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∞-Categories and Deformation Theory

Lecture 3. The Barr–Beck–Lurie theorem and the Recognition Principle

Last lecture, we introduced monoidal ∞-categories C⊛ → N(∆op), defined the relative nerve
construction (J → sSet) ↝ (NF (J)→ N(J)), and used it to equip ∞-categories of endofunctors
C = End(D) with monoidal structures. This allowed us to define monads and their algebras in an
∞-categorical setting.

Today, we will first explain Lurie’s ∞-categorical generalisation of Barr–Beck’s monadicity theo-
rem from Lecture 1, and then use it to prove the recognition principle. The∞-categorical monadicity
theorem will also be a key tool in subsequent lectures.

3.1. A reflection on adjunctions. We wish to construct monads from adjunctions.
For ordinary categories, this was straightforward: given an an adjunction F ∶ C ⇆ D ∶ G with

unit η and counit ϵ, the triple (T = GF, GϵF ∶ TT → T, η ∶ idC → T ) evidently satisfies the axioms
of a monad (cf. Definition 1.35 in Lecture 1).

The corresponding construction for ∞-categories is more complicated, as we must supply an
infinite amount of coherence data to specify a monad.

Adjunctions of ∞-categories can be defined in several ways:

a) Most efficiently, we can define an adjunction as a functor F ∶ C → D for which the corresponding
coCartesian fibrationM→ N(∆1) has the property of also being Cartesian.

b) Slightly less efficiently, we could also specify both functors F ∶ C → D and G ∶ D → C. However,
this datum alone is overdetermined. To fix this, we must specify a unit natural transformation
u ∶ idC → GF verifying that F and G are indeed adjoint, which means that MapD(FX,Y ) →
MapC(GFX,GY ) u○−ÐÐ→MapC(X,GY ) is a weak equivalence for all X,Y .

c) Even less efficiently, we could also specify two functors F ∶ C → D, G ∶ D → C and two natural
transformations η ∶ idC → GF, ϵ ∶ FG → idD satisfying the natural conditions for a unit and
counit. Again, this quadruple alone would be overdetermined, which we can fix by also specifying
a 2-simplex ∆2 → Fun(C,D):

F
Fη
> FGF

F

ϵF
∨>

d) . . .

Continuing in this fashion, we obtain infinitely many definitions of what an adjunction is; one
can prove that all these notions are equivalent up to a contractible space of choices.

Exercise 3.1. Given a functor F ∶ C → D as in a) above, construct a functor G ∶ D → C and a
natural transformation u ∶ idC → GF satisfying the conditions specified in b).

For most applications, the most economical definition a) is entirely sufficient. However, the
infinitely many coherences required for a monad force us to use the “least” efficient definition of
adjunctions, which we will explain in the following sections.
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3.2. The (∞,2)-category {C,D}. Given an ∞-category C, we have constructed a monoidal struc-
ture End(C)⊛ → N(∆op) on End(C) in the preceeding lecture.

Shifting perspective, we may think of End(C) as a model for the full subcategory {C} of the
(∞,2)-category of (∞,1)-categories and (not necessarily invertible) natural transformations.

To construct monads from adjunctions, we will need a similar description of the full subcategory
{C,D} spanned by two ∞-categories C,D. To this end, we proceed in three steps:

a) Define a labelled version ∆op
{C,D} of ∆

op. We have seen that ∆op is modelled by diagrams

[n] = ( − ● ● . . . ● + ),
with morphisms corresponding to order-preserving maps sending − to − and + to +.

