∞ -Categories and Deformation Theory

LECTURE 4. KOSZUL DUALITY FOR ASSOCIATIVE ALGEBRAS AND THEIR MODULES

4.1. Koszul Duality for Modules. Let k be a field and $A \in \text{Alg}^{\text{aug}}(\text{Mod}_k) = \text{Alg}(\text{Mod}_k)_{/k}$ an augmented algebra object in Mod_k, modelled by an augmented differential graded k-algebra.

The idea behind Koszul duality is to try to use the functor

$$G(-) \coloneqq \operatorname{Map}_{A}(k, -) \colon \operatorname{Mod}_{A} \to \operatorname{Sp}$$

to produce an equivalence of ∞ -categories, in spite of the fact that k is usually not compact (cf. Corollary 1.29 in Lecture 1). We will be able to give an explicit Koszul equivalence if A is "small" in the following sense (cf. [Lur11, Definition 3.0.1]):

Definition 4.1 (Small algebras). A differential graded k-algebra $A \in Alg(Mod_k)$ is small if

- a) A is connective;
- b) $\dim_k(\pi_*(A)) < \infty;$
- c) Writing \mathfrak{n} for the radical of A, the canonical map $k \xrightarrow{\simeq} \pi_0(A)/\mathfrak{n}$ is an equivalence.

Note that small algebras are canonically augmented. The main point of interest is that the functor G above restricts to an equivalence on certain subcategories. Recall the following terminology:

Definition 4.2. A subcategory of a stable ∞ -category \mathcal{C} is called *thick* if it contains 0, is closed under the formation of fibres, cofibres, and retracts. Given an object $X \in \mathcal{C}$, we write $\text{Thick}_{\mathcal{C}}(X)$ for the thick subcategory generated by X.

We then have (cf. [Lur11, Remark 3.4.2]):

Proposition 4.3. The thick subcategory $\operatorname{Thick}_A(k)$ of Mod_A generated by k is equivalent to the full subcategory $\operatorname{Coh}_A \subset \operatorname{Mod}_A$ spanned by all $M \in \operatorname{Mod}_A$ for which $\dim_k(\pi_*(M)) < \infty$.

Remark 4.4. Module spectra lying in $Coh_A \subset Mod_A$ are said to be *coherent*.

Proof of Proposition 4.3. Since Coh_A is evidently thick and contains k, the inclusion $\operatorname{Thick}_A(k) \subset \operatorname{Coh}_A$ is clear. For the converse, pick $M \in \operatorname{Coh}_A$ nonzero. We can then choose n minimal with $\pi_n(M) \neq 0$ and an element $x \in \pi_n(M)$ which is annihilated by the (nilpotent) augmentation ideal $\operatorname{ker}(\pi_0(A) \to k)$. The cofibre sequence $\Sigma^n k \xrightarrow{x} M \to M'$ induces a long exact sequence on homotopy groups, which shows that $\dim_k(\pi_*(M')) < \dim_k(\pi_*(M))$. By induction, we can therefore assume that $M' \in \operatorname{Thick}_A(k)$, which also implies the claim for M as $\Sigma^n k \in \operatorname{Thick}_A(k)$.

We deduce the following well-known result (cf. [Lur11, Remark 3.4.5]), which goes back to the work of Beilinson-Ginzburg-Soergel ([BGS96]):

Theorem 4.5. For A a small \mathbb{E}_1 -ring as above, there is an equivalence of stable ∞ -categories $\operatorname{Ind}(\operatorname{Coh}_A) \simeq \operatorname{Mod}_{\mathfrak{D}^{(1)}(A)^{\operatorname{op}}}$ for $\mathfrak{D}^{(1)}(A) \coloneqq \operatorname{End}_A(k)$.

Proof. We start with the ∞ -category $\mathcal{C} = \text{Ind}(\text{Coh}_A) \simeq \text{Ind}(\text{Thick}_A(k))$, which is stable as $\text{Thick}_A(k)$ has this property. Like any element in the image of the Yoneda embedding, k is a compact object. To see that k is also a generator, assume that $\underline{\text{Map}}_{\mathcal{C}}(k, M) = 0$ and consider the full subcategory

$$\{N \in \operatorname{Thick}_A(k) \mid \operatorname{Map}_{\mathcal{C}}(N, M) = 0\} \subset \operatorname{Thick}_A(k).$$

Since it is thick, we deduce that any $N \in \text{Thick}_A(k)$ satisfies $\underline{\text{Map}}_{\mathcal{C}}(N, M) = 0$. In particular, this applies to M itself, and we have $\text{Map}_{\mathcal{C}}(M, M) = 0$. This implies that M = 0.

