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Berry’s conjecture

In 1977 M. Berry conjectured that high energy eigenfunctions in
the chaotic case have statistically the same behaviour as random
plane waves. (Figures from Bogomolny-Schmit paper)

Figure: Nodal domains of an eigenfunction (left) of a stadium and of a
random plane wave (right)



Random Plane Wave

Two ways to (informally) think of the random plane wave

A “random” or “typical” solution of Helmholtz equation
∆f + k2f = 0

A random superposition of all possible plane waves with the
same frequency k

The second approach leads to a naive definition that it is the limit
of

Ψn(z) = Re

 n∑
j=1

ek(θj ,z)+φj


where θj are uniform random directions and φj are random phases.



Gaussian functions and fields

Two ways to define Gaussian random functions

Random series φi orthonormal basis in some Hilbert space H

Ψ =
∑

aiφi , ai i.i.d. N(0, 1)

Gaussian field Ψ(x) is a collection of jointly Gaussian random
variables indexed by x . Could be defined by its covariance
function K (x , y) = E [Ψ(x)Ψ(y)]. Mostly interested in
stationary case K (x , y) = K (x − y).

Covariance function

K (x , y) =
∑

φi (x)φi (y)



Stationary Gaussian functions

Hilbert space H with a reproducing kernel K (x , y). Take any
orthonormal basis φi and construct f =

∑
aiφi . The result is

not in H but independent of the basis.

This is a Gaussian field with covariance kernel K (x , y).

If K (x , y) = K (x − y) then K is a positive definite function
and its Fourier transform is a positive measure ρ. It is called
the spectral measure.

Properties of f , H, K , and ρ are closely related. In particular,
smoothness of K at zero or finite moments of ρ imply smoothness
of f .



Random Plane Wave

Consider L2s (T) – the Hilbert space of L2 functions on the unit
circle that satisfy symmetry condition φ(−z) = φ(z). We define H
to be inverse 2d Fourier transform of L2s with scalar product
inherited from L2. This space consist of real analytic functions
satisfying Helmholtz equation. Standard basis in L2(T) is e inθ.
This leads to

f (z) = f (re iθ) =
∑

CnJ|n|(r)e inθ

where Cn = C−n are independent Gaussian random variables and
Jn are Bessel functions.
The covariant kernel is J0(|z |) and the spectral measure is dθ/2π.



Related Fields: Random Spherical Harmonic

Consider Hn the space of all spherical harmonic of degree n with
L2 norm. This is 2n + 1 dimensional space. A Gaussian vector gn
in this space is the random spherical harmonic.

Note: Hn is an eigenspace of spherical Laplacian with eigenvalue
n(n + 1).

Covariance kernel

E [g(x)g(y)] = Pn(cos(θ(x , y)))

where Pn is the Legendre polynomial of degree n normalized by
Pn(1) = 1 and θ(x , y) is the angle between x and y (i.e. spherical
distance).



Scaling Limit of Random Spherical Harmonics

Theorem (Zelditch)

Random plane wave is the scaling limit of random spherical
harmonic

Figure: Nodal lines of a random plane wave and of a random spherical
harmonic



Universality of Random Plane Waves

Let (M, g) be a compact Riemannian manifold, φi o.n.b. in
L2(M) of eigenfunctions

∆φi + λ2i φi = 0, λi ≤ λi+1

Band-limited function

fn(x) =
∑

n2−n≤i≤n2
ciφi (x)

Scaling limit on the tangent plane: for x0 ∈M define

Fn(x) = fn(expx0(x/n))

where expx0 : Tx0M→M is the exponential map. Then Fn
converges to the random plane wave as n→∞.



Deterministic Results

Some universal estimates are known for eigenfunctions of
Laplacian.

Theorem

Nodal set for random plane wave forms a c/λ-net where c is an
absolute constant. Nodal set for spherical harmonic forms a
c/n-net.

Theorem

Every nodal component contains a disc of radius c/λ (or c/n)
where c is an absolute constant.



Length of Nodal Lines

Theorem

There is a constant c such that for every spherical harmonic gn of
degree n such that

n

c
< L(gn) < cn

where L(gn) is the length of nodal set.

Yau conjecture: For a compact C∞ smooth Riemannian manifold
M there is c > 0 such that for every eigenfunction ∆φ+ λ2φ = 0

λ/c ≤ Hn−1(φ = 0) ≤ cλ

In dimension n = 2 lower bound by Brüning (1978). For n > 2 in
real-analytic case by Donnelly-Fefferman (1988), the lower bound
in C∞ case by Logunov (2016).



Nodal Lines of Gaussian Spherical Harmonic

Theorem (Bérard, 1985)

For Gaussian spherical harmonic gn of degree n

EL(gn) = π
√

2λn =
√

2πn + O(1)

With more careful analysis of Kac-Rice formula it is possible to
compute variance

Theorem (Wigman, 2009)

For Gaussian spherical harmonic gn of degree n

Var L(gn) =
1

32
ln(n) + O(1)



Number of Nodal Domains

In the deterministic case Courant’s theorem gives that the number
of nodal domains N(gn) < n2. In 1956 Pleijel improved the upper
bound to 0.69n2. For n > 2 Lewy constructed spherical harmonic
with two or three nodal domains, so there is no non-trivial
deterministic lower bound.