The objects of ∆op
{C,D} are given by such diagrams with gaps labelled by either the symbol C

or the symbol D. For example, we have the following object:

( − C ● C ● D ● D ● C ● D + ),
More formally, objects of ∆op

{C,D} are given by pairs ([n] ∈∆op, c ∶ [n]→ {C,D}). Morphisms in

∆op
{C,D} are order-preserving maps sending − to − and + to +, which have the additional property

that all gaps between two arrows carry the same label:

(7)

− C ● D ● C ● C ● D ● D ● C +

−
∨>

D ● D ●
>

C ● C ●
∨>>
D +
∨ <

b) Define a functor F ∶∆op
{C,D} → sSet. On objects, we define

( − c0 ● c1 ● . . . ● cn−1 ● cn + ) ↦ Fun(c0, c1) × . . . × Fun(cn−1, cn).
On morphisms, this functor is defined by composing functors and inserting the identities as

dictated from the arrows. For example, the morphism (7) above sends an element (C F0Ð→ D F1Ð→
C F2Ð→ C F3Ð→ D F4Ð→ D F5Ð→ C) to the element (D idDÐÐ→ D F1Ð→ C idCÐÐ→ C F4○F3○F2ÐÐÐÐÐ→ D).

c) Unstraighten. We apply the relative nerve construction introduced in Definition 4.28 of last
class to obtain a coCartesian fibration p ∶ End(C,D)⊛ → N(∆op

{C,D}).
This construction will allow us access all functors between C and D, and all natural transformation
between such functors, in an effective way.
3.3. Adjunction data. We can now keep track of all higher coherence data of adjunctions. We
need the following auxiliary definition:

Definition 3.2. A morphism ([n], c)→ ([m], d) is said to be C-inert if any C-label in the domain
([n], c) sits in one of the following five configurations:

− C ● . . .

−
∨ <

. . .

. . . ● C ● . . .

. . . −
∨ <

. . .

. . . ● C ● . . .

. . . ●
∨
C ●
∨

. . .

. . . ● C ● . . .

. . . +
∨>

. . . ● C +

. . . +
∨>

Definition 3.3 (Adjunction data). An adjunction datum for a pair of ∞-categories (C,D) consists
of a section s ∶ N(∆op

{C,D})→ End(C,D)⊛ of p ∶ End(C,D)⊛ → N(∆op
{C,D}) sending C-inert morphisms

to p-coCartesian edges. Write Adj(C,D) for the full subcategory of FunN(∆op

{C,D})(N(∆
op
{C,D}),End(C,D)

⊛)
spanned by such sections.
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We now unravel the information contained in an adjunction datum N(∆op
{C,D})

sÐ→ End(C,D)⊛.

● First, define two functors F ∶= s ( − C ● D + ) and G ∶= s ( − D ● C + ); these
will serve as left and right adjoint, respectively.
● Next, define two endofunctors T ∶= s ( − C ● C + ) and ι ∶= s ( − D ● D + ); while
T will be the monad induced by the adjunction, ι will just be a version of idD.
● We obtain a natural transformation idC → T from the following morphism:

− C +

− < C ● C +

>

● We obtain a natural equivalence idC
≃ÐÐ→ ι from the following C-inert morphism:

− D +

− < D ● D +

>

● The triangle s ( − C ● D ● C + ) gives two functors F ′ ∶ C → D and G′ ∶ D → C.

Exercise. Use C-inert morphisms to produce equivalences F ′ ≃ F , G′ ≃ G, G′F ′ ≃ T .

● The triangle s ( − D ● C ● D + ) gives functors G′′ ∶ D → C and F ′′ ∶ C → D.

Exercise. Use C-inert morphisms to produce equivalences F ′′ ≃ F , G′′ ≃ G, and find a
non-C-inert morphism inducing a natural transformation ϵ ∶ F ′′G′′ → idD; this will be the
counit.

We have produced functors F,G and natural transformations η ∶ idC → GF , ϵ ∶ FG→ idD. A more
elaborate argument, which appears as [Lur07, Lemma 3.2.9], then shows that these satisfy the
axioms of an adjunction between the homotopy categories hC and hD.

