from the ottmeee. Equationd (3.3)
and [3.5) cancel each other out:

which means thatE] + [SE] is always a constant (assuming no gene expression). More
specifically,[E] 4+ [SE] = Ey, which means that we can eliminate an equation to get

) (8] — [SE) + ha[SE) (37)

The units of equationd (3.7) and_(B.8) are concentrattone™!; for example, if the
concentration units are molar and time units are seconds, ttie units of the equations
are Ms'!.

Nondimensionalisation and the Michaelis-Menten form

It is standard mathematical practice nondimensionalisenodels, this means dividing

the quantities in the model by an appropriate scale (F \*MQE’; Howison, 2003).
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Nondimensional equations and variables are useful bedaageallow us to know what
is small and can be ignored and what has to be kept in a model.intMauce the

—

nondimensional variablgs], [@], andt such that
[S] = A[S], [SE] = BISE], = Ct. (3.9)

The constantsd, B, and C' are scales with units M (A and B), and s (C) chosen so
that the new variables are nondimensional and of ordeP(1)). Substituting[(3.9) in
equations[(3]7) and(3.8) we obtain

—~

Ad[S] B _ o EE —
E/C_EA = —kA[S](FEy — B[SE]) + k_1B[SFE],
c ) = k1 A[S](Eo — B[SE]) — B(k_1 + k2)[SE].

Choosing scaled = S,, B = Ey, andC = ﬁ and inserting them in the equations and

gathering the terms (dropping the hat notation) gives

% — (1= [SED[S] + (% — N[SE], (3.10)
gd[iE] — 18] = ([S] + ®)[SE], (3.11)

with e = 2, k = =572, and\ = g2-. The initial conditions now argS](0) = 0 and

[SE](1) = 1. Usually the initial amount of substrate is much larger ttfentotal amount

of enzyme, ieS; > E, which means that < 1. The small parameter in equatidn (3.11)

means tha‘t@ ~ 0, and
Ey[S]

K+ [S]

When there is much more substrate than enzyme, the formetitre complexSE] in

[SE] ~

(3.12)

equation[(3.1]1) reaches equilibrium before there is angtsmiial decrease %], and the
expression in equatiof (3]12) is a good approximatioftt0], that can be used to solve
equation[(3.700). We can approximate the amount of produitteofeaction with:

~ (3.13)
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Figure 3.1: Michaelis-Menten reaction rates from equafab3) (in arbitrary units) where
Viax = 2 andx = 0.5 (blue dash-dotted line}, = 1.0 (green continuous line), and= 5.0
(red dashed line). The horizontal dashed line is the maximaienof reactiorl/,, ..

whereV,,.. = ko Ey is the maximum rate of the reaction, ands the Michaelis constant.

Note that
[S]

y
81560 % + [S]

I

so no matter how much more substrate is added, the react®risdanited by the amount
of enzyme present in the system. The form in equation (34 2piled the Michaelis-

Menten form and was first proposed by Michaelis and M =rLtgm§b.9:igurd3:ll shows an

example of the effect o¥,,., andx on the reaction rates. Small valuesroindicate that
the substrate and the enzyme have high affinity for each aimgithe Michaelis-Menten
term saturates with relatively low quantities [6f] (eg the blue dash-dotted line), larger
values indicate lower affinity and demand more substratatiorate the reaction rate. In
this example the maximum rate is given by, = 2, as[S]| becomes larger, the rates will
get closer td/,,,4..-

The Michaelis-Menten approximation ¢$E], known as thequasi-steady-state as-

sumption(QSSA), is only adequate whern> <. To obtain the solution for earlier times

SE]
at

~ 0 no longer holds becauﬁi{iﬂ is too large (orde(2)),
and a different scaling for must be use (Fow‘er 1997; Maist all, 11991; Segel and

the assumption thatdl

Slemrod| 1989). In this work we are mostly interested in theecwhert > ¢, where the

Michaelis-Menten form and the QSSA are appropriate.
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Figure 3.2: Activation of a protein by multiple phosphotyda. WWhen unphosphorylated
the protein is in a conformational state that shields itsvactite (in red) and prevents it
from participating in a reaction. After binding three phbapes, a conformational change

occurs and the active sites is exposed, thus allowing saibstto bind and other reactions
to take place.

3.2.3 The Hill equation

Some enzymes need to bind more than one molecule in ordetaigsaa reaction

S+ E = SE,
k_1

SE+ 8 =2 95E,
k_o

(n—1)SE+ S == nSE ™ p 4 R,
kon
and the reaction rates have the shape of a sigmoid rathetttbdnyperbolic curves shown
in Fig.[3.1. For example, Fig._3.2 shows how a protein undesgmnformational change
after binding three phosphate groups, allowing it to exptsactive site (in red) and to
participate in a reaction. To model such reactionsHilkequationis often used. The Hill

equation has the form
~ VinaS]”

= et O] (3.14)
whereV,. is the maximum reaction rate,is the constant that defines the dose<jffor
whichV = % (if n = 1 thenk is the Michaelis constant), andis theHill coefficient
The value ofn is an indicator of “cooperativity” between active sites bétenzyme, the

higher its value the more cooperative they are, but it doeswean that exactly molecules
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Figure 3.3:A: Reaction rates of the Hill expression in equatibn (B.14gmh, .. = 2,

rk =5, andn = 1 (dark blue continuous line), = 2 (green dashed line), = 3 (red dotted
line), andn = 5 (light blue dash-dotted line)B: Reaction rates of the inhibitory form in
equation[(3.15) with the same parameter values as image A.

have to bind the enzyme (Cornish-Bowden, 2004). Often theevaf n is a real non-

negative number.

Figured 3.BA shows the reaction rates of equafion (3.14) efferent values of.. When
n = 1 we observe the Michaelis-Menten curve from [Eigl 3.1. #or 1 the response curve
is a sigmoid that becomes steependscreases.

Hill equations have also been used to model the case wheiptautiolecules bind to

an enzyme to stop it catalysing a reaction:

Vinaxk™
V=" 3.15
Figure[3.8B shows the reaction rates for different values.ohgain, the larger the, the
more steep the sigmoid becomes.
The two forms of the Hill function from equatiorls (3114) af&dI®) are used to model
not only cooperative enzyme dynamics, but also used to meagirical relationships

between components in signalling systems, as we show irotlosving section.
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Figure 3.4: Simulation of the production of a molecule given the stochastic
process [(3.16) and_(3117), with parameters= 1, © = 0.1, dt = 0.1 and initial
conditionX (t) = 0.

3.2.4 Stochastic models

A different approach to modelling signalling and biocheahiprocesses in the cell is
with stochastic models. The cell is an intrinsically noisywieonment and no two cells

function in exactly the same way, not even cells with idaadtgenotype (Wilkinsan, 2009).

Instead of dealing with rates of deterministic processestachastic models we consider

the probability of occurrence of events (Tayvlor and Kailif98). Stochastic models can

be defined in discrete (eg a discrete-time Markov chain) atisoous time (eg a Wiener
process).

Example 3.2.1(Wilkinson (2009)) Let X (¢) be the number of copies of a molecule at

time ¢; the number of molecules after a time-stegie X (¢ + h)) is determined by the
probability of having a new molecule added and the prolgbdi having a molecule
degraded, given the value &f(¢). In terms of probabilities:

P(X(t+h) = X(t) + 1|X () = ah, (3.16)
P(X(t+h) = X(t) — 1|X(t)) = min (uhX (t), 1), (3.17)

wherea and . are analogous to rates of production and degradation frore @Ddels.
Figure[3.4 shows the time-course of a single simulation ef glhocess defined by the
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probabilities [[(3.16) and(3.17). The analytical solutidrttee process is thak (¢) is a
Poisson-distributed random variable, whose parametesrakpony, (1, andt.

The example we have just given is simple, models with moreispénteracting in com-

plicated ways require sophisticated theory and intensvepriting techniques (Gillespie,
1977; Higham|, 2008; Ili | L, 12010; Milneret all, 11992).

3.3 Cell signalling networks

Cells function by sensing and reacting to their environmentio so they must interpret
external signals and relay them through a chain of comperemd events that together
form a signalling network. Cell signalling networks arerfed by the chemical and

physical interactions among the different components efdéll that participate in the

signalling processes that elicit a response. Models otileelisignalling networks can

be constructed with varying levels of detail, usually depeg on the data available. A

model of a network that includes every single physical arehdbal interaction may not

be useful at all because the kinetic parameters and speeiesmbkely to be measurable
or identifiable, and investigating its behaviour can be asstomplicated as studying the
system experimentally. In this section we provide a bri¢foduction to networks and

some examples from cellular network modelling.

3.3.1 Minimal introduction to networks

A network or graph is a mathematical object consisting ofleection of agents (nodes) and

their relations (edges) (Gross and Yeliﬂu_z.004). An edgeneyaresent chemical or physi-

cal interaction, correlation, flux, presence in commongdaor communication (Newman,

2003; Stumpf and Wiut, 2010). The connectivity of a graphiflimodes are connected

to which) is known as the topology of the network. If a netwbdsm nodes, then x m
adjacency matrix of the network has nonzero entries for existing edges, and zeros
everywhere else. For example, if in a network there is a hed@den nodes in columns

1 and 4 ofG thenG(1,4) # 0. In anundirected networkFig.[3.3A) the relationship of
the nodes is symmetric, ie the edge from nddeto nodeNg, w4 s is equivalent taug 4,
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Figure 3.5: Different types of networké.. Undirected network, the relationships between
the nodes do not require that edges have a specific origin athigp@nt. B: Directed
network, the relationship between two nodes is directioaatl the edges have a precise
origin and destinationC: Signedanddirected network, the relationships among nodes can
either bepositive(edges ending with-) or negative(edges ending witH).

the edge fromVg to N4. The adjacency matrices of undirected networks are synomietr
G = GT. Examples of undirected relationships can be acquainsanee®f two people

in a social network| (Trauet all, 2011), strong correlation of two variables in a data

set (Onneleet all, 2003), and interaction of proteins in yeast (Schwikowetkal., [2000).

A directed networKFig.[3.3B) is a network where the interactions are unidioeal; the
existence of an edge from nodé, to nodeNz does not imply the reciprocal edge exists,
Sowy,p # wp,4. Adjacency matrices of directed networks are not necdgsymmetric.

Examples of directed networks are disease transmissiovoriet (Meyerset all, [2006),

and messages on social netWOIJss_ﬂ:IubﬂEtmiJ, 2008). In asigned networledges can
be described as positive or negative. Fiduré 3.5C is an eleanfi@ signed and directed

network where the relationship between nodésand N is negativev, g < 0; however,

not all signed networks are necessarily directed. Theemtf the adjacency matrix of a
signed network may have positive and negative entries,riipg on the sign of the edge.
Examples of signed networks include conflict networks (edyaamd enmity) (Wasserman

and Faust, 1994), metabolic and gene regulatory networla (£007). In addition to

direction or sign, the edges on a network camiegghtedor unweighted The weight of an

edge provides additional information about the relatigmdletween two nodes (Newman,

2003). In an unweighted network, all that is known about ageeild whether it exists or

not, iew, 5 can either be 1 or 0. The entries@fin an unweighted network are either 1 or
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Figure 3.6:A: A Boolean network of three variableB: Three simulations of the network
where the updates follow rulds (3118)-(3.20), startingfedifferent states (see text). Each
row tracks the state of one variable at 20 discrete time pdiotn 0 to 19; black cells mark
a value of 0 and white cells mark a value of 1.

0, whereas in weighted networks they may have other values.
Importantly, in many networks the edges and their charsties can change in
time (Muchaet all, [2010; Palleet all, 2007), savs 5(t) can be a function that represents

the time-changing weight of the edge betwéénand N.

3.3.2 Boolean network models

In Boolean models the variables can only be in one of two stateor off usually
represented by 1 and 0, respectively (Gershenson, 2004)e@onetworks are formed by
boolean variables whose interactions define the rules bghthie states of each variable

are updated (Kauffman, 1969).

Example 3.3.1.A simple boolean network. In Fig. 3.6A we show a network ofethr
Boolean variables(, Y, andZ, each of which influences and is influenced by the other
two (ie the network is directed and fully-connected). Irstekample by Kauffman (1969)
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X.,,Y,, andZ, denote the state of the variables at timehe rules for updating are:

Xpi1 = Zn A (7Y,), (3.18)
Y1 = Xo A Zn, (3.19)
Znir = (X A (Y,)), (3.20)

whereA, and— are the standard logic operatansd andnot, respectively. On Fidg. 3/6B we
show three simulations of the boolean network in Eigl 3.6é\ng rules[(3.18)E(3.20) and
starting from three different initial conditions:

(i) [XoYo Zo)=1[000],
(11) [Xo Yy Zo) =[111],
(iid)  [Xo Yo Zo) =[101].

On all simulations, the network’s state settled into oatibns with period-three, and
simulation (¢) is one time-step ahead ¢fi) and (zii), who are synchronised from the
second iteration. The recurring states of the system are:

001], [101], and[1 1 0].

More sophisticated boolean models and networks may haveiviahdynamics, include
randomness, complex topologies, and asynchronous (nautaneous) updating of the
nodes|(Aldana, 2003; Gershenson, 2003, 2004; Kauffmarg; adatpouet al, [2010).

3.3.3 ODE network models

Differential equation models of cell signalling networkgpically have one equation per
node which describes the change in the state of the node, waratity that describes it.

The edges are the interactions that form the equationsr m). Below we show two

examples of ODE network models that display different behav
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Figure 3.7:A: Regulatory network of p53 upon DNA damammooaa étwork

is weighted, directed, signed, and time-depend@ntime course solutions of the model in
equations(3.21)5(3.24) using the parameters stipulat&téweret all (2008): 31 = 0.05,

oo = 0.52, k’l = 1.42, 620 = 0.041, k’g = 0.39, ayg = 0.01, k’g = 2.5, k’4 = 0.75, and
By = 0.18, and initial conditionsz(0) = 3, 2(0) = 4.33, z(0) = 0 y(0) = 0.05 (the
unstimulated steady state for all variables exe€f} which has been increased to simulate
the DNA damage stimulus).

Example 3.3.2.Regulation of p53 expression. The protein p53 is cruciakaventing the
proliferation of cells with mutated or damaged DNA by incugcell cycle arrest and DNA
repair, or inducing cell suicide. Mutations or alteratiaismiormal p53 function often lead

to uncontrolled cell proliferation and cancer (Weinber@§0?2). In Figurd_3I7A we show

the p53 regulatory network. DNA damage induces the actimatif the protein ataxia
telangiectasia mutated (ATM) which phosphorylates ivacp53. Active p53 induces
the expression of the murine double minute (MDM2) oncogemvi@ch accelerates the
degradation of both active and inactive p53. In additiondivating p53, ATM also helps
the degradation of active MDM2. The p53 regulatory netwoekhave described has been
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Figure 3.8: A: Network representation of the control of TNFexpression in rabbits
following corneal transplant. The network is formed by nede(the external signal),
TNF — « (the concentration of the tumour necrosis factor), arfthe inhibitor pool); it
is also signed, weighted and time-depend8ntSustained oscillations of TN&-given by
equations[(3.25) an@ (3.26) using parametérs 21, B=0,C =5, D = 0.2, E; = 0.1,
E, = 0.001, F = 1, andn = 2, and initial conditions:(0) = 0.1 andv(0) = 0.1. C:
Trajectories of the solutions of equatiohs (3.25) &nd (Br2éhe phase plane from different

initial conditions.

modelled with ODEs using mass-action kinetics by Brewe0¢ (JLBLeMLerEl_al 2008):

da

dz

= —Boa, (3.21)
= ag — (k1y + kaa + Bao)z, (3.22)
= kyaz — (kyy + o), (3.23)
= o + kzx — (ksa + Bao)y, (3.24)

wherea is active ATM, z; inactive p53,z; active p53, and); active MDM2. Figurd 3J7B
shows the time course behaviour of the model in equatio2d)(33.24).

Example 3.3.3.Cytokine oscillations. Tumour necrosis factortTNF-«) is a cytokine

involved in inflammatory response. In rabbits that havecte@ corneal transplant TNé-

has been reported to oscill

200

). The regulation of TNE-is by no means

trivial given that a number of other cytokines can modultgekpression (eg IL-10, TGB-

B), and TNFe itself can amplify its own effects. A simplified network defpon of the

TNF-a regulatory dynamics is shown in Fig. B.8A. An external signade A) promotes

the expression of TNk-which has a self-loop (promotes its own expression) andatets
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Figure 3.9:A: Temporal dynamics of TNk Using parametersl = 5, B = 0, C' = 1,
D=1,FE =0.1, E;, =0.1, F = 1, andn = 2, the steady state depends only on the initial
conditions. Using:(0) = 0.1 andwv(0) = 0.1 gives a low level of TNFR« (red line), using
u(0) = 2 andv(0) = 2; a high level of TNFe (green line).B: Phase plane with two sinks
(stable steady states), the system will go to one or the di@ending on where it begins.

its inhibitor pool (nodel). This TNF« regulatory network has been modelled by Chan
et al. (1999) using the ODEs:

du  u"+ E7 1

— = —_— 3.25
dt ur+1 1+v b ( )
dov U+ Fy

whereu(t) denotes the concentration of TNFat timet, v(¢) is the concentration of the
inhibitor pool, andA is the external stimulus; both equations are nondimenkichiae
change inu is driven by the external stimulug, TNF-o’s auto-activation, inhibition by
v, and linear inactivation. The changeuns driven by constant productioR, activation
by u and linear inactivation. In this case, the external stirautuconstant sé‘ﬁ = 0.
Equations[(3.25) and (3.26) and their dynamics have a divargye of behaviour including

mono and multistability, excitability, and oscillation€Hanet al., 11999). For example
in Fig. [3.8B we show sustained oscillations of TNF-which resemble experimental

observations (Raynest al.,, [2000). Figuré_3]8C shows how different trajectories on the

TNF-a x inhibitor phase plane settle into a steady cycle. Changdnegvalues of the
parameters with which we produced Fifs.] 3.8B 3.8C =esula radically different
observed behaviour (ie a bifurcation). In Figs.]3.9A andB3v# solved the same two



46

equations[(3.25) and(3.26) with a different set of paramsetdich gives two stable steady

states instead of the only one observed previot ,11999).
The model of TNFa regulation in equationd (3.25) and (3.26) shows how even

simplifications of signalling processes of cells can giveerio rich dynamic landscapes

that can be used to guide further experimentation.

3.4 Discussion

In this chapter the basic modelling tools used in matheralatodelling of cell signalling
systems have been introduced. Brief descriptions and eearmopstochastic and boolean
modelling were given, with special emphasis on differdnéiquation models. These
concepts are used extensively in the next chapters to anabts/ation cascades and to
construct a model of stomatal closure.
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Chapter 4

Evolutionary Monte Carlo optimisation

with local search acceleration

4.1

Introduction

The increasing drive towards quantitative technologieBimlogy has brought with it a

renewed interest in the modelling of biological systems. shewn in Chapter§]3]5,

and_T, models of biological systems and other complex phenarare generally nonlinear

with uncertain parameters, many of which are often unknowdiaa unmeasurable (Alon,

2007,

Edelstein-Keshet, 1¢

the quantitative but also the qualitative behaviour of soutdels

2003

88). Crucially, the values ef parameters dictate not only

(Brown and Se];tlna,

L Strogaiz, 1994). A fundamental task in quantitativé systems biology is to use

experimental data to infer parameter values that minimhgediscrepancy between the

behaviour of the model and experimental observations. Tdranpeters thus obtained

can then be cross-validated against unused data beforeognplthe fitted model as

a predictive tool [(Alon, 20

7).

Ideally, this process cotielp close the modelling-

experiment loop by: suggesting specific experimental nreasents; identifying relevant

parameters to be measured; or discriminating betweemattee models (Gutenkunst

et al,

The problem of parameter estimation and data fittin

minimisation of a cost function (ie the error) (Gersher

2007

7

f, 20

0; Yatesal

2007

)-

is wlabg posed as the

’f:

o]

). In the case of
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overdetermined linear systems with quadratic error fumstj this problem leads to least-
square solutions, convex optimisations that can be solffieteatly and globally based on

the singular value decomposition of the covariance mafrik@datal(Lawson and Hanson,

1995). However, data fitting in nonlinear systems with snaatlounts of data remains

difficult, as it usually leads to non-convex optimisationfwvgeveral local minima (Brewer
et al,2008).
A classic case in biological modelling is the descriptiontleé time evolution of

a system through ordinary differential equations (ODEsyally based on mechanistic
functional forms such as the ones introduced as examplehapt€rl B, the models of
activation cascades from Chapfér 5, and the models of sabrolatsure developed in
Chapte 7. Typically, optimal parameters of the nonline&@E3 must be inferred from
experimental time courses but the associated optimisasidar from straightforward.
Standard optimisation techniques that require an exptiogt function are unsuitable
for this problem due to the difficulty to obtain full analydicsolutions for nonlinear
ODEs ‘_B_I'_OMLD_a.D_d_S_elhl"l 2003; Chetnall, [2010; Papachristodoulou and Recht, 2007).
Spline-based methods, which approximate the solutionghan implicit integration of

the differential equation (Brewest al., [2008), require linearity in the parameters and are

therefore not applicable to models with nonlinear paramg¢pendencies, eg Michaelis-
Menten and Hill kinetics.
Implicit techniques, such as direct search methods (PM), Simulated Anneal-

ing (Kirkpatrick et all, 11983), Evolutionary Alqorithm4 (Mitch =Ih. 1997; Runamssand

Yao, ) or Sequential Monte Car i , 12007), do not require an explicit
cost function. However, if (as is usually the case) the casttion is a complicated
(hyper)surface in parameter space with many local minimaadi@nt and direct search
methods tend to get trapped in local minima due to their usacaf information. Although
still a local method, Simulated Annealing alleviates sorhthe problems related to local
minima through the use of stochasticity. However, its sas@mes at the cost of a high
computational overhead and slow convergence, withoutagiees of finding the global
minimum.

Instead of an optimisation based on local criteria, Evohdry Algorithms (EA)
produce an ensemble of possible answers and evolve thenallgldbrough random



49

v

mutation and cross-over followed by ranking and cullingha# worst solutions (Mitchell,

1997;|Runarsson and \aL)‘_Z) 0; Schwefel, 1995). This heuhas been shown to

provide an efficient protocol for parameter fitting in theelgciences (Molest all, [2003;

Zi and Klipp,2006). However, EA methods can be inefficienewlhhe feasible region

in parameter space is too large, a case typical of models laige uncertainty in the
parameters.

Probabilistic methods, such as Sequential Monte-CarIoQSi&issgnel_al, 2007),
propose a different conceptual framework. Rather thanrigtnduniqueoptimal parameter

set, SMC maps a prior probability distribution of the paréen® onto a posterior
constructed from samples with low errors until reaching aveoged posterior. Recently,
SMC has been combined with Approximate Bayesian Comput#A&8C) and applied to
data fitting and model selectioln_(l(mi_al_l, 2009). However, methods such as ABC-SMC
are not only computationally expensive but also requirestiagting prior to include the

true value of the parameters. This requirement dents its agpligato many biological
models, in which not even the order of magnitude of the patarsas known. In that
case, the support of the starting priors must be made ovare [(leading to extremely
slow convergence) in order to avoid the risk of excludingtthe parameter value from the
search space.

In this chapter, we present a novel optimisation algorittumdata fitting that takes
inspiration from EA, SMC and direct search optimisation. isTmethod iterates and
refines samples from a probability distribution of the pagters in a ‘squeeze-and-breathe’
sequence. At each iteration the probability distributisrsqueezed’ by the consecutive
application of local optimisation followed by ranking andllang of the local optima.
The parameter distribution is then allowed to ‘breathebtiyh a random update from
a historical prior that includes the union of all past suppaf the solutions (Fid_4l1).
This iteration proceeds until convergence of the distrdyubf solutions and their average
error. A key, distinctive feature of this algorithm is thealerated step-to-step convergence
through a combination of local optimisation and of cullifdaxal solutions. Importantly,
the method can also find parameters that lie outside of tlgeerafithe initial prior, and can
deal with parameter values across several orders of maignitu
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4.2 Algorithm

We now provide definitions and a full description of this aifum and give examples of
its applicability to different biological models of inteste

4.2.1 Formulation of the problem

Let X(¢) = [z1(t),...,xq(t)] denote the state of a system witlvariables at time. The
time evolution of the state is described by a system of (pbssonlinear) ODES:

X = f(X,t; 6). (4.1)

Here@ = [6,, ..., 0y] is the vector ofNV parameters of our model.
The experimental data set is formed hiyobservations of some of the variables of the
system:
D:{i(ti)u:l,...,M}, (4.2)

whereX( ;) corresponds to the real value of the system plus obseratiror. Ideally,
M > 2N + 1 since2N + 1 experiments are enough for unequivocal identification of an

ODE model withN parameters when no measurement error is present (S m@ 20

Thecost functiorto be minimised is the error of the model given the data:

(4.3)

-3 [xieso) - %)

where|||| is a relevant vector norm. A standard choice is the Eucligeam (or 2-norm)
which corresponds to the sum of squared errors:

@ 2
EZ (6 Z > (X(t:0) - K1) (4.4)
=1 j=1
where we assume thdtvariables are observed. The cost functign : RY — R, maps a
N-dimensional parameter vector onto its corresponding ghras quantifying how far the
data and the model predictions are for that particular patanset.
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The aim of the data fitting procedure is to find the parametetov@** that minimises

the error globally subject to restrictions dictated by thalypem of interest:

0" = Hbin Ep(0), subjectto constraints ah (4.5)

4.2.2 Definitions

Data set: D, a set ofM observations, as defined in EQ. (4.2).

