
8-Categories and Deformation Theory

Lecture 1

Fix a smooth and proper variety Z over the complex numbers. A (formal) deformation of Z to
a local Artinian C-algebra A is a pullback square

Z rZ

SpecpCq SpecpAq

{

flat

Two such deformations rZ, rZ 1 are isomorphic if we can find an isomorphism rZ
–

ÝÑ rZ 1 over SpecpAq

that restricts to the identity on Z. One important goal of deformation theory is:

Goal. Classify the deformations of Z over A.

Before discussing this difficult problem, we will first explore a much simpler one.

First order deformations. Consider the ring of dual numbers

A “ Crϵs{ϵ2.

Deformations of Z to Crϵs{ϵ2 are called first order deformations. They are classified by the following
theorem, which is an instance of Kodaira–Spencer theory [KS58]:

Theorem 1.1. There is a canonical bijection
"

First order deformations of Z

*

– H1pZ, TZq

To prove this result, we will need several basic facts from algebraic geometry. We will leave them
as an exercise, which will serve as a reminder of several basic notions we will use later.

Exercise 1.2. Let rZ be a first order deformation of Z.

(1) Show that Z Ñ rZ induces a homeomorphism on underlying topological spaces;

(2) Show that if Z is affine, then so is rZ.

Exercise 1.3 (Infinitesimal lifting property). Let A Ñ B be a smooth ring map, and assume

B “ rB{I for some square-zero ideal I Ă rB. Show that there exists a lift

rB

A B.

Exercise 1.4 (Detecting isomorphisms on special fibres). Let X1, X2 be two schemes which are
flat and of finite type over Crϵs{ϵ2. A morphism f : X1 Ñ X2 over Crϵs{ϵ2 is an isomorphism if
and only if the induced map X1 ˆCrϵs{ϵ2 C Ñ X2 ˆCrϵs{ϵ2 C is an isomorphism.

With these results, we can now prove the above classification of first order deformations.
1

2

Proof of Theorem 1.1. Let us pick a open cover U “ tUiu of

Z “
ď

i

Ui

by affine open subsets Ui – SpecpBiq Ă Z with affine open intersections Uij – SpecpBijq.

Our goal is to produce a cohomology class xZ̃ P H1pZ, TZq for each first order deformation Z̃. To

this end, fix a first oder deformation Z̃ as above. For each affine open Ui Ă Z, we use Exercise 1.2(1)
to obtain an induced deformation

Ui
ĂUi

SpecpCq SpecpCrϵs{ϵ2q.

{

By Exercise 1.2(2), each restricted deformation ĂUi – SpecpĂRiq is also affine.

Tensoring the short exact sequence 0 Ñ pϵq Ñ Crϵs{ϵ2 Ñ C Ñ 0 over Crϵs{ϵ2 with ĂRi, we see that

the flatness of ĂRi over Crϵs{ϵ2 implies that the kernel of ĂRi Ñ Ri is a square-zero ideal.
By Exercise 1.3, we can therefore pick a lift

ĂUi

Ui Ui.
id

and obtain a map

ϕi : ĂUi Ñ Ui ˆ SpecpCrϵs{ϵ2q

Exercise 1.4 shows that ϕi is an isomorphism – we have trivialised the deformation on each affine Ui.

On each overlap Ui X Uj – SpecpRijq, the transition map θij “ ϕiϕ
´1
j defines an automorphism

θij : Rijrϵs{ϵ2 Ñ Rijrϵs{ϵ2,

which is Crϵs{ϵ2-linear and compatible with the projection Rijrϵs{ϵ2 Ñ Rij .
Such maps are simply given by C-linear derivations Rij Ñ Rij , i.e. Rij-linear maps Ω1

Rij{C Ñ Rij ,

i.e. sections

θij P ΓpUij , TZq,

where TZ is the tangent sheaf of Z.
Using that composition of automorphisms correspond to addition of the corresponding deriva-

tions, we check that θij ` θjk ` θki “ 0 for all i, j, k. We also check that if ϕ1
i are different

trivialisations, then there is a secion αi P H0pUi, TXq such that θ1
ij “ θij ` αi ´ αj .

Hence we get a well-defined element x
rZ in the Čech cohomology group qH1pU, TZq – H1pZ, TZq.

Exercise 1.5.

(1) Check that the element x
rZ P H1pZ, TZq does not depend on the chosen open covering;

(2) Produce a map from H1pZ, TZq to first order deformations of Z, and verify that it is an
inverse to the above construction.

□

3

Towards higher order deformations. To classify higher order deformations of Z, we will refine
H˚pZ, TZq to a differential graded Lie algebra gZ , i.e. a chain complex with a bilinear bracket
satisfying the Jacobi identity, antisymmetry, and the Leibniz rule, all in a graded sense.

Concretely, gZ is given by the Dolbeault complex

gZ “
`

A0,0pTZq Ñ A0,1pTZq Ñ A0,2pTZq Ñ . . .
˘

,

where A0,kpTZq locally looks like

f dzi1 ^ . . . ^ dzik b α.

