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What is the talk about?

k is a random vector in Rd (d ≥ 2 , k 6= 0)

Associate

I covariance function: t ∈ Rd 7→ E cos(k · t)

I Gaussian random field on Rd , say Gk, that is stationary
centered with such a covariance

Question:

I links between anisotropy properties of Gk and those of k ?



Outline of the talk

1. Random wavevector and associated covariance function

2. Level sets of Gaussian waves

3. Crest lines in the planar case

without isotropy hypothesis



1. Random wavevector

k is a random vector in Rd such that P(k = 0) = 0
(wavevector)

Notations
• matrix kkT = (kikj)1≤i ,j≤d
• k = R k̃ with R = ‖k‖ and k̃ ∈ Sd−1

• dµ(λ): probability distribution of k on Rd

Vocabulary

• k is isotropic if k̃ is uniformly distributed in Sd−1

• k is separable if ‖k‖ and k̃ are independent random variables



Particular cases

I ‖k‖ = κ, a.s. with κ constant > 0 (wavenumber)
note that k is separable in that case

I d = 2, k separable, k̃ = (cos Θ, sin Θ) with
I Θ ∼ U([0, 2π]) (isotropic case)
I or Θ ∼ U([−δ, δ]) (elementary case)
I or Θ ∼ Cα| cos θ|α dθ (toy model)

I d = 3 and k ∈ A = {x2 + y 2 = z4} a.s. (Airy surface)

Rmk: In examples 1 and 3, k is such that Pol(k) = 0



Particular cases

I ‖k‖ = κ, a.s. with κ constant > 0 (wavenumber)
note that k is separable in that case

I d = 2, k separable, k̃ = (cos Θ, sin Θ) with
I Θ ∼ U([0, 2π]) (isotropic case)
I or Θ ∼ U([−δ, δ]) (elementary case)
I or Θ ∼ Cα| cos θ|α dθ (toy model)

I d = 3 and k ∈ A = {x2 + y 2 = z4} a.s. (Airy surface)

Rmk: In examples 1 and 3, k is such that Pol(k) = 0



Particular cases

I ‖k‖ = κ, a.s. with κ constant > 0 (wavenumber)
note that k is separable in that case

I d = 2, k separable, k̃ = (cos Θ, sin Θ) with
I Θ ∼ U([0, 2π]) (isotropic case)
I or Θ ∼ U([−δ, δ]) (elementary case)
I or Θ ∼ Cα| cos θ|α dθ (toy model)

I d = 3 and k ∈ A = {x2 + y 2 = z4} a.s. (Airy surface)

Rmk: In examples 1 and 3, k is such that Pol(k) = 0



Single random wave

Let k be a random wavevector in Rd

Let η be a r.v. independent of k with η ∼ U([0, 2π]) and

X (t) =
√

2 cos(k · t + η), t ∈ Rd

Hence

I X is centered, variance 1

I X is second order stationary with
E[X (s)X (t)] = E cos(k · (t − s))

I X is not second order isotropic (unless k is isotropic)



Gaussian random wave associated with a wavevector

Let k be a random wavevector in Rd

Def: We call Gaussian random wave associated with k any
Gaussian random field G on Rd that is stationary and centered
with covariance

r(t) := E(G (t)G (0)) = E cos(k · t), t ∈ Rd

Rmk: VarG (0) = 1 and

r(t) =

∫
Rd

e iλ·tdµ(s)(λ)

with µ(s) = 1
2
(µ + µ̌) the spectral measure of G



Covariance function

k is a random vector in Rd and r(t) = E cos(k · t), t ∈ Rd

Fact:

I r is of class Cm iff k admits finite moments of order m

I for any j = (j1, . . . , jd), ∂jr(0) = 0 if |j| is odd and

∂jr(0) = (−1)|j|/2Ekj if |j| is even

I E(G ′(0)G ′(0)T ) = −r ′′(0) = E(kkT ) (d × d matrix)



Partial Differential Equation

P multivariate even polynomial: P(λ) =
∑

j∈Nd ; |j|even
αj λ

j

LP =
∑

j∈Nd ; |j|even
(−1)|j|/2αj ∂

j: differential operator

Let k be a wavevector in Rd and G associated Gaussian wave

G is an a.s. solution of LP(G ) = 0

⇔ P(k) = 0 a.s.

⇔ spectral measure of G supported by {λ ∈ Rd : P(λ) = 0}



Examples

I Berry random wave: ‖k‖ = κ a.s. with κ constant > 0
Gaussian wave G satisfies ∆G + κ2G = 0 a.s.

I Sea waves: k in R3 with (kx)2 + (ky )2 = (kt)
4, a.s.

Gaussian wave G on R2 × R: height at point (x , y) at
time t. It satisfies ∆G + ∂4

∂t4
G = 0 a.s.

I Acoustic/optical waves in heterogeneous media, ...
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2. Level sets

Let k random wavevector in Rd ,
G associated Gaussian random field defined on Rd ,
a ∈ R fixed level

G−1(a) = {t ∈ Rd : G (t) = a},

I submanifold of Rd , dimension d − 1

I nodal set in the case a = 0

I ∀t ∈ G−1k (a), tangent space TtG
−1
k (a) is ⊥ G ′(t)

question: ”favorite” orientation of TtG
−1(a)?