Parameter set: 0 = [0;,...,0y] € Rﬁ. Due to the nature of the models
consideredd; > 0, Vi.

Objective function:Ep(8), the error function to be minimised given the dataBet
as defined in Eq[{41.4).

Set of local minima ofsp(0):
M = {0" | En(0") < En(6),V60 € N(67)},

whereN (6*) is a neighbourhood @*.

Global minimum oft'p(0): 6**, a parameter set such thiay (6**) < Ep(60), VO in
the feasible region. Clearlg,”* € M.

Local minimisation mappingL : RY — M. Local minimisation map@ onto a local
minimum: L(0) = 6* € M.

Ranking and culling of local minima{61}? = RCp ({6}{). This operation ranks
J parameter sets and selects th@arameter sets with the lowest valuers.

Joint probability distributions of the parameters at it k: 7 (0) (prior) and
wy(0) (posterior).

Marginal probability distribution of theé'* component 0: For instance,

m(6;) = /7r(0) [] 4.

r#i
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e Historical prior at iterationk: ¢;(8) = [, ¢(6;) where

Cr(0i) ~ U (min (3x(6;)) , max (3x(6:))) -

(4.6)

HereU (a, b) is a uniform distribution with support ifu, b] and3,(6;) = ¢, ', U,

is the union of the supports of(6;) and{;_1(6;).

e Update of the prior at iteratiork: 7 (0) = Hf\il 7(6;) with

T(0:) ~ Pk (0i) + (1 — pm)Ce(0:),

4.7)

that is, a convex mixture of the posterior and the historr@r with weightp,,,

from which a new population is sampled in iteration- 1.

e Re-population: Obtain a new population of random points simulated from the

prior m_1(0).

e Convergence criterion for the errorThe difference between the means of the

errors of the posteriors in consecutive iterations is sendlian the pre-determined

tolerance:

O = Eb(wk—l(e)) — Ep(wk(e)) < Tol.

(4.8)

e Convergence criterion for the empirical distributionshe samples of the posteriors

in consecutive iterations are indistinguishable at the Bfificance level according

to the nonparametric Mann-Whitney rank sum t

st (Mebdl

197+

1):

MW (wi(8), w1,_1(8)) = 0.

4.2.3 Description of the algorithm

(4.9)

Algorithm[4.1 presents the pseudo-code for the method ukagefinitions above. The

iterations produce progressively more refined distrimsiof the parameter vector. At each

iterationk, a population simulated from the prior distributiop ,(0) is locally minimised

followed by ranking and culling of the local minima to creatposterior distributions, (0)



53

N

Error function landscape

Data measurements

Model and problem setting
«a

350 =1 e BR,
300 .
EFE=38(R-—F
o BR-B),
R 200 1| P=BE—-c(t)—,
; 1+ P
150 u ; 6= [0 f]
100 l" “\ '-\ ‘: ’
sol w ¢ N NN . m0(0) ~ U(0,100) x U(0,100)
< . W ' 2
G ~
0 50 100 150 200 Ep(6)=)_ (R(ti; 0)— R(ti))
\ Time =1
Rank and cull

Local minimisation

300 200 100 0 0

150

T
C 3162
1000
3162 B o1
1000 316.2
316.2
100 100
31.6 . 50 100 150 200
«
25
20
—
@ 15
200 0 60 120 18 =
B 10
4 5
0 0
120 140 160 180 200 0.1 0.15 0.2 0.25,
a B

Convergence check

J

100 700 H
- Ep (m(8))  Ep (L(mu(6))
E 10 250 D 500
ﬁ 160 Ep i
300
63 | 4
o 100 | 1
0 Sample from prior  Local minima
° “Twea(a) [@r(@)] o] @kB) wr1(h)
Ck—l(a) 2 20
; aa® a®) 8 15
0.005 qk (a) r . 10
3 oy
ol ! 0 0 ul 0
0 50 100 150 200 O 50 100 0 50 100 150 200 0.1 1 10
K o 8 K (e 1] j
(F Best fit to R(t) )
50 50
350 I3 40 40
300 R(t;67) = Sequence &
= 30 q / 3 380
250 = of posteriors =
200 ' 8 B
R 10
150
0
100 100
]
50 - 250 10
0 L 1 5
0 50 100 150 200 ozt K 0 40517k
\_ Time




54

Figure 4.1 (preceding page) Steps of Algorithm[ 4]l exemplified through the BPM
model [4.10D).A: The problem is defined by the data set, the model and the feimotion

to be minimised. Note the rugged landscape of the error immadh the parameter plane
(e, B), with many local minimaB: In the first iteration, we simulaté points in parameter
space from the uniform initial prior,(0) (squares in plot, top and left histograms) which
are then minimised locally with a Nelder-Mead algorittirt@) (triangles in plot, bottom
and right histograms). The local optimisation aligns thepeeter sets onto the level curves
of Ep. C: The B best local minima (top, light stars) are selected and censdito be
samples from the posterior distribution (bottom, lighttbggams).D: Convergence of the
error of the samples (top plot on the riglit,lowest minima are the light stars) and of the
posterior distributions (bottom, lighter histograms) aheecked against the errors of the
sample (top plot on the left) and the priors (bottom, darkstograms) E: If convergence

is not achieved, the historical prior is updated (previoissanical prior in bold, updated
in light) and a new set off points are simulated from the posterior with probabijity
and from the historical prior with probability — p,, (squares in plot). This new sample
is fed back to the local minimisation stép). F: The algorithm stops when convergence
is reached (after nine iterations, in this case) providingptimal parameter séf and a
time course (top) and the sequence of optimised posteri@ach iteration (bottom).

Algorithm 4.1 Squeeze-and-Breathe optimisation.
Set running parameters of algorithm:
B,J €N, p, € 0,1], Tol
Choose initial priorsry (@) and(y(0).
SetHy = 0 andk < 1.
repeat
LetHr = Hi—1.
Simulate.J points fromr;_1(8) through re-population.
for ¢ =1— Jdo
Obtain local minimun®; = L(6,).
Store the pai{@;, Ep(6;)] in H,.
end for
Rank and cull the set of local minima:
Hi = RCp (Hk)
Define the posterioto, () from the samplé.
Update(y(0) from {;_1(0) andwy(0).
Update the prior:
T5(0) ~ Pm@k(6) + (1 — pm)Ci(6).
kE+—k+1.
until ¢ < Tol and MW (wy(0), wr—1(6)) =0

(squeeze step). This distribution is then combined with rsompassing historical prior
to generate the updated priog (@) (breathe step). The iteration loop terminates when
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the difference between the mean errors of consecutive nastdy,) is smaller than the
tolerance and the samples of the posteriors are indisshgbie. We now explain these
steps in detail aided by Fig. 4.1 and the BPM model (see[S&d)4.

1. Formulation of the optimisationl he data seéD and the model equations parametrised
by 6 allow us to define an error functiadfip (6) whose global minimum corresponds
to the best model.

In our illustrative example, the BPM model (4110) has theapsater vector
0 = [o, 5] and the error function is depicted in Fig. 4.1A. Typicallizetglobal
optimisation on a rugged landscape of a function like theoisiputationally hard.

2. Initialisation:

e Set the running parameters of the algorithm: the size of thaulated
population,/; the size of the surviving population after culling; the update
probability,p,,,; and the tolerancéd,ol.

In this example,] = 500, B = 50, p,, = 0.95 andTol = 10~°.

e Chooser,(8), the initial prior distribution of the parameter vector.
In this case, we taker and § to be independent and uniformly distributed:
mo(0) ~ U(0,100) x U(0,100).

e Initialise (,(0) = my(@), the historical prior of the parameters.

e SimulateJ points fromm,(0) to generate the initial samp{@o}{.

3. lteration (stepk): Repeated until termination criterion is satisfied. FiguiBB4E
shows the first iteration of our method applied to the BPM epiam

(a) Local minimisation: Apply local minimisation to the simulated parameters
from the ‘prior’ {§k_1}{ and map them onto local minima 6%,(0) to generate
{L(6p_1)}] € M.

Here we use the Nelder-Mead simplex method (Nelder and M@),
though others can be used. Figurd 4.1B shows the simulatetsiom ,(0)
(squares in plot) and its corresponding histograms (topleitd After local
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minimisation, this sample is mapped onto the dark trianglésg.[4.1B (dark
histograms bottom and right). Note how the local minimaraligth the level
curves of Ep with a markedly different distribution to the uniform priddote
also that many of the optimised valuesltie outside the range of the prior
(0,100) and are now distributed over the interyal 200). On the other hand,
the values ofs have collapsed insid@), 1).

(b) Ranking and culling:Rank theJ + B local minima from thek — 1 and &
iterations, select th& points with the lowesE, and cull (discard) the rest:

RCy ({L(B1)H VO] 1) = {O1}7"

We considel{é,i}’lB to be a sample from the optimised (‘posterior’) distribatio
w(6) and we denote the best parameter vector of this set as

6), = min (t6137).

The B = 50 best parameter sets are shown (light stars in plot) in[EHC 4.
(bottom histograms).

(c) Termination criterion:Check that the difference between the mean errors of the
consecutive optimised samples is smaller than the toleranc< Tol. We also
gauge the ‘convergence’ of the posteriors through the Matmithey (MW) test
to determine if the samples from consecutive posteriorsiistenguishable:

MW(1(8), =4(6)) = MW ({81} {81}7)

where MWV is a0-1 flag. The MW test gives additional information about the
change of the optimised posteriors from one iteration tantod.

Figure[4.1D shows the convergence check for the first itmmadf the BPM
model: (i) top, errors of the sampled prior (left) with esaf the local minima
(right) and theB surviving points (light stars); (ii) bottom, histograms of
the prior and the posterior. Clearly, in this iteration heitthe error nor the
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distributions have converged so the algorithm does not siagha new iteration
must be performed.

(d) Update of historical prior and generation of new samplé:convergence is
not achieved, update the historical prig@) as a uniform distribution over
the union of the supports of the existing historical priodahe calculated
posterior [4.6). Equivalently, the support of the histatiprior extends over
the union of the sequence of all historical prig¢s(0), . .., (x—1(0)} and of all
posteriors{w, (0), ..., w(0)}.

As shown in Fig[[411(e) for the BPM example, the marginal &f kistorical
prior for a is expanded td/ (0, 200), since the optimised parameter sets have
reached values as high as 200. Meanwhile, ghmarginal of the historical
prior remains unchanged &50, 100) because there has been no expansion of
the support.

The historical prior is used to mutate the updated prior igefloe next iteration
by constructing a weighted mixture of the posterior and tistohical prior
with weight p,,, as shown in[(4]7). We re-populate from this updated prior
by simulating from the posterior with probabiligy,, = 0.95 and from the
historical prior with probability(1 — p,,) to generate the new samplé;,}/
and iterate back.

Figure[4.1(e) shows the sample.6points simulated from the new prior. The
a-components of most points are between 100 and 200 ang-teenponents
are between 0.1 and 1.0, but there are a few that lie outsedsupport of the
posterior. The process in panels (b), (c), (d), and (e) of[&if is iterated for
this new population of points.

4. Output of the algorithmWhen the convergence criteria have been met, the iteration
stops at iteratiork* and the minimum of this last iteratiorﬁ,,i*, IS presented as
the optimal parameter set for the model (ie the estimatioth@fglobal minimum
0 provided by the algorithm). We can also examine the sequehoptimised
parameter distributiono, (0), . . ., - (0)} resulting from all iterations (Fi¢.4.1F)
to obtain more information about the convergence and bebawf the method.
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4.3 Application to biological examples

We apply our algorithm to four biological examples of int&reThe first three correspond
to simulated data from well-known models published in theréture, while in the third

example we apply our algorithm to unpublished experimedtth of the dynamical

response of an inducible genetic promoter constructed fioa@plication in Synthetic

Biology.

4.3.1 BPM model of gene-product regulation

The Bliss-Painter-Marr (BPM) model (Bligt al.,[1982) describes the behaviour of a gene-
enzyme-product control unit with a negative feedback loop:

(%

“1irp B
E=p3(R-E), (4.10)
P =p3E— c(t)HiP.

Here,R, £ andP are the concentrations (in arbitrary units) of mMRNA, enzyané product,
respectively. The degradation rate of the product has alicéxpne dependence, which in
this case has the form of a ramp saturation:

5402t 0<t< 50,
c(t) =
15 ¢>50.

The model represents a gene that codes for an enzyme whiomicdtalyses a product
that inhibits the transcription of the gene. This self-bition can lead to oscillations, which

have been shown to occur in the tryptophan operoB.inoli (Bliss et al., 11982). Other

systems with similar models and dynamics include calciugnaiing, the MAPK cascade

and immune responses (H'TJB_L_lg ; enko, 2000k gtal., [2007).

We construct a data set from simulations of this model ®jth = [«, 5] = [240,0.15]
and initial conditionsk(0) = E(0) = P(0) = 0. In this example, the data sBtconsists
of 10 measurements dk(¢) at particular times with added gaussian noise drawn from
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Min. Conv. Conwv.
k Error o e wr(a) () o
1 56.0941 193.7447 0.1304 - - -
2 28.2735 246.7510 0.1528 No No 133.9020
3 27.2083 248.7557 0.1532 No No 6.8542
4 26.9838 250.3593 0.1536 No No 0.6532
5 26.6504 251.7189 0.1538 No No 0.3281
6 26.6504 251.7189 0.1538 No No 0.1963
7 26.6504 251.7189 0.1538 Yes Yes 0.0118
8 26.6504 251.7189 0.1538 No No 0.0131

9 (k*) | 26.6504 251.7189 0.1538 Yes Yes1.414 x 1076

Table 4.1: Results of the fitting of the BPM model (4.10) witlgérithm[4.1: smallest
error of iterationk; the best values; and ;; whether the distributions have converged;
and the difference of the mean errors of the optimised paoipula

aN (0, 15%) distribution (given in TablEBI1). The error functidiy(0) (4.4) corresponds
to a non-convex optimisation landscapea complex rugged surface with many local
minima making global optimisation hard (Fig. 1.1A).

We use Algorithni 4]1 to estimate the ‘unknown’ parameteu@slfrom the ‘measure-
ments’ of R, as illustrated in Se¢._4.2.3 and Fig.14.1. Feigning ignoeaaf the true
values, we choose a uniform prior distribution with rarigel00] for both parameters:
mo(0) ~ [U(0,100),U(0,100)]. The rest of the running parameters of the algorithm are set
to: J = 500, B = 50, p,, = 0.95 andTol = 107°. Note that thetrue value of« falls
outside of the assumed range of our initial prior, while t#wege ofg in our initial prior is
two orders of magnitude larger thanits true value. Thislleffancertainty about parameter
values is typical in data fitting for biological models.

Figure[4.1 highlights a key aspect of our algorithm: the loagimisation can lead to
local minima outside of the range of the initial prior. Fuwetmore, our definition of the
historical prior ensures that successive iterations adrist solutions within the largest
hypercube of optimised solutions in parameter space. $rettample, the algorithm moves
away from th€/ (0, 100) prior for « and finds a distribution around 240 (the true value) after
three iterations, while in the case ©®fthe distribution collapses to values around 0.15 after

1] thank Markus Owen of the University of Nottingham for sugtjieg this example.



60

one iteration. Although the algorithm fin@s after 5 iterations, the algorithm is terminated
after 9 iterations, when the posterior distributions areilsir (according to the MW test)
and the mean errors have also converged (Table 4.1). Theatst parameters for this
noisy data set aré;. = [251.7189,0.1530]. In fact, the error of the estimated parameter
set is lower than that of the real parametets;(6*) = 26.65 < Ep(0,c.) = 28.26, due to
the noise introduced in the data. When a data set withouen®issed, the algorithm finds
the true value of the parameters to 9 significant digits (hows).

4.3.2 SIR epidemics model

Susceptible-Infected-Recovered (SIR) models are widedylun epidemiology to describe

the evolution of an infection in a populati M1992). In its simplest

form, the SIR model has three variables: the susceptiblailptpn S, the infected
population/ and the recovered populatidt

S=a—(yI+d)s,
I =S —v—dl, (4.11)

R =vl —dR.

The first equation describes the change in the susceptilplelgioon, growing with birth
rate« and decreasing by the rate of infectigphS and the rate of deatthS. The infected
population grows by the rate of infectioyY S and decreases by the rate of recovery
and the rate of deatth/. The recovered population grows by the rate of recovﬁrind

decreases by the death réte. Here we use the same form of the equation
2009).

The data generated from the model (4.11) (Tablé B.2) weraidxd directly from Toni
et al. (2009). Hence the original parameter values were not knowrstand further we

assumed the initial conditions also to be unknown and fitteditas parameters. We used
Algorithm[4.] to estimate, ~, v, andd and initial conditionsSy, I,, and Ry. The prior
marginal distributions for all parameters were set/8, 100). The other parameters were
set to: J = 1000, B = 50, p,, = 0.95 andTol = 1075. The algorithm converged
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Figure 4.2: Results of fitting SIR modél (4]111) to datA: Time courses of the SIR
model [4.11). Squares are simulated ‘data’ points (Tal® &1xd bold lines are the model
fit with the best parameters’ = 1.0726, v+ = 0.7964, d* = 0.4945, andv* = 0.9863 and
the best fit initial conditions; = 19.1591, I; = 10.3016, and R}, = 0.3861. Dashed lines
use the best fit parameters and the real initial conditiohs. fiinimum error isZp (6%) =
1.7297. B: Histogram of the values of the 50 best parameters and licibiaditions of
the model obtained after convergence at six iterati@sConvergence of the error of the
optimised samples at every iteration relative to the finadrer

after six iterations. Figure_4.2A shows the prediction af thodel [4.111) with the best
parameters estimated by our algorithm. The fit is good, \iiitle Idifference between the
curves obtained using the real initial conditions and thesagstimated by our method.
The posterior distributions after six iterations of theaalthm are shown on Fi§. 4.2B.

The errors obtained after each local minimisation in a desing) order on each iteration
are shown on a semilogarithmic scale in [Fig] 4.2C. We canrebs$mw the errors decrease
several orders of magnitude over the first three iterationiscanverge steadily during the
last three iterations unti}, < Tol.

4.3.3 Aninducible genetic switch from Synthetic Biology

The use of inducible genetic switches is widespread in ®fitthbiology and bio-
engineering as building blocks for more complicated gemeudi architectures. An
example is shown schematically in the inset of Fig] 4.3A.sTémvironment-responsive
switch is used to control the expression of a target gén@sually tagged with green
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Figure 4.3: Results of fitting genetic switch model(4.12§l&da. A: Inset An inducible
genetic switch consisting dP;, a negatively regulated environment-responsive promoter
The repressor Rpromoted byP regulatesP;. The switch is responsive to an exogenous
inducer/;, which binds to Rto relieve its repression of; and to turn on the transcription
of the downstream target gene, such agf@ The ribosome binding site (rbs) is used
to tune the translation efficiency of the downstream gePlet. Fluorescent response of
the switch withgfp-34 to different doses of IPTG (squares). Solution of EqIZ#using

the parameters obtained with AlgoritHim#.1 (solid line)d atationary solution (dashed
line). B: Time course of the fluorescent response of the switch gifh34 to several
doses of IPTG (circles) and time-dependent solutions of(Ed2) using the parameters
obtained with Algorithni 411 (solid lines). Similarly goodsfiwere obtained for responses
to /; = 0.0063, 0.0016, 0.0004, and 0.0 mM (not shown).

fluorescent protein ogfp) through the addition of an exogenous small moledyléeg
isopropyl thiogalactopyranoside or IPTG). The input-autpehaviour of this system can

be described by the following ordinary differential eqoatiAlon, 2007 Szallaset al,
2006):

. ke I
G=ak + —21
R Ty

Here, ak, is the basal activity of the promoté? anddG is the linear degradation term.

— dG. (4.12)

The second term is a Hill function that models the coopeegatianscription activation in
response to the inducéy with maximum expression rate, Michaelis constanfs; and
Hill coefficientn;.

The lacI-P,. switch has been characterised experimentally in respansidferent
doses of IPTG by Wang (2010); Warei al. (2011). Equation[{4.12) can be solved
explicitly and one can use nonlinear least squares and talgtenal solution to fit data
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Wang (2010) Algorithm[4.]
Parameter gfp-30 gfp-34 gfp-30 ofp-34
at 0.0012 £ 0.027 1.4720 x 1072 | 0.0043 0.0024
k;f N/A N/A 76.1354 63.6650
ni[ 1.3700 £ 0.270 1.3690 4+ 0.021 | 1.4832 1.3879
Kf 0.2280 + 0.039 0.2590 +0.021 | 0.2467 0.2641
dt N/A N/A 0.0069 0.0052
ity dt 9456 + 487 7648 + 152 | 10983.34 12163.04

Table 4.2: Parameter values obtained frgip-30 andgfp-34 data. |ndﬂw), only
the steady state solution was used. Hence only the raip @afidd can be estimated.

at stationarity (ie at long times) and estimate:;, K, and the ratid:; /d. These estimates
have been obtained assuming equilibriugh=£ 0) and initial condition(0) = 0 by Wang
etal.(2011) (Tablé4R2).

In fact, the experiments measured time series of the expressG every 20 minutes

from ¢t = 140 to 360 min. for different doses of inducer
I, =0.0,39% 1074 1.6 x 1073,6.3 x 1073,2.5 x 1072,0.1,0.4, 1.6, 6.4, 12.8 mM,

with two different reportersgfp-30 andgfp-34, Tables B} and B.5). Instead of assuming
equilibrium and using only the data for- 300 min as done previously (Wared all,12011),
we apply Algorithn{4.1l to all the data with the full dynamiegjuation[(4.12) to estimate
0 = [a, ki, ny, K1, d]. In this case, we used initial priot§(0, 1) for o« andny; andU (0, 20)
for k1, K1 andd. The other parameters were set tb= 1000, B = 50, p,, = 0.95, and
Tol =107°.

The algorithm converged after five iterations to the paramedlues in Table412. The

parameter estimates provide good fits to both the time cefFs$g.[4.3B) and to the dose
response data (Fig-4.3A). The valuegdfandn! obtained here are similar those obtained

in (Wang, 2010) by using only stationary data; this is reasglsince these parameters are

related to the dose threshold to half maximal response ath@ tsteepness of the sigmoidal
response, both static properties. On the other hand, thevalf« and the ratid; /d differ

to some extent due to the (imperfect) assumption (Wang,)20:0 steady state had been
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reached at = 300 min. As Fig.[4.BB shows(7 is not at steady state then. Hence the
parameter values obtained with our method should give a fiadidul representation of
the true dynamical response of the switch.

4.3.4 Three-node Repressilator

We test our algorithm with a circuit of genetic regulatorsjolwn as the repressila-

tor (Elowitz and Leibler| 2000), which consists of an ungdiional ring of genetic

repressors. In one of its simplest forms the system of OD&sbscribes the dynamics of
the circuit are:

dmy n «
— =q —m
dt 0 14 ph b
d
% = B(my — p1),
dmes «
— _ 413
1 Qg + T+ ma, ( )
dpy
a —5(m2 PZ)a
dm3 4 X
— =q -m
dt TR 5
d
% = 5(7713 —p3)-

The variablesn; andp; represent the concentrations of mMRNA and protein from gene
The equations fom, ms, andmg display a basal level of transcription which is obstructed
(by means of a Hill-function) by proteins, p,, p», respectively and have linear decay. The
equations fop; show that translation is proportional to the amount of mMRMA also have
linear decay.

The dynamics of mode[(4.13) are capable of attaining ststiglady states, long lived

oscillatory transients, and stable oscillatiohs (Elovatrd Leibler, 2000; Strelkowa and

Barahona, 2011). The parameters of the médel [« o, n, 3] are the rates of translation,

the Hill-coefficient of the repressor, and the protein tlaisn and decay rate. We use data

taken from |((Toni and Stu 2010) consisting of measurdgsefim;, m,, andms at

several time points with added gaussian noise from sinorlatusing parameterg) = 1,
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Figure 4.4(preceding page)Results of fitting repressilator modél (4113) to datA:
Scatterplot projections of the 100 best parameter sets edieh iteration. Blue markers
show minima from early iterations, red markers; from laterdtions. B: The lowest
errors attained after each iteration of the algorithm (omgatithmic scale, normalised
by Ep(6%)). C: Posterior distribution of the parameters at the end otien 20.D: Time-
course of mode[(4.13) using paramet@tgbold lines, see text) along with the noisy data
from TabldB.3.

n = 2, = 5, anda = 1000, starting from initial conditionsn;(0) = 0, p;(0) = 2,
mo(0) = 0, p2(0) = 1, m3(0) = 0, andps(0) = 3 (Table[B.3).