The Lie bracket is obtained by wedging differential forms and taking the commutator of vector fields.
Miraculously, this d.g. Lie algebra in fact controls all (formal) deformations of Z. Indeed, we

will see that for A a local Artin C-algebra with maximal ideal mA, there is a bijection

"

Deformations rZ of Z

over SpecpAq

*N

isomorphism
restricting to idZ

–

"

Maurer–Cartan elements

x P pgZq´1 b mA : dx ` 1
2 rx, xs “ 0

*N

gauge
equivalence

.

Here x, y P pgZq´1 b mA are called gauge equivalent if there is some a P pgZq0 b mA satisfying

y “ x `

8
ÿ

n“0

ra,´s˝n

pn ` 1q!
pra, xs ´ daq

Other deformation problems. There are numerous other algebro-geometric objects Y over C
whose infinitesimal deformations are governed by some d.g. Lie algebra gY , including subschemes,
vector bundles, and representations. It is therefore natural to ask:

Question. Given an algebro-geometric object Y over C, how can we construct the d.g. Lie algebra
gY controlling its infinitesimal deformations?

Unfortunately, many non-equivalent d.g. Lie algebras can control deformations of the same ob-
ject, and it is not possible to functorially pick a preferred Lie algebra for a given deformation
functor. On a more concrete note, this means obstruction classes are not functorial.

In a visionary letter [Dri] from 1988, Drinfel’d suggested that this issue would disappear once
we also took derived infinitesimal deformations into account, i.e. deformations over simplicial local
Artin C-algebras

A “ p. . . ÝÑÐÝÑÐÝÑ A1
ÝÑÐÝÑ A0q .

In these lectures, we will construct an equivalence between derived deformation functors and
differential graded Lie algebras, and to use this equivalence to prove unobstructedness of Calabi–
Yau varieties.

We will take a scenic route via Koszul–Moore duality, and learn some useful techniques in higher
category theory along the way.

4

Prelude: Morita Theory

1.1. Categorical Morita Theory. Before discussing Koszul–Moore duality, an inherently higher
categorical phenomenon, we will review Morita theory [Mor58], a good toy example which can be
treated using only ordinary categories. It is centered around the following simple question:

Question. Given two associative rings R and S, is there an equivalence between the categories of
left modules ModR and ModS?

If such an equivalence exists, then the rings R and S are said to be Morita equivalent. Isomorphic
rings are clearly Morita equivalent, but the converse need not be true:

Proposition 1.6 (Morita functors). Let Q P ModR be a left module over a ring R such that

(1) Q is finite projective, i.e. a direct summand of R‘n for some n;
(2) Q is a generator, which means that the functor HomRpQ,´q is faithful.

Then R and S “ EndRpQqop are Morita equivalent, which is witnessed by inverse equivalences

rG : ModR Ñ ModS , M ÞÑ HomRpQ,Mq

rF : ModS Ñ ModR, N ÞÑ Q bS N.

Before proving this claim, we give a simple exercise:

Exercise 1.7 (Examples of Morita equivalences).

a) Prove directly that for any ring R and any n ą 0, the ring R is Morita equivalent to MnpRq.
b) Find a ring R and a finite projective generator Q P ModR such that S “ EndRpQqop is not a

matrix algebra.

We present a categorical proof of Proposition 1.6 which we have learned from [Lur, Section 4.8].
While needlessly abstract, it will generalise well to 8-categories of chain complexes and serve as
good excuse to revise some basic categorical notions. We will implement the following strategy:

Strategy 1.8.

(0) Consider the functor G : ModR Ñ ModZ given by M ÞÑ HomRpQ,Mq;
(1) Construct the associative ring S “ EndRpQqop from the functor G;

(2) Lift G to a functor rG : ModR Ñ ModS by exhibiting an S-module structure on each HomRpQ,Mq;

(3) Show that rG is an equivalence.

1.2. Properties of Functors. We begin by reformulating the algebraic conditions imposed in
Proposition 1.6 on Q P ModR in terms of the associated functor G : ModR Ñ ModZ. We treat the
“finite” and the “projective” part in (1) separately, and start with the former.

Compactness. The categorical notion of compactness aims to capture the smallness of a given
object X by asserting that it cannot be “spread out” arbitrarily.

For example, given a diagram Y0 Ñ Y1 Ñ . . ., any map from a small object X to the sequential
colimit colimi Yi (which we might think of as an increasing union) should factor through some Yi.

In fact, we will also want to take slightly more general diagrams into account:

Definition 1.9 (Filtered categories). A category I is filtered if it is nonempty and

a) any two objects x, y map into a third object z via morphisms x Ñ z, y Ñ z;
b) for all parallel morphisms f, g : x⇒ y in C, there exists h : y Ñ z with h ˝ f “ h ˝ g.

A filtered colimit in a category C is a colimit over a diagram D : I Ñ C, where I is filtered.

5

Exercise 1.10. Establish the following facts:

(1) The category N “ p‚ Ñ ‚ Ñ . . .q is filtered; hence sequential colimits are filtered;
(2) The product of filtered categories is filtered;
(3) The category ‚ ‚ is not filtered, and neither is ∆op, the opposite of the category of nonempty

finite linearly ordered sets.