4.2. Koszul Duality for Associative Algebras and the Koszul property. Using the Barr-Beck-Lurie theorem, we have proven that if A is a small differential graded algebra over a field k (cf. Definition 4.1), then there is an equivalence

$$\operatorname{Ind}(\operatorname{Coh}_A) \simeq \operatorname{Mod}_{\mathfrak{D}^{(1)}(A)^{\operatorname{op}}}.$$

Here $\mathfrak{D}^{(1)}(A) \simeq \mathbb{R} \operatorname{Hom}_A(k,k)$ is called the *Koszul dual* of A, satisfying $\pi_*(\mathfrak{D}^{(1)}(A)) \cong \operatorname{Ext}_A^*(k,k)$.

We will now single out a certain property of algebras known as the *Koszul property*. It is often satisfied in practice, and makes the computation of $\mathfrak{D}^{(1)}(A)$ extremely simple.

Let A be an augmented differential graded k-algebra with vanishing differentials, i.e. a (homologically) graded augmented k-algebra. Set $\overline{A} = \ker(A \to k)$.

Writing $TM = \bigoplus_{n \ge 0} M^{\otimes n}$, we consider the complex of graded A-modules

$$B(A) = \operatorname{Bar}(k, A, k) = (T(\overline{A}), d),$$

where $d([a_1|\ldots|a_n]) = \sum_{i=2}^n (-1)^{\epsilon_i} [a_1|\ldots|a_{i-1}a_i|\ldots|a_n]$ with $\epsilon_i = (|a_1|+1) + \ldots + (|a_{i-1}|+1)$.

An element $[a_1|\ldots|a_n] \in (\overline{A}^{\otimes n})_i = \text{Bar}_n(k, A, k)_i$ lies in "internal degree" $i = |a_1| + \ldots + |a_n|$. Write $\text{Tor}_*^A(k, k)_*$ for the bigraded A-module given by the homology of B(A).

Remark 4.6. The chain complex $B(A) = k \otimes_A^L k \in Mod_A$ is obtained from the above chain complex of graded A-modules B(A) by placing $[a_1| \dots |a_n]$ in homological degree $(|a_1| + 1) + \dots + (|a_n| + 1)$. Note the different fonts for B and B.

The key observation is that many algebras A as above admit an additional *Adams grading* indexed by the naturals. Write $A_i[w]$ for the component in homological degree i and Adams degree w, and assume that the augmentation induces an isomorphism $A_*[0] \cong k$.

The Bar construction then picks up a third grading satisfying

$$B(A)_n[w]_* = \bigoplus_{w_1 + \ldots + w_n = w} (\overline{A}[w_1] \otimes \ldots \otimes \overline{A}[w_n])_*,$$

Hence, we obtain a chain complex of bigraded A-modules.

$$\dots \longrightarrow 0 \longrightarrow B(A)_{3}[3]_{*} \longrightarrow B(A)_{2}[3]_{*} \longrightarrow B(A)_{1}[3]_{*} \longrightarrow 0$$
$$\dots \longrightarrow 0 \longrightarrow 0 \longrightarrow B(A)_{2}[2]_{*} \longrightarrow B(A)_{1}[2]_{*} \longrightarrow 0$$
$$\dots \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow B(A)_{1}[1]_{*} \longrightarrow 0$$
$$\dots \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow k$$

Write $\operatorname{Tor}_n^A(k,k)[w]_i = \pi_n(B(A)[w]_i)$ for the component in homological degree *n*, internal degree *i*, and Adams degree *w* of the corresponding decomposition in homology.

Remark 4.7. More conceptually, $\operatorname{Tor}_{n}^{A}(k,k)_{*}[*]$ is the n^{th} left derived functor of $k \otimes_{A} (-)$ on the abelian category of bigraded A-modules. This observation allows us to use other resolutions of k.

From the Bar resolution above, it is clear that $\operatorname{Tor}_n^A(k,k)_*[w]$ vanishes whenever n > w. The following definition of Priddy asserts that vanishing also occurs for all n < w:

Definition 4.8. Let A be an augmented k-algebra with a homological grading and an Adams grading as above. A is said to be *Koszul* if for all $n \neq w$, we have

$$\operatorname{Tor}_{n}^{A}(k,k)_{*}[w] = \ker(B(A)_{n}[w]_{*} \to B(A)_{n-1}[w]_{*})/\operatorname{im}(B(A)_{n+1}[w]_{*} \to B(A)_{n}[w]_{*}) = 0$$

Warning 4.9. In his original work [Pri70], Priddy calls these homogeneous Koszul algebras.

For simplicity, we will assume from now on that our ground field k satisfies $char(k) \neq 2$.

Definition 4.10 (Polynomial and exterior algebras). If x_1, \ldots, x_n are generators in Adams degree 1 and arbitrary homological degree, we define

 $k[x_1,\ldots,x_n] \coloneqq T(x_1,\ldots,x_n)/(x_i \otimes x_j - x_j \otimes x_i); \qquad E[x_1,\ldots,x_n] \coloneqq T(x_1,\ldots,x_n)/(x_i \otimes x_j + x_j \otimes x_i).$

As we have not imposed the Koszul sign rule, $k[x_1, \ldots, x_n]$ need not be graded-commutative.

Before studying Koszul algebras in more detail, we give several simple examples.

