

Anisotropic Random Wave Models

Anne Estrade & Julie Fournier MAP5 - Université Paris Descartes Random wayes in Oxford - June 2018

What is the talk about?

k is a random vector in \mathbb{R}^d $(d \ge 2, \mathbf{k} \ne 0)$

Associate

- covariance function: $t \in \mathbb{R}^d \mapsto \mathbb{E} \cos(\mathbf{k} \cdot t)$
- ▶ Gaussian random field on \mathbb{R}^d , say G_k , that is stationary centered with such a covariance

Question:

▶ links between anisotropy properties of G_k and those of k?

Outline of the talk

- 1. Random wavevector and associated covariance function
- 2. Level sets of Gaussian waves
- 3. Crest lines in the planar case

without isotropy hypothesis

1. Random wavevector

k is a random vector in \mathbb{R}^d such that $\mathbb{P}(\mathbf{k}=0)=0$ (wavevector)

Notations

- matrix $\mathbf{k}\mathbf{k}^T = (\mathbf{k}_i\mathbf{k}_j)_{1 \leq i,j \leq d}$ $\mathbf{k} = R\widetilde{\mathbf{k}}$ with $R = \|\mathbf{k}\|$ and $\widetilde{\mathbf{k}} \in \mathbb{S}^{d-1}$
- $d\mu(\lambda)$: probability distribution of **k** on \mathbb{R}^d

Vocabulary

- **k** is isotropic if $\hat{\mathbf{k}}$ is uniformly distributed in \mathbb{S}^{d-1}
- **k** is separable if ||**k**|| and **k** are independent random variables

Particular cases

▶ $\|\mathbf{k}\| = \kappa$, a.s. with κ constant > 0 (wavenumber) note that \mathbf{k} is separable in that case

Particular cases

- ▶ $\|\mathbf{k}\| = \kappa$, a.s. with κ constant > 0 (wavenumber) note that \mathbf{k} is separable in that case
- ▶ d = 2, **k** separable, $\widetilde{\mathbf{k}} = (\cos \Theta, \sin \Theta)$ with
 - ullet $\Theta \sim \mathcal{U}([0,2\pi])$ (isotropic case)
 - or $\Theta \sim \mathcal{U}([-\delta, \delta])$ (elementary case)
 - or $\Theta \sim \mathcal{C}_{\alpha} |\cos \theta|^{\alpha} \, d\theta$ (toy model)

Particular cases

- ▶ $\|\mathbf{k}\| = \kappa$, a.s. with κ constant > 0 (wavenumber) note that \mathbf{k} is separable in that case
- ▶ d = 2, **k** separable, $\widetilde{\mathbf{k}} = (\cos \Theta, \sin \Theta)$ with
 - $\Theta \sim \mathcal{U}([0,2\pi])$ (isotropic case)
 - or $\Theta \sim \mathcal{U}([-\delta, \delta])$ (elementary case)
 - or $\Theta \sim C_{\alpha} |\cos \theta|^{\alpha} d\theta$ (toy model)
- ▶ d = 3 and $\mathbf{k} \in \mathcal{A} = \{x^2 + y^2 = z^4\}$ a.s. (Airy surface)

<u>Rmk:</u> In examples 1 and 3, **k** is such that $Pol(\mathbf{k}) = 0$

Single random wave

Let $\mathbf k$ be a random wavevector in $\mathbb R^d$ Let η be a r.v. independent of $\mathbf k$ with $\eta \sim \mathcal U([0,2\pi])$ and

$$X(t) = \sqrt{2}\cos(\mathbf{k}\cdot t + \eta), \ t \in \mathbb{R}^d$$

Hence

- X is centered, variance 1
- ▶ X is second order stationary with $\mathbb{E}[X(s)X(t)] = \mathbb{E}\cos(\mathbf{k}\cdot(t-s))$
- ► X is not second order isotropic (unless **k** is isotropic)

Gaussian random wave associated with a wavevector

Let **k** be a random wavevector in \mathbb{R}^d

<u>Def:</u> We call Gaussian random wave associated with \mathbf{k} any Gaussian random field G on \mathbb{R}^d that is stationary and centered with covariance

$$r(t) := \mathbb{E}(G(t)G(0)) = \mathbb{E}\cos(\mathbf{k}\cdot t), \ t\in\mathbb{R}^d$$

