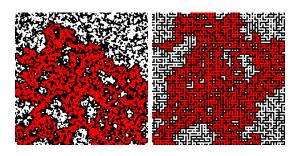
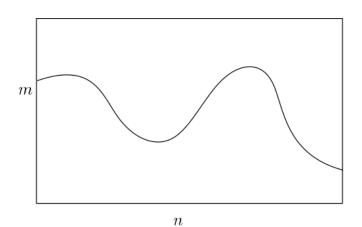
#### Percolation and random nodal lines

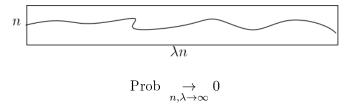
Random waves in Oxford- 18-22 June 2018

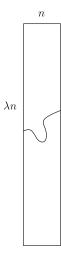


Damien Gayet (Institut Fourier, Grenoble) joint work with Vincent Beffara (Institut Fourier, Grenoble)

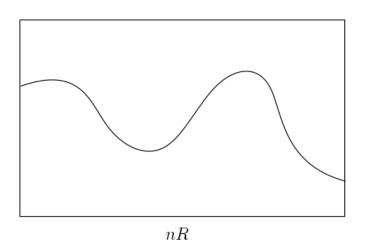


 $\liminf_{n,m\to\infty} \operatorname{Prob} \ > c > 0?$ 



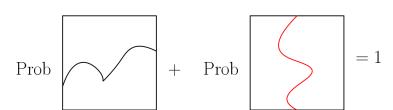


Prob  $\underset{n,\lambda\to\infty}{\to} 1$ 

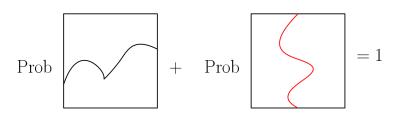


 $\liminf_{n\to\infty} \operatorname{Prob} \ge c > 0 ?$ 

## Squares



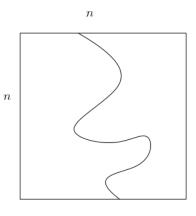
#### Squares



#### With

- $\triangleright$  symmetry between + and -
- ightharpoonup symmetry between  $x_1$  and  $x_2$

then both probabilities are equal...



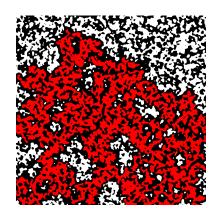
 $\mathrm{Prob}\ = 1/2.$ 



Bond percolation on  $\mathbb{Z}^2$ .

Theorem (Russo, Seymour-Welsh 1978) Let  $R \subset \mathbb{R}^2$ . Then there exists c > 0,

 $\liminf_{n\to\infty} \operatorname{Prob} \text{ (positive crossing of } nR) > c.$ 



**Question**: Let  $f: \mathbb{R}^2 \to \mathbb{R}$  a be random smooth function and fix  $R \subset \mathbb{R}^2$ . Does it exist c > 0,

$$\liminf_{n\to\infty}\operatorname{Prob}\left(\{f>0\}\text{ crosses }nR\right)>c?$$

Let  $f: \mathbb{R}^2 \to \mathbb{R}$  be

- ▶ a centered Gaussian field
- ▶ with symmetric covariant function

$$e(x, y) := E(f(x)f(y)) = k(||x - y||).$$

#### Let $f: \mathbb{R}^2 \to \mathbb{R}$ be

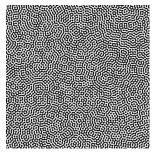
- ▶ a centered Gaussian field
- ▶ with symmetric covariant function

$$e(x, y) := E(f(x)f(y)) = k(||x - y||).$$

#### Two universal models

- ► The random wave model (RW) (Riemannian)
- ► The Bargmann-Fock model (algebraic)

#### The random wave model



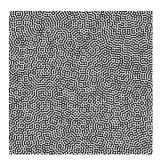
Barnett, Bogomolny-Schmidt

$$g(r,\theta) = \sum_{m=-\infty}^{\infty} a_m J_{|m|}(r) e^{im\theta}$$

11/51

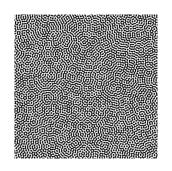
#### The random wave model





Barnett, Bogomolny-Schmidt

- $g(r,\theta) = \sum_{m=-\infty}^{\infty} a_m J_{|m|}(r) e^{im\theta}$
- ▶ limit model for the rescaled spherical harmonics
- ▶ (and more universal from Riemannian manifolds).



Conjecture (Bogomolny-Schmidt 2007) RSW for this model.