Favorite orientation of level sets

def: favorite direction of V (V : rdom in Rd) is any direction in

Argmax {E(V .u)2 ; u ∈ Sd−1}

But E(V .u)2 = u.E(VV T )u and E(G ′(0)G ′(0)T ) = E(kkT )
so, morally: ”The favorite orientation(s) of the level sets
G−1(a) is(are) orthogonal to the favorite direction(s) of k”

”It becomes highly probable that the direction of the contour
is near the principal direction” [Longuet-Higgins’57]



(d = 2) Favorite direction of level lines - examples

Let k separable, so E(kkT ) = (E‖k‖2)E(k̃k̃T )

and let k̃ = (cos Θ, sin Θ)

I isotropic case: Θ ∼ U([0, 2π])

E(k̃k̃T ) = I2 then, no favorite direction

I toy model: Θ ∼ Cα | cos θ|α dθ with some α > 0

E(k̃k̃T ) = 1
α+2

(
α + 1 0

0 1

)
favorite direction of level lines is ⊥ 0

I elementary model Θ ∼ U([−δ, δ]) with some δ ∈ (0, π/2)

E(k̃k̃T ) =

(
1 + sinc(2δ) 0

0 1− sinc(2δ)

)
favorite direction of level lines is ⊥ 0



Expected measure of level sets

Let Q compact ⊂ Rd . Kac-Rice formula yields

E[Hd−1(G−1(a) ∩ Q)] =

∫
Q

E[‖G ′k(t)‖ |Gk(t) = a] pGk(t)(a) dt

= Hd(Q)
e−a

2/2

√
2π

E‖G ′k(0)‖

with E‖G ′k(0)‖ =

∫
Rd

(E(kkT )x · x)1/2Φd(x) dx

Separable case: k = ‖k‖k̃ with ‖k‖⊥⊥k̃, then

E‖G ′k(0)‖ = (E‖k‖2)1/2
∫
Rd

(E[k̃k̃T ]x · x)1/2Φd(x) dx



Expected measure of level sets - Berry isotropic RW

I Berry isotropic case: ‖k‖ = κ and k̃ ∼ U(Sd−1)

E[Hd−1(G−1(a) ∩ Q)] = Hd(Q)
e−a

2/2

√
2π

κ
Γ((d + 1)/2)

Γ(d/2)

I Berry isotropic planar case, nodal line (d = 2, a = 0)

E[length(G−1(a) ∩ Q)] = H2(Q)
1

2
√

2
κ



Planar case - Mean length of level curves

E[length(G−1(a) ∩ Q)] = H2(Q)
e−a

2/2

√
2π

E‖G ′k(0)‖

with

E‖G ′k(0)‖ =

∫
R2

(E(kkT )x · x)1/2 Φ2(x) dx

= (2/π)1/2 (γ+)1/2 E
(
(1− γ−/γ+)1/2

)
,

where

I E(x) =
∫ π/2
0

(1− x2 sin2 θ)1/2dθ, elliptic integral

I 0 ≤ γ− ≤ γ+ are the eigenvalues of E(kkT )



Mean length of level curves - separable case

separable case: k = ‖k‖k̃ with ‖k‖⊥⊥k̃ then

I E(kkT ) = (E‖k‖2) E(k̃k̃T )

I γ± = (E‖k‖2) γ̃± and γ̃+ + γ̃− = Trace(E(k̃k̃T )) = 1

hence

E[length(G−1(a) ∩ Q)] = H2(Q)
e−a

2/2

π
√

2
(E‖k‖2)1/2F(c(k̃))

where the map F : c ∈ [0, 1] 7→ (1 + c)1/2 E
((

2c
1+c

)1/2)
is strictly decreasing

I but what about c(k̃)?



Mean length of level curves - separable case

separable case: k = ‖k‖k̃ with ‖k‖⊥⊥k̃ then

I E(kkT ) = (E‖k‖2) E(k̃k̃T )

I γ± = (E‖k‖2) γ̃± and γ̃+ + γ̃− = Trace(E(k̃k̃T )) = 1

hence

E[length(G−1(a) ∩ Q)] = H2(Q)
e−a

2/2

π
√

2
(E‖k‖2)1/2F(c(k̃))

where the map F : c ∈ [0, 1] 7→ (1 + c)1/2 E
((

2c
1+c

)1/2)
is strictly decreasing

I but what about c(k̃)?



Coherency index

Def: the coherency index of matrix M is:
γ+ − γ−
γ+ + γ−

where 0 ≤ γ− ≤ γ+ are the eigenvalues of M

c(k) = the coherency index of E(kkT ).