 $\underline{\mathsf{Rmk}}$: $\mathsf{Var} G(0) = 1$ and

$$r(t) = \int_{\mathbb{R}^d} e^{i\lambda \cdot t} d\mu^{(s)}(\lambda)$$

with $\mu^{(s)} = \frac{1}{2}(\mu + \check{\mu})$ the spectral measure of G

Covariance function

 \mathbf{k} is a random vector in \mathbb{R}^d and $r(t) = \mathbb{E} \cos(\mathbf{k} \cdot t), \ t \in \mathbb{R}^d$

Fact:

- ightharpoonup r is of class \mathcal{C}^m iff **k** admits finite moments of order m
- for any $\mathbf{j} = (j_1, \dots, j_d)$, $\partial^{\mathbf{j}} r(0) = 0$ if $|\mathbf{j}|$ is odd and

$$\partial^{\mathbf{j}} r(0) = (-1)^{|\mathbf{j}|/2} \mathbb{E} \mathbf{k}^{\mathbf{j}} \;\; \mathsf{if} \;\; |\mathbf{j}| \;\; \mathsf{is} \; \mathsf{even}$$

 $\blacktriangleright \mathbb{E}(G'(0)G'(0)^T) = -r''(0) = \mathbb{E}(\mathbf{k}\mathbf{k}^T) \ (d \times d \ \mathsf{matrix})$

Partial Differential Equation

P multivariate even polynomial: $P(\lambda) = \sum_{\mathbf{j} \in \mathbb{N}^d; |\mathbf{j}| \text{ even}} \alpha_{\mathbf{j}} \lambda^{\mathbf{j}}$

$$\mathcal{L}_P = \sum_{\mathbf{j} \in \mathbb{N}^d; \, |\mathbf{j}| \, \mathrm{even}} (-1)^{|\mathbf{j}|/2} lpha_{\mathbf{j}} \, \partial^{\mathbf{j}}$$
: differential operator

Let **k** be a wavevector in \mathbb{R}^d and G associated Gaussian wave

$$G$$
 is an a.s. solution of $\mathcal{L}_P(G)=0$

$$\Leftrightarrow P(\mathbf{k}) = 0 a.s.$$

$$\Leftrightarrow$$
 spectral measure of G supported by $\{\lambda \in \mathbb{R}^d : P(\lambda) = 0\}$

Examples

▶ Berry random wave: $\|\mathbf{k}\| = \kappa \ a.s.$ with $\kappa \ constant > 0$ Gaussian wave G satisfies $\Delta G + \kappa^2 G = 0 \ a.s.$

Examples

- ▶ Berry random wave: $\|\mathbf{k}\| = \kappa \ a.s.$ with $\kappa \ constant > 0$ Gaussian wave G satisfies $\Delta G + \kappa^2 G = 0 \ a.s.$
- Sea waves: **k** in \mathbb{R}^3 with $(k_x)^2 + (k_y)^2 = (k_t)^4$, a.s. Gaussian wave G on $\mathbb{R}^2 \times \mathbb{R}$: height at point (x, y) at time t. It satisfies $\Delta G + \frac{\partial^4}{\partial t^4} G = 0$ a.s.

Examples

- ▶ Berry random wave: $\|\mathbf{k}\| = \kappa \ a.s.$ with $\kappa \ constant > 0$ Gaussian wave G satisfies $\Delta G + \kappa^2 G = 0$ a.s.
- Sea waves: **k** in \mathbb{R}^3 with $(k_x)^2 + (k_y)^2 = (k_t)^4$, a.s. Gaussian wave G on $\mathbb{R}^2 \times \mathbb{R}$: height at point (x, y) at time t. It satisfies $\Delta G + \frac{\partial^4}{\partial t^4} G = 0$ a.s.
- ► Acoustic/optical waves in heterogeneous media, ...