To find the value of the parameters using Algorithm 4.1 wetseptrior distribution of
all the parameters to bé(0, 500) (note that the prior does not include the valuexadnd
contains values much larger than the other parametersiakads), and running parameters
J = 1000, B = 50, p,, = 0.95, andTol = 10~2. Figure[Z.%#A shows all the local minima
obtained by our method in different iterations projected two-parameter scatterplots (the
100 best points of each iteration). As in the BPM example|dabal minima align with the
landscape of the error function. In the early iterationsalgerithm explores regions of the
parameter space several orders of magnitude across befargirig on a specific region.
Figurel4.4B shows the errors of the local minima found afsmheteration. After the first
two iterations there was not a significant reduction of thereruntil iteration three the
algorithm was able to find regions in the parameter spacelaitbr errors. The method
found a second “plateau” of the error until iteration 13,rthiee error decreased steadily
until convergence at the end of iteration 20. The minimurorewas Ep(6%) = 484.53,
where of = 0.9959, n! = 1.9703, % = 4.7840, ando’ = 1,043.90. Note that
Ep(Orea1) = 500.59, again an artifact of the noise in the data. Figures$ 4.4C[adD 4
show the final distribution of the parameters and the timers® of the solution with the
data. This example illustrates an important aspect of pat@anfitting tasks; the algorithm
may remain trapped in regions of the parameter space foraaterations, emphasising
the need for careful consideration of the choice of prioi amning parameters.
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4.4 Discussion

We have presented an optimisation algorithm in this chabg&brings together ingredients
from Evolutionary Algorithms, local optimisation and Seqtal Monte Carlo. The
method is particularly useful for determining parametdrsrdinary differential equation
models from data; however, this approach can also be usetha@r oontexts where an
optimisation problem has to be solved on complex landscapesvhen the objective
function cannot be written explicitly. The algorithm precks by generating a population
of solutions through Monte Carlo sampling from a prior digition and refining those
solutions through a combination of local optimisation amdlieg. A new prior is then
created as a mixture of a historical prior (which records lih@adest possible range of
solutions found) and the distribution of the optimised dapian. This iterative process
induces a strong concentration of the Monte Carlo samphingugh local optimisation
which accelerates convergence and increases preciside,atvthe same time the presence
of the historical prior allows the possibility that solut®can be found outside of the initial
presumed ranges for the parameter values.

The application of the algorithm to ODE models of biologicaterest has been
illustrated and found to perform efficiently. Chagdiér 7 skdhat the algorithm also works
well when applied to a larger problem with tens of parameiteithe model of stomatal
closure. The efficiency of the algorithm hinges on selecimgropriate running parameters
and priors. For instance, the number of samples from the grshould be large enough
to allow for significant sampling of the parameter space &bihall enough to limit the
computational cost. We find that simulating= 350 — 500 points in models of up to 10
parameters and keeping the best 15% of the local minima teadsmination within fewer
than 20 iterations. In the implementations in this thegis, Nlelder-Mead minimisation
is capped at 300 evaluations. These guidelines would resujt to 300,000 evaluations
of the objective function per iteration. Therefore the noetlkan become computationally
costly if the objective function is expensive to evaluatgirestiff models that are difficult
to solve numerically. In essence, this algorithm propodesde-off: fewer but more costly
iterations. It is important to remark that, as with any otbptimisation heuristic for non-
convex problems, there are no strict guarantees of corveeg® the global minimum.
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Therefore, it is always advisable to run the method withedéht starting points and
different settings with enough sampling points in paramgpace to check for consistency
of the solutions obtained.

The generation of iterative samples of the parameters direspsration from Monte
Carlo methods (Sissogt al., 200'7;lan_and_SlumLok_2910' Toat all,12009) but without
pursuing the strict guarantees that the nested structufeeddistributions in ABC-SMC

provides. This evolutionary approach adopts a highly fedddonte Carlo sampling driven
by a sharp local search with culling. Hence this iterativecedure generates samples
that only reflect properties of the set of local minima (up tonerical cutoffs) without

any focus on the global convergence of the distributionsnéted by Toniet al. (2009),

the distributions of the parameters (both their sequencetlaa final distributions) give
information about the sensitivity of the parameters: patams with narrow support will
be more sensitive than those with wider support. Future Idpugents of the method
will focus on establishing a suitable theoretical framewivat facilitates its use in model
selection. Broadening the choice of historical priors mayabway of establishing such
framework. Currently, no assumptions about the parampteresare made, hence uniform
distributions over the support of all the posteriors aralustwever, other distributions (eg
exponential or log-normal) may be considered as a way tothehistorical prior towards
regions of particular interest. Other work will considee thossibility of incorporating a
stochastic ranking strategy in the selection of soluti@nsjlar to the one present in the

~

SRES algorithm[(Runarsson and lYao, 2000), in order to solmergeneral constrained

optimisation problems with complex feasible regions.
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Chapter 5

Models of linear activation cascades:
properties and applications

5.1 Introduction

Activation cascades are frequently found in biologicahsigransduction systems (Hein-

rich et al, 2002;| Markset all, 2009). Perhaps one of the best studied examples is the

mitogen-activated protein kinag®lAPK) cascade, which plays a central role in important
cellular functions such as reqgulation of the cell cycleessiresponses and apoptosis (Marks

et al, 12009). In general, activation cascades are formed by & senagponents (typically

proteins) that become sequentially active in response &xtarnal signal (Fid. 511). The
role of cascades is to relay, amplify, dampen or modulateadsgin order to achieve a
variety of cellular responses. Activation cascades, palgrly the MAPK cascade, have
been the subject of numerous studies, experimental andetitsd (Chang and Katrin,
2001; Chave®t all, 12004; Felitet all, 12011; Heinrichet all, [2002;| Huang and Ferrell,
1996; Kholodenka, 2000; Tysaat all,12003; Zhang and Kles<"b_2£ 01).

In this chapter, we study ODE models of linear cascades atailhodnalytical solutions

in terms of the lower incomplete gamma function for the cabeminactivation rates are
identical and as well as the case when a single protein hdfeegedit inactivation rate than
the rest. We discuss how these results may be used in pardittigtg and model reduction
as an alternative to delay differential equations. Thelte$tom this chapter are used to
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Figure 5.1: A cascade of length The nodes in the cascade can either be in an inactive
statex?, or activex; . An external signalR(t¢) activates the first node. Once a node is
active, it can activate the next node, and so on until the €hd.activation rates axe, and

the inactivation rates of each are3;. Image adapted from Heinrict all (2002).

construct a model of stomatal closure in Chapter 7.

5.2 Linear cascades and their gamma function representatio

Consider a cascade of lengilsubject to an external signﬁl(t). Upon perception oﬁz(t),
the first inactive componentf) is transformed into its active state, ) which then activates
the next inactive componenty). Sequential activation of; by z;_; continues until the
end of the cascade. The output of the cascade is the activediihe last proteing,,. In
the case of the MAPK cascade, the components are proteirth@adtivation corresponds
to a post-translational modification, ie phosphorylatibiy(5.1). However, the formalism
below can also be used to describe other sequential biochepriocesses with similar

functional relationships, for examptestep DNA unwinding/(Luci [,,12003).

We consider mass-action reactions (without an intermediatplex) for the activation
of the proteins. For the activation of we have

R+x’{—>x1+}%,
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and forz; wherei = 2, ..., n the reaction is
x Q5
Tio1+x; — Ti— + T
We assume that all proteins deactivate spontaneously atstacu rate:
T; — T

e

The ODE model of the reactions above describing the timeutteml of the activation

cascade is then (Heinriat all, [2002):

dx -

d—tl = R(t)(Tl — 1’1) — 61.’171,

dx R

d—t2 = dox1 (T2 — x2) — Powa, (5.1)
dz,, .

E - anxn—l(Tn - xn) - anna

where(T; — z;) = x} is the inactive form ofr; when the total amount of each component
is given byT; = z; + 2. We assume resting initial conditions @#g0) = 0, for all 7) and

that 7; remains constant (ie no protein production). As shown bynHigh et all (2002),
wheneverl; > x; we havel; — r; ~ T; (the so-calledveakly-activatedtase) and we can

re-write the systeni(5.1) as

dx

d—tl - R(t) — Py,

dx

= 02t — Para, (5.2)
dz,,

E = OpTp—1 — anna

whereR(t) = R(t)T; ande; = ;7.
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The system of equations (5.2) is linear and can be writtereator form:

%X = Ax + R(t)ey, (5.3)
wherex = [zy,...,,]T, then x n rate matrixA is:
_ s -
A=| @ _52 ) , (5.4)
_ By |
ande; = [1,0,...,0]7 is the firstn x 1 vector of the canonical basis. In general, we ¢se

to denote the-th canonical vector.
When a cascade receives an integrable infut), the Laplace transform (Ap-
pendiX'C.1.1) of the first protein is:

Oz(l)g(R)

Z = :
=15 +9)
In general, the transform for theth protein is

oL (R)
[T (Bi+s)

anda,) is the geometric mean of the activation rates

L(an) = (5.5)

1/n
Q) = (H a]> . (5.6)

Note that if 3; # S, for all 4, k then

H s+ Pu)”
i—1

3
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where

we can express equatidn (b.5) as

n n i L(R
L =3 a(n)i(+)5- ( ). 5.7)

i=1

Using the linearity of the inverse of the Laplace transfomd &s convolution properties
we have that the output of the cascade is

wa(t) = afyy > By(Rx e P (1), (5.8)
=1
where . .
RxePt)= [ e PUIR(r)dr = | e #R(t — 7)dr. 5.9
(R e5)(1) / <T>r/0e (t - 7)dr (5.9)

Example 5.2.1.Consider a cascade of lengthwith a constant stimuluf(t) = ay,
t > 0, then the output of the last protein in the cascade is giveth&ygum of exponential

functions:

za(t) = afy, Z ﬁgi) [1- e—ﬁit} :
i=1

5.2.1 Optimal cascades

Cells operate with limited resources and they must use tlfigcreatly. Activation cascades
as part of the cell-signalling machinery should operate @mnemically as possible,

minimising use of valuable resources such as ATP or amirdsa&tecently, Chavest al

2004) showed that activation cascades in the weakly detive@gime (whose dynamics are
described by equation (5.3)) are optimal for a given gaia¢l@eve maximal amplification)
when all the deactivation rates of the proteins are equatl@dumber of proteins is finite.
The gain of a linear cascade is defined as the supremum ofieq\{&i7):

1@2...an

Gp= 720
I BB
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0 2 4 6 8 10

Figure 5.2: Time-course of the leaky integratarg (;(¢)) of cascades of lengths 1 to 5
with fixed gain (Examplé5.212). The optimal length of theczate is 3 (dashed red-line),
whose maximum value is 1.0779 (indicated by the horizordaahed line).

wherel is the degradation of a proteim,(, ;) introduced in the equations at the bottom of
the cascade with activation rate equal to 1 (ie a leaky-mateg). As mentioned, given a
fixed value ofG,,, the cascade provides optimal amplification wigr- 3 for all i (Chaves

et al, [2004). This result means that arbitrarily long cascadesat useful for cells that

require particular gains from external signals. Furtheenmthe degradation of the proteins

1/n
B: &2-~-an
SR

and the rate-matrix in equation (5.3) becomes

is

_ 5 _
ay —f3

>
I

(5.10)

Op _6

Example 5.2.2.LetG,, = 7, R(t) = 5te~**, anda; = 1.2. We examine the time-course of
x,11(t) (the leaky integrator) in cascades of lengtk= 1,... 5, shown in Fig[5.R. The
optimal cascade for the prescribétl has lengthm = 3 (red-dashed line), which means
thatS = 0.6273. Longer or shorter cascades exhibit suboptimal amplibeati
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Below we consider three cases where the input of the casaude of particular

importance in the modelling process.

Constant stimulus

In an experimental setting, one often wants to study theoresp of a biological system
to a constant stimulus such as constant temperature, lightatment. In these cases we
express the stimulus as:

R(t)=a; €R, t>0.

Then the solution to equation (5.3) with initial conditi®f0) = 0 is:
x(t) = A7 [e" =L, ] ey, (5.11)
wherel,, is then x n identity matrix, ande’*; the matrix exponential. If the cascade is

optimal (ieA = A), the Laplace transform of the last proteinin{5.5) becomes

)

) e

whose inverse transform is (see Apperidix G.1.3 for detaitgculations):

2a(t) = (%)HP(TL, B1), (5.12)

where P(n, 8t) is the normalised lower incomplete gamma function (defime@qua-

tion (C.4)).

Exponentially decreasing stimulus

When the first protein in the cascade is subject to an expi@tigrdecaying stimulus (eg
when the signal is a reactive molecule or it becomes metsdmlor the receptors become
desensitised)

R(t) = aze™,



76

then the solution to equatiopn (5.3) with initial conditie() = 0 is
x(t) = ay [¢ — e ML A7 L, + AA ] ey (5.13)

If we assume again tha = A, then

Y(n)

(s+N)(s+p)"

L(wn) =
and the output of the system is given by:

(%Y e MP(n,(B—Nt) if B#N
e (5.14)
()" e T Y

1
T'(n+1)

where o, is defined in[(56) and'(n + 1) is the gamma function. As for the case
of constant stimulus, the solution is also given in termshef lbwer incomplete gamma
function (see Appendix C.1.4 for calculations).

Sinusoidal stimulus

In certain experimental settings one is interested in stupihe response of a system to a
periodic stimulus, for example in models of circadian rimgth or periodic stimuli such as

day/night cycles (Locket al., [200%). For that purpose we consider a cascade of length

with a periodic input
R(t) = a;y (1 + sin (wt)),

that oscillates between 0 and with frequencyw > 0. From resting initial conditions (ie

x(0) = 0), the solution to equation (8.3) is:

x(t) = a, V! [(etA — In) Vv — (sin (wt)I,, + w cos (wt)A_l) + wA_letA} Ale,,
(5.15)
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whereV = (I, + w?A~2). WhenA = A we can obtain the explicit solution for theth
protein in the cascade (see Appendix d.1.5 for calcula}ions

x,(t) = (%)" P(n, Bt) + (@)n [sin (wt —nh) — et i t:;—ﬁk cos ((n + k)0)

wherer = (8% 4+ w?)'/2, andg = arctan (2). This solution consists of the normalised
lower-incomplete gamma function added to a function thiédaa similar shape to the
incomplete gamma function with cosines as coefficients exgblynomials. Note that

cos((n+ k)0) = T, x(cos(0)) is the(n + k)th Chebyshev polynomial evaluatedcat ().

For larget, =, (t) converges to

Falt) = (%)n [1 + (g)nsm (wt — n@)} , (5.16)

the behaviour in the long term of,(t). The term(£)" in equation [(5.16) is useful to
characterise the response based on the frequency of thelssinand could also be used
to establish bounds on the response of a cascade to noidy injih variance related 0

(notethat5/r <1 = &,(t) > 0 Vt).

5.3 Perturbation of a single inactivation rate

We now examine how the output of a weakly-activated (lineasfivation cascade is
modified when a single protein in the cascade has a differanttivation rate. For

instance, Chavest al. (2004) considered a cascade with an auxiliary protein witkreént

inactivation rate (ie the leaky integratoy, ; described in the previous section) at the end of
the cascade. We study the effect of such a ‘perturbationhamdthe effect depends on the
position of the component in the cascade. Consider a casdéadgroteins with activation
ratesa; and inactivation rateg; = 3, Vj # ¢, andg; = 3 + ¢ for a given node. We can
see from the Laplace transform of(¢) in equation[(5.5) that the position of the protein
with degradatiorp; in the cascade does not affect the final output of the cascade.
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We can also examine the rate matrix of the system (5.3) whithis case becomes
A=A—ceel =H,, (5.17)

whereA is given in equatiori{5.10) ang is thei-th vector of the canonical basist.
The Jordan decomposition 8f; is

H, = QJQ; ", (5.18)

wherelJ is the Jordan normal form

—(B+¢)

J= B - : (5.19)

andQ; is the matrix with generalised eigenvectors as columns.

Interestingly, a property of this Jordan decompositionhiat tboothJ and the vector
Q; ‘e, are independent of the location of the perturbatioAs shown in ExamplEC.2.1,
this follows from the following fact: consider< h (without loss of generality), then rows
1to:i — 1 andh ton of Q; andQ,, are identical, ie (in Matlab notatio®);(1: i — 1, :) =
Qu(l:i—1, :)andQ;(h:n, :) =Qu(h:n, :). (proofin Appendix CR.)

5.3.1 Constant stimulus
The constant stimulus solutidn (5111) for the perturbe@ ¢As= Hj) is
x(t) = o H; ' [e" — L] €1 = 0y QI " [¢Y — 1,] Q; ey, (5.20)

which follows from [5.18). For two cascades with modified@ecates at andh (i < h),
we know from [5.5) that in each casg(t) is exactly the same. Furthermore, the properties
of J andQ; stated above imply that the vectdr! [e“ — In] Q; e, is independent of the



79

position of the perturbation, Hence the entries of(¢) are determined only by the matrix
Q;. In both perturbed cascades we h&@gh : n,:) = Qu(h : n,:), meaning that the
solution for the lasti — h + 1 proteins is the same in both cascades. (Similarly; thel

first components of the solutiol_(5]20) are identical, bat th obvious).

Example 5.3.1.Consider two cascades of length = 6 with constant stimulus and
activation ratesy; = --- = a5 = 3 and degradation raté = 2 for all proteins except
for a perturbatiorr = 0.5 on the third and fifth proteins of each cascade, respectivély

corresponding rate matrices are:

The Jordan form for both cascades is:

—2.5
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and the corresponding generalised eigenvector matriees ar

0 0 0 0
0 0 0 0
36 0 0 0
Qs =
—216 0 0 54
1296 0 162 324
—7776 486 —972 1944
0 0 0 0
0 0 0 0
0 0 0 9
Qs =
0 0 27 0
1296 0 162 324
—7776 486 —972 1944

0 1
3 0
18 —36
—108 216
648 —1296
—3888 7776
0 1
3 0
0 0
0 0
648 —1296
—3888 7776

, (5.21)

(5.22)

As explained above, rows 1-2 and 5-6@f andQ; (in bold) are the same. In addition,

Q;ler=Q;le; =[100001]".

Since the rows of 0f)3; and Q5 are the same below the second perturbation, then the
values ofz;(t) andxg(t) are equal in both cascades. Figurd 5.3 shows the time cofurse o

the proteins in both cascades;(t), x5(t), z5(t), andxs(t) (solid lines) are the same in

both cascades, while;(t) andz,(t), the proteins “sandwiched” between the perturbations

(dashed lines), are not. We discuss an application of teidtran Sectioi 5.4]2.
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Figure 5.3: Time course solutions of tweperturbed cascades from Example 5.3AL.
Cascade with a perturbation in the degradation of the thiodem. B: Cascade with a
perturbation in the fifth protein. The activity of the prateiof both cascades is the same
for nodes above and below the perturbations (continuoas)jibut is different in the nodes
between the perturbations (dashed lines).

5.3.2 Exponentially decreasing stimulus

Just as in the previous section, the solutiobn (6.13) for tk@oeential stimulus in the
perturbed caseX = H;) can be rewritten as:

x(t) = Qi [¢” — e ML I L+ A7 T Q) ey, (5.23)
and, again, the same argument follows to conclude that the la » + 1 components of
the solution[(5.213) are the same for two cascades modifiedsitignsi andh (h > 7).

Example 5.3.2.Consider the same cascades as in Example]5.3.1 Rth= a;e~
and A = 1. Figure[5.4 shows the time behaviour of the proteins in the ¢ascades.
As in the previous example, the proteins above and beloweherations are unchanged.

5.4 Applications

5.4.1 Model simplification and parameter fitting

The expressions for the output of the cascagde) in terms of incomplete gamma functions
can be useful to fit activation data to a reduced number ofnpaters. Rather than
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Figure 5.4: Time course solutions of tweperturbed cascades with decaying stimulus
from Example5.3]12.A: Cascade with a perturbation in the third proteiB: Cascade
with a perturbation in the fifth protein. On the right of eadbtpthe label of each protein
is placed at the level where its solution peaks. The actvityhe proteins is the same
for nodes above and below the perturbations (continuoes)jrbut different in the nodes
between the perturbations (dashed lines).

fitting the observed output of the cascadeite- 2 parameters for an entire module with
n components, the approximate expression with the lowernmptete gamma function
contains at most four parameters;,, 3, n (and in the case of exponential decay, In
this approach, (shown graphically in Fig.15.5A) the lengthhe cascade is turned into
a fitting parameter, similarly to what is done with Hill coefénts. Indeed, the fitted value
does not need to be an integer because the lower incompletmadunctionP(n, t) is

defined for any positive real number in its first argument @kbowitz and Stegun, 1964).

Example 5.4.1.Consider two cascades of length= 5 with parametersy; = 3, a; = 4
fori =2,...,5(s0q, = 3.776), and3 = 3. One cascade is subject to a constant stimulus
R(t) = a; and the other to an exponentially decaying inf(t) = ae~ with A = 1.

After solving numerically the ODE models of the linear cate$5.3) for both inputs
(dashed lines in Fig. 5.5B), we sample the outpy(t) at timest = {0, 1,...,10} and we
add random noise from a distributidvi(0, 0.05?) to generate our ‘observed data’ (squares
in Fig.[5.5B).

We fit the gamma function expressiohs (5.12) and (5.14) t&dd@’ using the method
introduced in Chaptdrl4 (Appendix_C.4). The bold lines in.lB@B show the fits to
both cascade output data. The fits to the noisy data are gabdhanestimated values
are close to the ‘true’ ones: in the case of the constant sisrzascade, the fitted values
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Linear n-cascade, : Expression with P(n, 8t), .

up to n + 2 parameters |  up to 4 parameters : 3t v =
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Figure 5.5:A: Schematic of a signal transduction model with a cascadeera linear
cascade of arbitrary length, the red node at the top is timeukis, and green nodes
are the components of the cascade. The last node of the easeadmits the signal
to downstream components of the pathway. The model of theadashas up ta + 2
parametersoy, ..., oy, 3, and if the stimulus decays, Then the cascade is condensed
into an expression with an incomplete gamma function thadls¢he exact same signal as
the cascade in the left panel directly to the rest of the nd&twdhe new expression has
parameters,), 5, n, and if the stimulus decays, B: Examples of the time-course of two
cascades with constant (top) and exponentially decayingukis (bottom). The dashed
lines indicate the solutions to the corresponding systen@IEs, squares are noisy data
generated from the models, and bold lines are fits to the daitg the incomplete gamma
function expressions (see Example 5.4.1).
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area(, =~ 4.068, 3 ~ 3.281, andn ~ 5.418; in the case of the exponentially decaying
stimulus, the estimated values arg) ~ 3.317, 8 ~ 2.177,n ~ 4.6, and\ ~ 2.177.

5.4.2 Cascade equation reordering

The results presented in Sec.]5.2 5.3 allow us to reslegfiiations of cascade models
where perturbations are known to occur. In particular, tipgagions of all proteins with
the same inactivation rates can be grouped together upsirethe cascade so that they
can be replaced with the incomplete gamma function expressgihile the equations of the
perturbed proteins are placed downstream and take the gé&umctaon as an input.

This process of reordering the cascade, which is schertigtiepresented in Fid. 5l 6A,
can be used to reduce the ODE model for the cascade with@uingltthe dynamics or
the timescales. Suppose we havesgperturbed cascade aof + 1 proteins that we have
reordered so that the firstproteins have inactivation rateand the(n + 1)-th protein has
rates + ¢.