We can explicitly compute filtered colimits in the category of sets:

Exercise 1.11 (Filtered colimits of sets). Given a diagram D : I Ñ Set with I a small filtered cat-
egory, show that colim iPIDpiq is given by the set

š

iPI Dpiq{–, where – is the equivalence relation
identifying a P Dpiq, b P Dpjq if there are arrows f : i Ñ k, g : j Ñ k with Dpfqpaq “ Dpgqpbq.

Exercise 1.12 (Limits of sets). Given a diagram D : I Ñ Set with I small, write down its limit.

We will often need the following important fact:

Exercise 1.13 (Filtered colimits and finite limits in Set).

a) Given a diagram D : I ˆ J Ñ Set with I a small filtered category and J a category with finitely
many objects and morphisms, the following canonical arrow is an isomorphism:

colim
iPI

ˆ

lim
jPJ

Dpi, jq

˙

–
ÝÝÑ lim

jPJ

ˆ

colim
iPI

Dpi, jq

˙

.

b) Show that filtered colimits generally do not commute with limits in Set.
c) Show that in Setop, filtered colimits need not commute with finite limits.

Filtered colimits and finite limits also commute in categories that are sufficiently similar to sets.
To make this precise, we need several notions.

Notation 1.14. Given a category I, the right cone I▷ is obtained from I by adding a new object
1 and a unique morphism from every i P I to the new object 1.

Definition 1.15. Let I be a category. We say that a functor F : C Ñ D preserves and reflects
colimits of shape I ifD▷ : I▷ Ñ C is a colimit diagram if and only if this is true for U˝D▷ : I▷ Ñ D.
A similar definition applies to limits.

Using that faithful functors reflect isomorphisms (which we establish in Proposition 1.31 below),
we can deduce the following basic fact from Exercise 1.13:

Corollary 1.16. Let U : C Ñ Set be a faithful functor which preserves and reflects finite limits
and filtered colimits. Then finite limits commute with filtered colimits in C.

Exercise 1.17. Show that for any ring R, the forgetful functor U : ModR Ñ Set satisfies the
assumptions of Corollary 1.16. Hint: equip the colimit of sets colim iPIpU ˝ Dqpiq constructed in
Exercise 1.12 with the structure of an R-module.

We can now give a categorical notion of smallness:

Definition 1.18. An object X in a locally small category C is called compact if the functor
MapCpX,´q : C Ñ Set preserves filtered colimits.

Using Exercise 1.13, we can prove an intuitive closure property for compact objects:

Corollary 1.19. Finite colimits of compact objects in a category C are compact.

6

Proof. For any finite diagram D : J Ñ C which admits a colimit in C, we have a natural iso-

morphism of functors MapCpcolim jPJDpjq,´q
–

ÝÝÑ limjPJ MapCpDpjq,´q. For any filtered diagram
D1 : I Ñ C, compactness of all Dpjq and Exercise 1.13 implies:

MapCpcolim jPJDpjq, colim iPID
1piqq – limjPJ colim iPI MapCpDpjq, D1piqq

– colim iPI limjPJ MapCpDpjq, D1piqq – colim iPI MapCpcolim jPJDpjq, D1piqq

□

Example 1.20 (Compact sets). A set is compact if and only if it is finite.
For the “if” part, we first observe that the set ˚ with one object is compact. As finite sets are

finite coproducts of points, Corollary 1.19 shows that they are compact.
To see the “only if” part, let S be an infinite set and consider the category I with objects

t xT | T Ă S finite u and a unique morphism xT Ñ xT 1 whenever T is contained in T 1. An easy
check shows that I is filtered, and that S is the colimit of the functor D : I Ñ Set given by xT ÞÑ T .
If S were compact, then MapSetpS, Sq – colim iPI MapSetpS,Dpiqq and we could factor the identity
map S Ñ S through a finite subset, which is absurd.

Exercise 1.21 (Compact topological spaces). Compact objects in the category of topological spaces
are finite sets with the discrete topology. We will revisit this example later.

Example 1.22 (Compact modules). A (left) module M over a ring R is compact if and only if it
is finitely presented. The proof is almost identical to Example 1.20.

First observe that R is compact because MapRpR,Mq – M and the forgetful functor ModR Ñ

Set preserves filtered colimits by Exercise 1.17. Since any finitely presented R-module is an iterated
finite colimit of copies of R, the “if” part follows.

For the converse direction, we need that any R-module is a filtered colimit of finitely presented
modules; we leave this as an exercise. If M is compact, then we can factor the identity map on M
through a finitely presented submodule. This shows that M is a summand of a finitely presented
module, and hence finitely presented itself.

We have completed the first step towards the desired reformulation of Proposition 1.6:

Corollary 1.23. A module Q P ModR is finitely presented if and only if the associated functor
G “ MapModR

pQ,´q : ModR Ñ ModZ preserves filtered colimits.

Remark 1.24. Since the forgetful functor ModZ Ñ Set preserves and reflects filtered colimits, this
is an instance of Definition 1.18.