2. Level sets

Let **k** random wavevector in \mathbb{R}^d , G associated Gaussian random field defined on \mathbb{R}^d , $a \in \mathbb{R}$ fixed level

$$G^{-1}(a) = \{t \in \mathbb{R}^d : G(t) = a\},\$$

- ightharpoonup submanifold of \mathbb{R}^d , dimension d-1
- nodal set in the case a = 0
- $\forall t \in G_{\mathbf{k}}^{-1}(a)$, tangent space $T_t G_{\mathbf{k}}^{-1}(a)$ is $\perp G'(t)$

question: "favorite" orientation of $T_tG^{-1}(a)$?

Favorite orientation of level sets

<u>def:</u> favorite direction of V(V): rdom in \mathbb{R}^d) is any direction in

Argmax
$$\{\mathbb{E}(V.u)^2; u \in \mathbb{S}^{d-1}\}$$

But $\mathbb{E}(V.u)^2 = u.\mathbb{E}(VV^T)u$ and $\mathbb{E}(G'(0)G'(0)^T) = \mathbb{E}(\mathbf{k}\mathbf{k}^T)$ so, morally: "The favorite orientation(s) of the level sets $G^{-1}(a)$ is(are) orthogonal to the favorite direction(s) of \mathbf{k} "

"It becomes highly probable that the direction of the contour is near the principal direction" [Longuet-Higgins'57]

(d=2) Favorite direction of level lines - examples

Let \mathbf{k} separable, so $\mathbb{E}(\mathbf{k}\mathbf{k}^T) = (\mathbb{E}\|\mathbf{k}\|^2)\mathbb{E}(\widetilde{\mathbf{k}}\widetilde{\mathbf{k}}^T)$ and let $\widetilde{\mathbf{k}} = (\cos\Theta, \sin\Theta)$

- ▶ isotropic case: $\Theta \sim \mathcal{U}([0, 2\pi])$ $\mathbb{E}(\widetilde{\mathbf{k}}\widetilde{\mathbf{k}}^T) = I_2$ then, no favorite direction
- ▶ toy model: $\Theta \sim C_{\alpha} |\cos \theta|^{\alpha} d\theta$ with some $\alpha > 0$ $\mathbb{E}(\widetilde{\mathbf{k}}\widetilde{\mathbf{k}}^{T}) = \frac{1}{\alpha+2} \begin{pmatrix} \alpha+1 & 0 \\ 0 & 1 \end{pmatrix}$ favorite direction of level lines is 0
- elementary model $\Theta \sim \mathcal{U}([-\delta, \delta])$ with some $\delta \in (0, \pi/2)$ $\mathbb{E}(\widetilde{\mathbf{k}}\widetilde{\mathbf{k}}^T) = \begin{pmatrix} 1 + \operatorname{sinc}(2\delta) & 0 \\ 0 & 1 \operatorname{sinc}(2\delta) \end{pmatrix}$ favorite direction of level lines is $\perp 0$

Expected measure of level sets

Let Q compact $\subset \mathbb{R}^d$. Kac-Rice formula yields

$$\mathbb{E}[\mathcal{H}_{d-1}(G^{-1}(a) \cap Q)] = \int_{Q} \mathbb{E}[\|G'_{\mathbf{k}}(t)\| \, | \, G_{\mathbf{k}}(t) = a] \, p_{G_{\mathbf{k}}(t)}(a) \, dt$$

$$= \mathcal{H}_{d}(Q) \, \frac{e^{-a^{2}/2}}{\sqrt{2\pi}} \, \mathbb{E}\|G'_{\mathbf{k}}(0)\|$$
with $\mathbb{E}\|G'_{\mathbf{k}}(0)\| = \int_{\mathbb{R}^{d}} (\mathbb{E}(\mathbf{k}\mathbf{k}^{T})x \cdot x)^{1/2} \Phi_{d}(x) \, dx$

Separable case: $\mathbf{k} = \|\mathbf{k}\|\widetilde{\mathbf{k}}$ with $\|\mathbf{k}\| \perp \!\!\! \perp \widetilde{\mathbf{k}}$, then

$$\mathbb{E}\|G_{\mathbf{k}}'(0)\| = (\mathbb{E}\|\mathbf{k}\|^2)^{1/2} \int_{\mathbb{R}^d} (\mathbb{E}[\widetilde{\mathbf{k}}\widetilde{\mathbf{k}}^T]x \cdot x)^{1/2} \Phi_d(x) dx$$