Constant input

Consider first a constant inpit(t) = «;. Using [5.12), we write the dynamics of the
output of the cascade as

dz,, )\
e (%) P(n, Bt) — (B + &), (5.24)

or, more conveniently, its Laplace transform:

A(n)

L) = G B A1 e

This equation can be solved analytically (Eee C.3.1):

o (o) o (B e = (€T = (=B) ) (B
xnﬂ(t)—ﬁ:g( ! ) (1_6 . [(?) c +; e D
(5.25)

where we have taken the initial conditief,(0) = 0.
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Figure 5.6: Example of cascade reordering and substitutidn A linear e-perturbed
cascade model of length 4, the input (red node) can eitherobstant or decaying.
Green circle nodes are proteins whose inactivation raeslaf, the blue star node has
inactivation rates + <. Downstream of the cascade lie other components of the $iggal
pathway. Reordering of the equations: the protein with gréysbed inactivation has been
moved the bottom of the cascade. Both this cascade and thenathe left have the same
output. The first three equations in the reordered cascadsudsstituted for an incomplete
gamma function.B: Numerical example of cascade reordering. Top: the equatidhe
perturbed protein is placed at the bottom of the cascadadiftteecourse of the untouched
cascade is shown in Fig. 5.4A). Bottom: the solution to thelub® of unperturbed proteins
is given by equation[{5.14); the solution of the perturbedtgin at the bottom of the

cascade is given by equatidn (5.29) (Exaniple 5.4.2).
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Exponentially decaying input

Consider an exponentially decaying inpt) = a;e . If 3 # )\ the ODE for the
(n + 1)-th protein is

dz, 2\ t
o (U0) PN - (4 r. (620

Wheng = X\ we have:

dz, amt)”
dtH = an—i—l% e — (B+)tnia- (5.27)
In both cases the Laplace transformugf ; (¢) is
_ V)
L (wni1) = (5.28)

(s+AN)(s+8)" s+ B+¢e)

When the initial condition is;,, ;1 (0) = 0, the analytical solution for equatidn (5126) is (see
C.32):

n —(B+e)t
(7% Q(p _ e
l‘n+1(t) +1 ( (n) ) |:6 At + _

T B—A+e\f-A e
n—1 n—=k n—k kik
e TP =B)"R) (BN
—e "y o : (5.29)
k=0
When\ = /3 the solution is
a(n+1) ntl —pBt n - (_1)ktnik n+1_—et
= (——= - -1 i .
anrl(t) ( c ) e € — 5k(n . k’)' + ( ) € (5 30)

Example 5.4.2.Consider the: = 6 cascade from Example 5.8.2, where the degradation
rate of the third protein is-perturbed (time-course shown in Fig.15.3A). The equations
of the system can be reordered without affecting its finapouso that the equation of
the perturbed protein is at the bottom of the cascade [E&B,%0p). The output of the
first 5 equations in the reordered cascade is then given bytbenplete gamma function
expression[(5.14) and the analytical solution of the pbedrprotein (which is now the
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output of the cascade) is given by Eq. (5.29) (Eigl 5.6B,drojt

5.4.3 Delay differential equation models for activatioscades

Experimental observations in signalling cascades areajlgiconcerned with the effect
of the cascade on the output characterised in terms of théifemapon, distortion and
delay introduced in the output downstream. Within the fraod of ODE models,
the interactions between the variables occur instantahgoudence, if the response to
a stimulus occurs with delay, one must incorporate furtikermediate variables that
were not considered in the original ODE model, correspandinunmeasured, hidden
processes that take time to compIe_Le_(_S_mr_laﬂ, 2007). This process can lead to large
models with many unobservable variables and large numblepamameters or to the

introduction of abstract variables to model unknown preesgshat may contribute to the

observed delays (Bar-@t all,'2000] Hoferet all,i2002). Alternatively, modellers often use

delay differential equations (DDES) to account for the lagween an event and its effect
parsimoniouslyl(Bernardt al., [2006; Colijn and Mackey, 2005; MOM 03). In a DDE,
the activity of a variable depends on the state of the systetimei past:

dx
E = f(X(t - T))v

where the parameter > 0 is the delay. Linear systems of delay differential equation
can be solved analytically using infinite series involvihg t.ambert function (Bellman

et al, 11963;l Yi and Ulsay, 2006), but such solutions are often supcal to use. Our
results indicate that simple delays can be modelled witkgliractivation cascades leading
to concise ODE descriptions in terms of the lower incompdet@ma function and without
relying on DDEs, as shown in Fig. 5.7A.

Example 5.4.3.Consider a system with a delay, which we model with the follapinear
DDE:

dp
% - &_Bplu

dp o A

P2 Ayt — 1) — B (5.31)
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Figure 5.7:A: Example of the use of linear activation cascades to remlatzgy differential
equations. A signal node (red node) activates a node in alsiggnpathway. The bottom

node responds with a delay The delay in the equation is removed and substituted with
a linear cascade of length The entire cascade is replaced by a lower incomplete gamma

function.B: Top: The dashed line is the solution to the DDE (5.31) frorai@pld5.4.8, the
squares are points taken from the solution with added rantmse. The continuous line
is the approximation using a lower incomplete gamma functi®ottom: the relationship

between the ratia/5 andr is linear (dashed-line) with slope 0.977 and intercept P.96
Inset: o almost does not vary with (see text).
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Figure[5.YB (top plot) shows the simulated time courseéf) (red dashed line) when
& =2, = 3, andr = 2 with initial conditions,(0) = p»(0) = 0. To generate our
‘observed data,” we samp}g at various time points and add observational random noise
from a distribution\V (0, 0.052).

We can fit this noisy data to a linear cascade of lengtinder constant input with

parametersy,y andp:

pa(t) = (%) P(n, Bt) =~ po(t), (5.32)

and estimate the corresponding parameters. The solidilite itop plot of Fig. 57B shows
the best fit of the data to a linear cascade, as obtained wathatameter fitting algorithm
introduced in Chapted 4 (Appendix C.4). The estimated patanvalues are,, ~ 2.27,
£~ 7.53, andn =~ 22.1072.

We also explore the connection between the parameters @fiifieand the best fitted
(linear) activation cascade model, in particular as a foncdf the delayr. We simulate
the DDE [5.31) with paramete = 2 and 3 = 3) for different values of the delay
T € [0,5] and collect data from these models as above, but withouhgddndom noise.
The dependence of the fitted parameters ans shown in Fig[5.J7B (bottom plot)a
remains relatively constant (decreases minimally) whigeraition /5 grows almost linearly
with 71 n/fg = 0.962 + 0.9777. In fact, 8 increases linearly (slope 4.11) andn grows
almost quadratically with (exponents 1.88). When the delay in the ‘data’ is increased,
the length of the fitted cascade)(increases while the time scale of the gamma function
(1/5) decreases in consortium. If one attempts to fit the datavaifponly the length as
a fitting parameter, the fit is not successful, thus undenrsgdhe importance of the time
scales in the approximation. Indeed, the original time detaiy the DDE is approximated
in the linear cascade ky./3 — 1), ie the accumulated time needed to traversequential
steps with duration /5.

In Chaptef¥ we use the approach described in this sectiantrmduce delays in the
antioxidant responses of guard cells to abscisic acid amdeste stimuli during stomatal

closure.
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5.5 Discussion

In this chapter the classic model of activation cascaddsemveakly activated limit (Hein-

rich et al, 2002) has been examined. We have considered the impodsaeatvehere all
inactivation rates of the components of the cascade ardi¢gdénwvhich has been shown

to provide optimal amplification (Chaves all, [2004). These results show that the output

of these cascades can be represented exactly by lower iteteng@mma functions. We
also show that the position of a protein in the cascade doesffext the final output.
These results allow the reduction of the number of equatents parameters in ODE
models without affecting the dynamics or the timescaleshef system. The results
show that in some cases incomplete gamma functions can bletaisgproximate delay
differential equations. Beyond its application to enzyimaictivation cascades, similar
mathematical models of cascades could be helpful for thenpetrisation and modelling
of multi-step transcriptional processes, an area of actisearch in Systems and Synthetic

Biology (Hooshanget all, [2005;| Luciuset al., [2003;| Strickeret all, 2008; Wanget al.,

2011). These results also give an example of how reducingmeam models of ODEs

is not trivial. Some methods reduce network models (or megjubased on the topology,
effectively finding a minimal kernel that preserves someeatpof the dynamics (Kim

et al, 2011). By only considering the topology (and the signs) led system such

methods cannot be guaranteed to preserve timescales oii ,12006),

and are best suited for boolean models. As Chapter 7 shawsseales can be crucially
linked to the behaviour of a model. Reducing models of déifidial equations remains a

challenging and active area of research (Conzelnedrad., [2004; Prajna and Sandberg,

2005;! Siahaan, 2008). Future work will focus on the charazton of the output of

cascades with negative (nonlinear) feedback (eg see equ@fi50) for a preliminary
result), and studying the case in which the degradation efptioteins ;) are random
variables with the same mean and testing the conditionsgomal amplification given
desired expected gains.
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Chapter 6
Experimental results

Guard cells were introduced in Chaptér 2 along with a desoripf the way in which
plant hormones abscisic acid (ABA) and ethylene induce atahtlosure. The intriguing
observations made by Tanaiial. (2005) and Desikaat al. (2006), where stomata treated
with ABA and ethylene did not achieve full closure have beesatdibed in Sed. 2.5.

Experiments are performed in this chapter to reproduce semlits and to obtain more
information about why this unexpected behaviour occurse gathering of data in this
chapter has been motivated by the development of the mofigtisroatal closure presented
in Chaptef¥, where the data are used to fit the model parasneter

Most data about stomatal closure available in the liteeaginow the response of some
component of the signalling network, typically aperturethim one to two hours of the
stimulus (Brightet all, |2006; Chenret all, 12004;| Garcia-Mata_and Lamattlira 2007; Li
et al, 2000). In addition, the data available are fragmented antetimes not consistent

with each other, for example, with different species suck@bidopsis thalianaVicia
faba (in which ethylene actually mediates stomatal opening iftest al, [1987)) or
tomato, laboratory conditions, plant age, cell type (guzeits, epidermal peels, guard cell

protoplasts may all have different properties), and metladsmeasuring stomatal aperture
(area or opening width). Detailed temporal analyses of ABAthylene-induced signalling
responses in guard cells have not yet been made. Moreoves ibften been assumed
that ROS production in guard cells only occurs in a burst &edefore, measurements in
guard cells are conventionally made over a short periodpudprhin, after treatment (Pei
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and Kuchitsu/ 2005; Zhangt al,, I2001b). To achieve a better understanding of the

signalling processes leading to stomatal closure, it iserafive to know the behaviour
of the components of the pathway in time. As larger signglbystems with multiple
stimuli become subject of more studies, the fundamentad iee time course data is
increasingly evident. This study makes a first advance ttktthe temporal responses
of ABA and ethylene in guard cells under single and combirtedui; to that end, we
obtain measurements of ROS production and stomatal apentdrabidopsisguard cells.
The experiments follow the state of the system upon theawithe signal for 60 minutes,
a time-frame sufficient to study stomatal closurédnabidopsis.

The choice to measure stomatal aperture is clear sincehgipienomenon that is the
focus of this study. The choice to measure the concentrafi®®S at this point is because
it is (with current knowledge) where the pathways of ethgland ABA in guard cells first
meet; additionally, (as explained in Chapiér 2) ROS are goitant component of the
guard cell signalling pathway. It is important to know whetkhe interactions responsible
for the lack of closure happen at this point or further dowa plathway. Furthermore, as
mentioned above, the time-course response of ROS to eitBArdk ethylene stimuli is
only known for early time-points; however, the modellingdhaptef¥ indicates that ROS
measurements are necessary for longer times, which is vehtyntie-course of ROS here is
extended to 60 minutes.

The experiments in this chapter were performed by MariarguBasse and Alessandro
Lizzul (stomatal assays), and Mercedes Hernandez GOR@3 fluorescence assays).

6.1 Materials and methods

6.1.1 Plant material

Arabidopsis thalianaseeds of Columbia ecotype (Col-0) were sown on Levingtong=2+
(Avoncrop, Bristol, UK) soil and grown under constant cdiagis in a growth chamber
(Sanyo Gallenkamp, Loughborough, UK) with a 10 hour lightipd, light intensity of
100-15Q: E/m?/s, temperature af2°C and 70% relative humidity. After 7 days, seedlings
were transplanted individually into new pots. Leaves of wegks old plants, which had
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not yet formed flower bolts, were harvested for the aim ofétegperiments.

6.1.2 Stomatal assays

Stomatal aperture bioassays were performed on 4 week oledeas described by Desikan

et al. (2006). Leaves from 4-6 week-old plants with their petiofgact were then cut from

the plants using scissors. Excised leaves were floated fani3lmside the growth chamber
in Petri dishes with MES/KCI buffer (5mM KCI, 50M CaCl, 10mM MES, buffered to
pH 6.15 with KOH) to open their stomata. After the initialdtment in buffer the leaves
were exposed to doses of:M, 10 M, and 50uM ABA (2-cis, 4-trans abscisic acid 98%,
synthetic, Aldrich), 1M, 10 M, and 10Q:M ACC (1-aminocyclopropane-carboxylic
acid hydro-chloride, Sigma), or a combination of ABl ABA with 10 M ACC, using
ethanol as a control. The treatments were left in the groltdmber for 15, 30, 45 and
60 minutes. Two leaves were blended in water for 1-2 minutesegpidermal fragments
collected on a 10@:m nylon mesh (Spectra-Mesh, BDH-Merck, Nottingham, UK) and
transferred to a microscope slide. Measurements of indalidtomatal aperture were
conducted using a Leica DME light microscope, connected t@iea DFC290 camera
imaging system (Leica, Milton Keynes, UK). Leica QWinV3 sadre (Leica QWIN
software, Leica, Milton Keynes, UK) was used to measure pestares. Each data point
collected is the mean of three experiments where- 30 for each experiments (ie 90

individual stomatal measurements).

6.1.3 ROS fluorescence assays

Stomatal HO, concentration was measured as described_b;LDe_ﬂgadi 2006). Leaves
from 4-6 week old plants (2 leaves per condition) were blenitdedeionised water and

epidermal fragments were collected with a 4@ sterile cell strainer (Fisher Scientific).
Epidermal fragments were incubated in Petri dishes con@giMES/KCI buffer (5mM
KCl, 50 M CaCk, 10mM MES buffered to pH 6.15 with KOH) inside the growth
chamber for 3 hours. Epidermal fragments were collectecegndlly distributed into Petri
dishes loaded with ethanol (as control), 2Bl ABA (2-cis, 4-trans abscisic acid 98%,

synthetic, Aldrich), 1Q:M the ethylene precursor ACC (1-aminocyclopropane-caybox
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Figure 6.1: ROS fluorescence measurements. Experimeraauraments of ROS in guard
cells as percentage of control. in response taDABA (blue circles), 10uM ethylene
(red squares), and oV ABA + 10 ;M ethylene (green diamonds). Error bars show the
standard error of the mean & 30 x 3).

acid hydro-chloride, Sigma), and a combination of 4 ABA and 10 M ACC. The
treatments, which had durations of 5, 15, 30, and 60 minwtess performed. Following
treatment for the appropriate time, fragments were in@datith 5Q:M H,DCF-DA (2,

7 -dichlorodihydrofluorescein diacetate, Invitrogen) idr minutes for HO, detection.
After a washing step in MES/KCI buffer for 20 minutes, epmai fragments were
placed onto a slide and observed under a microscope. Al stepe carried out under
dark conditions, as the dye is light-sensitive,(Q4 was visualised with a fluorescence
microscope (Axioskop?2 plus, Carl Zeiss Ltd., UK) with Zefdter set 3 (excitation light
filter: 450-490nm, emission light filter: 515-565nm). Phygraphic images were captured
with Axiovision software v3.1 (Carl Zeiss Vision GmbH, UKJJhe images were processed
and fluorescence intensities (as mean of the pixel intes$iwere measured with ImageJ
software (Abramofet all,[2004).

6.2 ROS production

We applied single and combined doses of @ ABA and 10 uM ethylene (ie ABA,
ethylene, and ABA+ethylene) térabidopsis thalianaguard cells and measured the
resulting ROS concentration in fluorescence units. The levROS production relative
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Figure 6.2: Stomatal aperture measurements as perceritegetiol. A: In response to 10
1M ABA (blue circles), 10uM ethylene (red squares), and AWM ABA + 10 M ethylene
(green diamonds).B: In response to uM ABA (blue circles), 1M ethylene (green
squares), 5@M ABA (red diamonds), and 100M ethylene (light-blue stars). Error bars
show the standard error of the mean= 30 x 3), control aperture isz 1.9 um.

to controls, in response to the treatments is shown in[Ely. ROS production is almost
indistinguishable among treatments in the immediate fiveuteis after the stimuli. After
15 minutes, the cells stimulated only with ABA or ethylend showed a 25% increase in
their ROS concentration, whereas the increase in celltettesith a combined dose was
only 5% above control. ABA and ethylene-induced ROS levedsanmaintained until 30
minutes after treatment, then a marked decrease was obséiter 60 minutes the ROS
level in cells treated with ABA decreased but still remairégher than control, the cells
treated with ethylene showed a reduction in ROS close taacbet/els, whereas the ROS

level of the cells treated with the combined stimulus fel8@%o of control.

6.3 Aperture

The aperture responses of the guard cells treated withesamgl combined doses of A0
ABA and 1QuM ethylene are shown in Fig._6.2A. As in other studies (Siegell., [2009;
2006) apertures are shown as percentage of control. The theatments

Tanakaet al,
produced a decrease in stomatal aperture within 15 mindtegament. Interestingly,
the cells with the combined ABA-ethylene dose showed antapereduction of 25%
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compared to control, while cells treated with single stinofilABA and ethylene showed
reductions of about 15% and 20% respectively. After 30 naauhe stomata with the
combined treatment displayed less closure than the stouratar single treatments, a
trend that was accentuated after 45 and 60 minutes (withgatdliecrease at 60 min).
Cells treated with ABA maintained their apertures closeG&3elow control, whilst cells
treated with ethylene had begun to re-open after 60 minuiestayed below control.

Figure[6.2B shows additional measurements of stomatalidosade in cells stim-
ulated with different individual doses of ABA and ethylenErom these data a similar
behaviour to that in Fid. 6l2A can be observed, though wighaitiditional information that
the 1M doses are not sufficient to achieve full closure and thedrgloses (5¢:M and
100 M) seem to have saturated. Note that the response of gudsd@dlo M ethylene
in Fig.[6.2A is consistent with the response to 104 ethylene in FigC&2B causing its
reopening 60 minutes after the stimulus.

6.4 Discussion

The time profiles of ROS production and stomatal apertureesponse to single and
combined 1Q:M doses of ABA and ethylene shown in Fig. 6.1 and Figl 6.2A areststent
with each other. It appears that a sustained elevation ofiR@&eded to maintain stomata
in a closed state. This is seen with individual ABA or eth@estimulation, where up to
30 min there is a sustained level of ROS, coinciding with arel@se in aperture. Beyond
this, for ABA there is still enough ROS up to 60 min to keep ttensata closed, but with
ethylene, ROS levels appear to drop drastically, coingidwith a re-opening of stomata.
In case of the combined stimulus, a substantial reductid®O% coincides with a greater
re-opening of the stomata.

The experimental observations in this chapter confirm thontance of ROS in ABA
and ethylene-induced stomatal closure (as described ipt€i2 and reported by Desikan

et al. (2006); Kwaket all (2003), and Pegt al. (2000)); they also provide new information
about the mechanisms of guard cell signalling. From obegrthe ROS production
in Fig.[6.1, it is immediately apparent that there is a megrmronly active under a
simultaneous ABA and ethylene stimulus that removes hyetlrqeeroxide from the cells.
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It is not clear what mechanisms are responsible for this\dehg but as mentioned in
Sec[2.5, cross-talk has been known to occur in the ABA andegih signalling pathways,

eghﬂ[a.n&l_al 2007). The interactions of the ABA and ethylene pathwagsrst induce

a specific antioxidant activity rapidly that is not preseriten the cell is presented with
a single stimulus. A decrease in ROS levels between 30 andittes after treatment
is observed in all treatments (Fig. 6.1). An antioxidanpoesse to sustained high levels
of ROS is unlikely to be the only mechanism present becaulke wih high levels of
ROS (treated with ABA or ethylene individually) and lower R@treated with ABA and
ethylene together) are affected similarly (Fig.]6.1). Oxpl@&nation is that the individual
stimuli, in parallel to stimulation of ROS production, algsmmote a delayed antioxidant
response to allow ROS-mediated signalling to occur, rem®OS only after the signal
has been transmitted. This delay is lacking in the combingdutus situation, when
another antioxidant mechanism is initiated early on. Thiesalts indicate that there may
be at least two different antioxidant responses in guarld ¢eltreatments of ABA and
ethylene.
The observations reported here confirm the resullls_cﬂaﬁakl* 2005) and expand
them suggesting that complex interactions between the ABA ethylene signalling

pathways at the antioxidant level may be responsible foraersal of stomatal closure fol-
lowing a combined stimulus. The long-term inhibition of st@tal opening seems unlikely
to depend on sustained high ROS levels, due to the dangeriddtwe stress. Results
by [Kim_et all (2010) and Pandegt al. (2007) indicate that long-term stomatal closure
depends on different signalling components and gene-ssiome, mediated primarily by
Ca*. It should be noted that, from the observations in Eigl 6.24 B, ethylene does
not seem to be able to keep stomata closed beyond the 60 nnvauke This reopening

could be a distinctive feature of ethylene-induced stohw@tsure that has so far eluded
explanation. This hypothesis is further explored in Chajgtevith the development of a

differential equation model of stomatal closure that ipavates the antioxidant features
that have been described here.
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Chapter 7
Mathematical models of stomatal closure

The previous chapters discuss how unexpected outcomesmeaywvnen multiple stimuli
are applied to a large complex signalling network, even ifl-atedied systems such

as guard cells, eg Desikaet all (2006); Tanakeet al. (200%). In order to investigate

the cause for the observed reversal of closure under coohbd®A and ethylene
stimuli, we develop a mathematical model for the signalddarction of these inputs in
connection with stomatal closure. To construct the modeluse the description of the
signalling mechanisms involved in stomatal closure prieskim Chapter]2, and the general
mathematical modelling techniques presented in Chapteft results and techniques
of data fitting and signalling cascades from Chaptérs 4[anck5used to construct the
model and fit its parameters. We begin by summarising andrati@g the biology of the
individual ABA and ethylene pathways to construct a singgmalling network. Then,
we make mathematical descriptions of the different sigmgkvents of the network and,
whenever possible, we seek expressions to simplify themalllyj we fit the model to the
experimental observations, analyse its results, and madqgbions.

The ABA signalling network in guard cells has been studieshgotationally from an

asynchronous dynamic boolean network perspectiveeflal., 12006; Saadatpouwst al,

2010) and the ethylene pathway in root cells has been madeisng ODEs (Diaz and

Alvarez-Buylla, 2006, 2009); however, to our knowledgeréhare no models of stomatal

closure that incorporate both ethylene and ABA. We have ehds construct our model
using ODEs; motivated by the importance of the dynamicaadf (as the experimental
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Figure 7.1: Integrated ABA and ethylene signalling netwioriguard cells. Interactions
between the components of the network are shown by the edgesg them. Positive
interactions such as activation or production are reptesemith edges ending in
arrowheads—. Negative interactions such as inactivation, repressiorscavenging are
represented by edges ending in hammerhead®llow nodes are hormones, green nodes;
proteins, blue nodes; ions, red nodes; reactive molecaled,orange nodes; physical
properties of the cells. The interactions shown in this wekware a summary of the
signalling events described in Chaiér 2.
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results in Chaptdrl6 have shown) and the flexibility that sucilels afford to include the
biochemical and biophysical interactions discussed inp@E which are summarised in
Fig.[7Z1 (see Se€. 1.1 below for a description). Conversedyhave aimed for a reduced
model with a relatively small number of equations (variaplend parameters while still
preserving dynamics and timescales. Such ODE models casdjel tio test alternative
biological hypotheses and can be amenable for more detailetysis using bifurcation

theory and comprehensive sensitivity analysjs_(AumﬂIJ, 2007).

7.1 Network representation of stomatal closure

The interactions of the components of the ABA and ethylenievpays described in Sec 2.3
andZ.4 are summarised in a network in Eigl 7.1. By constrg¢hiis network we inevitably
make assumptions of what we consider are the most imporampanents and interactions
of the pathway, an inevitable consequence of the represamta current knowledge in a
tractable way. In principle, each node in the network regmésa component that could be
a variable, either chemical, biochemical or physical, in@sl. In the following sections
we use the network representation of the pathway inFig. ¥ dlsaarting point to construct
an ODE model of stomatal closure.

7.2 Construction of the model

7.2.1 Signal perception and ROS production

Sectiond 2.311, 2.3.2, and 2.4.2 describe the events in ARAethylene perception and
production of ROS. These early events are represented ifi/Ed@\ by the subnetwork
comprised of the nodes ABA, Ethylene, PYR/PYL, ABI1, OSTitb®hD/F, ROS, AOX
and ETR1, whose concentrations we denotéh® A|, [ET H], [PY R|, [ABI1], [OST1],
[Atrboh F), [Atrboh D], [ROS], [AOX], and[ET R1]. Given the timescales observed, we
do not consider gene expression so the total amount of eaymenin this subnetwork
remains constant, thus we have the following conservagtations:



ABA ™

[

84

666

56
|

A §
trbohF

Y

-

Figure 7.2: Simplification of signal perception and ROS picitbn model.A: Network

representation of the ROS production modell(7.1)}(7.B). Simplification of the ROS
production model given in equations_(I7.8)-(7.13: Further simplification of ROS
production, given in equationis (711%5)-(7.17).