Projectivity. We now give a reformulation of the condition that a moduleQ P ModR be projective,
with an eye towards later generalisations. First, we recall a well-known result in homological algebra:

Proposition 1.25. Given a module Q P ModR, the following are equivalent:

a) Q is a summand of a free module;
b) The functor MapRpQ,´q preserves surjections;
c) The functor MapRpQ,´q preserves short exact sequences;
d) The functor MapRpQ,´q preserves cokernels.

If these conditions hold, we call the module Q projective.

We will reformulate the “cokernel” condition dq using the following notion:

7

Definition 1.26. A reflexive pair in a category C is a diagram consisting of two arrows d0, d1 :
X1 ⇒ X0 and a common section s : X0 Ñ X1 satisfying f ˝ s “ g ˝ s “ idX0 . In other words, it is a
∆op

ď1-indexed diagram, where ∆ď1 is the category of nonempty ordered sets of cardinality ď 1; we
will return to this perspective in the next lectures.

A reflexive coequaliser is the colimit of a reflexive pair. Note that this agrees with the coequaliser
of the arrows d0 and d1.

We also record the following notion:

Definition 1.27. A functor F : ModR Ñ ModZ is called additive if for all M,N , the functor
MapRpM,Nq Ñ MapZpFM,FNq is a homomorphism of abelian groups.

Condition dq in Proposition 1.25 can be reformulated in terms of reflexive coequalisers:

Proposition 1.28. An additive functor F : ModR Ñ ModZ preserves cokernels if and only if it
preserves reflexive coequalisers.

Proof. Assume that F preserves cokernels. The coequaliser of a reflexive pair A
f

ÝÝÑÐÝÝÑ
g

B is the

cokernel of A
f´g

ÝÝÝÑ B. As F is additive, this shows that it preserves reflexive coequalisers. Now

assume that F preserves reflexive coequalisers. The cokernel of A
f

ÝÑ B agrees with the coequaliser

of the reflexive pair A ‘ B
f`idB

ÝÝÝÝÑÐÝÝÝÝÝÑ
idB

B, which implies the claim. □

Corollary 1.29. A module Q P ModR is projective if and only if the functor MapRpQ,´q preserves
reflexive coequalisers.

Exercise 1.30.

a) Prove that the forgetful functor ModZ Ñ Set preserves and reflects reflexive coequalisers.
b) Show that this becomes false once we drop the word “reflexive”.

Conservativity. Recall that a functor G : C Ñ D is called conservative if f : X Ñ Y is an
isomorphism whenever Gpfq is one. We can then reformulate condition p2q of Proposition 1.6 by
making the following simple observation:

Proposition 1.31. Any faithful functor G : ModR Ñ ModZ is conservative. Any conservative
functor which preserves coequalisers is faithful.

Proof. First assume that G is faithful. If Gpfq is an isomorphism, then it is both an epi- and a
monomorphism. Since G is faithful, this implies that f is both an epi- and a monomorphism, which
shows that f is an isomorphism since ModR is an abelian category.

Conversely, assume that G is a conservative functor which preserves coequalisers. Note that

arrows f, g : A Ñ B are equal if and only if in the coequaliser diagram A
f

ÝÝÑÝÝÑ
g

B
h

ÝÑ C, the map h

is an isomorphism; this condition is preserved and reflected by the functor G. □

8

Coming back to Proposition 1.6, we can now rephrase algebraic conditions imposed on Q in
terms of categorical conditions on the functor G “ HomRpQ,´q:

Q is finitely presented ↭ G preserves filtered colimits, i.e. Q is compact;
Q is projective ↭ G preserves reflexive coequalisers;
Q is a generator ⇝ G is conservative.

1.3. Monads and Adjunctions. To construct the crucial diagram in Strategy 1.8, we will first
use that G admits a left adjoint to construct a monad T on ModZ, and then identify T -algebras
with S-modules. We briefly review the categorical notions appearing in this sentence.

Monads. Monads provide a way of axiomatising algebraic structures that is convenient for certain
abstract arguments. We start with a simple example:

Example 1.32 (Groups). Traditionally, groups are defined as sets X with a binary multiplication
px, yq ÞÑ x ¨ y, a unary inverse x ÞÑ x´1, and a unit e satisfying various axioms.

We could also choose a less economical approach, and specify many more operations, e.g.

(1) px1, x2, x3q ÞÑ x1 ¨ x10
3 ¨ x´1

2 , px1, x2, x3, x4q ÞÑ x4
1 ¨ x2

2 ¨ x3 ¨ x´15
4 , etc.

More precisely, consider the endofunctor TGp : Set Ñ Set sending a set X to the set of expressions

TGppXq :“ t xa1
1 xa2

2 . . . xak

k | k ě 0, xi P X, ak P Z ´ t0u, xi ‰ xi`1 for all i. u

Here the empty word p q is considered a valid element of the set TGppXq.

In our uneconomical approach to groups, defining all operations as in (1) amounts to specifying
a single map α : TGppXq Ñ X sending a formal expression xa1

1 xa2
2 . . . xak

k to the value of the
corresponding product xa1

1 ¨ xa2
2 ¨ . . . ¨ xak

k in X.

