Percolation and random nodal lines
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Squares
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» symmetry between + and -

» symmetry between x; and xo

then both probabilities are equal...
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Bond percolation on Z2.

Theorem (Russo, Seymour-Welsh 1978) Let R C R2.
Then there exists ¢ > 0,

lim inf Prob (positive crossing of nR) > c.
n—oo
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Question: Let f: R? — R a be random smooth function and
fix R C R2. Does it exist ¢ > 0,

lin;inf Prob ({f > 0} crosses nR) > ¢?
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Let f:R? — R be
» a centered Gaussian field

» with symmetric covariant function

e(z,y) .= E(f(2)f(y)) = k(l|z = yl)-
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Let f:R? — R be
» a centered Gaussian field

» with symmetric covariant function

e(z,y) = E(f(x)f(y)) = k(l|z — yl)-

Two universal models
» The random wave model (RW) (Riemannian)

» The Bargmann-Fock model (algebraic)
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The random wave model

Barnett, Bogomolny-Schmidt

> g(r,0) =300 amdj(r)e™?
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The random wave model

R AR e s

Barnett, Bogomolny-Schmidt

> g(r,0) = 0 amJjm ()€™
» limit model for the rescaled spherical harmonics

» (and more - universal from Riemannian manifolds).
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Conjecture (Bogomolny-Schmidt 2007) RSW for this model.
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The Bargmann-Fock model

i .0
> f($1>$2) = E'Z?:O az]%
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The Bargmann-Fock model

Nastasescu - Beffara

ind

> flon,w2) = Y750 aij Ak

> is the limit for the rescaled polynomials for complex
Fubini-Study (Kostlan) measure.

» (and more - universal from algebraic varieties).
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Theorem (Beffara-G 2016) RSW holds for Bargmann-Fock:
for any rectangle R, there exists ¢ > 0 such that

lirginf Prob ({f > 0} crosses nR) > c.
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Remark: RSW holds for 0 < k(z —y) < ||z — y|| 3%
» Belyaev-Muirhead: 325 — 16
» Rivera-Vanneuville: 325 — 4.
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Corollary (Beffara-G) For Bargmann-Fock,

Prob < (%) 0
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Corollary (Alexander 1996) Almost surely there is no
infinite component of {f > 0}.
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Corollary (Alexander 1996) Almost surely there is no
infinite component of {f > 0}.

Theorem (Rivera-Vanneuville 2017) For any ¢ > 0, almost
surely {f > —e} as an infinite component.
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Theorem (Belyaev-Muirhead-Wigman 2017) RSW holds for
polynomials with the Fubini-Studi measure.
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Why Bargmann-Fock and not Random Waves?

» Bargmann-Fock:

e(z,y) = exp(—|z — y|*).
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Why Bargmann-Fock and not Random Waves?

» Bargmann-Fock:

e(z,y) = exp(~lz — y[|*).

1. positive
2. fast decay — weak dependence

» Random waves:

e(x,y) = Jo(llz — yl)

1. oscillating
2. slow decay — strong dependence
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Strong decorrelation is not enough...
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Strong decorrelation is not enough...
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Strong decorrelation is not enough...

... because of the Analytic Continuation Phenomenon.
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Solution : blurring by discretization

» T = triangular lattice,

v

VY = its vertices,
sign fly : V — {1}

Site percolation: the edge is positive iff its extremities are.

v

v
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Is the discretization trustful?
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Is the discretization trustful?

1. If 7 is too coarse, then no.
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Is the discretization trustful?

1. If 7 is too coarse, then no.

AVAN
NN/

/!

2. If T is very thin, then yes, but... dependence comes back.
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Quantitative good blurring

Theorem (Beffara-G 2016) In [0,7]%, with high probability,

continuous  crossings

-

. : 1
discrete  crossings in —7T.
n
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Quantitative dependence

Theorem (Beffara-G 2016 - V. Piterbarg 1982)

max |Prob (A et A’) — Prob A Prob A'|

A crossing in nR
A’ crossing in nR’

<

(# vertices in nR and nR/)8/5 max ‘e(%y)’l/q
rxeENR

yenR/
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Quantitative dependence