Expected measure of level sets - Berry isotropic RW

▶ Berry isotropic case: $\|\mathbf{k}\| = \kappa$ and $\widetilde{\mathbf{k}} \sim \mathcal{U}(\mathbb{S}^{d-1})$

$$\mathbb{E}[\mathcal{H}_{d-1}(G^{-1}(a)\cap Q)] = \mathcal{H}_{d}(Q)\frac{e^{-a^2/2}}{\sqrt{2\pi}}\,\kappa\,\frac{\Gamma((d+1)/2)}{\Gamma(d/2)}$$

▶ Berry isotropic planar case, nodal line (d = 2, a = 0)

$$\mathbb{E}[\mathit{length}(\mathit{G}^{-1}(\mathit{a})\cap \mathit{Q})] = \mathcal{H}_2(\mathit{Q})\,rac{1}{2\sqrt{2}}\,\kappa$$

Planar case - Mean length of level curves

$$\mathbb{E}[\operatorname{\textit{length}}(G^{-1}(a)\cap Q)] = \mathcal{H}_2(Q)\,rac{e^{-a^2/2}}{\sqrt{2\pi}}\,\mathbb{E}\|G_{\mathbf{k}}'(0)\|$$

with

$$E\|G_{\mathbf{k}}'(0)\| = \int_{\mathbb{R}^2} (\mathbb{E}(\mathbf{k}\mathbf{k}^T)x \cdot x)^{1/2} \, \Phi_2(x) \, dx$$
$$= (2/\pi)^{1/2} \, (\gamma_+)^{1/2} \, \mathcal{E}((1 - \gamma_-/\gamma_+)^{1/2}),$$

where

- $\mathcal{E}(x) = \int_0^{\pi/2} (1 x^2 \sin^2 \theta)^{1/2} d\theta$, elliptic integral
- ▶ $0 \le \gamma_- \le \gamma_+$ are the eigenvalues of $\mathbb{E}(\mathbf{k}\mathbf{k}^T)$

Mean length of level curves - separable case

separable case: $\mathbf{k} = \|\mathbf{k}\|\widetilde{\mathbf{k}}$ with $\|\mathbf{k}\| \bot \bot \widetilde{\mathbf{k}}$ then

- $\qquad \qquad \mathbb{E}(\mathbf{k}\mathbf{k}^T) = (\mathbb{E}\|\mathbf{k}\|^2) \ \mathbb{E}(\widetilde{\mathbf{k}}\widetilde{\mathbf{k}}^T)$

$$\mathbb{E}[\mathit{length}(\mathit{G}^{-1}(\mathit{a})\cap \mathit{Q})] = \mathcal{H}_2(\mathit{Q})\,rac{e^{-\mathit{a}^2/2}}{\pi\sqrt{2}}\,(\mathbb{E}\|\mathbf{k}\|^2)^{1/2}\,\mathcal{F}(\mathit{c}(\widetilde{\mathbf{k}}))$$

where the map $\mathcal{F}:c\in[0,1]\mapsto (1+c)^{1/2}\,\mathcal{E}\left(\left(\frac{2c}{1+c}\right)^{1/2}\right)$ is strictly decreasing

Mean length of level curves - separable case

separable case: $\mathbf{k} = \|\mathbf{k}\|\widetilde{\mathbf{k}}$ with $\|\mathbf{k}\| \bot \bot \widetilde{\mathbf{k}}$ then

- $\qquad \qquad \mathbb{E}(\mathbf{k}\mathbf{k}^T) = (\mathbb{E}\|\mathbf{k}\|^2) \ \mathbb{E}(\widetilde{\mathbf{k}}\widetilde{\mathbf{k}}^T)$

$$\mathbb{E}[\mathit{length}(\mathit{G}^{-1}(\mathit{a})\cap \mathit{Q})] = \mathcal{H}_2(\mathit{Q})\,rac{e^{-\mathit{a}^2/2}}{\pi\sqrt{2}}\,(\mathbb{E}\|\mathbf{k}\|^2)^{1/2}\,\mathcal{F}(\mathit{c}(\widetilde{\mathbf{k}}))$$

where the map $\mathcal{F}: c \in [0,1] \mapsto (1+c)^{1/2} \mathcal{E}\left(\left(\frac{2c}{1+c}\right)^{1/2}\right)$ is strictly decreasing

▶ but what about $c(\widetilde{\mathbf{k}})$?