However, not all such maps α : TGppXq Ñ X define valid group structures on the set X, as we
have not yet imposed any of the group axioms. To fix this, we exhibit additional structure on the
endofunctor TGp by specifying the following natural maps for all sets X:

ηX : X Ñ TGppXq µX : TGppTGppXqq Ñ TGppXq.

The first map ηX takes an element s P X to the corresponding one-letter word in TGppXq. The

second map µX sends a “word of words” pxa11
11 . . . x

a1k1

1k1
qb1 pxan1

n1 . . . x
ankn

nkn
qbn in TGppTGppXqq

to the corresponding word in TGppXq given by

pxa11
11 . . . x

a1k1

1k1
q . . . pxa11

11 . . . x
a1k1

1k1
q

loooooooooooooooooooomoooooooooooooooooooon

b1

. pxan1
n1 . . . x

ankn

nkn
q . . . pxan1

n1 . . . x
ankn

nkn
q

looooooooooooooooooooomooooooooooooooooooooon

bn

Here, we have implicitly simplified this word by reducing subwords of the form xaxb to xa`b.

Exercise 1.33. The maps ηX and µX are natural in X and satisfy the following identities:

µX ˝ TGppµXq – µX ˝ µTGppXq, µX ˝ ηTGppXq “ idTGppXq “ µX ˝ TGppηXq.

Using the natural transformations η and µ, we can now formulate a condition for when a map
α : TGppXq Ñ X defines a group structure on X:

Exercise 1.34. Given a map α : TGppXq Ñ X, the operations px, yq ÞÑ αpxyq, x ÞÑ αpx´1q,
e “ αp q define a group structure on X if and only if α ˝ ηX “ idX and α ˝ µX “ α ˝ TGppαq.

9

We therefore obtain a second definition of what a group is, namely a set X together with a map
of sets TGppXq Ñ X satisfying α ˝ ηX “ idX and α ˝ µX “ α ˝ TGppαq.

Definitions of this kind can also be given for most other algebraic structures of interest (like
modules, rings, Lie algebras, . . .). We therefore axiomatise this situation:

Definition 1.35 (Monads). A monad on a category C is an associative algebra object in the
monoidal category EndpCq of endofunctors (with the composition product ˝).

Concretely, this means that a monad is an endofunctor T : C Ñ C equipped with natural
transformations idC Ñ T and µ : T ˝ T Ñ T such that the following two diagrams commute:

T ˝ T ˝ T
T pµq

> T ˝ T

T ˝ T

µT

∨
µ

> T

µ

∨

T
ηT

> TT

T 2

T pηq

∨

µ
> T

µ

∨
id

>

Definition 1.36 (Algebras over monads). An algebra over a monad T on C is a T -module object
in the EndpCq-tensored category C. Concretely, this means that an algebra is a pair pA P C, α :
T pAq Ñ Aq for which the following two diagrams commute:

A
ηA

> T pAq

A

α

∨idA >

T pT pAqq
T pαq

> T pAq

T pAq

µA

∨
α

> A

α

∨

We write AlgT pCq for the category of T -algebras in C.

In Example 1.32, we constructed a monad TGp acting on Set whose category of algebras AlgTGp
pSetq

is equivalent to the category of groups. We can construct similar monads for other algebraic structures:

Exercise 1.37.

a) Define a monad TAb on the category of sets Set such that AlgTAb
pSetq is equivalent to the category

Ab “ ModZ of abelian groups.

b) Define a monad TRing on the category Ab such that AlgTRing
pAbq is the category of rings.

c) Given a ring R, define a monad TRing on Ab whose category of algebras is equivalent to the
category of (left) R-modules.

Adjunctions. In Example 1.32, we have adopted the perspective that the monad TGp can be used
as a tool for defining the notion of a group.

We could also reverse this logic and try to define the monad TGp assuming that we already know
what a group is. To this end, recall the following standard notion from category theory (which we
will later generalise to higher categories):

Definition 1.38 (Adjunctions). An adjunction consists of functors F : C ⇆ D : G together with
natural transformations η : idC Ñ GF (the “unit”), ϵ : FG Ñ idD (the “counit”) for which the

10

following diagrams commute:

F
F pηq

> FGF

F

ϵF
∨idF >

G
ηG

> GFG

G

Gpϵq

∨idG >

The functor F is called the left adjoint, whereas G is called a right adjoint; we write F % G.

Remark 1.39. Fix an adjunction pF,G, η, ϵq as in Definition 1.38. For any pair of objects X P C
and Y P D, we obtain natural isomorphisms MapDpFX, Y q – MapCpX,GY q. Indeed, given f :
FX Ñ Y in D, we attach the map f : X Ñ GY defined by f “ Gf ˝ ηX . Conversely, to a map
g : X Ñ GY , we attach the map g “ ϵY ˝ Fg : FX Ñ Y . In fact, specifying natural isomorphisms
MapDpFX, Y q – MapCpX,GY q leads to an equivalent definition of adjunctions

Example 3.1 (continued). There is a free-forgetful adjunction Free : Set ⇆ Gp : Forget be-
tween the category of sets and the category of groups. The right adjoint Forget sends a group
to its underlying set, and the left adjoint Free builds the free group on a given set. The unit
ηX : X Ñ ForgetpFreepXqq embeds a set X into the free group generated by X. The counit
ϵG : FreepForgetpGqq Ñ G takes a formal product ga1

1 . . . gan
n in the free group on the set G and

computes the corresponding product ga1
1 ¨ . . . ¨ gan

n in the group G.
We note that the endofunctor TGp : Set Ñ Set defined above is equal to the composite Forget ˝Free.