[PY Ry] = [PYR] + [PY R-ABA| + [PY R-ABIN1],
[ABI17] = [ABI1] + [ABI1-PYR],
[0ST17] = [OST1] 4 [OST1p],
[AtrbohFr] = [AtrbohF] + [AtrbohFp),
[AtrbohDr] = [AtrbohD] + [AtrbohDp],
[ETR17] = [ETR1] + [ETR1-ETH],

where the name of the enzyme with a subscrifitelnote total concentration of an enzyme
(a non-negative constant iR), those with a subscriptef; phosphorylated (or active,
in general) enzymes, and variables joined with a dash arglexes. For example, the
constan{PY Ry| is the total amount of PYR/PYL in any form, the varialpfeY R] is the
concentration of “available” PYR/PYL moleculeg?Y R-ABA] is the concentration of
ABA-bound PYR/PYL molecules, and®Y R-ABI1] is the concentration of ABI1-bound
PYR/PYL. Based on the biology, we introduce the followingdabof what is known of
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ABA and ethylene perception and ROS production:

7d[PY§;ABA} — k1([PY Rr)-[PYR-ABA| + [PYR-ABI1))[ABA] — (k_1 + k2([ABI17] — [ABI1-PY R]))[PY R-ABA],
7.1)
APYRABIN — ko Py R-ABAN(ABI1L] ~ [PY R-ABI) — ks[PY R-ABI, (7.2)
d[oitTlP} = ka([0ST17] — [OST1p]) — (k_a + ks([ABI17] — [PY R-ABI1]]))[OST1p], 73)
% = ke ([AtrbohFr] — [AtrbohFp])[OST1p] — (k7 + ks([ETR1r] — [ETR1-ETH))[AtrbohFp],  (7.4)
7(1[”’"3:”[’ Pl _ jo([Atrboh Dy — [AtrbohDp))[ABA] — kio[Atrboh D], (7.5)
w = k1 (IETR1y] — [ETRI-ETH))|[ETH] — k1o [ETRI-ETH], (7.6)
d“z(t)sl = k13 + k1a[Atrboh Fp] + kis[AtrbohDp] — (k16 + k17[AOX])[ROS], (7.7)
AAOX] _ 414 + kio[ROS] — k2ol AOX]. (7.8)

dt

Equations[(Z11)E(7]13) describe the initial events of ABAgeption, ABI1-phosphatase
inhibition, and OST1 phosphorylation (Séc. 213.1). Eaquai[7.4) and[{7]15) describe
the activation of AtrbohD/F where OST1 phosphorylates gltfg free ETR1 inactivates
AtrbohF, and AtrbohD is activated by ABA (Séc. 2]3.2, and2)4Equation[(7J6) shows
ethylene binding and subsequent inactivation of ETR1 (8€c2). Equation(7]7) shows
the production of ROS by AtrbohD/F and by other cellular psses X;3), scavenging
by antioxidants (summarised in the variable AOX), removalecay of ROSK;s[ROS));
equation[(7.B) shows that AOX has endogenous producti@h froduction in response to
ROS (19[ROS]), and decay or inactivatior{,[AO X]).

Some things to note about the model above: the way in whichréla¢éments are given
(floated on a Petri dish, see Skecl6.1) allows us to assumiéhedncentration of ABA and
ethylene does not change, hemdd A] and[ET H] are constants. The amount of ATP for
the phosphorylation reactions and of NADPH for the produrctif ROS are also considered
abundant enough within guard cells and they are impliciibluded in the parameters of
the model. We assume that when the complex PYR-ABA-ABI1ddigges, it does so
completely (ie into PYR, ABA, and ABI1), to make the equas@simpler. The variable

[AO X] clusters together the group of antioxidants that are adtivang stomatal closure.
The model described in_(7.1)-(7.8) has 8 equations and 2€tikiparameters plus
6 parameters representing the total amount of the enzymes/éud, which makes the



103

task of determining parameter values from the ROS measutsnire Chaptel]6 a rather
difficult one. We attempt to reduce the number of equatiorns @erameters as much
as possible by making a series of assumptions, but avoidinegsionplification of the
system. First, as noted by Kwat al. (2003) and mentioned in Sdc. 213.2 and $ec. 2.4.2,
AtrbohD has a limited role in ABA-induced stomatal closunel@one in ethylene-induced
closure, so for our modelling we assume that ROS is excllys®duced by AtrbohF.
This assumption is supported by the observations in [Selowbiéh show similar initial
increases in ROS upon an ABA or ethylene stimulus (Eig. 6ot )f there were two sources
of ROS the pattern of initial increase would most likely diff We make quasi-steady-state
assumptions (QSSA) on the dynamics of the ABA and ethylecepters (see Séc 3.2.2),
so equationd (711) an@ (7.6) are expected to reach equiiibbiefore the other variables
have changed significantly. The expressions for the ligamaid receptors then become:

(IPY Ry] — [PY R-ABI1])[ABA]

[PYR-ABA] = —— ,
b1 B2 ([ABIg) — [PY R-ABI1)) + [ABA]
ETR17||[ETH
[ETR1-ETH] = %
ka4 [ETH]

The expression folET R1-ET H] is a standard Michaelis-Menten term with a maximum
rate of reaction given by the total amount of ETR1. The exgiogsfor [PY R-ABA] is

a Michaelis-Menten-type term with a dependency on the b&igPY R-ABI1| (which
holds PYR/PYL molecules). The system[in (7.1)-[7.8) become

d[PYR-ABI] _ k2([ABIl7] — [PY R-ABI1))([PY Rr] — [PY R-ABI1])[ABA]

= — k3|PY R-ABI1], (7.9)
dt = + 2 ([ABI7] — [PYR-ABIN)) + [ABA]
% — k4(OST1 — [0ST1p]) — (k—4a + ks([ABI17] — [PY R-ABI1]]))[OST1p], (7.10)
% = ke ([AtrbohFr] — [Atrboh Fp])[OST1p] — <k7 + ks[ETR17] (1 - %)) [AtrbohFp],
(7.11)
% = ki3 + k1a[AtrbohFp] — (ki + k17[AOX])[ROS], (7.12)
d[A0X] = k1s + k19[ROS| — koo [AOX]. (7:13)

dt

Figure[Z.2B corresponds to this new model where some nodésdges have been
removed but the relationship between the signals and theubig still the same as in
Fig. [Z.2A. Though a simplification, this model is still larged we would like to find
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a further simplification, taking into account what we havaritg so far. Note that in
the network representation of equatiohs [(7[9)-(7.13) showFig.[7.2B the path-length
from ABA to AtrbohF is 3 while the path-length from ethylereAtrbohF is 1; however,
in Sec.[6.2 we observe a negligible difference between th8 R@duced by ABA and
the ROS produced by ethylene five minutes after treatmet [&Ell). Note that the
edge between ethylene and AtrbohF in Figl] 7.2B is positiveabse ETR1 inactivates
the inactivator of AtrbohF. These observations suggesttiieanumber of steps between
ethylene perception and ROS production is about the sameithsABA signals (the
immediate events after ethylene binding by ETR1 in guartsaale still unknown), or
if the number of events is different then the timescale ofrirections is approximately
the same in both cases. Furthermore, in both cases the naxiata of ROS production
is limited by the total amount of AtrbohFAt¢rboh Fr]), which means that the response
to either signal has the same theoretical maximum rate. Givat data are unavailable
for the receptors, OST1, and ABI1, and that ABA and ethyleaeehsimilar timescales
for producing ROS we further simplify our model so that Atnlfdboecomes active directly
from the ABA and ethylene signals, as shown in Eig] 7.2C.

To determine the equations that represent the network inNE&{, we must have a
hypothesis of how ABA and ethylene signals activate AtrboDRe possibility is that
the signals activate AtrbohF through the same pathway,eeetls a bottleneck for both
signals upstream of AtrbohF. In this case the signals aenéadly interchangeable. This
assumption would imply that, for example, au®1 dose of ABA and a combined AM
ABA plus 1 1M ethylene dose are the same:

d[ROS] _

[AtrbohFr|([ABA + ETH))
T kis +

%+ ((ABA+ ETH)])

— (k16 + k17[AOX])[ROS].

The identity of the signalling “bottleneck” remains unkmawAnother hypothesis that has
a similar result but that does not require a common node irp#teways of the signals

would be to assume that the signals converge for the first ainfgrbohF, and activate it

independently of each other:

d[ROS] ~ k Ozll*ig[ABA] -+ Ozglil[ETH]

- AOX 7.14
dt P Kk + ko[ ABA| + ki [ETH)| (k16 + kir[AOX])[ROS], )
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where «; is a product of[AtrbohFr] and other rate-limiting parameters in the ABA
pathways, andk; is the ABA-specific Michaelis constant, and likewise forydéme o,

is the rate-limiting parameter and the Michaelis constant. We use the approximation
(=) sign to emphasise that this is not a rigorous derivatioheROS-activation dynamics
but a deduction guided by our current knowledge of the systechassumptions deemed
reasonable. In Appendix_A.2.2 we derive the compound Miksddenten term in
equation[(7.14) using the QSSA. Though both hypotheses & ROduction can produce
a similar response the latter one is better suited for mdeditomatal closure because it
does not require the assumption of additional interactimtsudes the former as a special
case (Whem; = ke anda; = ay = [AtrbohFr|), and its derivation is clear.

Now we turn our attention to the antioxidant pool AOX; it iseal that a homo-
geneous antioxidant pool responsive only to the conceotratf ROS as described by
equation [(7Z.1IB) is incompatible with our observations inagter[6. Following the
experimental indications in Séc, 6.2, we consider the pdigiof two different antioxidant
mechanisms described by the variable$) X;] and [AOX,] which lie at the end of
linear activation cascades driven byBA| and [ET H| (Fig.[7Z.3). As discussed when
the experimental results were presented, there is evidenseggest that two distinct
antioxidant mechanisms might be at work during stomataswie. The first of these
mechanisms (AOX can be activated by either an AB% an ethylene signal and includes
endogenous antioxidant production (to maintain unstitedlaquilibrium levels), whereas
the second antioxidant (AGXis active only when ABAand ethylene signals are present
simultaneously. Logicabnd and or gates in biochemical systems can be the result
of particular post-translational modification of enzymesg, multiple phosphorylation,

trimerisation, etc (Mayet al.,[2006).

We place the response of the antioxidant to the signals aemiceof cascades of

abstract variables to emulate the delay observed in thevanod ROS. Each cascade
has a constant input (depending on the ABA and ethylene Isigeee below) and has a
solution proportional to the lower-incomplete Gamma fiowe® (n;, h;t) (see Sed. 5.4.3
and Appendix’C.1]2) where; represents the length of the cascade ianid related to the
deactivation rates of the cascade; 1, 2.

The input of the cascade culminating in AQXhust follow a boolearor logic and
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Figure 7.3: Antioxidant production at the end of linear aation cascaded®: Cascade of
lengthn; whose input has a logior function, the cascade responds to ABA or ethylene
treatment (equation (Z.JL6)R: Cascade of length, whose input has a logindfunction,

the cascade becomes active only when ABA and ethylene asergrsimultaneously

(equation[(Z.1I7)).

saturate, therefore we use the compound Michaelis-Mentemve used to describe ROS-
production previously as the input for the ABA and ethyleigals, so the equation for
[AOX, ] is

04354[14814] + Oé4K,3[ETH]
K3kq + ka[ABA] + k3| ETH |

d[AOX/]

at P(nl, h1t> — ]{ZQO [AOXl]

The cascade leading to the activation of AOXust operate as a logend gate, ie
becoming active only ifABA| > 0 and[ETH| > 0. We consider that the input of the
cascade is downstream of the ABA and ethylene receptorsh@m@sponse of the cascade
must also exhibit saturation, so we model the input as theymtoof two Michaelis-Menten

forms:
(071 [ABA] Qg [ETH]

ks + [ABA] k¢ + [ETH]’

which enforce a logicand operation of the signals. The expression for AOX

50 [ABA] [ETH]

[AOX5](t) = (ks + [ABA])(rg + [ETH])

P(TLQ, hzt)
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Now we have a complete reduced model of a ROS production-leadguard cells:

d[ROS] 1KY [ABA] + ok [ETH]
=k — (k k17|AOX ko1[AOX:
at B lAB Al - i [ETH]  Fe T kil A0X] 4kt [AO X)) KOS,
(7.15)
d[AOXl] 3K4 [ABA] + oyk3 [ETH]
= P — AOX 7.1
gy k18+n3n4+m4[ABA]+n3[ETH] (n1, hit) — koo[AOX 1], (7.16)
40%,)(1) = — 2000l ABAIETHL b, ), (7.17)

(k5 + [ABA]) (ke + [ETH])

with initial conditions[RO.S](0) = [ROS]o, [AOX7](0) = [AOX1]p, and[AOX5](0) =0
to be determined at a later time.

7.2.2 NO production

A description of how ROS induces NO production in guard dedlated with ABA via the
enzyme NIA1L is given in Se€. 2.3.3 (FIg. 7.4A); and in $ec.2pteliminary indications
that NO is also produced in guard cells treated with ethyleae discussed.

An initial ODE describing endogenous and enzymatic NO petida in guard cells is

d[NO] az1 [ROS)|
B R e B[N
a5 1 [ROS] Baol VO,

whereas is a constant rate of NO production by other processes, tlohaéiis-Menten
term is ROS-induced NO production via NR1, and the last tsrtd® decay and removal.

Note that in unstimulated guard cell®OS] > 0 and as measurements of NO to
distinguish between ROS and non-ROS induced productiomair@available, we gather
the ROS-dependent and ROS-independent NO production ingéesierm. We include
a second term that describes further enzymatic NO produétion ethylene (Fig._714B),
which could be either from NIA1 or another, yet unidentifiedice. This term is needed by
our fits to the data, as preliminary models without it werehl@#o reproduce experimental
observations. The new expression for NO production becomes

d[NO]  asu[ROS] | azp[ETH]
& T 1 [ROS| | Ey o+ [ETH]  NOL (7.18)
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Figure 7.4: NO production models in guard cedls.NO-production network described in
Sec[2.3B and Sdc. 2.4.3. NO is produced in a ROS-dependgriiywNIA1. B: Model of
NO-production given in equatioh (7]18). The key assumptitthis model is the existence
of a ROS-independent pathway of NO production in responséhylene.

with initial condition[NO](0) = [NO],, which is to be determined later.

7.2.3 Ca&" increase, cytosolic alkalinisation, and ion efflux

As discussed in Se€._2.3.5, the dynamics of'Gaelease and action in guard cells are

complex and not fully understood. Though the importanceaf Gn guard cell signalling

(and cell viability in general) is beyond doubt, in this warke do not include an equation

describing its behaviour for three reasons:

i. Reports of Ca-behaviour after ABA treatments in the literature descrimh

oscillations and rises in cytosolic levels, and experirakfita-sets encompassing both

single and combined ABA and ethylene treatments do not.exist

201

ii. As mentioned by Kimet al

), the way in which a cytosolic &arise (or

oscillations) transmit signals during stomatal closurend yet clear. Current

hypotheses state that ABA “primes” &areceptors, making the rise in cytosolic levels

helpful but not essential for successful closure.

iii. Experimental evidence presented in Chapter 6 suggibsts ABA-ethylene cross-

talk occurs at the ROS-level, upstream of Cén the guard cell signal transduction

network in Fig.[7.1l, so we direct most of our efforts to untmding signal
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transduction at this level.

In Sec[2.3¥4 we described the process of cytosolic allsgtion whereby the pH in
the cytosol of guard cells increases from 7.0 to 7.5, and Bhenghe tonoplast decreases
from 5.5 to 5.0 after treatment with ABA. The concentratidrHo™ determines pH (see
Appendix[D.1 for a brief introduction to the Henderson-Hdlsach equation)pH =
—log([H™"]). During stomatal closure the membrané+ATPases are inactivated, which
means that changes in pH are the result of the transport tdqsdom the cytosol into the
tonoplast by the vacuolar proton pumps (V-ATPases), detivhy OST1 (Figl_7J5A, see
AppendiXD.2 for a brief introduction to proton transportAjPases).

The model of cytosolic alkalinisation and ion-efflux shown Fig. [Z.5B has one
equation for the potassium ion concentrati@fi], and one equation for the outwards
potassium channel# !, ]:

+
% = QY + % + OZ4Q[NO] — 640[[(;;”], (719)
d[KT] B Q51 B 650[[(;”] [K+] 7.20)

dt ks +[NO]

Equation [[7Z.IB) shows the change [ii},], the active outwards K channels. The
first (cyo) and last B[ K ,]) terms represent the constant flux of channels between the
active and inactive states, respectively. The second tepresents the extra number
of channels made available by the increase in cytosolic pldwiing an ABA stimulus,
mediated by OST1. The third termvg[NO]) is the increase in K, activity as a
result of membrane depolarisation, possibly via NO-induC&™ release (ie via the path
NO — Ca&* 4 Ht-ATPase— Polarity+4 K} . in Fig.[Z.BA). Here we assume that NO does

out

not target K, ,, as ion efflux is required for stomatal closure (we note tltabagh NO has

been shown to block K, in Vicia fabaguard cells/(Sokolovski and Blatt, 2004), the authors
of the study are unsure whether NO action is specificallyetadto K’ ,.) Equation[(7.20)
shows the change ik "]. The first term represents the increase of ions that enteugir

the inwards-rectifying channels fK, which are inactivated by NO. The second term is the
ion efflux through the outwards channels that is proporfitméhe active channels<; ;|
and the ion concentration itself. We include an equatioiffy but not for K!. because the
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Figure 7.5: Events in stomatal closure downstream of R&SCytosolic alkalinisation
following treatment with ABA, C&" —increase, membrane depolarisation, and ion efflux.
B: Model of late events in stomatal closure presented in éopg{7.19) and(7.20).

alkalinisation of the cytosol has the effect of increasimgnumber of available channels to
extrude ions, whereas the inactivation of ks only represented by a term in the equation

for K.

7.2.4 Loss of turgor

The relationship of this model to stomatal aperture is védaist variabléK *]. Cell volume
(and hence stomatal aperture) is determined by the ion datksmncentration in the cell
relative to the external concentration (Pandﬂgll, 2007; Tanakat al., [2006). Therefore,

we take ions and solutes {Kin particular) as a simple proxy for aperture:

[AP] o [K7]. (7.21)

7.3 A model of signal transduction for stomatal closure

We use equationg (7159)-(7]120) to construct a a model of ABA ethylene-induced
stomatal closure which we represented graphically in[E§. The model describes the
dynamics of six variables in terms of the external input fiores [ABA| and [ET H],
which denote the doses of the treatments. We normalise thabies in the model
by their non-stimulated equilibrium levels (ie the initiebnditions) so they represent
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percentage of control:

[ROS|() = ~pn -
AOX0) = o,
ol = i
Kl = 2,
& - e
[APye) =

—

With the normalised variables we can transform equaficdIj7to [Kt](t) = [AP](¢),
so we take the normalised potassium ion concentration asadent to the normalised
aperture. Dropping the hat notation, the equations of thdehbecome (note that the
parameters have been renamed)

B = oo+ ane LB T — (31 [A0X1] + ralA0X.)) [ROS], (7.22
d[Ain] . kjflifﬂiiﬂ gj]zikzz fgﬂ} P(n1, asst) — BaolAOX], (7.23)
A0X](0) = (k11 + [LABBAX%EET [ETH])P(”Q’ Prst). (7.24)
d[JLO] N kfﬁggg kf;giL[E[gﬂ] ~ B0l N O, (7.25)
d[lciifn] - oo % + aas[NO] = Bao[K gy, (7.26)
d[fi(tﬂ = o)~ Aol (7.27)

The model describes the dynamics of six variables in termthefexternal input
functions[ABA] and[ET H|, which denote the doses of ABA and ethylene respectively.
Note that the Michaelis-Menten term involving ethylene guation [7.2b) has the same
Michaelis constank;, associated withET H| in equation[(7.22). The term with ABA in
equation[(7.26) has also the same constanas the one associated withB A] in the ROS
equation.



112

ABAVETH

ETH , ABAAETH
/Il ?
- Atrboh D L,
l | |
/ - \ iJ
’ — \
AOX; g ' ' AOX,
> pH NIA1
K
Aperture

Figure 7.6: Model of stomatal closure under ABA and ethylstimuli. All nodes in
this picture are either explicitly or implicitly included iequations[(7]7)-(7.20). The input
nodes are shown as yellow ellipses, variable nodes are simogveen ellipses, and nodes
that are blue rectangles are implicitly represented in theBons. The two circular grey
nodes represent parts of the signal transduction netwodsglcomponents are not yet
known, and we include them as linear activation cascadestés¢). The cascade AQX
(on left) is activated by performing a logicat operation on the ABA and ethylene signals,
the presence of either suffices to elicit a response. Theadasgpstream of AOX(on
right) becomes activated by performing a logiaald operation on the ABA and ethylene
signals; the presence of both of them is required to elici#sponse.



113

One of the distinctive aspects of this model is the approaafartds the simplification
of uncharacterised activation cascades, which can cotiiteostrength and timing of the

antioxidant response_(Heinriat all, [2002). In particular, it is key that the modelling of

the cascades in this model incorporates a representatitve ahplicit delay present in the
antioxidant response, which occurs in parallel to the pctida of ROS (see the cascades
on both sides of Fid. 716). In order to accomplish this paosimously within the setting
of ODEs, equation$ (7.23) arld (7124) incorporate cascadimgs which introduce a delay
through the effect of parallel processes. The introduatiosuch terms is commonplace as

an alternative to more complex delay equations (Baetul, [2000; Hoferet all, [2002).

In our case, we have used a simple model of a linear activatecade with identical

deactivation rates (Heinrickt al., 2002), which has been shown to provide optimal signal

amplification (Chavest all, [2004). Each cascading module has an explicit analytical

solution in terms of the normalised incomplete gamma famcéind introduces only three
parameters to the model, as discussed in Chapter 5.

7.3.1 Numerical results from the model

The resulting dynamical model of signal transduction (-g2.27) has six variables and
consists of five coupled nonlinear ODEs (because one of thables can be solved
explicitly as a function of time) with 28 parameters. We nawvitfe model to experimental
data and we use it to study the temporal response of the systaxternal inputs of

[ABA], [ETH] and combinedABA| + [ET H| stimuli.

Fitting the model to experimental observations

Our simulations start from a ‘control’ initial condition:

[ROS](0) = [A0X1](0) = [NOJ(0) = [K;,,)(0) = [K](0) = 100,

and[AO0X5](0) = 0. (7.28)

Furthermore, we define relationships between some of tlapers such that when there
is no treatment (iABA] = [ET H] = 0), the system remains in equilibrium at the control
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Figure 7.7: Experimental data and model results fopMddoses.A: ROS fluorescence
time-course. B: Stomatal aperture time-course. Plots show responses tedtment
with 10 uM ABA (blue), 10 uM ethylene (red), and 1@M ABA and 10 ;M ethylene
(green). Markers show experimental measurements presgn@haptef b, bold lines are
the solutions to equations (7122)—(4.27) with the parametieies from Table D]1.

initial condition.

We use the experimental time-course measurements of RO&p&ntdire presented in
Chaptet b to fit the model parameters. For a relatively largdehwith many parameters,
the amount of data we have is not very much, which will makeapeter fitting a
challenging task. We use tlsgueeze-and-breathaptimisation procedure introduced in
Chaptef 4 to find the values of the parameters. The squeelzbraathe procedure is suited
for optimisation problems such as this, given its abilitpavigate the complex surfaces of
the objective function (the difference between the modédlthe data as a function of the
parameters) and find its minimum. AppenfixD.3 gives theitbetd the implementation.
The parameters of the model found using the squeeze-aathbralgorithm are shown in
Table[D.1.

The fits to the data in Fid.__4.7 are shown to match the set ofreasens after
single and combined 10M treatments, specifically the response to the combineduitim
Figurd Z.8 shows solutions of the model along with the apexbservations under assorted
treatments; these show that the model is able to reprodusenadiions that range from
low-dose treatments to higher doses.
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Figure 7.8: Experimental aperture data and model resulttom&al aperture after
treatment with 1uM ABA (blue circles), 1M ethylene (green squares), 21 ABA
(orange diamonds), and 10 ethylene (light-blue stars). Bold lines show the solusion
to equations(7.22)E(7.27) with the parameters in Tablé D.1

7.3.2 Dynamical response of the model to stimuli

The dynamical behaviour of the model of signal transducitsoexplored in Figureg 7.9
and[7.10. We remark again that the model is constructed t@sept only the transient
dynamics following different external inputs and that wevénanot considered further
downstream mechanisms that would dominate the dynamioaget timescales. Stomatal
closure in response to either ABA or ethylene is a relativast process that takes place
in time scales shorter than typical genetic regulation. ntéaning stomatal closure and

inhibiting stomatal opening are separate processes (&mﬁ, 2009), that require other

regulatory interactions and expression of certain genbe é€al.,[2009a; Kimet al.,[2010)

which we do not consider here. Therefore, we are only comckimthis work with short-
term, transient behaviour of stomata and we do not studytti®sary dynamics of the
model. Once the model reaches steady state, other proseididas active in guard cells
affecting the model behaviour.

The heat maps in Fidg. 1.9 show snapshots of the time-courstoafatal aperture
following treatments of different dose combinations of ABAd ethylene, represented
on the ([ABA], [ETH]) plane. The simulations reproduce the observation thatsdose
of combined treatment (up to 2@M) result in diminished closure (that could lead to
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Figure 7.9: Predicted aperture response map of combirsatibABA and ethylene doses
15, 30, 45, and 60 minutes after treatment. The coordindtes@h point in represent

the dose combination and the colour denotes the responsek r@gions indicate less

aperture (ie more closure in response to treatment) antkligkgions show more aperture.
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enhanced aperture if enough ROS is depleted) over the timese&oas compared to the
increased closure induced by doses of single treatments vahables respond with
different intensity to the treatments; in particular thedabpredicts that ethylene has a
stronger AO X | response than ABA (see FIg. 7111A whose consequence carsbeved
in the faster decay in ROS fluorescence from Eigl 7.7A). Thaidant[ AO X5] is only
active only during treatment with both hormones, as we haseipusly discussed.
Figure[7.10 shows that the responses to the two hormones @@t minutes) are
asymmetrical, with ABA inducing more closure than ethylerhis asymmetry of the
response is consistent with reports in the literature tttahata respond more strongly to

ABA than to ethylenel (Tanaket al., [2005), though it appears to diminish with increased

doses.