3.4. The Barr–Beck–Lurie theorem. Fix two∞-categories C and D, and consider the following
maximally efficient definition of adjunctions:

Definition 3.4. A functor F ∶ C → D is a left adjoint if the corresponding coCartesian fibration
over ∆1 is also Cartesian. Write Fun′(C,D) ⊂ Fun(C,D) for the subcategory whose objects are left
adjoints and whose morphisms are natural equivalences.

It is not hard to show that any adjunction datum s ∈ Adj(C,D) determines a left adjoint s(−C ●
D+), and we can ask how much information is lost in this process. The following hard theorem of
Lurie (cf. [Lur07, Theorem 3.2.10]) shows that the infinitely many higher coherences present in an
adjunction datum can be added in an essentially unique way:

Theorem 3.5 (Adjunction data from adjunctions). Evaluation gives a trivial Kan fibration

Adj(C,D)→ Fun′(C,D)

s ↦ s(−C ●D+)
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Now let F ∶ C → D be a left adjoint. Using Theorem 3.5 above, we pick a preimage s ∈ Adj(C,D)
from a contractible space. Write G = s(−D ● C+) for the corresponding right adjoint. Restricting s
to the full subcategory N(∆op) ≃ N(∆op

C ) of all diagrams (− C ● . . . ● C +) labelled only by C gives
rise to an algebra object T in End(C).

Just like in the 1-categorical case discussed in Lecture 1, we can construct a diagram

D G̃
> AlgT (C)

C

U

∨G
>

For a formal construction of the functor G̃, we refer to [Lur07, Section 3.3].
We are finally ready to state the ∞-categorical monadicity theorem:

Theorem 3.6 (Barr–Beck–Lurie, crude version). Assume that

(1) D admits and G preserves geometric realisations, i.e. N(∆op)-shaped colimits;
(2) G is conservative, i.e. if G(f) is an equivalence in C, then so is f in D.
Then the functor G̃ ∶ D ≃Ð→ AlgT (C) is an equivalence of ∞-categories.

In this higher categorical result, geometric realisations play an analogous role to the reflexive
coequalisers appearing in the ordinary crude Barr–Beck theorem.

To give a sharp criterion, we need a higher categorical generalisation of split coequalisers. To
this end, we introduce the following enlargement of the simplex category:

Definition 3.7. The category ∆−∞ has objects the finite linearly ordered sets

[−1] = { } , [0] = {0} , [1] = {0 < 1} , [2] = {0 < 1 < 2} , . . . .

Morphisms [n] → [m] are given by order-preserving maps [n] ∪ {−∞} → [m] ∪ {−∞} which send
−∞ to −∞; here −∞ is defined as the least element.

Exercise 3.8.

a) Exhibit the simplex category ∆ and the augmented simplex category ∆+ as subcategories of ∆−∞.
b) Show that any ∆−∞-indexed diagram in an ordinary category gives a split coequaliser.

Definition 3.9 (Split simplicial objects).

a) A simplicial object X ∶ N(∆op)→ C in an ∞-category C is split if it extends to N(∆op
−∞).

b) Given a functor G ∶ D → C, a simplicial object X ∶ N(∆op) → D is said to be G-split if the
simplicial object G ○X ∶ N(∆op)→ C is split.

Remark 3.10. If X is a split simplicial diagram, then the restriction of X to ∆+ is a colimit
diagram; in other words, X([−1]) is the geometric realisation of X ∣N(∆op).

Theorem 3.11 (Barr–Beck–Lurie, precise version). Given a left adjoint F ∶ C → D as above, the
induced functor D → AlgT (C) is an equivalence if and only if the following conditions hold:

(1) D admits and G preserves colimits of G-split simplicial diagrams in D;
(2) G is conservative.