The transformation idSet Ñ TGp agrees with the unit η of the adjunction, and the monad multipli-
cation µ : TGp ˝ TGp Ñ TGp is given by GϵF : GFGF Ñ GF .

The functor Gp Ñ AlgTGp
pSetq sending a group G to the TGp-algebra

ˆ

ForgetpGq , TGppForgetpGqq
ForgetpϵGq

ÝÝÝÝÝÝÝÑ ForgetpGq

˙

gives the equivalence between groups and TGp-algebras mentioned above.

Indeed, we obtain a monad for every adjunction:

Exercise 1.40 (Monads from adjunctions). Given an adjunction F : C ⇆ D : G with unit
η : idC Ñ GF and counit ϵ : FG Ñ idD, show that the endofunctor T “ GF is equipped with the
structure of a monad with unit η : idC Ñ GF and multiplication GϵF : T ˝ T Ñ T .

Exercise 1.41. Given a monad T on a category C, consider the functor FreeT : C Ñ AlgT pCq

sending an object X P C to the T -algebra pTX, T pT pXqq
µX

ÝÝÑ T pXqq.

a) Prove that FreeT is a left adjoint to the forgetful functor ForgetT : AlgT pCq Ñ C.
b) Verify that the adjunction FreeT % ForgetT induces the monad T .

This implies the interesting fact that any monad is induced by an adjunction.

Notation 1.42. We will usually denote the free T -algebra on an object X P C by T pXq instead of
FreeT pXq. Moreover, we will often drop the functor ForgetT from our notation.

If T “ GF is a monad obtained from an adjunction F % G , we always obtain a functor

rG : D Ñ AlgT pCq

sending an object X P D to the T -algebra pGpXq , T pGpXqq
GpϵXq

ÝÝÝÝÑ GpXqq.

11

Coming back to Proposition 1.6, we can now give a purely categorical construction of the category

ModS and the functor rG : ModR Ñ ModS for S “ EndRpQqop, as desired.

Observation 1.43. The functor G “ MapRpQ,´q admits a left adjoint given by F “ Q b p´q.

This tensor-hom-adjunction

Q b p´q : ModZ ⇆ ModR : MapRpQ,´q

induces a monad TQ on Ab – ModZ which sends M to MapRpQ,QbMq. Hence TQpZq “ EndRpQq.

In fact, we can use the conditions on Q to identify the endofunctor T more explicitly.

Observation 1.44. The functor G “ MapRpQ,´q preserves biproducts.

As G “ MapRpQ,´q also preserves filtered colimits and reflexive coequalisers, it must pre-
serve small colimits. As this is also true for the left adjoint Q b p´q, we deduce that the monad
TQ : Ab Ñ Ab preserves small colimits.

Exercise 1.45.

a) Given two rings R1, R2, show that a functor ModR1
Ñ ModR2

is of the form M ÞÑ B bR1
M

for some pR2, R1q-bimodule B if and only if it is right exact and preserves coproducts (this is
known as the Eilenberg-Watts theorem).

b) Identify AlgTQ
pAbq with the category of left modules ModS over the ring S “ EndRpQqop.

1.4. The Barr-Beck Theorem. To prove Proposition 1.6, it remains to show that the induced

functor rG Ñ ModS – AlgTQ
is an equivalence. We will deduce this from the important Barr–Beck

theorem, which we will now review. First, let us introduce some terminology:

Definition 1.46. An adjunction F % G with associated monad T is monadic if the induced functor
rG : D Ñ AlgT pCq is an equivalence.

In the case of groups, we have seen in Example 1.32 that the forgetful-free adjunction is monadic,
thereby giving an alternative definition of groups as TGp-algebras.

However, not all adjunctions share this desirable property:

Exercise 1.47 (Non-monadic adjunctions). Consider the adjunction F : Set ⇄ Top : G between
sets and topological spaces whose right adjoint G sends a space to its underlying set of points, and
whose left adjoint F equips a set with the discrete topology.

Show that this adjunction is not monadic. Hint: what does G do to isomorphisms?
Can you find an example of a conservative non-monadic adjunction?

The Barr-Beck theorem establishes a simple criterion for when an adjunction is monadic:

Theorem 1.48 (Barr-Beck theorem, crude version).
Assume that an adjunction F : C ⇆ D : G satisfies the following two properties:

a) D admits and G preserves reflexive coequalisers;
b) G is conservative (i.e. reflects isomorphisms).

Then pF % Gq is monadic, i.e. rG : D –
ÝÝÑ AlgT pCq is an equivalence.