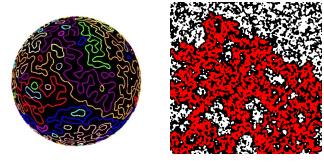
# The Bargmann-Fock model



Beffara

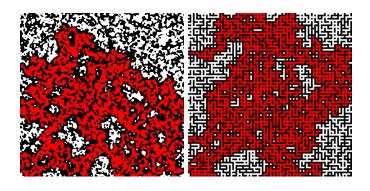
$$f(x_1, x_2) = \sum_{i,j=0}^{\infty} a_{ij} \frac{x_1^i x_2^j}{\sqrt{i!j!}}$$

## The Bargmann-Fock model



Nastasescu - Beffara

- $f(x_1, x_2) = \sum_{i,j=0}^{\infty} a_{ij} \frac{x_1^i x_2^j}{\sqrt{i!j!}}$
- ▶ is the limit for the rescaled **polynomials** for complex Fubini-Study (Kostlan) measure.
- ▶ (and more universal from algebraic varieties).

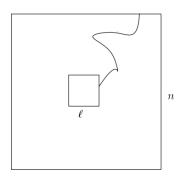


**Theorem** (Beffara-G 2016) RSW holds for Bargmann-Fock: for any rectangle R, there exists c > 0 such that

$$\liminf_{n\to\infty}\operatorname{Prob}\left(\{f>0\}\text{ crosses }nR\right)>c.$$

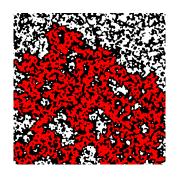
#### **Remark:** RSW holds for $0 \le k(x-y) \le ||x-y||^{-325}$

- ▶ Belyaev-Muirhead:  $325 \rightarrow 16$
- ▶ Rivera-Vanneuville:  $325 \rightarrow 4$ .

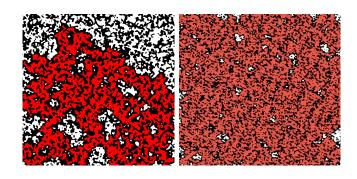


#### Corollary (Beffara-G) For Bargmann-Fock,

Prob 
$$<\left(\frac{\ell}{n}\right)^{\alpha>0}$$



Corollary (Alexander 1996) Almost surely there is no infinite component of  $\{f > 0\}$ .



Corollary (Alexander 1996) Almost surely there is no infinite component of  $\{f > 0\}$ .

**Theorem** (Rivera-Vanneuville 2017) For any  $\epsilon > 0$ , almost surely  $\{f > -\epsilon\}$  as an infinite component.



**Theorem** (Belyaev-Muirhead-Wigman 2017) RSW holds for polynomials with the Fubini-Studi measure.

$$e(x, y) = \exp(-\|x - y\|^2).$$

$$e(x, y) = \exp(-\|x - y\|^2).$$

- 1. positive
- 2. fast decay  $\rightarrow$  weak dependence

$$e(x, y) = \exp(-\|x - y\|^2).$$

- 1. positive
- 2. fast decay  $\rightarrow$  weak dependence
- ► Random waves:

$$e(x,y) = J_0(||x - y||)$$

$$e(x, y) = \exp(-\|x - y\|^2).$$

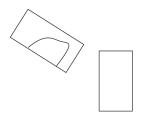
- 1. positive
- 2. fast decay  $\rightarrow$  weak dependence
- ► Random waves:

$$e(x,y) = J_0(||x - y||)$$

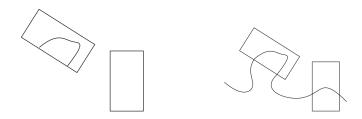
- 1. oscillating
- 2. slow decay  $\rightarrow$  strong dependence

Strong decorrelation is not enough...

# Strong decorrelation is not enough...



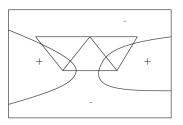
# Strong decorrelation is not enough...

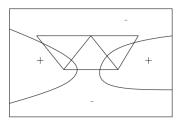


... because of the Analytic Continuation Phenomenon.

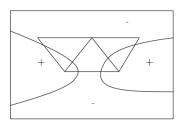
# Solution: blurring by discretization

- $ightharpoonup \mathcal{T} = triangular lattice,$
- $\triangleright \mathcal{V} = its \text{ vertices},$
- $ightharpoonup \operatorname{sign} f_{|\mathcal{V}}: \mathcal{V} \to \{\pm 1\}.$
- ▶ Site percolation: the edge is positive iff its extremities are.