In practical applications, (1) is usually much harder to check than (2). In the next weeks, we
will give several concrete applications of this result.
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3.5. Stable ∞-categories. In Lecture 1, we have used the classical Barr-Beck theorem to deter-
mine when two rings R and S have equivalent categories of left modules Mod♡R ≅ Mod♡S . Namely,
this happens precisely if there is a compact projective generator Q ∈ Mod♡R with EndR(Q)op ≅ S.
We will now use Lurie’s ∞-categorical monadicity theorem to prove a similar statement for derived
∞-categories of chain complexes.

For this application, we need to briefly discuss some further categorical constructions. The axioms
for stable ∞-categories capture the key properties of derived ∞-categories of chain complexes, just
like abelian categories axiomatise the key properties of ordinary categories of modules. We define:

Definition 3.12 (Stable ∞-categories). An ∞-category C is stable if

a) C is pointed, which means that C admits an object 0 which is both initial and final;
b) Every morphism f ∶ X → Y in C admits a fibre fib(f) and a cofibre cofib(f), i.e. the following

pullback and pushout squares exist in C:

fib(f) > X

0
∨

> Y

f

∨

X
f

> Y

0
∨

> cofib(f)
∨

c) A square in C of shape depicted below is a pullback if and only if it is a pushout.

X > Y

0
∨

> Z
∨

These axioms are equivalent to a priori stronger conditions (cf. [Lur, Proposition 1.1.3.4]).

Proposition 3.13. An ∞-category C is stable if and only if it has a zero object, admits finite limits
and colimits, and a general square in C is a pullback if and only if it is a pushout.

Notation 3.14. Given an object X in a pointed ∞-category C, we will write ΣX = cofib(X → 0)
for the suspension of X and ΩX = fib(0→X) for the loop object of X.

Exercise 3.15. Prove that if C is stable, then Ω and Σ define inverse equivalences.

We then have the following key result (cf. [Lur, Proposition 1.1.4.1]):

Proposition 3.16. A functor F ∶ C → D between stable ∞-categories preserves finite limits if and
only if it preserves finite colimits.

3.6. Spectra. The primeval example of a stable ∞-category is the ∞-category of spectra, which is
an analogue of the category of abelian groups in ordinary category theory.

We briefly outline its construction. Write S∗ = S∗/ for the ∞-category of pointed spaces (cf.
Lecture 2, Example 2.21.c). The one-point space ∗ is a zero object in S∗, and we obtain a loops
functor Ω ∶ S∗ → S∗.
Definition 3.17 (Spectra). The ∞-category Sp if spectra is given by the homotopy limit of the
following tower of ∞-categories:

. . .
ΩÐ→ S∗

ΩÐ→ S∗
ΩÐ→ S∗

Informally, spectra are sequences of pointed spaces X0,X1, . . . with equivalences ΩXn+1 ≃Xn.
We will now state several important facts about the ∞-category Sp without proof; for a compre-

hensive treatment of spectra in the language of ∞-categories, we refer to [Lur, Section 1.4.3].
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a) The natural functor Ω∞ ∶ Sp→ S∗ admits a left adjoint Σ∞ ∶ S∗ → Sp, which exhibits spectra as
the stabilisation of spaces (the precise universal property of Sp is articulated in [Lur, Corollary
1.4.4.5]).

b) The functor Ω∞ preserves filtered colimits, but it does not preserve geometric realisations.
c) Any X ∈ Sp is a canonical filtered colimit of pointed spaces X ≃ colimnΣ

∞−nΩ∞−nX, where
Ω∞−n = Ω∞ ○Σn and Σ∞−n = Ωn ○Σ∞.

d) The ∞-categories S∗ and Sp admit monoidal structures ∧ and ⊗, both called smash product,
and Σ∞ is monoidal. In fact, both ∧ and ⊗ define symmetric monoidal structures. We have not
defined this notion yet, but this is a simple variation of Definition 2.41 in Lecture 2 (obtained
by replacing ∆op by the category of finite pointed sets Fin∗).

