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Squares

With

I symmetry between + and -

I symmetry between x1 and x2

then both probabilities are equal...
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Prob = 1/2.
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Bond percolation on Z2.

Theorem (Russo, Seymour-Welsh 1978) Let R ⊂ R2.

Then there exists c > 0,

lim inf
n→∞

Prob (positive crossing of nR) > c.
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Question: Let f : R2 → R a be random smooth function and

�x R ⊂ R2. Does it exist c > 0,

lim inf
n→∞

Prob
(
{f > 0} crosses nR

)
> c?
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Let f : R2 → R be

I a centered Gaussian �eld

I with symmetric covariant function

e(x, y) := E(f(x)f(y)) = k(‖x− y‖).

Two universal models

I The random wave model (RW) (Riemannian)

I The Bargmann-Fock model (algebraic)
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The random wave model

Barnett, Bogomolny-Schmidt

I g(r, θ) =
∑∞

m=−∞ amJ|m|(r)e
imθ

I limit model for the rescaled spherical harmonics

I (and more - universal from Riemannian manifolds).
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Conjecture (Bogomolny-Schmidt 2007) RSW for this model.
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The Bargmann-Fock model

Nastasescu -

Be�ara

I f(x1, x2) =
∑∞

i,j=0 aij
xi1x

j
2√

i!j!

I is the limit for the rescaled polynomials for complex

Fubini-Study (Kostlan) measure.

I (and more - universal from algebraic varieties).
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Theorem (Be�ara-G 2016) RSW holds for Bargmann-Fock:

for any rectangle R, there exists c > 0 such that

lim inf
n→∞

Prob
(
{f > 0} crosses nR

)
> c.

14/51



Remark: RSW holds for 0 ≤ k(x− y) ≤ ‖x− y‖−325

I Belyaev-Muirhead: 325→ 16

I Rivera-Vanneuville: 325→ 4.
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Corollary (Be�ara-G) For Bargmann-Fock,

Prob <
( `
n

)α>0
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Corollary (Alexander 1996) Almost surely there is no

in�nite component of {f > 0}.

Theorem (Rivera-Vanneuville 2017) For any ε > 0, almost
surely {f > −ε} as an in�nite component.

17/51



Corollary (Alexander 1996) Almost surely there is no

in�nite component of {f > 0}.
Theorem (Rivera-Vanneuville 2017) For any ε > 0, almost
surely {f > −ε} as an in�nite component.

17/51



Theorem (Belyaev-Muirhead-Wigman 2017) RSW holds for

polynomials with the Fubini-Studi measure.
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Why Bargmann-Fock and not Random Waves?

I Bargmann-Fock:

e(x, y) = exp(−‖x− y‖2).

1. positive

2. fast decay → weak dependence

I Random waves:

e(x, y) = J0(‖x− y‖)

1. oscillating

2. slow decay → strong dependence
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Strong decorrelation is not enough...

... because of the Analytic Continuation Phenomenon.
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Solution : blurring by discretization

I T = triangular lattice,

I V = its vertices,

I sign f|V : V → {±1}.
I Site percolation: the edge is positive i� its extremities are.
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Is the discretization trustful?

1. If T is too coarse, then no.

2. If T is very thin, then yes, but... dependence comes back.
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Quantitative good blurring

Theorem (Be�ara-G 2016) In [0, n]2, with high probability,

continuous crossings

⇔
discrete crossings in

1

n9
T .
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Quantitative dependence

Theorem (Be�ara-G 2016 - V. Piterbarg 1982)

max
A crossing in nR
A′ crossing in nR′

|Prob (A et A′)− Prob A Prob A′|

≤

(# vertices in nR and nR′)8/5 max
x∈nR
y∈nR′

|e(x, y)|1/5.

For our discretization scheme for Bargmann-Fock, on two

disjoint R and R′, this gives

dependence(nR, nR′) ≤ n50e−n2/5 →
n→∞

0.
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A crucial tool for RSW

FKG (Fortuin-Kasteleyn-Ginibre)

(crossing = positive crossing). FKG implies

Prob
(
crossing of R ∩ crossing of R′

)
≥

Prob(crossing of R) . Prob(crossing of R′).

25/51



= Prob (crossing the rectangle)2
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Prob ≥ Prob (crossing the rectangle)4
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Theorem (Loren Pitt 1982) For Gaussian functions,

FKG⇔ positive correlation function.
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Theorem (Tassion 2016) If we have family of models with

1. FKG

2. uniform crossing of squares

3. uniform asymptotic independence

then we have a uniformly positively bounded RSW.

In conclusion:

I for every n we discretize on [0, n]2

I with high uniform probability the continuous and discrete

crossings happen simultaneously

I the discretization satis�es the three former conditions

uniformly in n.

I Then Tassion gives a uniform RSW for every scale n.
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Without positive correlations (without FKG)?

I fB : V → R Gaussian �eld,

signfB = Bernoulli

I f : V → R Gaussian �eld

I symmetric with strong polynomial decorrelation

Theorem (Be�ara-G 2017): For ε small enough,

fB + εf

satis�es RSW.

Remark: If f has oscillating correlations, so does fB + εf .
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A smoothed random wave (SRW) model

eRW (x, y) =

∫
R2

δ1(‖ξ‖)ei〈x−y,ξ〉dξ.

eSRW (x, y) =

∫
ξ∈R2

χ(‖ξ‖)ei〈x−y,ξ〉dξ.

I If χ is smooth with compact support, eSRW decorrelates

strongly.

I If χ is close to δ1, then eSRW oscillates.
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Corollary: On a �xed V,

fB + εfSRW

satis�es RSW for ε small enough.
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SRW and BF
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Toy model

De�nition: g : V → R has �nite range ` if

‖x− y‖ > `⇒ eg(x, y) = 0.
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With �nite range `

Prob = 1/2.
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Prob = 1/2.
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Most right vertical crossing

+ Symmetrization
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The dependence zone
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Prob ≥ 1/2.
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Prob ≥ 1/2.
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Prob ≥ 1/4.

41/51



Prob ≥ 1/8.
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Prob ≥ 1/8.
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If there is no such bridge...

Negative arm between ` and n.

For Bernoulli,

Prob ≤
( `
n

)α>0
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Choose N such that for Bernoulli

Prob ≤ 1/32.
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Then there exists ε = ε(N) > 0 such that for

fB + εf,

Prob ≤ 1/16.
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For fB + εf,

Prob ≤ 1/16.
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For fB + εf and n ≥ N ,

Prob ≥ 1/8− Prob(no bridge)

≥ 1/8− 1/16 = 1/16.
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For fB + εf,

Prob ≥ 1/256.
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Theorem (Be�ara-G 2017 V., Piterbarg 1982) : Let

f : V → R be a strongly decorrelating Gaussian �eld. Then

I f can be coupled with g with

�nite range
√
n� n

I such that with high probability on [0, n]2,

sign f = sign g.
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