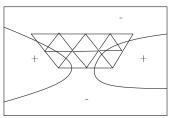




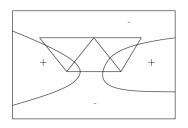
1. If  $\mathcal{T}$  is too coarse, then no.



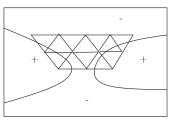
1. If  $\mathcal{T}$  is too coarse, then no.



2. If  $\mathcal{T}$  is very thin, then yes, but...



1. If  $\mathcal{T}$  is too coarse, then no.



2. If  $\mathcal{T}$  is very thin, then yes, but... dependence comes back.

### Quantitative good blurring

**Theorem (Beffara-G 2016)** In  $[0, n]^2$ , with high probability,

$$\Leftrightarrow$$

discrete crossings in 
$$\frac{1}{n^9}\mathcal{T}$$
.

## Quantitative dependence

## Theorem (Beffara-G 2016 - V. Piterbarg 1982)

 $\max_{\substack{A \text{ crossing in } nR \\ A' \text{ crossing in } nR'}} |\operatorname{Prob}\left(A \text{ et } A'\right) - \operatorname{Prob}\left(A \operatorname{Prob}\left(A'\right)\right)|$ 

<

(# vertices in nR and nR')<sup>8/5</sup>  $\max_{\substack{x \in nR \\ y \in nR'}} |e(x,y)|^{1/5}$ .

## Quantitative dependence

### Theorem (Beffara-G 2016 - V. Piterbarg 1982)

$$\max_{\substack{A \text{ crossing in } nR \\ A' \text{ crossing in } nR'}} |\operatorname{Prob} (A \text{ et } A') - \operatorname{Prob} A \operatorname{Prob} A'|$$

<

(# vertices in 
$$nR$$
 and  $nR'$ )<sup>8/5</sup>  $\max_{\substack{x \in nR \\ y \in nR'}} |e(x,y)|^{1/5}$ .

For our discretization scheme for Bargmann-Fock, on two disjoint R and R', this gives

dependence
$$(nR, nR') \le n^{50}e^{-n^2/5}$$

## Quantitative dependence

### Theorem (Beffara-G 2016 - V. Piterbarg 1982)

$$\max_{\substack{A \text{ crossing in } nR \\ A' \text{ crossing in } nR'}} |\operatorname{Prob}\left(A \text{ et } A'\right) - \operatorname{Prob}\left(A \operatorname{Prob}\left(A'\right)\right)|$$

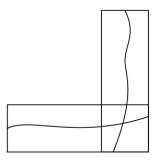
<

(# vertices in 
$$nR$$
 and  $nR'$ )<sup>8/5</sup>  $\max_{\substack{x \in nR \\ y \in nR'}} |e(x,y)|^{1/5}$ .

For our discretization scheme for Bargmann-Fock, on two disjoint R and R', this gives

dependence
$$(nR, nR') \le n^{50}e^{-n^2/5} \underset{n \to \infty}{\to} 0.$$

## A crucial tool for RSW



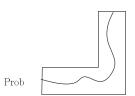
### FKG (Fortuin-Kasteleyn-Ginibre)

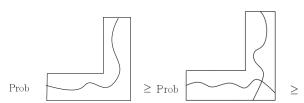
(crossing = positive crossing). FKG implies

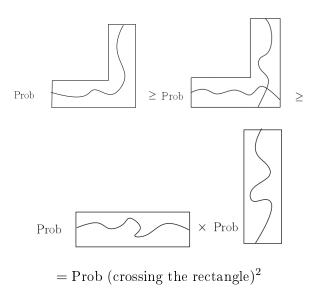
Prob(crossing of  $R \cap \text{crossing of } R'$ )

 $\geq$ 

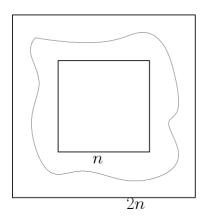
Prob(crossing of R) . Prob(crossing of R').







26/51



Prob  $\geq$  Prob (crossing the rectangle)<sup>4</sup>

## Theorem (Loren Pitt 1982) For Gaussian functions,

 $FKG \Leftrightarrow \text{positive correlation function.}$ 

- 1. FKG
- 2. uniform crossing of squares
- 3. uniform asymptotic independence then we have a uniformly positively bounded RSW.

- 1. FKG
- 2. uniform crossing of squares
- 3. uniform asymptotic independence then we have a uniformly positively bounded RSW.

