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Berry’s conjecture

In 1977 M. Berry conjectured that high energy eigenfunctions in
the chaotic case have statistically the same behaviour as random
plane waves. (Figures from Bogomolny-Schmit paper)

Figure : Nodal domains of an
eigenfunction of a stadium

Figure : Nodal domains of a random
plane wave



Random Plane Wave

There are several ways to define random plane waves with energy
E = k2:

Naive definition

Ψn(z) = <

 n∑
j=1

ek(θj ,z)+φj


where θj are uniform random directions and φj are random
phases. Random plane wave is the limit as n tends to infinity.

Rigorous definition

Ψ(r , θ) =
∑

CnJ|n|(kr)e inθ

where Cn = C−n are independent Gaussian random variables
and Jn are Bessel functions.



Random Plane Wave

One can think that random plane wave is the 2-d Fourier
transform of the white noise on the unit circle. To make it
rigorous we introduce L2s (T) – the Hilbert space of L2

functions on the unit circle that satisfy symmetry condition
φ(−z) = φ(z). We define H to be Fourier transform of L2s
with scalar product inherited from L2. This space consist of
real analytic functions satisfying Helmholtz equation. Random
plane wave is ∑

CnΦn

where {Φn} is any orthonormal basis in H and Cn are
independent Gaussians.

Naive definition corresponds to the approximation by δ-measures,
the second to the ortjonormal basis of xn in L2(T).



Random Plane Wave and Spherical Harmonic

Simple computation shows that the random plane wave can be
described as the unique isotropic Gaussian field with covariance
function J0(k |z − w |).

Figure : Spherical harmonic of
degree 40. Picture by Alex Barnett

Spherical
harmonics of degree n form
a 2n + 1 dimensional space
of eigenfunctions of Laplacian
on the sphere. Random
spherical harmonic is the
Gaussian vector in this space.
It follows from work of Zelditch
that the Gaussian plane
wave is the scaling limit of the
Gaussian spherical harmonic.



Band-Limited Functions

Let (M, g) be a compact Riemanian manifold, eigenfunctions of
Laplacian form an orthonormal basis in L2. Let ti be the square
roots of eigenvalues 0 ≤ t1 ≤ t2 . . .

∆φi + t2i φi = 0

Define band-limited function for α ∈ (0, 1)

fα,T =
∑

αT<ti<T

Ciφi

For α = 1
fα,T =

∑
T−o(T )<ti<T

Ciφi



Deterministic Results

Some universal estimates are known for eigenfunctions of
Laplacian.

Theorem

Nodal set for random plane wave forms a c/k-net where c is an
absolute constant. Nodal set for spherical harmonic forms a
c/n-net.

Theorem

Every nodal component contains a disc of radius c/k (or c/n)
where c is an absolute constant.



Deterministic Results

The length of nodal set for spherical harmonic is relatively easy to
compute using integral formulas due to Poincaré and Kac-Rice.

Theorem

There is a constant c such that for every spherical harmonic g of
degree n such that

n

c
< L(g) < cn

where L(g) is the length of nodal set.

The lower bound is correct for every smooth Riemann surface
(with n replaced by

√
λ). The upper bound is proven for

real-analytic surfaces by Donelly and Fefferman.



Nodal Lines of Gaussian Spherical Harmonic

Theorem (Bérard, 1985)

For Gaussian spherical harmonic gn of degree n

EL(gn) = π
√

2λn =
√

2πn + O(1)

With more careful analysis of Kac-Rice formula it is possible to
compute variance

Theorem (I.Wigman, 2009)

For Gaussian spherical harmonic gn of degree n

Var L(gn) =
65

32
ln(n) + O(1)



Number of Nodal Domains

In the deterministic case Courant’s theorem gives that the number
of nodal domains N(gn) < n2. In 1956 Plejel improved the upper
bound to 0.69n2. For n > 2 Lewy constructed spherical harmonic
with two or three nodal domains, so there is no non-trivial
deterministic lower bound.

The main problem: this is a non-local quantity.

Theorem (Nazarov and Sodin, 2007)

Let gn be Gaussian spherical harmonic of degree n. Then there is a
positive constant a such that

P
{∣∣∣∣N(gn)

n2
− a

∣∣∣∣ > ε

}
≤ C (ε)e−c(ε)n

where C (ε) and c(ε) are positive constant depending on ε only.



Nodal Domains

All positive nodal domains of a random plane wave.

Picture by T. Sharpe.



Nodal Domains

All negative nodal domains of a random plane wave.

Picture by T. Sharpe.



Nodal Domains Size Distribution

Theorem (B.–Wigman)

There is a limiting distribution of the nodal domain areas and
nodal line lengths. This distribution function is strictly increasing
starting from the lowest possible area.
The same is true for band-limited functions

Theorem (Sarnak–Wigman)

There is a limiting distribution for the topology and nesting of the
nodal domain.
The same is true for band-limited functions.

Proofs are combination of Kac-Rice, ergodicity and explicit
constructions involving Lax-Malgrange approximation.



Bogomolny-Schmit Percolation Model

They proposed think that the nodal lines form a perturbed square
lattice

Picture from Bogomolny-Schmit paper.



Bogomolny-Schmit Percolation Model

Using this analogy we can think of the nodal domains as
percolation clusters on the square lattice. This leads to the
conjecture that Nazarov-Sodin constant is (3

√
3− 5)/π ≈ 0.0624

Picture from Bogomolny-Schmit paper.



Bogomolny-Schmit Percolation Model

Picture from Bogomolny-Schmit paper.



Bogomolny-Schmit Conjecture

Bogomolny and Schmit conjectured that this critical bond
percolation on the square lattice gives a good description of nodal
domains. Based on this they predicted that

EN(E )

N̄
=

3
√

3− 5

π
≈ 0.0624

VarN(E )

N̄
=

18

π2
+

4
√

3

π
− 25

2π
≈ 0.0502

These conjectures are based on percolation cluster densities.
Kleban claims that that one of the assumptions used in the
derivation of the second formula is wrong and the correct answer
should be approximately 2.085 times greater.



Numerical Results

Several people (Nastasescu, Barnett, Konrad, Kereta, Sharpe)
performed computer experiments with random plane waves. Figure
by T. Sharpe.

The nodal domain density is 0.0589 which is 6% below
Bogomolny-Schmit prediction.



Universal Observable

Note that the nodal domain density is a universal quantity, it is the
same for all surfaces. From percolation point of view this is a
non-universal quantity. For universal (for percolation) observable
match is much better. Crossing probability (by Z. Kereta)



Universal Observable

Other universal also match very well The probability that the
percolation cluster has area n is of order n−τ where τ is Fisher
constant τ = 187/91 ≈ 2.055. For nodal domains we have
exponent 2.075 (T. Sharpe)



Universal Observable

Other universal also match very well The probability that the
cluster containing origin has radius at least R is of order R−α

where α is one-arm exponent α = 5/48 ≈ 0.104. For nodal
domains we have exponent 0.107 (T. Sharpe)



Alternative Percolation Model

We propose to consider bond percolation on a random graph
generated by the random plane wave. The nodes of the graph are
local maxima and the edges are gradient streamlines passing
through saddles. Simulations by T. Sharpe
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