e) The ∞-category Sp admits a t-structure, which means that there are full subcategories Sp≥0
(connective spectra) and Sp≤0 (coconnective spectra), satisfying the following conditions:
i) For X ∈ Sp≥0 and Y ∈ Sp≤0, we have MapSp(X,Σ−1Y ) = 0;
ii) The functor Σ preserves Sp≥0 and the functor Ω preserves Sp≤0;
iii) Any X ∈ Sp sits in a fibre sequence τ≥0X →X → τ≤−1X with τ≥0X ∈ Sp≥0,Στ≤−1X ∈ Sp≤0.
The heart Sp♡ = Sp≥0 ∩Sp≤0 of this t-structure is equivalent to N(Ab), the (nerve of the) ordinary
category of abelian groups.

f) Using the monoidal structure ⊗ on Sp, we obtain an ∞-category Alg(Sp) of algebra objects (cf.
Definition 2.49 in Lecture 2) in Sp, which are usually called E1-ring spectra.

g) The full subcategory of Alg(Sp) spanned by all objects whose underlying spectrum lies in Sp♡

is equivalent to the (nerve of the) ordinary category of associative rings (cf. [Lur, Proposition
7.1.3.18]). Hence, we can identify rings with discrete E1-ring spectra.

h) Given an E1-ring A ∈ Alg(Sp), Definition 2.54 from Lecture 3 gives an ∞-category ModA of
A-module objects, which we will refer to as A-module spectra. Here, we have used that the
monoidal ∞-category Sp is naturally tensored over itself.

i) Given objects X,Y in a general stable ∞-category C, the space MapC(X,Y ) deloops to a
spectrum MapC(X,Y ), whose nth space is satisfies Ω∞−nMap C(X,Y ) ≃MapC(X,ΣnY ). When

X = Y , then End C(X) ∶= Map C(X,X) can be equipped with the structure of an E1-ring

spectrum, with multiplication given by composition (cf. [Lur, Remark 7.1.2.2]).
j) If A is an ordinary ring, then ModA can be identified with the unbounded derived ∞-category

of A, whose objects are chain complexes of A-modules . . . → M2 → M1 → . . .. Given ordinary

R-modules M,N , we have Ext−∗R (M,N) ≅ π∗ (Map
ModR

(M,N)).
We will discuss this point in more detail later.

3.7. The Ind-construction. Given an ∞-category C, the presheaf ∞-category

P(C) ∶= Fun(Cop,S)

freely adds small colimits (cf. [Lur09, Theorem 5.1.5.6]):

Proposition 3.18 (Universal property of the presheaf category). Let C be a small ∞-category and
D an ∞-category with small colimits. The Yoneda embedding C → P(C) induces an equivalence

FunL(P(C),D) ≃ÐÐ→ Fun(C,D)

between the ∞-category of small-colimit-preserving functors P(C) → D and the ∞-category of all
functors C → D.

A variant of the P(−)-construction only adds filtered colimits (cf. Definition 2.30 in Lecture 2):
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Definition 3.19 (Ind-construction). Given a small ∞-category C, let Ind(C) ⊂ P(C) be the full
subcategory spanned by all functors Cop → S which preserve finite limits.

This construction satisfies the following universal property (cf. [Lur09, Proposition 5.3.5.10]

Proposition 3.20 (Universal property of the Ind-construction). Let C be a small ∞-category and
D be any ∞-category containing small filtered colimits. Restriction along the Yoneda embedding C
induces an equivalence Funω(Ind(C),D)

≃ÐÐ→ Fun(C,D) between the ∞-category Funω(Ind(C),D) of
filtered-colimit-preserving functors Ind(C)→ D and the ∞-category of all functors C → D.