Coherency index

<u>Def:</u> the coherency index of matrix M is: $\frac{\gamma_+ - \gamma_-}{\gamma_+ + \gamma_-}$ where $0 \le \gamma_- \le \gamma_+$ are the eigenvalues of M

$$c(\mathbf{k}) = \text{ the coherency index of } \mathbb{E}(\mathbf{k}\mathbf{k}^T).$$

Result: if k is separable,

- $ightharpoonup c(\mathbf{k}) = c(\widetilde{\mathbf{k}})$ only depends on the directional distrib. of \mathbf{k}
- and

$$\mathbb{E}[length(G^{-1}(a)\cap Q))]$$
 is a \searrow function of $c(\widetilde{\mathbf{k}})$

Coherency index as anisotropy parameter (examples)

separable case: $\mathbf{k} = \|\mathbf{k}\| (\cos \Theta, \sin \Theta)$ with $\|\mathbf{k}\| \perp \!\! \perp \!\! \square \Theta$

▶ Toy model: $\Theta \sim C_{\alpha} |\cos \theta|^{\alpha} d\theta$

$$c(\widetilde{\mathbf{k}}) = \alpha \ (\nearrow \text{ function of } \alpha)$$

▶ Elementary model: $\Theta \sim \mathcal{U}([-\delta, \delta] \cup [\pi - \delta, \pi + \delta])$

$$c(\widetilde{\mathbf{k}}) = \operatorname{sinc}(2\delta)$$
 (\searrow function of $\delta \in [0, \pi/2]$)

3. Crest lines

k a 2-dim rdom wavevector, G associated Gaussian wave $\varphi \in [0,\pi)$ fixed, $u_{\varphi} = (\cos \varphi, \sin \varphi)$

$$Z_{arphi}:=G'\cdot u_{arphi}=\{G'(t)\cdot u_{arphi}\,;\,t\in\mathbb{R}^2\}$$
 $Z_{arphi}^{-1}(0)=$ nodal line of $Z_{arphi}:=$ crest line in direction $arphi$

Claim: Z_{φ} Gaussian wave associated with rdom wavevector \mathbf{K}_{φ}

$$\mathbf{K}_{arphi} \sim (\lambda \cdot u_{arphi})^2 \, rac{d\mu(\lambda)}{m_{20}(arphi)}$$

with

$$m_{ij}(\varphi) = \int (\lambda \cdot u_{\varphi})^i (\lambda \cdot u_{\varphi+\pi/2})^j d\mu(\lambda) = \int (\lambda_1)^i (\lambda_2)^j d\mu_{\varphi}(\lambda)$$

$$\mathbb{E}[\mathit{length}(Z_{arphi}^{-1}(0)\cap Q)] = \mathcal{H}_2(Q)\,rac{1}{\sqrt{2\pi}\mathit{m}_{20}(arphi)}\,\mathbb{E}\|\mathit{Z}_{arphi}'(0)\|$$

$$\mathbb{E}[\mathit{length}(Z_{arphi}^{-1}(0)\cap Q)] = \mathcal{H}_2(Q)\,rac{1}{\sqrt{2\pi}\mathit{m}_{20}(arphi)}\,\mathbb{E}\|\mathit{Z}_{arphi}'(0)\|$$

lacktriangle needs eigenvalues of matrix $\mathbb{E}(Z_{arphi}'(0)Z_{arphi}'(0)^T)=\mathbb{E}(\mathbf{K}_{arphi}\mathbf{K}_{arphi}^T)$

$$\mathbb{E}[\mathit{length}(Z_{arphi}^{-1}(0)\cap Q)] = \mathcal{H}_2(Q)\,rac{1}{\sqrt{2\pi}m_{20}(arphi)}\,\mathbb{E}\|Z_{arphi}'(0)\|$$