#### In conclusion:

• for every n we discretize on  $[0, n]^2$ 

- 1. FKG
- 2. uniform crossing of squares
- 3. uniform asymptotic independence then we have a uniformly positively bounded RSW.

#### In conclusion:

- for every n we discretize on  $[0, n]^2$
- with high uniform probability the continuous and discrete crossings happen simultaneously

- 1. FKG
- 2. uniform crossing of squares
- 3. uniform asymptotic independence then we have a uniformly positively bounded RSW.

#### In conclusion:

- for every n we discretize on  $[0, n]^2$
- with high uniform probability the continuous and discrete crossings happen simultaneously
- ▶ the discretization satisfies the three former conditions uniformly in n.

- 1. FKG
- 2. uniform crossing of squares
- 3. uniform asymptotic independence then we have a uniformly positively bounded RSW.

#### In conclusion:

- for every n we discretize on  $[0, n]^2$
- with high uniform probability the continuous and discrete crossings happen simultaneously
- $\blacktriangleright$  the discretization satisfies the three former conditions uniformly in n.
- $\triangleright$  Then Tassion gives a uniform RSW for every scale n.

## Without positive correlations (without FKG)?

▶  $f_B: \mathcal{V} \to \mathbb{R}$  Gaussian field,

$$sign f_B = Bernoulli$$

- $f: \mathcal{V} \to \mathbb{R}$  Gaussian field
- ▶ symmetric with strong polynomial decorrelation

## Without positive correlations (without FKG)?

•  $f_B: \mathcal{V} \to \mathbb{R}$  Gaussian field,

$$sign f_B = Bernoulli$$

- $f: \mathcal{V} \to \mathbb{R}$  Gaussian field
- ▶ symmetric with strong polynomial decorrelation

**Theorem (Beffara-G 2017)**: For  $\epsilon$  small enough,

$$f_B + \epsilon f$$

satisfies RSW.

## Without positive correlations (without FKG)?

•  $f_B: \mathcal{V} \to \mathbb{R}$  Gaussian field,

$$sign f_B = Bernoulli$$

- $f: \mathcal{V} \to \mathbb{R}$  Gaussian field
- ▶ symmetric with strong polynomial decorrelation

**Theorem (Beffara-G 2017)**: For  $\epsilon$  small enough,

$$f_B + \epsilon f$$

satisfies RSW.

**Remark**: If f has oscillating correlations, so does  $f_B + \epsilon f$ .

## A smoothed random wave (SRW) model

$$e_{RW}(x,y) = \int_{\mathbb{R}^2} \delta_1(\|\xi\|) e^{i\langle x-y,\xi\rangle} d\xi.$$

## A smoothed random wave (SRW) model

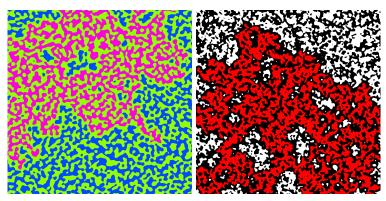
$$e_{RW}(x,y) = \int_{\mathbb{R}^2} \delta_1(\|\xi\|) e^{i\langle x-y,\xi\rangle} d\xi.$$
$$e_{SRW}(x,y) = \int_{\xi \in \mathbb{R}^2} \chi(\|\xi\|) e^{i\langle x-y,\xi\rangle} d\xi.$$

- ▶ If  $\chi$  is smooth with compact support,  $e_{SRW}$  decorrelates strongly.
- If  $\chi$  is close to  $\delta_1$ , then  $e_{SRW}$  oscillates.

Corollary: On a fixed V,

$$f_B + \epsilon f_{SRW}$$

satisfies RSW for  $\epsilon$  small enough.



 ${\rm SRW}$  and  ${\rm BF}$ 

## Toy model

**Definition:**  $g: \mathcal{V} \to \mathbb{R}$  has finite range  $\ell$  if

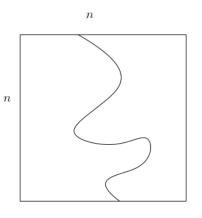
 $||x - y|| > \ell \Rightarrow e_g(x, y) = 0.$ 

## Toy model

**Definition:**  $g: \mathcal{V} \to \mathbb{R}$  has finite range  $\ell$  if

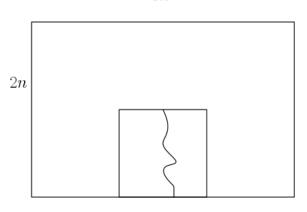
 $||x - y|| > \ell \Rightarrow e_g(x, y) = 0.$ 

## With finite range $\ell$



Prob = 1/2.