In Definition 1.26, we have introduced the notion of “reflexive coequaliser”. To prove Theo-
rem 1.48, we will also need a second notion of coequaliser, which looks similar, but is in fact quite
different:

12

Definition 1.49 (Split coequaliser). Two parallel arrows d0, d1 : X1 ⇒ X0 in a category C are
called a split pair if there exist arrows

h : X0 Ñ X´1, s : X´1 Ñ X0, t : X0 Ñ X1

satisfying the following identities:

hd0 “ hd1 hs “ idX´1 d0t “ idX0 d1t “ sh

Exercise 1.50. Show that in the situation of Definition 1.49, X1 ⇒ X0 Ñ X´1 is a coequaliser.
Deduce that it is preserved by any functor – we call this an absolute colimit.

Using split coequalisers, we can build canonical free resolutions of algebras over monads:

Proposition 1.51 (Free resolutions). Fix a monad T on a category C and a T -algebra specified by
pA,α : T pAq Ñ Aq. The following diagram of T -algebras is a coequaliser in AlgT pCq:

(2) T pT pAqq
T pαq

ÝÝÝÝÝÝÑ
ÝÝÝÝÝÝÑ

µA

T pAq
α

ÝÝÝÑ A

Here, we have used the free functor C Ñ AlgT pCq from Exercise 1.41 (using Notation 1.42), which

sends an object X P C to the free T -algebra pT pXq, T pT pXqq
µX

ÝÝÑ T pXqq on X.

Proof. Observe that after applying the forgetful functor AlgT pCq Ñ C, the above diagram is part
of a split coequaliser with maps s “ ηA : A Ñ T pAq and t “ ηT pAq : T pAq Ñ T pT pAqq.

To verify that (2) is also a coequaliser in AlgT pCq, assume we are given a T -algebra pB, β :
T pBq Ñ Bq together with a map of T -algebras f : TA Ñ B with f ˝ T pαq “ f ˝ µA. By
Exercise 1.50, there is a unique g “ f ˝ ηA in C such that the following triangle commutes:

TA
α

> A

B

g

∨f
>

Hence, it suffices to check that g is a map of T -algebras, which follows from the computation

β ˝ Tf ˝ T pηAq “ f ˝ µA ˝ T pηAq “ f “ f ˝ µA ˝ ηTA “ f ˝ T pαq ˝ ηTA “ pf ˝ ηAq ˝ α.

We have used that f is a map of T -algebras, the monad axioms for T , and the naturality of η. □

With these free resolutions at our disposal, we can now prove the Barr-Beck theorem.

Proof of Theorem 1.48. We proceed in three main steps.

Step 1: Left adjoint rF to rG. We have a commuting triangle

AlgT pCq

D
G

>

rG
>

C

ForgetT
∨

13

where both G and ForgetT admit left adjoints (cf. Exercise 1.41).

As left adjoints of commuting right adjoints commute, we know that if rG admits a left adjoint
rF , then its value on free T -algebras must be given by rF pT pXqq “ F pXq.

Since left adjoints also preserve small colimits, Proposition 1.51 motivates us to define the value

of rF on a general T -algebra pA,αq as the following coequaliser in D:

(3) F pT pAqq
F pαq

ÝÝÝÝÝÝÑ
ÝÝÝÝÝÝÑ

ϵFA

F pAq
θ

ÝÝÝÑ rF pAq

This makes sense as F pT pAqq
F pαq

ÝÝÝÝÝÝÑ
ÝÝÝÝÝÝÑ

ϵFA

F pAq is a reflexive pair in D with common section FηA.

One easily extends this definition to morphisms of T -algebras.

To verify that rF is indeed left adjoint to rG, we make the following computation:

rF pA,αq Ñ B

FA
f

ÝÑ B s.t. f ˝ F pαq “ f ˝ ϵFA

A
f

ÝÑ B s.t. f ˝ α “ GpϵBqGpFfq

pA,αq Ñ rGpBq “ pGB,GϵBq.

In the second step, we have used that f ˝ α “ f ˝ F pαq “ f ˝ ϵFA
3q
“ Gpfq

4q
“ GpϵBqGpF pfqq. Here

p q denotes the adjoint bijection on morphisms introduced in Remark 1.39. The first two equalities
are straightforward; equalities 3q and 4q follow from the commutative diagrams

3q

GFA > GB

GFGFA

ηGFA

∨
GϵFA

> GFA

Gf

∧
id

>
4q

FA
Ff

> FGB

B

ϵB
∨f >

.

Step 2: The unit idAlgT pCq Ñ rF ˝ rG is an equivalence.

Given pA,αq P AlgT pCq, we have a reflexive coequaliser F pT pAqq
F pαq

ÝÝÝÝÝÑ
ÝÝÝÝÝÑ

ϵFA

F pAq
θ

ÝÝÝÑ rF pAq.