A prediction of the model is that relatively low doses of thembined stimulus
“backfire” 45 minutes after treatment, resulting in the stref the closure process. A
slight reopening can be observed in the response to comliieatinents in Figl—7.10;
such re-opening is a direct consequence of the excess @latixactivity (ie [AOX5])
that results from the interaction of the ABA and ethylenehpatys (Fig[Z.1l1). Further
experimental data are required to validate this prediaimhto check if other mechanisms
become significant at longer times.

The modelling also suggests that ethylene should have nhare ane pathway to
produce NO. Alternative models with ethylene-induced N©@l@sively produced via ROS
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Figure 7.10: Predicted aperture response after 60 minatdsedes of ABA (blue line),
ethylene (red line), and a combination of equal doses of ABA ethylene (green line).
The responses to single treatments correspond to tredy axes of Fig['Z.0. The green
line is the response to the combined stimulus of equal dds&BA and ethylene, which
corresponds to the values along the diagonal in the heat nip. data points are the
experimental measurementg at 60 minutes of the aperture also shown in [igl]7.7.

(ie by makingas, = 0) were not able to reproduce the response dynamics of guard
cells that we report here. In parallel experimental studie®R. Desikan’s lab, new
signalling pathways downstream of ethylene that appeae ®®S-independent are being
uncovered. Similarly with the active K, channels: ABA-driven alkalinisation alone is
not enough to create the outwards flux of ions needed to azlsievnatal closure and an
NO term (42[NO]) must be added to equatidn (71.26) to attain the necessafjukariThe
relationship between NO andK is unlikely to be direct, although NO can block'K

by nitrosylation ((Sokolovski and Bl III_ZQO4). EnhancemehK’ . activity by NO is

out

more likely driven by membrane depolarisation in respows€# " release or cytosolic
alkalinisation, as depicted in Fig. 7.1.

Using our analysis of DDEs from Set. 5.3 we can calculage dharacteristic
timescales; andr,, that lead to the activation of AOXand AOX, respectively:

ny . N9 .
7n=——1~ 111 min, T =——1~12min.
Qa3 13

These timescales (visible in the time-courses in Eig.]7dit¢ information about the
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Figure 7.11: Antioxidant time-courses after treatmexit.Time-course of AOX given by
equation[(Z.213), responses to ABA treatments (dashed)lare lower than the responses
to treatments which include ethylerig. AOX, time-course given by equation (7124), only
active when ABA and ethylene treatments are present at the sme.

nature of the mechanisms behind the observed antioxiditt&f The value of the AOX
timescaler; suggests there is enough time for antioxidant genes to regsgd. In contrast
75 IS smaller, meaning that AOyhas a much faster timescale and its action is unlikely to
depend on gene expression.

7.4 Discussion

In this chapter, we have investigated theoretically why $tdmatal closure fails to occur
when guard cells are presented with a combined ABA-ethystineulus, an observation
first reported by Tanakat al. (2005%), and reproduced in Chapiér 6. As shown in[Eig. 7.1,
the pathways of both hormones overlap strongly, with ROYiptpa significant role.

The development of earlier models that culminated in the eh@iesented here, has
required information about ROS levels past the 5 minute retkr treatment, hence the
experimental observations of ROS production have beeméateto 60 minutes. The
measurements of ROS and stomatal aperture in guard cetiglated with ABA, ethylene,
and ABA plus ethylene show that when both hormones are preR&S are removed
swiftly after an initial burst of production and the closym®cess reverses. This is the first
report of a rapid change and shift in pattern of ROS prodadtigguard cells depending on
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the type and number of input stimuli.

Based on the experimental data, the model presented intiEer posits the existence
of two separate antioxidant mechanisms active in guarg.céllne such mechanism is
the generic antioxidant mechanism (AQ>operational with any single ROS-generating
stimulus (ABA or ethylene), which allows ROS to signal downstream companehthe
pathway and then removes ROS to control oxidative stresss&bond antioxidant (AOX
response is only active when both hormones, AB#lethylene, are present simultaneously
and does not allow the ROS signal to persist long enough tataiaiclosure, causing the
reversal of the closure process.

The antioxidant pool in guard cells is diverse, includingasgorbate, catalase, and
& 4, Pham and Desikan,/ 2G08)hermore, NO has been
shown to exhibit antioxidant activity by reacting with supede (Neill et all, [2008), to

glutathione|(Chen and Galli

enhance dessication tolerance (Baal., 12011), and to nitrosylate NADPH-oxidase (Yun

et al, 2011). Although the interactions between ABA, ethylengnalling molecules and

antioxidants are highly complex, the model developed hezegnmts a first hypothesis of
how ROS production and removal is tightly linked to stomatakure in guard cells. The
modelling in this chapter also puts forward the hypothdsas €thylene may have a ROS-
independent way of producing NO, with effects on pH2Gand membrane polarity that
need to be elucidated.

The model in equationd (Z.R2)—(7127) predicts that a coetbistimulus of &M
or more of each hormone would result in the arrest of the coguocess (Fig._719),
a consequence of the fundamental need of increased ROS ctimddior successful
closure. This observation requires experimental veriboaturthermore, the physiological
concentrations of both ABA and ethylene present duringrenvnental stimuli such as

bacterial challenge or high humidity that cause stomatpemdéMelottoet al.,|[2006; Zeng

et al,|12010) need to be ascertained.

In the natural environment, plants face threats from migtigtimuli; yet under
laboratory conditions, mostly single stimuli are studi€dis is partly due to the complexity
and variability in responses that ensue following exposuraultiple stresses. Using guard
cells as a model system we have considered mechanisms far-@ivial output under a
combination of stimuli. This study is a first step towards mjitation of a fundamental
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physiological process in plants, which is essential fomghoand development.
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Chapter 8

Conclusions and further work

8.1 Finishing remarks

In this thesis, we have sought to understand how two signgilsaverlapping pathways
can produce different outputs when applied together thaanvapplied individually. In
the case of ABA and ethylene in guard cells this problem hasired an interdisciplinary
approach, combining traditional experimental biologyhwabmputational and mathemat-
ical methods. As the understanding about the inherent aaxtplto the functioning
of organisms increases, the need for biologists to liaiga wiathematicians and other

guantitative scientists becomes even more evident (dtals2001). The rewards of such

interdisciplinary approaches come in the form of a more stiglated understanding of life.
Living organisms are constantly subject to many simultasestimuli, and understanding
the way in which they sense all these inputs and react to trembe intractable using
exclusively experimental or theoretical methods. Thushasee combined and developed
mathematical and computational approaches with expetahemethods to investigate
stomatal closure under single and combined stimuli. Ewlgehis work is not the final
word in stomatal closure research; on the contrary, (asise€haptef¥) our results pose
new questions and suggest new avenues for future resednshwark is an advance in the
guest to understand multiple stimuli in guard cells and otiedular systems.

This work accentuates the importance of transient and digadimehaviour in cellular

processes, as noted previously by Strelkowa and Barak Y2 and stresses the
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fundamental importance of time-course data (as opposedsingde measurement after
treatment) as an aid to understanding responses to mugdtipieli. Nonlinear interactions
are the norm in biology, and models representing them arabtawf a variety of distinct

behaviours that depend on the values of their paramé

%

v, 1998). Time-course

data are essential to discriminate between plausible apthusible behaviour; this can be
done by narrowing ranges of the parameters or determingigvhlue, aided by methods
such as the evolutionary Monte Carlo optimisation algonitintroduced in Chaptdl] 4.
Acknowledging the inevitable complexity of large biologianodels, we have sought to
develop methods to reduce models so they can become motablewithout losing the
essential features of the system. In Chapler 5 we have madgess in the analysis
of activation cascades, their use in model reduction, ama \@able alternative to delay
differential equations. Finally, in Chaptérs 6 and 7 we Hansight together experimental
observations, mathematical modelling techniques, thdtsesf activation cascades and our
new parameter fitting method to study the absence of storlatire under simultaneous
ABA and ethylene treatment. The modelling process and @xgeital observations stress
the importance of ROS in stomatal closure not only duringniteal moments after signal
perception, but over the first 60 minutes of signalling anghhght how crucial it is to
understand guard cell antioxidant mechanisms, which igh@naontribution of this work.

8.2 Future work

8.2.1 Evolutionary Monte Carlo methods

Further work on thésqueeze-and-breatimeethod introduced in Chapter 4 shall focus on

three main points:

e Establishing a probabilistic framework to allow tBgueeze-and-breatie be used
with model selection methods. Currently, Bayesian modielcten methods such

as ABC-SMC ((Toniet all, [2009) require the probability of the posterior to be non-

negative, given a prior. The local optimisation step in Algom[4.1 can (and does)
explore regions outside the prior. A way of overcoming timsitiation is to find an
acceptable way to assess the probability that the algomtkpiores regions outside
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the prior or, as mentioned in Chapkér 4, to use other didtdba such as log-normal
or exponential instead of the uniform distribution. The elepment of alternative
model-selection criteria can also be explored. Additigntie local optimisation

step of the method could be constrained to find minima onliiwithe prior region,

and progressively expanding the prior as needed. Yet anwathg can be, once
the sequence of posteriors becomes nesteytooff the local optimisation step to
perform Bayesian analysis in the following iterations.

e Itis also important to make the algorithm available to a widege of optimisation
problems, and not only parameter fitting. Presently, theilida region of the
optimisation problem i&”, and in many constrained optimisation problems feasible
regions are complicated and even disjoint; algorithmsdigeve to explore infeasible

regions before convergence to the minimLm_LNQ_CEQaLand_hM@_CMS). Some

optimisation methods uggenalty functionso gauge the gains in terms of reduction

of the objective function that are to be obtained from explpinfeasible regions,
in the hope that it helps to find a feasible minimum. This featecan be
incorporated into th&queeze-and-breatieutine by biasing the posteriors towards
feasible regions or ranking local minima according to amaldsthed criterion, eg
SRES|(Runarsson and Yao, 2000, 2005).

e Development and release of a software package for optimisand parameter
fitting, or integration into other currently available sefire packages.

8.2.2 Activation cascades

The results on activation cascades presented in Chaptefds mus on linear cascades
without feedback, Appendix 0.5 offers preliminary results weakly-activated cascades
with nonlinear negative feedback. Future work on this sttbghould include the
characterisation of (nonlinear) strongly-activated edes and cascades with feedback.
Including negative feedback is a particularly challengiagk because such cascades may
display stable steady states and oscillations; for theseadgs it may be more convenient
to study different behaviours separately, deriving appnations for each case based in
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particular regions of the parameter space. Another intiegeavenue for further research

is to consider the degradation rates of the components atbeades as random variables,

and to derive conditions for optimality analogous to thesoobtained by

2004

) for constant rates. Additionally, activation catEmcan be studied from a stochastic

perspective (eg Csikasz-Nagyall (2010)).

8.2.3 Stomatal closure

The experimental and theoretical investigations of stamelosure under single and

combined ABA and ethylene stimuli have brought about new iatekesting questions

about the functioning of guard cells. These possibilitestiture work share the need for

continued interdisciplinary approaches, as has been dotmgsi thesis. Some of the most

important tasks for the future are:

Gathering more time-course data of NO, pH/,,KCI~, under single and combined
ABA and ethylene stimuli, for a variety of treatments. Theseasurements are
essential to characterise the behaviour of guard cells@atltthe development and

improvement of future models.

Understanding the ethylene pathway: as mentioned in[Sdcnfany components
of the ethylene pathway have not yet been uncovered. Theaatiens directly

below ethylene perception to this day remain unknown. Addélly, pH change,

NO production, and membrane depolarisation need to be owmdiafter treatment
with ethylene.

The hypothesis that the lack of closure following treatmeith combined doses of
ABA and ethylene was put forward in Chapiér 7; this hypotheasieds to be verified
experimentally. One way of testing the hypothesis is usingamts. Sectioh 2.2.3
mentions enzymatic antioxidants ascorbate peroxidagerexide dismutase, and
catalase as part of the antioxidant repertoire of guard;galints with the pertinent
genes knocked-out can be used to test which of them are gwatvcontrolling ROS

during stomatal closure. The use of mutant plants has tkehé other genes may
be expressed to compensate for the ones that have been Brmakehis could be
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avoided by performing experiments on wild-type plantstedavith inactivators or
scavengers of antioxidants.

e Ifitis confirmed that the cross talk of ABA and ethylene oscirthe early stages of
signalling, detailed models such as the one in equatiody-(7.8), can be explored
and expanded to achieve a full understanding of ABA and etigdinduced ROS
production.

e A stochastic or a hybrid model could be needed to understapecés of the
signalling process. For example if the number of moleculesparticular component
(eg a receptor or a protein cluster) is small, then it can behwmdile to have a
stochastic description of its activity, integrated to aye@armodel containing ODEs.
Biophysical approaches may also be of use to understandaspects of the closure
process, eg the biomechanics of stomatal closure.

In addition to the list above, it must be stressed that thiskvias been exclusively
concerned with stomatal closure; as mentioned before,ighés separate process from
inhibition of stomatal opening. The transition from one gass to the next has not been
investigated. An exciting possibility for further resdarkies in the development of a
homeostatic model of guard cells, that incorporates ciatachythms, stomatal closure,
inhibition of stomatal opening, and stomatal aperture.hSamodel can be an invaluable
tool for understanding how plants react in the short and teng to environmental changes
or other pathogens, and may have important applicationfiendevelopment of more
resilient crops and to further understand cellular proegs3 he approach from this work
can be used to understand combined stress signalling pgghwiere clearly defined
outputs and measurements are available, eg cell-death.

Ultimately, profound understanding of stomatal closurel aell signalling under
a variety of stimuli should translate into improved knowgedof water and nutrient
consumption by plants, whose importance for agricultuggpliaations is difficult to
understate.
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Appendix A

Competition and antagonism in cellular

signals

Here we explore combinations of cell-signalling networgdtogies and dynamics which
exhibit antagonism or competition among incoming signdlkis work is inspired from
the observation that a two signals such as ABA and ethylerikdijselves cause stomatal
closure, but do not when they are applied simultaneoushaf@is2[16, andl 7). Here
we show explorations of abstract toy models in which indnaldsignals elicit the same
response but in combination display antagonistic behavasucompete for a limited
resource, producing different outcomes together tharviddally. In Sec[A.B we show
how this approach has been used to analyse how two isoformdVbAPK compete for
activation by the same kinase.

A.1 Antagonistic activation

Suppose that in a cell-signalling system two signélsandS,, activate receptor®; and
Rs, which in turn activate or produce (independently of eadiegtan output signak’.
Here we study the case in which both signals mutually antagogach other so tha
inactivatesR, andS;, inactivatesR;. FigureLA.1 shows a cartoon of these interactions.
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Figure A.1: Antagonistic action of signalg andS;. The signalS; activatesR,, which
producesF’, and inactivates?,. In turn, S, activatesR,, which also produce$’, and
inactivatesR;.

A.1.1 Mass-action model

We can represent the interactions from Fig.]A.1 (in a simpledimensional way) using
mass-action kinetics. The ODE model of such a signalling/ogX is:

dR,
—=5—-(1+5)R
dt 1 ( + 2) 1
dR,

— =5 —(1+51)R
dt 2 ( + 1) 25
dF

S R 4R —F
dt 1+ 2 9

with initial conditionsR,(0) = R»(0) = F'(0) = 0. The model is linear and can be solved

analytically:
S
t 1 o —(Sg-i—l)t
Rl( ) 1+ 52 [ € :| ’
Sy
t) = 1 — —(S1+1)t
RQ( ) 1+ Sl [ € :| ’

—(Sg+1)t
F(t) = {1 + < ] T

o~ (S1+1)t B 512+S226—t
S '

Sy S159
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The steady-state solution of the system is:

S
Ry, = —— Al
1ss 52 _'_ 17 ( )
Sa
Ry, = A.2
235 Sl _'_ 17 ( )
F,, = S (A.3)

S +1 0 S+ 1

FigurelA.2 shows the steady-state behaviouFgfin equation[(A.B). Figure_Al2A shows
the steady-state landscapelQf as a function ofS; and.S,; Fig.[A.2B shows the contours
of Fi,.

If the antagonism is the result of impeding activation ratian actively scavenging
the other signal, we have the following equations:

dR; S

B R
at  1+8, 7V
dR, S,

o 115
dF

— =R Ry — F
q 1+ o

The steady state behaviour of this system is the same asatiegsi(A.1),[A.2), and(Al3).
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Figure A.3:A: Values ofF,, given by equatior (Al6) under different dose combinatiadns o
S; andS;. B: Contour map off,.

A.1.2 Michaelis-Menten model

If we use Michaelis-Menten kinetics to model the system m[A.1l, the ODE model is:

dR1 Sl _ ll X SQ :| R1

At 1+ 8, 1+ S| 1+ Ry’
@: SQ _[1+ Sl :| R2
dt 1+ .5, 14+8 | 1+ Ry’
dF R R, F

U 1+ R 1+ R 1+ F
with the initial conditionsRk, (0) = R,(0) = F'(0) = 0. The steady state of the system is:

S1(1 4 52)

= A4

B = 105, 1 5,05 (A-4)
So(1+S1)

- A5

o = 1725, 1 5,5, (A-5)

ro_ 451%95° +581°8 + 5519 + 257 + 4518 + 257+ 51 + 55 (A6)

51252 + 51522 +555 +25 +255+1

In Fig.[A.3 we show the steady-state behaviourFbfiven by equation[(Al6). Each
signal alone causes activation®fproportional to its strength and that it takes just a small
value of the second signal fdf to decrease to almost zero. As more of the other signal is
added, the signals actually cooperate &hid greater than either signal individually.
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Figure A.4: Competitive activation of two signats and S,, both of which need> to
produce compounds; andC; which producer.

A.2 Competitive activation

A.2.1 Rate-limiting resource

Two signalsS; andS; combine (or react) with a limited resour¢éwhich is needed to
produce compound§’; and C, as shown in Figi_AJ4. The compounds can activate an
output signalF” when a sufficient amount of either one is present. We assuahéhih total

concentration ofy is 1 (in arbitrary units) and that

G+Sl':r01,
G+521:702.

An ODE model for this system is:

dC
d—)jzsl[l—cl—@]—cl,
dC
d—jz&[l—cl—@]—cz,
dF " ay"

- = - F
dt 1+01"+1+CQ" ’
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Figure A.5: Response of competitive activation systemifer 5. A: Values ofF, given
by equation[(A.P) under different dose combination$'ofindS,. B: Contour map of-,.

whereG(t) = 1—C4(t)—Csy(t). From resting initial conditions{; (0) = C3(0) = F(0) = 0)
the steady-state of the system is:

Sy
c =2t A7
b T 14 S+ 5 (A7)
S
Cy —— 2 A.8
T S+ 5 (A8)
51 " Ss "
Fss o (1+52+51> <1+S2+51) (A9)

n s " s "
L+ <1+521+51> L+ (1+S22+51)

Figure[A.H shows the response 8%, in equation [(A.9) whem = 5 to different
combinations of5; andS;. Again, each signal by itself produces a response. Whent
the signals actually cooperate and the response to a codhstimeulus is greater than to a
single stimulus (Fid._Al6). As grows, the antagonism between the signals increases.
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Figure A.6: Response df,, from equation[(A.P) to combinations 6f andS; and different
values ofn.
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A.2.2 Compound Michaelis-Menten forms

Suppose an enzyme E catalyses the production of a substafenPtwo different
substrates Sand S in the following chemical reactions:

k
51+E%C1k—3>P—|—E

k
52+E%02k—6>P+E.
5

The enzyme binds to the substrates to form a complex whiche@her dissociate or

catalyse the reaction. [E], [S1], [S2], [C1], [C2], and[P] denote the concentrations of
the reactants and the products of the reactions, and th&aigssare abundant enough (ie
the concentrations can be considered to remain consther) the ODE system describing

the reactions is:

d[E
W) RSB - MISIE) + (R + )G+ (s 4 R)ICL (A0)
d[C
G k(8181 ~ (o + RO (A11)
d[C
Gl k111~ (ks + RG] (A12)
d[P
% = k3[Ch] + ks[C]. (A.13)
Because% + d[dct” + d[dcf] = 0, we express the total concentration of enzyme as

Er = [E] + [C1] + [C], Er € RT. We eliminate equatioh (A.10) using this conservation
relation. Now equation§ (A.11) and (Al12) become:

dﬁﬂ = ki [SU(Er — [C1] = [C2]) = (ke + ko) [C1], (A.14)
dﬁz] = ka[So)(Br — [C1] — [Ca]) — (ks + ke)[Ca). (A.15)

The quasi-steady-state approximation (QSSA) states #fatdoany meaningful amounts

of P are produced, the enzymes and complexes reach an eiquiiiJ:Murra 2006; Segel
and Slemrod, 1989). Thus, equatiohs (A.14) dnd (A.15) atk bqual to zero, because
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they do not depend on equatign (Al.13) and we can analyse théeulation:

0= k1 [S1](Er — [C1] — [Cy]) — (ko + k3)[C1],
0 = ky[So](Er — [C1] — [Cy]) — (ks + ke )[Col.

If k, = (]i]z —+ ]i]g)/kl andkb = (k?g; + k6)/k4 then

kyEr[S]

] = A.16
] ko[ S1] + ka[So] + Eaky’ (A-16)
kaET[SQ]
Cs) = . A.l7
= RS T Rl + ok A1)
The production of P can be expressed as
d[P] ~ ET<k3kb[Sl] + kaa[SQ]) (A18)

At k[S1] + kalSo] + ks

which is a compound Michaelis-Menten form. Wheh| > 0 and[S;] = 0 the expression
in equation[(A.16) becomes proportional to the standarchiidis-Menten form:

_ Erks[S]
[Ch] = AR

likewise when[S;] = 0 and[S;] > 0 we have

Erke[So]

= ok

Figure[A.T shows an example of the compound Michaelis-Mefdem (A.18) with
Er =1,ky =2, ks = 0.8, k, = 5, andk, = 1. On Fig.[ATA we show the value 6§
with different signal combinations, and on Hig. A.7B we shitvw cases when one of the
two signals is zero (bold blue and dashed red lines) and wietwio signals are the same
(dash-dotted green line). Here we can see how one signal edfelct the response of the
other.
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Figure A.7: Example of compound Michaelis-Menten respsrmdeequation[(A.118) when
Er=1,k3=2,ks =038, k, =5, andk, = 1. A: Response to combinations 8f and.S;.
B: Response to a single signal (bold blue and dashed red hnelstpS; + S, with “equal
doses” of each signal (dash-dotted green line).

A.3 Competition for activation among MAPK isoforms

The approaches to understanding antagonism and competiio limited resources

discussed above has been usec i 2011) to understand the dynamics

of the activation of two MAPKSs that share the same activakimpse (MAPKK). The
mitogen activated protein kinases (MAPK) are importanayslin many of these signal

transduction processes (Mar&sall, 12009); they are involved in regulating cellular fates
such as proliferation, differentiation and apoptosis _(lubnd Ram, 2010). The most
widely studied MAPKSs, Erkl and Erk2, are activated througjogphorylation by Mek,
their MAPK kinase (MAPKK), and Mek in turn is activated by ikshase (MAPKKK)
Raf. Activated kinases, such Erk or Mek, are deactivatedd@phosphorylation by

their respective phosphatases. Erk is encoded by two gémks,and Erk2 differ only
subtly at the sequence level; however, Erkl and Erk2 appelaave different biological
characteristics (Mazzuccheét all,12002; Pagest al.,11999).

We study Erk1/2 activation in two cell types, HeLa and NIH 3@8d under different
conditions. The two Erk isoforms (Erkl and Erk2) exist in aighree states: inactive

(Erk), bound to Mek (Merk), or active (Ef§. Erk transitions from inactive to active
through Mek, free phosphorylated Mek reversibly interaats inactive Erk. Upon Mek-



H Merkl 'l Erklp

Figure A.8: Schematic of Erk1/2 activation by Mek. Doubleosrs denote reversible
reactions, and single arrows; irreversible reactions gemaodified from Harringtoet all
(201 ﬂ).

Reaction Forward rate:M~! s~1) Reverse rate (3)
Erkl + Mek = Merkl 8.8 x 107! 8.8 x 1072
Merkl — Mek + Erklp 3x 107!

Erk2 + Mek = Merk2 8.8 x 107! 8.8 x 1072
Merk2 — Mek + Erk2p 2x 1071

Erklp — Erkl 1.4 x 1072

Erk2p — Erk2 1.4 x 1072

Table A.1: Reactions of Erk1/2 activation by Mek, and deation. Forward and, where
pertinent, backward reaction rates are included. Theioectre illustrated by Fidg._Al8
and described by equatiors (Al10)-(A.25). All reactioresatake fro 2t 3

(2006).