We now assume that C is an ∞-category with finite colimits, and state several key properties of
the Ind-construction Ind(C):
a) The Yoneda embedding j ∶ C → Ind(C), X ↦ j(X) =MapC(X,−) is fully faithful, preserves finite

colimits and small limits, and j(X) ∈ Ind(C) is compact for all X ∈ C;
b) The ∞-category Ind(C) admits small colimits;
c) If C is stable, then so is Ind(C).
d) Any X ∈ Ind(C) can be obtained as a filtered colimit X = colima j(Xa) of objects Xa ∈ C. If

Y = colimb j(Yb) is another such object, we can compute the mapping space as

MapInd(C)(X,Y ) ≃ limaMapInd(C)(j(Xa), Y )

≃ limacolimbMapC(j(Xa), j(Yb))
≃ limacolimbMapC(Xa, Yb).

The first equivalence is tautological, the second used that any object in the image of the Yoneda
embedding is compact, and the third uses that j is fully faithful.

Definition 3.21 (Compact generation). An ∞-category D is said to be compactly generated if
there is a small ∞-category C with finite colimits and an equivalence D ≃ Ind(C).

Remark 3.22. Many ∞-categories in nature are compactly generated. For example, the ∞-
categories of spaces S, spectra Sp, and module spectra ModR over a given E1-ring R ∈ Alg(Sp)
satisfy this property. The easiest way to prove this is to exhibit all these ∞-categories as sifted-
colimit-completions (cf. [Lur09, Proposition 5.5.8.10]).

Digression 3.23. There are also various ∞-categories of interest which are not compactly gener-
ated, such as the ∞-category Shv(R,Modk) of sheaves of k-linear chain complexes on R.

However, most of them fit into the more general framework of presentable ∞-categories, which
we shall briefly outline. Given a regular cardinal κ, we say that a simplicial set is κ-small if its set
of nondegenerate simplices has cardinality less than κ. For κ = ω, this recovers the notion of a finite
simplicial set. We can then define the notion of a κ-filtered∞-category (cf. [Lur09, Definition 5.3.1.7])
generalising Definition 2.30 in Lecture 2, by allowing extensions over cones of all κ-small simplicial
sets (rather than just finite ones). A generalisation of the Ind-construction, denoted by Indκ, then
freely adds κ-filtered colimits.

An ∞-category D is said to be presentable if it can be written as D ≃ Indκ(C) for some regular
cardinal κ, where C is a small ∞-category containing all κ-small colimits. A list of equivalent
conditions for presentability is given in [Lur09, Theorem 5.5.1.1].

Presentable ∞-categories D ≃ Indκ(C) always admit small colimits; this is implied by the assump-
tion that C admits κ-small colimits. If one removes this assumption, one obtains the notion of an
accessible ∞-category.
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3.8. Colimit-preserving monads on Spectra. The universal property of stabilisation (alluded
to in Definition 3.17a)) implies that Sp is the free stable ∞-category generated by a single object,
the sphere spectrum S = Σ∞(S0) (cf. [Lur, Corollary 1.4.4.6.]):

Proposition 3.24. Given a compactly generated (or in fact presentable) stable ∞-category D,
evaluation at S induces an equivalence FunL(Sp,D) ≃ÐÐÐ→ D. Here FunL(Sp,D) ⊂ Fun(Sp,D) is
the full subcategory spanned by functors which preserve small colimits.

Taking D = Sp, we obtain an identification FunL(Sp,Sp) ≃Ð→ Sp. The left hand side carries a
natural monoidal structure given by composition, and this can be taken as a definition of the smash
product ⊗ on the right hand side Sp. However, more work is needed to show that ⊗ symmetric; we
refer to the beginning of [Lur, Section 4.8.2] for a discussion. The inverse of the above equivalence

carries X ∈ Sp to X ⊗ (−). Passing to algebras, we deduce:

Proposition 3.25. Evaluation at S induces an equivalence Alg(FunL(Sp,Sp)) ≃Ð→ Alg(Sp) between
small-colimit-preserving monads on Sp and E1-ring spectra.