The main problem: this is a non-local quantity.

Theorem (Nazarov and Sodin, 2007)

Let gn be Gaussian spherical harmonic of degree n. Then there is a
positive constant a such that

P
{∣∣∣∣N(gn)

n2
− a

∣∣∣∣ > ε

}
≤ C (ε)e−c(ε)n

where C (ε) and c(ε) are positive constant depending on ε only.



Nodal Domains

All positive nodal domains of a random plane wave.

Picture by T. Sharpe.



Nodal Domains

All negative nodal domains of a random plane wave.

Picture by T. Sharpe.



Critical Square Lattice Bond Percolation

Each edge of the lattice is preserved with probability pc = 1/2. If
an edge is preserved, then the dual edge is removed and vice versa.
Primal and dual clusters create an loop model of interfaces.
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Each edge of the lattice is preserved with probability pc = 1/2. If
an edge is preserved, then the dual edge is removed and vice versa.
Primal and dual clusters create an loop model of interfaces.



Bogomolny-Schmit Percolation Model

They proposed think that the nodal lines form a perturbed square
lattice

Picture from Bogomolny-Schmit paper.



Bogomolny-Schmit Percolation Model

Using this analogy we can think of the nodal domains as
percolation clusters on the square lattice.

This leads to the conjecture that

E(N(f ),Ω) = Area(Ω)
3
√

3− 5

4π2



Off-critical Percolation

Off-critical percolation is a model for excursion and level sets

Figure: Excursion sets for levels 0 (nodal domains) and level 0.1



Off-critical Percolation

Off-critical percolation is a model for excursion and level sets

Figure: Excursion sets for levels 0 (nodal domains) and level 0.1



Is It Really True?

Numerical results (Nastasescu (2011), Konrad (2012),
B.-Kereta (2013)) show that the number of nodal domains
per unit area is 0.0589 instead of 0.0624 predicted by
Bogomolny-Schmit.

Number of clusters per vertex is a non-universal quantity in
percolation, it is lattice dependent. Global properties should
be universal i.e. lattice independent.

Numerical evidence that many global ‘universal’ observables
(crossing probabilities, decay rate for the area of nodal
domains, one-arm exponent) match percolation predictions.



Universality Class

This seems to be a rather universal phenomenon. For a wide class
of smooth stationary fields their nodal domains are in the same
universality class as critical percolation.
Assumptions:

Smooth (nodal lines are nice curves)

Stationary (percolation is almost stationary)

Isotropic or symmetric enough (uniform conformal structure)

Weakly correlated (percolation is local)



A Good Example

Bargmann-Fock function

f (x) =
∑

ai ,j
1√
i !j!

x i1x
j
2e
−|x |2/2

Covariance kernel

K (x , y) = e−|x−y |
2/2
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A Bad Example

White noise on the square
lattice

Nodal domains are exactly
Bernoulli site percolation
clusters with p = 1/2 which
is not critical.
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An Ugly Example

Gradient flow percolation
model.

Nodal domains could be
modelled by a lattice model.
Not clear how to analyse.
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What Do We Know

Molchanov-Stepanov 1983: For sufficiently regular fields
excursion sets percolate at high levels

Alexander 1996: For ergodic positively correlated fields level
lines never percolate

Many local (lengths, areas) and semi-local (number of
excursion sets) quantities have scaling limits under very mild
regularity assumptions. (Kac, Rice, Berard, Nazarov, Sodin
and many others)

We expect that only global observables have universal behaviour.



Conformally Invariant Scaling Limits

General strategy:

1 Show tightness/pre-compactness which would imply existence
of subsequential limits.

2 Show that one global observable has conformally invariant
scaling limit

3 Show that above implies that the curves are described by
Loewner Evolution and all subsequential limits are driven by
Brownian motion



Global Observable: Crossing Probability

Crossing probability is one of the fundamental observables.

Smirnov: Existence of conformally invariant scaling limit of
crossing probabilities implies convergence of interfaces to SLE.
Cardy’s formula is very hard to prove.

Russo-Seymour-Welsh estimates: bounds on crossing
probability that are independent of scale. Hard to work with
non-local models



Tassion: RSW for Voronoi Percolation

Tassion proved RSW for percolation on Voronoi tessellation
generated by a Poisson point process
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Russo-Seymour-Welsh

Theorem (Beffara-Gayet 2016)

Russo-Seymour-Welsh estimate for Bargmann-Fock random
function.

Important: Covariance is positive, symmetric, fast decaying.
Decay rate could be improved: B.-Muirhead, Rivera-Vanneuville.



Russo-Seymour-Welsh

Theorem (B.-Muirhead-Wigman)

Russo-Seymour-Welsh estimate for Kostlan ensemble

Kostlan or complex Fubini-Study
ensemble of homogeneous
polynomials R3 (or S2)

f (x) =
∑
|J|=n

aJ

√(
n

J

)
xJ

Covariance kernel cosn(d(x , y)).
Locally converges to Bargmann-Fock.



Off-critical crossing

B., Muirhead, Rivera, Vanneuville: For a wide class of symmetric
positively correlated fields level sets exhibit sharp transition at 0
similar to sharp transition in percolation
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Thank you!