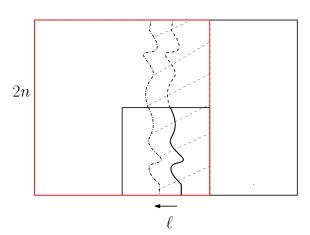


Prob = 1/2.



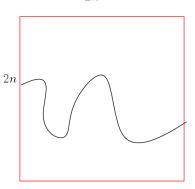


Most right vertical crossing + Symmetrization

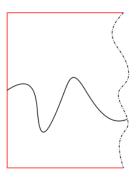


The dependence zone

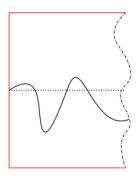




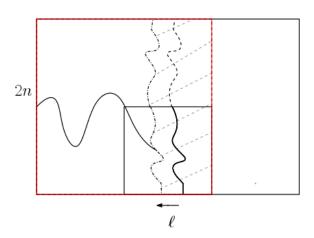
Prob  $\geq 1/2$ .



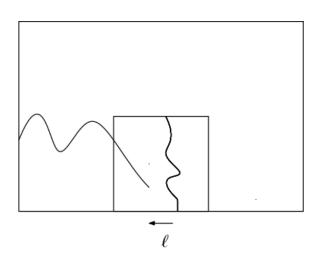
Prob  $\geq 1/2$ .



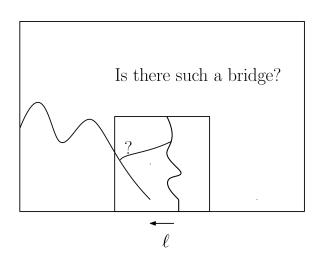
Prob  $\geq 1/4$ .



Prob  $\geq 1/8$ .

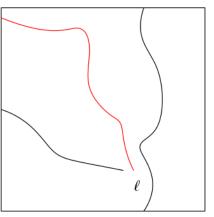


Prob  $\geq 1/8$ .



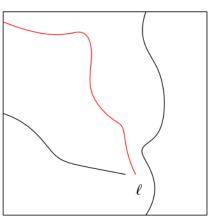
If there is no such bridge...

n



Negative arm between  $\ell$  and n.

## If there is no such bridge...



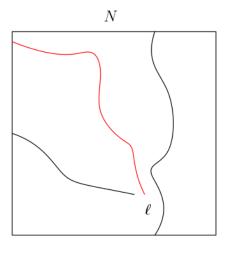
n

Negative arm between  $\ell$  and n.

For Bernoulli,

$$\operatorname{Prob} \leq \left(\frac{\ell}{n}\right)^{\alpha > 0}$$

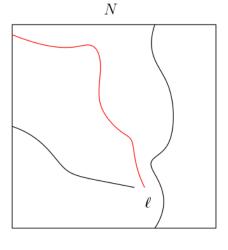
#### Choose N such that for Bernoulli



 $Prob \leq 1/32$ .

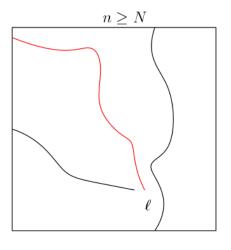
Then there exists  $\epsilon = \epsilon(N) > 0$  such that for

 $f_B + \epsilon f$ ,



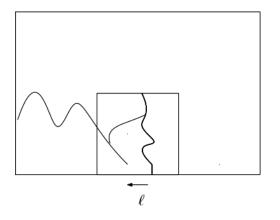
 $Prob \leq 1/16$ .

For  $f_B + \epsilon f$ ,



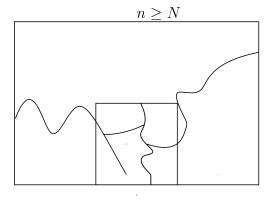
 $Prob \leq 1/16$ .

For  $f_B + \epsilon f$  and  $n \geq N$ ,



$$\begin{array}{lll} {\rm Prob} & \geq & 1/8 - {\rm Prob}({\rm no~bridge}) \\ & \geq & 1/8 - 1/16 = 1/16. \end{array}$$

For  $f_B + \epsilon f$ ,



 $\mathrm{Prob} \geq 1/256.$ 

# Theorem (Beffara-G 2017 V., Piterbarg 1982) : Let $f: \mathcal{V} \to \mathbb{R}$ be a strongly decorrelating Gaussian field. Then

ightharpoonup f can be coupled with g with

finite range 
$$\sqrt{n} \ll n$$

▶ such that with high probability on  $[0, n]^2$ ,

$$sign f = sign g.$$