If an E1-ring R = TR(S) corresponds to a monad TR ∈ Alg(FunL(Sp,Sp)), then there is a
canonical equivalence ModR ≃ AlgTR

(Sp).

3.9. The Recognition Principle. We will now develop a derived variant of Morita theory.
Let C be a compactly generated (or in fact presentable) stable ∞-category. Given any Q ∈ C, the

assignment GQ = Map C(Q,−) ∶ C → Sp preserves small limits. By a version of the adjoint functor

theorem (cf. [Lur09, Corollary 5.5.2.9]), the functor GQ admits a left adjoint FQ ∶ Sp→ C, which we
will write as FQ(X) =X⊗Q. As notation suggests, the assignment (X,Q)↦ FQ(X) =X⊗Q equips
C with the structure of a Sp-tensored ∞-category. Note that by Proposition 3.24, FQ is uniquely
determined by the requirement that it preserves small colimits and sends the sphere spectrum S to
FQ(S) = Q. We can now show:

Theorem 3.26 (Schwede–Shipley). Let C be a compactly generated (or in fact presentable) stable
∞-category . Let Q ∈ C be an object satisfying the following properties:

a) Q is compact (cf. Lecture 2, Definition 2.33);
b) Q is a generator for C, which means that Map C(Q,D) ≃ 0 implies D ≃ 0.

Then G =Map C(Q,−) ∶ C → Sp is part of a monadic adjunction F ⊣ G, the associated monad T

preserves small colimits, and we obtain equivalences C ≃ AlgT (Sp) ≃ModEndC(Q)op .

Proof. We begin by checking that the right adjointG (and hence T ) preserves small colimits. Indeed,
using Definition 3.17 c), we can write the functor G as

G(X) ≃ colimnΣ
∞−nΩ∞−nMap C(Q,X) ≃ colimnΣ

∞−nMapC(Q,ΣnX).
Since Q is assumed to be compact, this composite of filtered-colimit-preserving functors must
preserve filtered colimits. AsG tautologically preserves finite (and in fact all) limits, it also preserves
finite colimits Proposition 3.16. Any functor which preserves both finite and filtered colimits must
preserve all small colimits.

By Proposition 3.25, the monad T is therefore given by T (−) = R⊗(−) for some E1-ring spectrum
R. Unraveling the definition, we see that S is equivalent to EndC(Q)op = T (S), which implies the
second asserted equivalence.

To prove the equivalence C ≃ AlgT (Sp), we apply Lurie’s ∞-categorical Barr-Beck theorem. To
verify that G is conservative, assume that G sends a morphism f ∶ X → Y in C to an equivalence
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G(f) ∶ G(X)→ G(Y ) in Sp. Since G preserves colimits, we have G(cof(f)) ≃ cof(G(f)) ≅ 0, which
implies that cof(f) ≃ 0 since Q is a generator. Hence f is an equivalence. Since G preserves small
colimits, it in particular preserves geometric realisations . The (crude) Barr–Beck–Lurie theorem
now shows that G induces an equivalence C ≃ AlgT (Sp). □

Remark 3.27. Any equivalence ModR ≃ ModS between module ∞-categories of E1-ring spectra
arises as in Theorem 3.26 (cf. [Lur, Section 4.8.4]).

Remark 3.28. If R and S are ordinary rings and Q ∈ModR is a compact generator of C =ModR
for which EndQ(R)op is the discrete ring spectrum S, then R and S have equivalent derived ∞-
categories ModR ≃ ModS . This (of course) happens whenever R and S are Morita equivalent,
Schwede gives an example by considering the following two matrix rings over a field k:

R =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

x11 x12 x13

0 x22 x23

0 0 x33

⎞
⎟
⎠
∣ xij ∈ k

⎫⎪⎪⎪⎬⎪⎪⎪⎭
S =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

y11 y12 y13
0 y22 0
0 0 y33

⎞
⎟
⎠
∣ yij ∈ k

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.
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