- ▶ needs eigenvalues of matrix $\mathbb{E}(Z_{\varphi}'(0)Z_{\varphi}'(0)^T) = \mathbb{E}(\mathbf{K}_{\varphi}\mathbf{K}_{\varphi}^T)$
- ▶ are equal to the eigenvalues of $\mathbb{E}[R_{-\varphi}(\mathbf{K}_{\varphi})R_{-\varphi}(\mathbf{K}_{\varphi})^T]$

$$\mathbb{E}[\mathit{length}(Z_{arphi}^{-1}(0)\cap Q)] = \mathcal{H}_2(Q)\,rac{1}{\sqrt{2\pi}m_{20}(arphi)}\,\mathbb{E}\|Z_{arphi}'(0)\|$$

- ▶ needs eigenvalues of matrix $\mathbb{E}(Z_{\varphi}'(0)Z_{\varphi}'(0)^T) = \mathbb{E}(\mathbf{K}_{\varphi}\mathbf{K}_{\varphi}^T)$
- ▶ are equal to the eigenvalues of $\mathbb{E}[R_{-\varphi}(\mathbf{K}_{\varphi})R_{-\varphi}(\mathbf{K}_{\varphi})^T]$ ⇒ 2 distinct formulas !

Mean length of crest lines - separable case

k separable: $\mathbf{k} = \|\mathbf{k}\|\widetilde{\mathbf{k}}$ with $\|\mathbf{k}\| \perp \perp \widetilde{\mathbf{k}}$. It implies

- $lackbox{ extbf{K}}_{arphi}$ is separable, $lackbox{ extbf{K}}_{arphi} = \|lackbox{ extbf{K}}_{arphi}\| \stackrel{ extbf{K}}{lackbox{ extbf{K}}_{arphi}}$
- ightharpoons $\mathbb{E}[\|\mathbf{K}_{\varphi}\|^2] = M_4/M_2$: indep of φ , with $M_j = \mathbb{E}\|\mathbf{k}\|^j$
- $\mathbf{r} = c(\mathbf{K}_{\varphi}) = c(\widetilde{\mathbf{K}}_{\varphi})$: depends on φ and on (4th moment of) $\widetilde{\mathbf{k}}$ hence

$$\mathbb{E}[\mathit{length}(Z_{arphi}^{-1}(0)\cap Q)] = \mathcal{H}_2(Q)\,(\mathit{M}_4/\mathit{M}_2)^{1/2}\,\mathcal{F}(c(\widecheck{\mathbf{K}_{arphi}}))$$

where the map ${\mathcal F}$ is strictly decreasing

In which direction is the longuest crest?

► Rule of thumb: "the direction that maximises the expected length of crests is orthogonal to the direction for the maximum integral of the spectrum, i.e. the most probable direction for the waves"

In which direction is the longuest crest?

- ▶ Rule of thumb: "the direction that maximises the expected length of crests is orthogonal to the direction for the maximum integral of the spectrum, i.e. the most probable direction for the waves"
- Computational answer: $Argmax_{\varphi} c(\widetilde{\mathbf{K}_{\varphi}})$

Recall we have 2 formulas, but none is tractable ... until now!

Longuest crest - examples

Question:
$$Argmax_{\varphi} c(\widetilde{\mathbf{K}_{\varphi}}) = ?$$

 $ightharpoonup \widetilde{\mathbf{k}}$ isotropic $\Rightarrow c(\widetilde{\mathbf{K}_{\varphi}}) = 0$, there is no maximum

Longuest crest - examples

Question:
$$Argmax_{\varphi} c(\widetilde{\mathbf{K}_{\varphi}}) = ?$$

- \mathbf{k} isotropic $\Rightarrow c(\widetilde{\mathbf{K}}_{\varphi}) = 0$, there is no maximum
- $\widetilde{\mathbf{k}} \sim \frac{1}{4} (\delta_0 + \delta_{\pi/2} + \delta_\pi + \delta_{3\pi/2})$ $\Rightarrow c(\widetilde{\mathbf{K}_\varphi}) = |\cos 2\varphi|, \text{ max for } \varphi = \pi/4 \text{ or } 3\pi/4$