Theorem (Beffara-G 2016 - V. Piterbarg 1982)

max |Prob (A et A’) — Prob A Prob A'|

A crossing in nR
A’ crossing in nR’

<

(# vertices in nR and nR')®° max |e(z,y)|"/°.
zeENR
yenR/

For our discretization scheme for Bargmann-Fock, on two
disjoint R and R/, this gives

dependence(nR,nR’) < n™0e—n?/5
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Quantitative dependence

Theorem (Beffara-G 2016 - V. Piterbarg 1982)

max |Prob (A et A’) — Prob A Prob A'|

A crossing in nR
A’ crossing in nR’

<

(# vertices in nR and nR')®° max |e(z,y)|"/°.
zeENR
yenR/

For our discretization scheme for Bargmann-Fock, on two
disjoint R and R/, this gives

dependence(nR,nR') < n®0e—12/5 .
n—o0
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A crucial tool for RSW

7J/

FKG (Fortuin-Kasteleyn-Ginibre)
(crossing = positive crossing). FKG implies

Prob (crossing of R N crossing of R')
>

Prob(crossing of R) . Prob(crossing of R').
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> Frob

Prob /\%

= Prob (crossing the rectangle)?
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Theorem (Loren Pitt 1982) For Gaussian functions,

FKG < positive correlation function.
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Theorem (Tassion 2016) If we have family of models with
1. FKG
2. uniform crossing of squares
3. uniform asymptotic independence

then we have a uniformly positively bounded RSW.
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Theorem (Tassion 2016) If we have family of models with

1.
2.
3.

FKG
uniform crossing of squares

uniform asymptotic independence

then we have a uniformly positively bounded RSW.

In conclusion:

>

>

29/51

for every n we discretize on [0, n]?

with high uniform probability the continuous and discrete
crossings happen simultaneously

the discretization satisfies the three former conditions
uniformly in n.

Then Tassion gives a uniform RSW for every scale n.



Without positive correlations (without FKG)?

» fp:V — R Gaussian field,
sign fp = Bernoulli

> f:V — R Gaussian field

» syminetric with strong polynomial decorrelation
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Without positive correlations (without FKG)?

> fp:V — R Gaussian field,
sign fp = Bernoulli

> f:V — R Gaussian field

» syminetric with strong polynomial decorrelation

Theorem (Beffara-G 2017): For € small enough,

fB+ef
satisfies RSW.

Remark: If f has oscillating correlations, so does fp + €f.
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A smoothed random wave (SRW) model

e (w.9) = [ ol
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A smoothed random wave (SRW) model

eRW@c,y):/ si(lEee v de.

€SRW(~”C71/):/§6 x(lelee€ de.

» If v is smooth with compact support, esgpw decorrelates
strongly.

» If v is close to 01, then egrw oscillates.
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Corollary: On a fixed V,

B+ efsrw

satisfies RSW for € small enough.
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Toy model

Definition: g¢:V — R has finite range ¢ if

[z =yl > £ = e4(z,y) = 0.
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[z =yl > £ = e4(z,y) = 0.
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With finite range ¢

Prob =1/2.
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an

Prob =1/2.
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2n et

Most right vertical crossing
+ Symmetrization
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2n

The dependence zone

38/51



2n

2n

Prob >1/2.
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Prob > 1/2.
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Prob > 1/4.
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Prob > 1/8.
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[s there such a bridge?




If there is no such bridge...

n

Negative arm between ¢ and n.
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If there is no such bridge...
mn

Negative arm between ¢ and n.

For Bernoulli,
l
Prob < (—)a>0
n
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Choose N such that for Bernoulli
N

Prob < 1/32.
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Then there exists € = ¢(NN) > 0 such that for

fB+6f7

N

Prob < 1/16.
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For fB"‘ef?

n>N

Prob < 1/16.
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For fp+ef andn > N,

AVa\

Prob 1/8 — Prob(no bridge)

1/8 —1/16 = 1/16.

A\VARLY;



For fB+€f7

ava

Prob > 1/256.
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Theorem (Beffara-G 2017 V., Piterbarg 1982) : Let
f 'V — R be a strongly decorrelating Gaussian field. Then

» f can be coupled with g with
finite range v/n < n
» such that with high probability on [0, n]?,

sign f = sign g.
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