Using that G preserves reflexive coequalisers, we obtain another coequaliser diagram

GF pGF pAqq
GF pαq

ÝÝÝÝÝÝÝÑ
ÝÝÝÝÝÝÝÑ

GϵFA

GF pAq
Gθ

ÝÝÝÝÑG rF pAq

As in the proof of Proposition 1.51, the following diagram admits a splitting:

GF pGF pAqq
GF pαq

ÝÝÝÝÝÝÝÑ
ÝÝÝÝÝÝÝÑ

GϵFA

GF pAq
α

ÝÝÝÑ A

14

Having computed the coequaliser of GF pGF pAqq
GF pαq

ÝÝÝÝÝÝÝÑ
ÝÝÝÝÝÝÝÑ

GϵFA

GF pAq in two ways, we obtain an

isomorphism

GFA
Gθ

> G rF pA,αq

A

–

∨α
>

We can therefore identify A with G rF pA,αq.
Next, we check that Gϵ

rF pA,αq
“ α. Since α “ Gθ, it suffices to check that ϵ

rF pA,αq
“ θ. This

follows from the following computation:

θ “ θ ˝ Fα ˝ FηA “ θ ˝ ϵFA ˝ FηA “ ϵ
rF pA,αq

˝ FGpθq ˝ FηA “ ϵ
rF pA,αq

In the first and last step, we used the algebra axiom for pA,αq, in the second the adjunction axiom
relating unit and counit, in the third a naturality square for ϵ.

Altogether, we have verified that rGp rF pA,αqq “ pG rF pA,αq, Gϵ
rF pA,αq

q – pA,αq.

Step 3: The counit rG ˝ rF Ñ idD is an equivalence.

By definition, we have a coequaliser diagram computing rF p rGpBqq:

(4) FGFGB
FGϵB

ÝÝÝÝÝÝÑ
ÝÝÝÝÝÝÝÑ

ϵFGB

FGB
θ

ÝÝÝÑ rF p rGpBqq

By the universal property, the map ϵB : FGB Ñ B induces a map τ : rF p rGpBqq Ñ B.
Applying the functor G to the entire situation, we obtain a diagram

GFGFGB
GFGϵB

ÝÝÝÝÝÝÝÝÑ
ÝÝÝÝÝÝÝÝÑ

GϵFGB

GFGB ÝÝÝÑG rF p rGpBqq

GB
∨>

The top line is a coequaliser as G preserves reflexive coequalisers. The diagram

GFGFGB
GFGϵB

ÝÝÝÝÝÝÝÑ
ÝÝÝÝÝÝÝÝÑ

GϵFGB

GFGB ÝÑ GB

is a split coequaliser (cf. Proposition 1.51). Together, these facts imply that the map G rF p rGpBqq Ñ

GB is an isomorphism, which shows that rF p rGpBqq – B as G is conservative. □

We have almost proven a sharper version of the Barr-Beck theorem. To state it, we need a new notion:

Definition 1.52. Given a functor G : D Ñ C, a parallel pair d0, d1 : X1 ⇒ X0 is said to be G-split
if Gpd0q, Gpd1q : X1 ⇒ X0 is a split pair in the sense of Definition 1.49.

We can now state the desired refinement:

Theorem 1.53 (Barr-Beck theorem, precise version).
An adjunction F : C ⇆ D : G is monadic if and only if it has the following two properties:

a) D admits and G preserves coequalisers of G-split pairs; this means that whenever a pair d0, d1 :
X1 ⇒ X0 has the property that GpX1q, GpX0q : GpX1q ⇒ GpX0q is part of a split coequaliser
diagram, then d0, d1 : X1 ⇒ X0 admits a colimit, which G preserves.

15

b) G is conservative (i.e. reflects isomorphisms).

Exercise 1.54. Taking inspiration from the proof of the crude Barr-Beck Theorem 1.48, prove
Theorem 1.53.

1.5. Conclusion. To conclude this lecture, we now give the desired categorical proof of Proposi-
tion 1.6. By Observation 1.43, the functor G “ MappQ,´q : ModR Ñ ModZ admits a left adjoint
F “ Q b p´q. Writing TQ for the associated monad on ModZ, we obtain a canonical diagram

AlgTQ
pModZq

ModR
G

>

rG >

ModZ

U

∨

The functor G preserves biproducts by Observation 1.44, filtered colimits by Corollary 1.23, and
reflexive coequalisers by Corollary 1.29. This shows that G and therefore also TQ preserves small
colimits, which allows us to identify AlgTQ

pAbq with the category of left EndRpQqop-modules as in
Exercise 1.45. Since G is also conservative by Proposition 1.31, we can apply the crude Barr-Beck

theorem Theorem 1.48 to conclude that rG is an equivalence.

Exercise 1.55. Deduce that all Morita equivalences are realised by the construction in Proposi-
tion 1.6, and make this statement precise.

References

[Dri] V. Drinfeld. A letter from Kharkov to Moscow. EMS Surv. Math. Sci., 1(2):241–248. Translated from
Russian by Keith Conrad.

[KS58] K. Kodaira and D. C. Spencer. On deformations of complex analytic structures. I, II. Ann. of Math. (2),

67:328–466, 1958.
[Lur] Jacob Lurie. Higher algebra. Preprint from the author’s web page.

[Mor58] Kiiti Morita. Duality for modules and its applications to the theory of rings with minimum condition. Science

Reports of the Tokyo Kyoiku Daigaku, Section A, 6(150):83–142, 1958.

	First order deformations
	Towards higher order deformations
	Other deformation problems
	 Prelude: Morita Theory
	References