Erk binding and formation of an intermediary complex (Merk)ek phosphorylates Erk
(Erkp) and then dissociates. In order for Ekrko revert back to its inactive form, it
undergoes dephosphorylation by a phosphatase. [ Fi@j. ABsshcschematic of Erk1/2
activation by Mek. The mass-action model describing thetreas in Tablé"A.B are:

d[Erkl]

= klErkl[Mek] + ki [Merk1] + ko[Erk1p], (A.19)
d[]\j:k] = ki [Brk1)[Mek] — ks[Erk2][Mek]
+ (ko1 + ko) [Merkl] + (k_s + ke)[Merk2], (A.20)
% ky [Erk1][Mek] — (k_1 + ko)[Merk1], (A.21)
AEYRIPL _ y (erkt] — ko[Erkip), (A.22)

dt
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Parameter Description

k1 Forward interaction rate between cytoplasmic Mek and Brk1
k_1 Reverse interaction rate between cytoplasmic Mek and Brkl
ko Phosphorylation rate of cytoplasmic Erkl

ks Forward interaction rate between cytoplasmic Mek and Brk2
k_s Reverse interaction rate between cytoplasmic Mek and Erk2
kg Phosphorylation rate of cytoplasmic Erk2

ke Forward interaction rate between cytoplasmic Mek and Erk2
k_r7 Reverse interaction rate between cytoplasmic Mek and Brk2
ko Dephosphorylation rate of cytoplamsic Egkl

k11 Dephosphorylation rate of cytoplasmic Egk2

Table A.2: Description of the parameters in equatidns (NE925).

d[Edrth] = —ks[Erk2)[Mek] + ks[Merk2] + ki1 [Erk2p], (A.23)
d[MTQtTM = ks[Erk2|[Mek] — (ks + ke)[Merk2], (A.24)
% = kj6 [MBT‘]C2] — kjll[E’l“k2P], (A25)

and conservation relations:

[Mekr] = [Merkl] + [Merk2] + [Mek],
[Erklr] = [Erkl] + [Erklp] + [Merkl],
[Erk2r] = [Erk2] + [Erk2p] + [Merk2].

The parameters of the model are described in Tablé A.3. Wiy she system under
two different conditions: baseline and limited Mek, in eagse the model has different
initial conditions. Under baseline conditions we have f{iati1], = 0.2, [Erk2], = 0.8,

[Mek]y, = 1.0 (Fujiokaet all,12006; Marchiet al

t = 0. We explore the effects that limiting the amount of Mek wob#le on the system

,12008), and all other variables are zero at

by setting[Mek|, = 0.2, and studying the system in parallel to baseline conditions
We investigate the effects of the phosphorylation/dephospation rates on the

relative abundances of Erk2o Erkl, at steady state in both the baseline Mek and the

limited Mek scenarios. These parameters have been idetﬂiﬁklaﬂnglgcel_al 2011)
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as the most sensitive in the model. The log-scale indicator

o=tox ({pm)

can identify the dominance of a specific phospho-Erk isofolby orders of magnitude

as physical conditions are changed. For example, a valueOofntlicates ten times
more Erk2 than Erkl> whereas a value of-1.0 establishes there is ten times more
Erklp than ErkZ.. The phosphorylation rates and dephosphorylation ratesach varied
separately from 10 to 10" in line with biophysical considerations andis evaluated
(Fig.[A.9A,B). As the rate of phosphorylation of Erki,] increases, values of become
negative indicating dominance by Erk{Fig.[A.9A (ii)), whereas an increase in the Erk2
phosphorylation rateif) demonstrateg’r k2 prevalence. The effect of the phosphorylation
rate ony is asymmetric, meaning that there is a larger region in tharpater space
of values giving rise to Erk2 dominance (see non-overlapping curves in Eig] A.9A (i)).
Under limited Mek conditions the maximum/minimum valuesgadire larger and smaller,
respectively than the baseline conditions. An increaseephdsphorylation rate of Erkl
(ko) results in a larger positiveo, or an ErkZ steady-state bias, and vice-versa for
Erk2 dephosphorylationk(;); this is also reflected in the heat map asymmetry, with
a bias towards Erk2 which is more easily activated than Egk1l This asymmetry is
also apparent in the time course (Fig. JA.9B (i)). Under laditMek conditions, the
phosphorylation/dephosphorylation rate parameter spasea larger region for possible
competition scenarios (see largest (white) and smalléstKpvalues ofp, corresponding

to high Erk2- and Erkl> dominance in Figl_AI9A,B (iii)). Such dominance suggests
that for certain phosphorylation/dephosphorylationsatelimited stimulus would more
strongly favour an Erka response than non-limited stimuli. Figure A.9C illusteat®w
the total amount ofsrk may vary across cells affects activation states. For stall Mek,

as well as baseline conditions, the initial amount gredflycts the steady-state value and
it gives the expected result that as total Erkl in the systemreases, the total Erklalso
increases (Fig._Al9C). Unlike the phosphorylation/depihasylation cases, the value of

at a given total [Erkly], [Erk2r]) point does not change as Mek becomes limited (heat
map indicator colours are nearly identical).
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Figure A.9: Competition of Erk1/2 for activation. Compgtit in minimal model at
baseline [Mek], = 0.8) and limited (Mek], = 0.2) conditions. Competition scenarios
are studied using heat maps and time courses. Heat majp$ ¢ii-parameter /initial
condition values are given along the horizontal axis andicadraxis are varied and the
associated colour at each parameter/initial condition lioation correspond t@p =
log([Erk2p|/[Erklp]). Solid circles and open circles in heat maps are shown in time
course of[Erklp| (blue) and[Erk2p] (red) in (i, iv) where a solid circle corresponds to
a solid line and an open circle corresponds to a dotted Bnd=ffects of phosphorylation
rates on Erk1/2p. Values ok{, k¢) are varied, solid circle is high, = 0.6, low ks = 0.1
and open circle is lovk, = 0.1, high ks = 0.6. B: Effects of dephosphorylation rates on
[Erklp| and [Erk2p]. Values of €9, k1) are varied, solid circle is highy = 0.6, low
kip = 0.1 and open circle is lowky = 0.1, high &k, = 0.6. C: Effects of [Erk1], and
[Erk2]o. Values of total Erk concentration§rk1r], [Erk2r]) are varied, solid circle is
high [Erklr] = 2.0, low [Erk2s] = 0.5, and open circle is lowErkly] = 0.5, high
[Erk27] = 2.0. Image modified from Harringtoet all (2011).
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The model[(AID){A.25) setin a competition framework pd®s a number of insights,
specifically it highlights that phosphorylation/dephosphation rates play an important
role in the steady-state behaviour of EgkAnd ErkZ-. Under limited Mek conditions, the
parameter space exploration suggests there is a strorgy @&ege||) on the response.

The value of the initial conditions can induce a Egk@ Erkl, dominated response and

limiting Mek alters the steady-state value of this responstre generally, this model

provides a simple framework for gaining insight into the gaments which control the

competition between Erkl and Erk2 for its kinase Mek, and vewide a indicatory for

giving Erk1p, or Erk2y cell response. S

2e Harringtehal

201

) for more details.
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Appendix B

Data fitting tables

B.1 Bliss-Painter-Marr model data

t R

0 0

20 43.5373
40 13.3667
60 140.8903
80 29.2816
100 108.1722
120 19.0093
140 75.0065
160 14.4018
180 50.4473
200 217.1082

Table B.1: BPM data.

Table[B.1 shows data obtained from a simulation of the BPM ehdbm equa-
tions [4.10) using parameters = 240 and 5 = 0.15, initial conditions R(0) = 0,
E(0) = 0, P(0) = 0, and adding random noise sampled fronWV&), 15?) distribution.
Only the data for variabl& was obtained.
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t S I R

0.6 0.12 13.17 9.42
1.0 0.12 7.17 11.19
2.0 0.10 2.36 10.04
3.0 0.38 0.92 6.87
4.0 1.00 0.62 4.45
5.0 1.20 0.17 3.01
6.0 1.46 0.28 1.76
7.0 1.38 0.10 1.29
8.0 1.57 0.03 0.82
9.0 1.46 0.29 0.52
10.0 1.25 0.10 0.23
11.0 1.56 0.22 0.20

Table B.2: SIR data.

B.2 Susceptible-Infected-Recovered model data

Table[B.2 shows data for the SIR model generated from eqs{id.11) using initial
conditionsS(0) = 20, 7(0) = 10, andR(0) = 0 with added random noise sampled from a
N(0,0.2%) distribution as appears in Toet all (2009).

B.3 Repressilator data

Table[B.3 contains the simulated repressilator data qooreting to the three mRNA

variables in model({4.13). The data were generate Tothi Stompf (2010) using

parametersy, = 1, n = 2, § = 5, anda = 1000, starting from initial conditions
ml(O) =0, pl(O) = 2, mg(O) =0, p2(0) =1, mg(O) =0, andpg(O) = 3, with random
noise added from A/ (0, 52) distribution.

B.4 Genetic switch data

Tables[B.# an 5 show the fluorescent response of IPTGzettlgenetic switches
described in Wang (2010); Wareg al. (2011).
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t ma mo ms

0 0 0 0

0.6 2.04 28.99 20.96
4.2 32.19 11.29 7.49
6.2 4.13 10.61 44.25
8.6 2.15 55.27 7.12
13.4 5.09 9.49 60.52
16 1.07 68.56 8.1
21.4 3.67 10.62 63.76
27.6 39.01 -1.95 22.9
34.4 73.83 3.53 6.27
39.8 8.54 63.87 10.59
40.6 17.62 39.68 6.5
45.2 11.96 -0.6 70.56

Table B.3: Repressilator data.



t | OmM | 0.0004mM| 0.0016mM | 0.0063mM| 0.025mM | 0.1mM | 0.4mM | 1.6mM | 6.4mM | 12.8mM
0 0 0 0 0 0 0 0 0 0 0
140 | 88.6 177.8 174.4 197.8 210.4 1043.6 | 3945.8| 5971 | 6643.8| 6521.8
160 | 120.2 156.4 160.6 165.6 209.8 1300.8 | 4695.2 | 6768.4 | 7361.8| 7513.8
180 | 66.6 96.4 94.6 126.4 171.6 1438.4 | 5238.8| 7465.2| 7801 | 8002.4
200 | 42.8 72.2 76.2 88 134.2 1578 5658 7914 | 8458 | 8542.8
220 | 37 64.8 61.2 55 135.8 1667 | 5799.6 | 8380.2| 8976 | 8914.8
240 | 39.6 56.6 60.4 65.8 142.8 1758.6 | 6108.6 | 8601.4 | 9172.6| 8957
260 | 36.2 47.6 62 69.8 143.6 1859.8| 6104 | 9041.8 | 9528.6 | 9252.8
280 | 50.8 55.6 58.2 74.2 170.6 1968.2 | 6554.4| 9071.6| 9449 | 9018.4
300 | 39.6 51 40.8 60.2 197.8 2143.4| 6452.2 | 8396.2 | 9269.2| 9261.2
320 | 50.4 62.8 65.6 82 273.6 2317.8| 6880.8 | 8941.2 | 9887.6| 9982.8
340 | 53.8 71.4 71 88.6 296 2512.8| 7052.2 | 8972.8 | 9694.6| 10108
360 | 45.6 66 61.6 69.2 340.8 2639.2| 7047.8| 9103.6| 9911 | 10018.4
t | OmM | 0.0004mM| 0.0016mM| 0.0063mM| 0.025mM | 0.1mM | 0.4mM | 1.6mM | 6.4mM | 12.8mM
0 0 0 0 0 0 0 0 0 0 0
140 | 215 163.4 124.8 134 119 230.4 | 721.2 | 1001.8| 1095.8 701
160 | 141.6 116.6 95.4 86 40 320.6 937 | 1112.2| 1054 903.2
180 | 131.6 112.2 117.6 84 81 252.2 | 825.2 | 727.4 | 1026.8| 679.2
200 | 69.8 42.4 37.8 39 44.2 2252 | 688.4 | 829.8 | 761.6 | 584.6
220| 55 58.4 59 60.6 50.4 169.2 | 645.8 | 713.6 | 739.6 454
240 | 38.8 48 30.8 43.4 42.2 148.8 366 418.6 | 453.8 668.2
260 | 42.2 44 48.6 41 53.8 152.8 | 496.4 | 638.4 | 547.8 626.2
280 | 55.2 54.4 51.8 53.6 76 257.2 | 498.2 | 722.2 | 889.8 606.2
300 | 50.4 57.4 62 67.8 95 339.8 | 447.4 | 835.6 | 693.2 602.6
320 | 52.6 69.6 78.4 81.2 146.8 385.8 | 540.4 | 776.4 | 1084.2 580
340 | 57 60.6 73.8 65.6 144.6 401.2 | 466.4 | 396.6 | 560.4 702
360 | 61.6 73.2 77.2 68.6 151 400 374.8 251 742 436.2

Table B.4:gfp30 fluorescence measurements (top) and standard deviéiiibam).
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t | OmM | 0.0004mM| 0.0016mM | 0.0063mM| 0.025mM | 0.1mM | 0.4mM | 1.6mM | 6.4mM | 12.8mM
0 0 0 0 0 0 0 0 0 0 0
140 | 149.1 199.7 107.4 124.6 242.4 801.9 | 2682.7 | 4292.3| 4633.3| 4923.8
160 | 96 212.2 121.6 78.4 199.3 945 | 3192.9| 4893.7 | 5243.3| 5572.6
180 | 64.3 178.7 73.7 40.4 158.7 1083.8 | 3598.4 | 5362.7 | 5762.6 | 6139.4
200 | 32.2 92.5 43.2 43.7 135.1 1190.5| 3961.4 | 5901.6 | 6282.9| 6499.9
220 | 56.4 86.5 51.5 43.5 142.8 1320.4 | 4274.4| 6218.6 | 6589.5| 6866.5
240 | 42.4 54.6 16.5 23.9 116.3 1330.6 | 4424.9| 6247.9 | 6514.3| 6815.1
260| 31 49.9 11.3 13.4 100.4 1422.8 | 4583.5| 6531 | 6917.5| 7177.6
280 | 34.7 55.5 13 16.4 107.1 1535.8 | 4680.4 | 6609.6 | 7247.2| 7290.1
300 | 33.2 46.1 21.7 22.1 129.7 1675.5| 4958.5| 6949.3| 7620.3| 7631.3
320 | 295 39 8.7 22.5 154 1824.5| 5122.3| 7053.4| 7642.7| 7645.1
340 | 31.2 43.2 19.1 27.1 172.2 1836.2 | 5282.7| 7156.9 | 7661.2| 7889.3
360 | 28 40 10.9 28.9 202.4 1979.3 | 5456.4 | 7245.6 | 7899.1| 7910.6
t | OmM | 0.0004mM| 0.0016mM | 0.0063mM| 0.025mM | 0.1mM | 0.4mM | 1.6mM | 6.4mM | 12.8mM
0 0 0 0 0 0 0 0 0 0 0
140 | 89.4 85.8 209.2 120.8 77.8 175.8 | 383.6 | 2954 | 332.6 382
160 | 59.4 23 166.4 111.6 40.6 188.8 | 572.2 | 391.6 | 430.6 | 326.2
180 | 31.6 38.6 135.4 51.2 24.8 210.6 597 370.8 | 467.6 | 363.8
200 | 45.2 60.4 83.2 65.2 42 166 573.2 | 273.6 | 341.6 337
220 | 14 27.4 90.2 51.2 25 90 513.8 | 249.6 234 145.2
240 | 25.2 32.2 53.8 30.6 16.2 70 475.2 | 187.6 | 464.8 168
260 | 14.8 17.2 47.4 23.8 14.2 68.8 511.8 256 300.6 214
280 | 20 15.4 46.6 16.6 15.8 70.6 395.8 | 237.6 | 313.6 | 454.6
300 | 17.8 17.8 37.8 29.8 29.2 178.2 | 486.6 | 383.8 | 416.2 | 377.2
320 21 21.2 43 26.4 46.8 216.2 | 519.6 | 507.4 | 674.8 227
340 | 26 22.2 36.8 25.4 46.6 340.8 | 495.6 | 655.6 | 594.2 299.4
360 | 15.2 13 38.4 8.6 50 350.4 | 604.8 | 434.2 | 853.8 | 387.8

Table B.5:gfp34 fluorescence measurements (top) and standard deviébiaibam).
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Appendix C

Analysis of activation cascades

C.1 Calculation of the output of the linear cascadey,,(t)

In this section we introduce necessary notation to presentalculations for obtaining the
solutions to equatioh (5.3).

C.1.1 The Laplace transform

If f(¢) is a function integrable over > 0 its Laplace transform is given by (Kreyszig,
2006):

F(s)=2() = [ e st

0
The inverse of the Laplace transform is given by

1 y+iT
fit)=2"YF)=— lim e* F(s)ds,

271 T—o0 N—iT

where~ is large enough so that the line of integration is beyondiafjidarities of . The
Laplace transform (and its inverse) are linear so that

ZL(aft) +91)) = aZ(f) + Z(9),
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wherea is a constant. An important property of the Laplace tramsfis that

L(f) = s2(f) - f(0),

wheref’ = %. This can be applied successivelytdh order derivatives. The convolution
of functionsf andg is

(fxg) = / F(r)gt — r)dr = / £t - r)g(r)dr,

and
L(fxg)=2L(f)Z(9)-

C.1.2 The incomplete gamma function: definitions and notati

The gamma function is defined a.s_(AbLa.mQMLilz_and_Sjl gun,)1964

I(a) = /000 e %5 1ds, Re(a) > 0. (C.1)

One well-known property of the gamma functiolig:) = (n — 1)!, n € N.
Thelower incompletggamma function is given by:

t
v(a,t) = / e %5 ds, Re(a) >0 (C.2)
0

A different way of writing~y(a, t) whena = n € N is (Paris| 2010):

n—1 1
y(n,t) = (n—1)! (1 —e ! %) : (C.3)

k=0

The normalisedlower incomplete gamma function, which we use in our cakooies,

is defined as:

Pa,t) = 120 (C.4)
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C.1.3 Constant stimulus: derivation of Eg. (5.12)
The solution of the ODE systerin (5.3) fef0) = 0 whenR(t) = a4 is given in Eq.[(5.11):

x(t) =A™t [etA —I,] e (C.5)

WhenA = A (defined in equatioi{5.10)), it can be shown by mathemaiticiiction that
then-th component of the solution is:

am\" = k
x,(t) = (%) (1 - e_ﬁtz %) : (C.6)

k=0

A similar result is obtained by Luciust al. (2003) from the analysis of linear models of

n-step DNA unwinding.
Using [C.3) and the properties of the gamma function, eqodt.6) becomes:

= () () v e

which is the expression presented in equation (5.12).

C.1.4 Exponentially decaying stimulus: derivation of E514)

The solution of the ODE system (5.3) faf0) = 0 whenR(t) = a e is given in [5.1B):
x(t) = on [ — e ML) AL+ AAT] ey (C.8)

WhenA = A andj # ), we can use mathematical induction to show that

n n—=1 ko \\k
T, (t) = <%) <e_)‘t —e P Z %) (C.9)

k=0

(;@AY pvRlUL (Ffén— Nt _ (;@A)" e MP(n, (6 - Nt),  (C.10)
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and we obtain the top expression of equatlon (5.14). When )\, we solve sequentially
the ODEs[(5.B) and use mathematical induction to get

~ (at) e

T, (t) = T (C.11)

the bottom expression df (5]14).

C.1.5 Sinusoidal stimulus: derivation of EQ. (5.16)

To obtain an explicit solution far,, () when the input to equatioh (5.3) is
R(t) = a;(1 + sin (wt)),

we use the property of the Laplace transfof{ /') = s.Z(f) — f(0) to obtain the
transform of the equations of the system:

aqw i aq
s2+w?)(B+s)  s(B+s)

L(x1) = 21(s) = (

where.Z(x,) = #1(s) andz(0) = 0. It can be shown by mathematical induction that

)

s(B+ )" (s> +w?)(B+ )"

. afn)w

Tn(s) =

(C.12)

To obtainz, (t), we must compute the inverse transformiqfs). First we obtain the
inverse transform of the first term of equatién (C.12); we theeproperties of the Laplace
transform of convolutions to find twé(¢) andg(¢) such that

2(fv0)= 2N L0) =

where

(f*g)(t /f g(t—7)d /Otg(T)f(t—T)dT.
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Note thatl(Kreyszig, 2006):

and ' .
(fxg)(t) = m/o e FTdr.

If we make the change of variablés= g7 then

1 pt
(f*g)(t) = W/o h"te~"dh. = P(n, At),
which gives
G %\ _ (em\"
o () - (2 e ). c13

To obtain the inverse of the second term of equafion (IC.12)seeagain the properties of

convolutions and the Laplace transform to get

. a?n)w B a?n) sin(wt) /t nol g
< ((32 YT = ) i " e T cos(wT)dT

a’ | cos(wt t
B (Ol ts (1) / e AT sin(wT)dT. (C.14)
['(n) 0

Solving integrals of (C.14) gives

- (D _(_om BT
z ((52 +w?)(8+ s)") B (w2 + 62) fe <§<p Pln, (pt>> ’

wherey =  + iw, £ = sin(wt) + i cos(wt), z is the complex conjugate af € C, and

Re(z) is the real part of. It follows from the definition of the incomplete gamma fuoct

thatP(n, pt) = P(n, ¢t). We extract the real part gfo"P(n, t) to get

- ((52 + 357)1)(; = s)“) B

n n—1 ,p n—1 . p .
a(n)) [sin(wt +nb) — e {cos(ne) Z L cos () C]::‘S (k) _ sin (nf) Z rreni) S]j,l (£9) }] ;

r !
k=0 k=0
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wherer = (82 + w?)¥/? and# = arctan (2). We now combine this last result with

w

equation[(C.113) the expression we have in equalion}(5.16):

x,(t) = (%)" P(n, Bt) + (04(”)>n [sin (wt —nb)

3 r
—6Bt{COS(TLQ)z_:tTCZﬂ_Sin(ne)EW}]’
et : k=0 '
_ [ %m ! n " sin (wt —n
_(6) P(,Bt)Jr(T) [ (wt —no)
" ykpk
_ e Bt {Z - (cos(n@) COS(k?@) — Sin(ne) Sin(ke))} ] )

- (%)n P(n, pt) + (@)n [sin (wt — nf) — et g tl;—ik cos ((n+ k)0)

C.2 Properties of thes-perturbed matrix of rates, H;

The matrixH;, which corresponds to a linear cascade with a perturbatairpositioni, is
defined in Eq.[(5.17) and has a Jordan decomposition giveq.i{gEL8):

H, = QJQ; . (C.15)

As can be seen from the lower-triangular structurélgf its Jordan form is the direct
sum of two Jordan blocks associated witli5 + <), with multiplicity 1, and—g, with
multiplicity n — 1:

J=J_(510) D I3, (C.16)

where

J—(ﬁ—f—a) [_(5+5)]1x17 J 5= . (C.17)

- <4 (n—1)x(n—1)
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The transition matrixQ; contains the generalised eigenvectfus}}_, as columns
Qi = [ailay) - |ay] -

Proposition C.2.1. The following properties hold fo®; andJ (see Example C.2.1 for the
case whem = 6):

I. Jisindependent of.

Il. q¢, the eigenvector ofl; associated with-(3 + <), is given by:

‘ 0 if j <1,
=9 (€.18)
o) (?) if j >1.

. {d_ 4. }7=i, the(n — 1) generalised eigenvectors B; associated with-43, are

given by:
o If i <k
4 . 0 je{l...k},
App41(J) = i (C.19)
_O‘%J) (%) J € {k +1 n}
e Ifi>Fk
0 je{l...i—1}\k,
dprs1(7) = ol j=k, (C.20)

IV. The inverse of the transition matri®; ! has the following structure:

e The first row is _
o= ifj<i,
Q;'(1,)) = W (C.21)
0 if j>1.
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e Rowsk € {2,...,n}are

(
0 ifj<n-—k,
L ifj=n—k+1,

Q' (k,j) = (C.22)
= ifj=n—k+2andn—i+1>k,

0 otherwise

V. For alli: o
1
1 0
Q er=e +e,=| |. (C.23)
1
Proof. 1. All the matricesH; have the same eigenvalues with the same multiplicity so

the Jordan fornd is identical for alli.
Il. Letvi = H,q!, if i = 1 itis straightforward to see that (1) = —(3 + ¢) and when

J>1

- _1\77? } _1\/! _ _1\J!
vi(j) = o) (?) — Bay, (?) = —(B+e)ay; (?) , (C.24)

sovy = —(8+¢e)q;.
Wheni > 1thenvi(j) =0forj=1...:— 1. If j =, then

. i 1\ !
i) =@+l ()
and if j > ¢ then the same situation as in equation (C.24) applies, sa agahave
vi = —(8+e)ai.

ll. Define B; = (H; + S1,,), we can see from the definition qf, in equations[{C.19)
and [C.20) thaB,q}, = 0, ie g, is the eigenvector ofl; associated te-3. The rest
of the generalised eigenvecters. . . ', associated with-3 can be multiplied byB;
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to show that
B.q, =q, 1, h=3...n. (C.25)

It follows thatB"~'q} = 0, soQ; as defined in equations (C]18), (T.19), and (C.20)
is the transition matrix of generalised eigenvectorslof

IV. We can verify thatQ; ' defined in equations in equatiois (Q.21) and (€.22) is the
inverse of the transition matri®,; by multiplying them to obtailQ; ' Q; = I,..