Longuest crest - elementary case

Let
$$\widetilde{\mathbf{k}} \sim \mathcal{U}([-\delta, \delta] \cup [\pi - \delta, \pi + \delta])$$
 with $0 \le \delta \le \pi/2$

- for $\delta=0$ (totally anisotropic): $c(\widetilde{\mathbf{K}_{\varphi}})=1$, $\forall \varphi$
- for $\delta = \pi/2$ (isotropic): $c(\widetilde{\mathbf{K}_{\varphi}}) = 0$, $\forall \varphi$
- for $0 < \delta < \pi/2$: $c(\mathbf{K}_{\varphi}) = \frac{P_{\delta}}{Q_{\delta}}(\cos 2\varphi)$ with P_{δ} and Q_{δ} polynomials of degree 2, only depending on $\operatorname{sinc}(2\delta)$ and $\operatorname{sinc}(4\delta)$

then
$$\varphi \mapsto c(\mathbf{K}_{\varphi})$$
 is always critical at $\varphi = \pi/2$

but is
$$\varphi = \pi/2$$
 a maximum?

Longuest crest - elementary case (2)

Let
$$\widetilde{\mathbf{k}} \sim \mathcal{U}([-\delta, \delta] \cup [\pi - \delta, \pi + \delta])$$
 with $0 \le \delta \le \pi/2$

$$\varphi \mapsto c(\widetilde{\mathbf{K}_{\varphi}})$$
 for some δ (here $\delta = 0.4\pi$)

<u>Ccl:</u> longuest crest for $\varphi = \pi/2$, \perp "most probable direction"

Longuest crest - toy model

$$\widetilde{\mathbf{k}} = (\cos\Theta, \sin\Theta) \text{ with } \Theta \sim C_{\alpha} \, |\cos\theta|^{\alpha} \, d\theta$$

$$\Rightarrow c(\widetilde{\mathbf{K}}_{\varphi}) = A_{\alpha} - B_{\alpha} \, (\varphi - \pi/2) + o(\varphi - \pi/2)$$
with $A_{\alpha} = c(\widetilde{\mathbf{K}}_{\pi/2})$, $B_{\alpha} > 0$, for any $\alpha > 0$

<u>Ccl:</u> longuest crest for $\varphi = \pi/2$, \perp most probable direction

Take home message

- there are anisotropic Gaussian fields that solve PDE's
- directional properties of all(most) Gaussian random fields can be linked with directional properties of its random wavevector

Take home message

- there are anisotropic Gaussian fields that solve PDE's
- directional properties of all(most) Gaussian random fields can be linked with directional properties of its random wavevector

Generic procedure:

- \triangleright X any Gaussian field on \mathbb{R}^d , stat. centered, unit variance
- ▶ Bochner's thm: $\mathbb{E}(X(0)X(t)) = \int_{\mathbb{R}^d} e^{it \cdot \lambda} d\mu(\lambda)$ with μ probability measure on \mathbb{R}^d
- ► take **k** a random vector in \mathbb{R}^d with distribuion μ X is a Gaussian wave associated with **k**

Take home work

- study $\varphi \mapsto c(\mathbf{K}_{\varphi})$ whatever the distribution of Θ
- compute variance of nodal lines length in Berry's anisotropic planar case
 - Berry's cancellation phenomenon in anisotropic frame?
 - variation of the constant before the leading term
- study second order properties of expected measures of level sets in general anisotropic framework
- visit again arithmetic waves with anisotropic asymptotic spectral measure

Take home work

- study $\varphi \mapsto c(\mathbf{K}_{\varphi})$ whatever the distribution of Θ
- compute variance of nodal lines length in Berry's anisotropic planar case
 - Berry's cancellation phenomenon in anisotropic frame?
 - variation of the constant before the leading term
- study second order properties of expected measures of level sets in general anisotropic framework
- visit again arithmetic waves with anisotropic asymptotic spectral measure

Thank you for your attention