Result: if k is separable,

I c(k) = c(k̃) only depends on the directional distrib. of k

I and

E[length(G−1(a) ∩ Q))] is a ↘ function of c(k̃)



Coherency index as anisotropy parameter (examples)

separable case: k = ‖k‖ (cos Θ, sin Θ) with ‖k‖⊥⊥Θ

I Toy model: Θ ∼ Cα | cos θ|α dθ

c(k̃) = α (↗ function of α)

I Elementary model: Θ ∼ U([−δ, δ] ∪ [π − δ, π + δ])

c(k̃) = sinc(2δ) (↘ function of δ ∈ [0, π/2])



3. Crest lines

k a 2-dim rdom wavevector, G associated Gaussian wave
ϕ ∈ [0, π) fixed, uϕ = (cosϕ, sinϕ)

Zϕ := G ′ · uϕ = {G ′(t) · uϕ ; t ∈ R2}

Z−1ϕ (0) = nodal line of Zϕ:=crest line in direction ϕ

Claim: Zϕ Gaussian wave associated with rdom wavevector Kϕ

Kϕ ∼ (λ · uϕ)2
dµ(λ)

m20(ϕ)

with

mij(ϕ) =

∫
(λ · uϕ)i(λ · uϕ+π/2)j dµ(λ) =

∫
(λ1)i(λ2)j dµϕ(λ)



Mean length of crest lines

E[length(Z−1ϕ (0) ∩ Q)] = H2(Q)
1√

2πm20(ϕ)
E‖Z ′ϕ(0)‖

I needs eigenvalues of matrix E(Z ′ϕ(0)Z ′ϕ(0)T ) = E(KϕKT
ϕ )

I are equal to the eigenvalues of E[R−ϕ(Kϕ)R−ϕ(Kϕ)T ]
=⇒ 2 distinct formulas !
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Mean length of crest lines - separable case

k separable: k = ‖k‖k̃ with ‖k‖⊥⊥k̃.
It implies

I Kϕ is separable, Kϕ = ‖Kϕ‖ K̃ϕ

I E[‖Kϕ‖2] = M4/M2: indep of ϕ, with Mj = E‖k‖j

I c(Kϕ) = c(K̃ϕ): depends on ϕ and on (4th moment of) k̃

hence

E[length(Z−1ϕ (0) ∩ Q)] = H2(Q) (M4/M2)1/2F(c(K̃ϕ))

where the map F is strictly decreasing



In which direction is the longuest crest ?

I Rule of thumb: ”the direction that maximises the
expected length of crests is orthogonal to the direction for
the maximum integral of the spectrum, i.e. the most
probable direction for the waves”

I Computational answer: Argmaxϕ c(K̃ϕ)

Recall we have 2 formulas, but none is tractable ... until now!
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Longuest crest - examples

Question: Argmaxϕ c(K̃ϕ) = ?

I k̃ isotropic
⇒ c(K̃ϕ) = 0, there is no maximum

I k̃ ∼ 1
4
(δ0 + δπ/2 + δπ + δ3π/2)

⇒ c(K̃ϕ) = | cos 2ϕ|, max for ϕ = π/4 or 3π/4
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Longuest crest - elementary case

Let k̃ ∼ U([−δ, δ] ∪ [π − δ, π + δ]) with 0 ≤ δ ≤ π/2

I for δ = 0 (totally anisotropic): c(K̃ϕ) = 1 , ∀ϕ
I for δ = π/2 (isotropic): c(K̃ϕ) = 0 , ∀ϕ
I for 0 < δ < π/2: c(K̃ϕ) = Pδ

Qδ
(cos 2ϕ)

with Pδ and Qδ polynomials of degree 2, only depending
on sinc(2δ) and sinc(4δ)

then ϕ 7→ c(K̃ϕ) is always critical at ϕ = π/2

but is ϕ = π/2 a maximum?



Longuest crest - elementary case (2)

Let k̃ ∼ U([−δ, δ] ∪ [π − δ, π + δ]) with 0 ≤ δ ≤ π/2

ϕ 7→ c(K̃ϕ) for some δ (here δ = 0.4π)

Ccl: longuest crest for ϕ = π/2, ⊥ ”most probable direction”



Longuest crest - toy model

k̃ = (cos Θ, sin Θ) with Θ ∼ Cα | cos θ|α dθ

⇒ c(K̃ϕ) = Aα − Bα (ϕ− π/2) + o(ϕ− π/2)

with Aα = c(K̃π/2) , Bα > 0, for any α > 0

Ccl: longuest crest for ϕ = π/2, ⊥ most probable direction



Take home message

I there are anisotropic Gaussian fields that solve PDE’s

I directional properties of all(most) Gaussian random fields
can be linked with directional properties of its random
wavevector

Generic procedure:

I X any Gaussian field on Rd , stat. centered, unit variance

I Bochner’s thm: E(X (0)X (t)) =
∫
Rd e

it·λdµ(λ)
with µ probability measure on Rd

I take k a random vector in Rd with distribuion µ

X is a Gaussian wave associated with k
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Take home work

I study ϕ 7→ c(Kϕ) whatever the distribution of Θ

I compute variance of nodal lines length in Berry’s
anisotropic planar case

I Berry’s cancellation phenomenon in anisotropic frame?
I variation of the constant before the leading term

I study second order properties of expected measures of
level sets in general anisotropic framework

I visit again arithmetic waves with anisotropic asymptotic
spectral measure

Thank you for your attention
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