V. This property follows directly from the structure & .
O

Example C.2.1.Consider a cascade of length= 6. The structures of the transition matrix
and itsinversefoi =1,...,6 are

1) 0 0 0 0 0 ﬁ 0 0 0 0 0
“(2) “?2) 0 0 0 0 = £
= 0 0 0 0 = %) %)
o) o) ofa) 0 0 0 1 £ 0
<2 ’ 0 0 c e “ty )
Q= T T R
_ % o o @ %@ ) 0 0o =4 0 0
3 = -2 =3 “(3) “(4)
5 5 5 5 5
“(5) o “y %) Y %) 0 4 s 0 0 0
Py e 2 e3 4 “(2) *(3)
6 6 6 6 6 6
_ %6 O ) *(6) _ %6 *(6) 1 5 0 0 0 0
5 € 2 e3 4 b (1) “2) ]
(C.26)
1 __£
0 0 0 0 0 ) =D 0‘?2) 0 0 0 0
a? o2
) 0 0 0 0 @) 0 0 0 0 — i
(5) (6)
(13¢ (13¢ o',
0! o o o O 0 0 o —£ 0
— —1 _ (4) (5)
Q2 = ol ot ot ol Q=
o o W 2@ ! o o 1 < 0 o
5 € 5 5 a(S) a(4)
5 5 5 5 5
%) o GO R ) GO €' 0 1 < 0 o o
15 € 5 5 5 a(2) Q(S)
_ %6 *) %6 *(6) ) *(6) 1 0 0 0 o o
=5 e 22 =3 P -5 L )

(C.27)
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(1)
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0 0 0
0 0 0
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“(G) )
£
= 0
“(5)
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(C.28)
0 o ]
! &
5
Yy o)
£
0
5
(5
0 0
0 0
0 0
(C.29)
4 _
5 0
(5)
1 £
5 6
RO
0 0
0 0
0 0
0 0
(C.30)
4 _ 565
5
(5) “(6)
- 0
(5)
0 0
0 0
0 0
0 0

(C.31)



156

C.3 Calculation of x,,,1(t) with one e-perturbed inactivation rate

C.3.1 Constant stimulus, derivation of EQ. (3.25)

We solve the differential equation (5124) through an iré¢igg factor to get:

T (1) = (ag)) / (B+)P(n, BH)dE + c. (C.32)

Use the properties of the gamma function to re-express tegral as

n—1 k
(B+e)t _ | ety [ et (8t)
/e P(n, 5t)dt = /e dt /e kg X dt. (C.33)
=0

and solve the second integral bf(G.33) using integratiopdoys:

n—1 n—1 n—1
o (ﬁt)k B eat Beat k Bt)n 1

=0

to obtain

n—1 et n—1 n
( ) / =3 i’: - %Z t' nﬁ_ o / etnldt. (C.35)
k=0 :

k=0

The integral on the right-hand side of equation (C.35) cansbeed using the for-
mula (Gradshteyn and Ryzhik, 2007):

n—1 1\k .
/eattn—ldt — et <kz_0 EIEJA?’)?I (_nl _1:)!tn—1—k> ) (C36)

Substituting in equation (C.B3) and gathering terms weinbta

1

(ﬁ+5)tp( Btydt = eat ePt nz )kﬁ”t” o + (C.37)
€ ", — €k+1 (n—1-k) © '
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whence Eq.[{C.32) becomes

n n—1 nan—1—
Tny1(t) = Ot <a(n)> <1 — efﬁtz [(ﬁt)’“ + ()t k&) + ce~(B+2)t (C.38)

B+e\ B K el (n—1—k)

The initial conditionz,, 1 (0) = 0 requires that

_(_ n+1 ¥n+1 % "
c=(-1) —ﬁﬂ( ‘ ) , (C.39)

which gives the final expression given in equation (b.25):

o n - n n=1/ n—k (_ pyn—=k k
““(”:ﬂ’fi(a(ﬂ”)) (1_€ml< _ﬂ) o $ €T 0 D ©.40)
k=0 ’

C.3.2 Exponentially decaying stimulus, derivation of H§s29) and((5.30)

Consider first the casg # A. To solve the differential equatioh (5126), define= 5 — A
and use integrating factors to get:

—1
An t)*
By = (0‘; >> < / ettt — / et (0;{;,) dt) +e  (C41)

k=0

3

Using integration by parts for the second integral on thatrlgand side, and following
similar steps to those above gives

n n—Llo n—k _/_ __\n—k k
Bty Qni1 (a(n)> plotelt _ et (e ( Uk) )(at) e (C.42)
o+e\ o P enrE]

The initial conditionz,,1(0) = 0 requires that

o= Gn+l (%)n ’ (C.43)
o+e €
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thus giving equatiori (5.29):
n —(B+e)t
_ _ Qi1 X(n) -, € _
x”J’l(t)_BJra—)\(ﬁ—)\) {e =
n—1 ¢ n—k n—k k4k
_ e (A =B)"") (B A
N can

k=0

When\ = 3 we use integrating factors to solve equation (5.27):

.t (B+e)t _ Q(n+1) /tn et ¢ — Yoty T B — C.45
Tnt1(t)e T(n+1) cdite I'n+1) ¢ kZ:O ek(n —k)! el )

and taking the initial conditiom,,, ;1 (0) = 0 we get equatiori{5.30):

" n+1 n -1 ktnfk
Tpy1(t) = (a( H)) e Pt [5”2 (Gl i : + (—1)" et

€ — ek(n —k)!
C.4 Parameter fitting

We use the optimisation method developed in Chdpter 4 toefipeimtameters of our models
to the artificial ‘observed data’ used in Examples 5.4.1

C.4.1 Model simplification and parameter fitting

In Exampld 5.4.1 we used Algoritnm 4.1 from Chaffer 4 to abthé parameter values of
the gamma function expressiohs (8.12) dnd (5.14) from déemntfrom numerical solutions
of equation [(5.B) with both constant and decaying inputs rmdlom added noise (see
Fig.[5.3).

In the example we considered two cascades with parameters, a; = 3, oy = 4
1 = 2,...,5, andp = 3 from resting initial conditions. The first of the cascades ha
input R(t) = ay, the second;R(t) = a;e ™, A = 1. To avoid confusion, in this
section we denote the output of the cascade with constantlsis aszs.(t), and the
output from using a decaying stimulus ag;(¢). Table[C.1 shows both the untouched
sample from the numerical solutions of the equations of batitades (dashed lines in both
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t T5e (t) 5750(15) T5d (t) .f‘5d (t)
0 0 0 0 0

1 0.584 0.5821 0.4651 0.4667
2 2.2611 2.2977 1.205 1.2423
3 2.9855 3.1372 0.8544 0.9596
4 3.1339 3.1167 0.3963 0.3352
5 3.1573 3.2542 0.1572 0.1451
6 3.1601 3.332 0.059 0.068
7 3.1607 3.0908 0.0218 0.0244
8 3.1606 3.1167 0.008 0.0071
9 3.1604 3.2505 0.003 0.0034
10 3.1604 3.2208 0.0011 0.0009

Table C.1: Data sampled from numerically solving equaf@8)for constant and decaying
inputs (columnses.(t) andxs,4(t)) using parameters = 5, a; = 3, a; = 4, f = 3 and
A = 1, and by adding random noise to the solutions (colump&) andzs,(t)).

plots of Fig[5.bB), and the sample with added random noisgkad from a\/ (0, 0.05%)
distribution (squares in Fig, 8.5B), which we denotelyandzs,.

We define the parameter vectols = [a(,), 3, n] for the cascade with constant
stimulus, andd; = [, B, n, A] for the cascade with decaying stimulus. To find the
estimates o6, andf,; we minimise the errof(413) on each cascade:

10

Ep(6.) = Z ||z5c(t; 6c) — j50(t)||§ ) (C.46)
t=0
10

Ep(04) = Y _ |[s5a(t; 84) — Fsa(t)|5 (C.47)
t=0

where z5.(t; 0.), xsq4(t;04) are functions [(5.12) and_(5114) evaluated &t and 6,,
respectively.

We begin each minimisation with a prior distributiof{0, 10) for each parameter. At
every iteration of the algorithm we simulate 500 points i@ parameter space, to which we
apply local minimisation. Of the 500 local minima we seldw 650 with the smallest error
to construct the posterior. We sample 500 new points fronptdsterior (now a prior) and
continue the sample-minimise-cull cycle until the meangheferrors of the posteriors in
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Figure C.1: A: Histograms of the parameters of equatibn (5.12) found bigimising
error [(C.46).B: Histograms of the fit of equatioh (5114) to errbr (Q.47). linhasstograms
the red dot marks the value of the parameter that gave théesthairor (ie the components
of ! and#@y).

consecutive iterationss(,) is smaller thatl0— (see Chaptdrl4 for details on the method).
FigurelC.1 shows the histograms of the componené ahdejl obtained after minimising
errors [C.46) and_(C.47). On each case the algorithm coedeafier only two iterations,
with ¢ =~ 0. The values of the parameters of the cascade with consiamilgt are
am) ~ 4.068, 8 ~ 3.281, andn ~ 5.418, giving Ep(6}) = 0.2338. The parameters
obtained with the decaying stimulus arg, ~ 3.317, § ~ 2.177,n ~ 4.6, and\ ~ 2.177,
with error Ep(6%) = 0.0842.

C.4.2 Delay differential equation models for activatiolscades

In Example[5.413 we approximate data drawn from the solutiba delay differential
equation with a linear cascade represented by an incomgdetena function expression.
We use Algorithni 411 to find the parameter values that mirerthe distance from the data
to equation[(5.12).

We simulate the DDE systeri (5]31) with parameters 2, 5 = 3, andr = 2 from
resting initial conditions (see Fig.%.7B, top). We dendie $olution to equation (5.81) by
p2(t) and the solution with added random noise frooVé), 0, 052) distribution byp,(¢),
shown in Tablé_CJ2. With equation(5]32) we approximatg) using Algorithm[4.1 to
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t pa(t) Pa(t)

0 0 0
0.2524 0 0.0091
0.5336 0 0.1521
0.9385 0 0.0019
1.2083 0 0.1227
1.55 0 0.0348
2.0069 0.0002 0.001
2.5374 0.6565 0.5782
2.8395 1.1261 1.1848
3.0717 1.4221 1.397
3.4184 1.7484 1.7964
3.7092 1.9289 1.9957
4 2.0488 2.041
4.9736 2.2142 2.3031
5.4868 2.2362 2.4671
6 2.2447 2.2972
7 2.251 2.2498
8 2.2496 2.3409
9 2.2501 2.2557
10 2.25 2.1393

Table C.2: Data sampled from a numerical solution of equa{@31) (.(t)) using
parametersy = 2, § = 3, andT = 2. Columnp,(¢) contains the numerical solution
data with added random noise.
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find the paramete® = [« (,,), /3, n] that minimise the error

Ep(6) = 3 Ilpa(t::0) = pa(t)]l;-

We use the priot/(0, 10) for all the parameters. As before, we sample 500 points
from the parameter space, minimise them locally and use @hbest local minima to
construct a posterior. We continue the sample-minimiseiai@ractions untilp, < 1075,

The algorithm finished after two iterationg,(~ 0), obtaining parameters,,, ~ 2.27,
B~ 753, andn ~ 22.1072. The posterior distribution of all parameters is extremely
narrow (support centred on each parameter vall@?®).

C.5 Cascades with negative feedback

C.5.1 Constant stimulus

Consider the cascade given by the system of ODEs:

d

—(;1 = R(t) — Bz — exq 2y, (C.48)
dl’i .

dt :OéilCl',l—ﬁ.Ti, 222,...,71,

wherez;(0) = x;(0) = 0. WhenR(t) = «; we can try to approximate the solutions by
expandinge, in powers ofe:

2
Tp = Tpo + €ETR1 + €Ty + .. ..

From equation(5.12) we get the leading-order approximdtia:; as a normalised lower-
incomplete gamma function:

o) = (%)kP(k,ﬁt).
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Whenk = 1 we get the order 1 correction by solving the equation:

daiy
dt

= —5$11 — T10Tno0,

n

= —frn — 5 +1

P(1, BP(b, 5t).

The order 1 approximation to, (¢) is then

1 (1) ~ %P(l,ﬁt) 01y { (n, Bt) + {nP(nHvﬁ’f) - (ﬁnﬁ

e — [tP(n, Bt)H e Pt

C.5.2 Exponentially decreasing stimulus

When R(t) = a;e * in equation[[C.48) we can again expangt) in powers ofe and
obtain the leading order approximation in terms of the inptate gamma function (5.114):

(52)" e P(n, (8- X)) if B4
ZL‘no(t) =
o (@mt)” e it B =\,

To obtainz,;(t) lets suppose that = J\; furthermore, we assume that a suitable
nondimensionalisation has been performed so that

thet

n!

ZL‘no(t) =

The order-one correction can be shown to be:
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The sum in this last equation is a particular case of the lggmemetric function:

n n—k k+1 k

S - n_l,z{ : 1<n—j>},
- (=)™ (m+1) 7+ 4

:mzo{ m ) (”—J)},

changing variables: = k£ — 1, and(—1)**! = (—1)k1 = g™

gt m+ 1 _
o ] { " Q(—mﬂ)},

ot (m+ 1)l
 (n—1)! { tmI

3
,_.

35
1L

(—mn+1+m)
(—m+1) }’

=0

3

usingl’(z 4+ 1) = zI'(z) recursively, alsd'(2) = 1 so:

B m+1m!T(—n+1+m)
o n—l'z{ tm m'F(Q)F(—n+1)}’

B —n+ 1+m) 2+ m)t™™
(n—1)! Z { (—n + 1)[(2) m! } ' (C-49)

Once that-n + 1 + m > 2, we cannot cancel odt(—n + 1) out of the denominator of
equation[(C.49). Becaus$& —n + 1) goes to infinity when-n + 1 is a negative integer, all

terms containing it in the denominator go to zero, so

B n+1+m)F(2+m)t‘m
o n—l'z{ (—n+1)I(2) m!}’
tnl

— mﬁo ([-n+1,2);,t71),

Where, F}, is a case of the hypergeometric defined_a.s_(AbLa.mmALilz_a.Lgm% d4964):

2Fo([a B 1 2) = ) (a);(b); 5

R
=0 '
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and(a), is Pochhammer’s symbol:

(a), = L(a+7)
T T(a)
Therefore the order-one approximationXq(t) is
tn —ttn—l
xn(t) Ee_t + En ( 1)n+1 (t + ) WQFO ([—TL + ]-7 2]a 7t_1) . (CSO)

The results described above can be used to try to approxtmateehaviour of activation
cascades in a signalling network, eg when only the outpute@tascade can be measured.

C.6 Aresult from Golub and Van Loan (1996)

In|Golub and Van Loan (1996) the following statement is pded as an exercise

Show that if
—AT P
exp | 2 =
0 A

whereA, P € R"" andz € R, then
F;;Flz = / QSATP€SAdS.
0

Fii Fp

A proof is given byl Van Loan| (1976), here we show an alteratiersion using the

definition of the matrix exponential that arose from studyapproximations to nonlinear
activation cascades of length
It can be easily verified from the definition et) thatF,, = ¢*A and

e
—

0 k
< k—1—i
=Y > g (A P@)

k=11

I\
o

!Page 577 problem 11.34. In the book it is incorrectly prirdsd, F1» = [ ..., it should beFy, Fy,.
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so we have

T o k-1 i ) ) oo k-1 g1 ) )
T AT S Y T AT (AT eSS s (-AT) P (A
k=11i=0 k=1 i= ’

rearranging indices and using the fact that a matrix andksmential commute, then
k - ) ook 5 )
ZAT 7 k—i 2 k—i
) D IARUEINES S RO TN
k=0 i=0 k=1 i=1

where only the terms with= 0 or £ = 0 do not get cancelled out and

AFLF 2
G212 _ AP L 4 A+ AL
dz 2

T
— 6ZA PGZA,

which is the result we wanted to obtain.
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Appendix D

Additional modelling and computations

D.1 Henderson-Hasselbach equation

Let the concentrations of protonsfiHa weak acid A, and protonated acid HA in a solute
be[H*], [A~], and[H A], respectively. The reaction

H™ + A~ 25 Ha,
ko

is represented by the ODE

d[HT
[dt ] = ko|HA] — ky[HT]|[A7].
The equilibrium concentration of His [H1] = Ka%, whereK, = ’Z—f If we take a

logarithm (base 10) on both sides and multiply-by we get

—log([H"]) = —log(K,) + log <%) . (D.1)

The right-hand side of equatiop (ID.1) is equivalent to pHoading to the Henderson-

Hasselbach equation (Po an nozan,!2001); this means that

pH = —log([H™])).
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D.2 Proton transport across the vacuolar membrane

In simple terms the transport across the vacuolar membrarteer V-ATPase can be seen

as the reaction (Keener and Sneyd, 1998):

Hf,+ ATP <= H}, + ADP + P.
k

1
vac
2

If [H].,. and[H ], are the proton concentrations in the cytoplasm and the Vectne
ODE model describing the change in proton concentratiohercytoplasm is

d[H+]cyt _ + +
T - _kl[H ]cyt[ATP] + kQ[H ]vac[ADP][P]7 (DZ)
and the Gibbs free-energy for the reaction is:

[H " Joac[ADP][P]
[H ey [ATP]

Ga = RTIn < ) — FEy,,.. +Gaarp,

whereR is the gas constant;; the absolute temperature (in Kj; the Faraday constant,

E,.,..; the vacuolar membrane potential (given by the Nernst éopiatandG o 47 p; the

Gibbs free-energy for ATP-hydrolysis (Ke, 2010). Wh&n = 0 (energy equilibrium) we

have

[H+]vac[ADP] [P] _ N GAATP - FEmvaC
[HH] oyt [AT P] RT ’
From equation(D]2) at steady state we obtain the relation

1 [H g [ATP] = ko[ H*],ue [AD P[P,

which gives

ky _ oo (_Goarp — FEn,.
P RT '

The flux through the channel is described @ Ke,

8
T

10; KeandrSneyoad, 1998):

FR— {[Hﬂcyt [ATP) — [H*],u[ ADP][P] exp (—GMP . FE”) } |

RT

In Sec[2.3 4 we discussed that V-ATPase activity is ineeay active OST1, a result
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of ABA-inactivation of ABI1, which means that the rate of pwa transport from the
cytoplasm to the vacuoles has a dependency on ABA. We cae éngii the dependency
on ABA (because it is mediated by enzymes) can saturate aiscthapproximated with a
Michaelis-Menten term, for example:

ki [ABA]

k‘l([ABA]) = ]231 + m

D.3 Fitting the parameters of the stomatal closure model

Equations[(7.22)-(7.27) have 28 parameters whose valusslmuetermined. (Note that
the variables are rescaled dividing them by 100, so thatableiels and initial conditions
are 1, to improve numerical stability of the fitting procéss.

We reduce the number of free parameters from 28 to 23 throaghes of assumptions.
Firstly, we assume that in the absence of stimulii&A] = [ET H] = 0) we must remain
stationary in the control state:

d[ROS] d[A0X] d[NO] d[KL,] d[K*]

fr— = = = p— O D.3
dt dt dt dt dt ' (D-3)
Hence the following relationships between parameters hnldt
aig = B,
Q29 = a0,
Q31
=2 D.4
630 k?31 + 17 ( )
Bao = Quo + Quz,
_ as
650 — k351 + 1-

With these conditions, the number of unknown parameterdas reduced to 23 and we
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define the vecto® € R?3 in parameter space:

0= [Oén, a2, kn, k?12, 511, 512, 513, Ng, Giag, (va3, k?21, k?22,

(a4, M1, P20, 31, k31, (32, a1, Qlaz, a3, s, k51] )

whose components are all non-negative. We define the treédnas the following set:
T = {T17 T27 T37 T47 T57 T67 T7}s where

Ty = 1puM ABA + 0 uM ethylene,
Ty, = 0puM ABA + 1 uM ethylene,
T3 = 10 uM ABA + 0 uM ethylene,
Ty = 0puM ABA + 10 uM ethylene,
Ts = 10 uM ABA + 10 M ethylene.
Ts = 50 uM ABA + 0 uM ethylene.
T; = 0puM ABA + 100 M ethylene.

The data seD with measurements of ROS and aperture consists of the @isers shown

in Figs.[6.1 an@6]2. We denote [ﬁO\S]Z- and[@]i the vectors of measurements of ROS
and aperture under treatméht and by[ROS];(0) and[AP];(0) the model predictions at
the same time points as the data with déseusing parameter®. The discrepancy of the
model in equations (7.22)-(7.27) and the data is measuréedipllowing error function:

Ep(6) = Y ||[ROS). - [ROS)(6)

i€{1,2,3}

z + H[@]i - [APL-(H)H; (D.5)

where||-||, is the euclidean norm. That is, we measure the distance beta@ ROS and
aperture measurements and the model for a givé&mthe parameter space. The global
optimisation problem is to fin@* where

0" = mgn Ep(0),

subject tod > 0.
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Figure D.1: Convergence criteria for optimisation algamt A: Difference between the
best 50 local minima from each iteratiok)(of the algorithm (the posterior) and the
global minimumé@* on a semilogarithmic scaleB: Difference between the mean of the
errors of the local minima from consecutive iterations & thting algorithm ¢,) on a
semilogarithmic scaleC: Mean of the cosines among individual local minima from each
iteration on a semilogarithmic scale.

We use the Squeeze-and-breathe optimisation method frompt@h4 to findd*. The
method requires an initial probability distribution forolgparameter (calledgrior). Here
we use a uniform distributiofy (0, 10) for all parameters. On each iteration 500 points in
the parameter space (i&?’) are sampled from the prior. Each point is used as a starting
point to minimise Ep(0) locally (using the Nelder-Mead simplex algorithm). The 50
local minima with the smallest errors are used to constrymsderiordistribution of the
parameters. The posterior is used as a prior for the neztiberwhere another 500 points
are sampled and minimised until the convergence criteisebean met. Figufe D.1 shows
the convergence of the method for fitting the parameters ofrmdel. On FigL D.ILA, we
show the decrease in the difference (on a semilogarithraiesbetween the errors of the
parameter sets found at the end of each iteration and thelgtobimumFEy (%) ~ 0.0215,
obtained at the end of iteration 43. The 50 lowest errors oh é@ration minuszp(6+)

are shown on a decreasing order from left to right. FiguréBDsthows the convergence
criterion defined in Chaptéd 4. We stop the iterations of tleghmd once the difference
between mean of the errors of the 50 parameter sets from@amnsiterations ¢, shown

on a semilogarithmic scale) is smaller that®. During the first 20 iterations of the method
¢, appears to decrease exponentially and thereafter the stéhdontinues downwards
albeit no longer exponentially. On Fig. 0.1C we show the mehthe cosines of the
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Figure D.2: Frequencies of the parameters after fittingtddisms of the distribution of
the 50 best parameters obtained after 43 iterations of tivegfialgorithm. The red dots
indicate the value of the parameter that gave the smallest @).

angles between all local minima from each iteration. Thisoigssert that the method
converges to a single region of the parameter space. Aéetion 43 the mean cosine is
O(10~*). Based on these metrics we conclude tais a good estimation of the model
parameters, given the present data. Fiduré D.2 shows thibdison of the best 50
parameters after 43 iterations of the algorithm. Red dotk e mean of each parameter
(values in Tablé DJ1). The behaviour of the model that we nlesan Figs[7Z.VEZ.10 is
given by these parameters.
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Parameter Value Units
o1 3.2976 min~!
19 3.0054 min—!
ki1 1.9389 | dimensionless
k1o 1.551 | dimensionless

B 10.8119 min—!
Bia 3.6752 min—!

Pis 0.2749 | dimensionless
N9 3.192 | dimensionless
o1 3.8179 min—!

99 11.9759| dimensionless
koq 0.2962 | dimensionless
koo 0.0268 | dimensionless
o3 0.0868 | dimensionless
n 9.755 | dimensionless
Bao 1.5973 min~!

a3 2.5528 min—!

ks 22.1635| dimensionless
Q39 0.0133 min—!
Q0 5.7029 min—!

[e7%} 1.4584 min—!
o 11.3133 min~!
Qs 0.2713 min~!
ks1 1.256 | dimensionless
Q10 10.8119 min—!
Q9 1.5973 min—!

530 0.1102 min—!
Bo | 17.0162]  min’!
Bso 0.1203 min—!

Table D.1: Parameter values obtained by the Squeeze-agatigralgorithm. Other values
are given by the relations given in the text. The bottom fivapeeters are calculated using
the expressions in_(D.4).
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