Example 4.11. Consider A = k[x] generated in Adams degree 1 and homological degree a. We use the following bigraded resolution of the A-module k:

$$\ldots \to 0 \to \Sigma^a k[x][+1] \xrightarrow{1 \mapsto x} k[x] \to 0 \to \ldots$$

Here [+1] denotes a shift by 1 in Adams grading and Σ^a is a shift by a in homological grading. Applying $k \otimes_{k[x]} (-)$, we obtain $\ldots \to 0 \to \Sigma^a k[+1] \xrightarrow{0} k \to 0 \to 0 \to \ldots$. Hence A is Koszul.

Example 4.12. Consider the exterior algebra $A = E[\epsilon] = k[\epsilon]/\epsilon^2$ on a generator in homological degree b and Adams degree 1. The bigraded A-module k admits a resolution

$$\dots \to \Sigma^{2b}(k[\epsilon]/\epsilon^2)[+2] \xrightarrow{1 \mapsto \epsilon} \Sigma^b(k[\epsilon]/\epsilon^2)[+1] \xrightarrow{1 \mapsto \epsilon} k[\epsilon]/\epsilon^2.$$

Applying $k \otimes_A (-)$ gives $\ldots \to \Sigma^{2b} k[+2] \xrightarrow{0} \Sigma^b k[+1] \xrightarrow{0} k \to 0 \to \ldots$, hence A is Koszul.

Exercise 4.13.

- a) Show that if A, A' are Koszul algebras, then so is $A \otimes A'$.
- b) Given generators x_1, \ldots, x_n in Adams degree 1 and arbitrary homological degree, show that both $k[x_1, \ldots, x_n]$ and $E[x_1, \ldots, x_n]$ are Koszul.

Exercise 4.14. Prove directly that the following algebras in homological degree 0 are Koszul:

- (1) The polynomial algebra k[x, y] with x, y in Adams degree 1.
- (2) The exterior algebra E(x, y) with x, y in Adams degree 1.
- (3) The quantum algebra $A = T(x, y)/(x \otimes y qy \otimes x)$ for any fixed nonzero scalar $q \in k^{\times}$.

4.3. Quadratic generation. We will prove that all Koszul algebras are of the following type:

Definition 4.15 (Quadratic algebras). Given a graded k-vector space V and a homogeneous subspace $R \subset V \otimes V$, we define the following augmented k-algebra:

$$T(V;R) = T(V)/\langle R \rangle.$$

Here $\langle R \rangle$ denotes the two-sided ideal generated by the subspace R. The algebra T(V; R) inherits a homological grading and an Adams grading, as the space of relations $R \subset V \otimes V$ is homogeneous for both the homological and the Adams grading on T(V) (which places V in Adams degree 1).

An augmented bigraded k-algebra A is quadratic if $A \cong T(V; R)$ for some $V, R \subset V \otimes V$.

Proposition 4.16. Every Koszul algebra is quadratic.

Proof. We will prove this result in two steps (following an argument presented in [Rez12]). Given w > 1, the assumption $\operatorname{Tor}_{1}^{A}(k,k)[w]_{*} = 0$ implies that the following map is surjective:

$$B(A)_2[w]_* = \bigoplus_{\substack{w_1+w_2=w\\w_i>0}} (\overline{A}[w_1] \otimes \overline{A}[w_2])_* \longrightarrow \overline{A}[w]_* = B(A)_1[w]_*.$$

Hence by induction A is generated in Adams degree 1. Applying $\operatorname{Bar}(-)$ to the surjection $T(\overline{A}[1]) \xrightarrow{J} A$ and taking the kernel gives an exact sequence of complexes of bigraded A-modules:

(7)
$$0 \to K \to \operatorname{Bar}(T(\overline{A}[1])) \to \operatorname{Bar}(A) \to 0.$$

In degree 1 of this chain complex, our sequence is given by $0 \to K_1 \to T(\overline{A}[1]) \to A \to 0$. To prove the result, it suffices to show that the following map is surjective for all w > 2:

(8)
$$\bigoplus_{\substack{w_1+w_2=w\\w_i>0}} (K_1[w_1] \otimes \overline{A}[1]^{\otimes w_2} \oplus \overline{A}[1]^{\otimes w_1} \otimes K_1[w_2]) \longrightarrow K_1[w].$$

Indeed, let us restrict attention to degree 1 and degree 2 of the chain complexes in (7):

Consider the natural map

$$\bigoplus_{\substack{w_1+w_2=w\\w_i>0}} \left((K_1[w_1] \otimes \overline{A}[1]^{\otimes w_2}) \oplus (\overline{A}[1]^{\otimes j_1} \otimes K_1[w_2]) \right) \xrightarrow{\beta} \bigoplus_{\substack{w_1+w_2=w\\w_i>0}} \overline{A}[1]^{\otimes w_1} \otimes \overline{A}[1]^{\otimes w_2}.$$

and its lift $\bigoplus_{\substack{w_1+w_2=w\\w_i>0}} \left((K_1[w_1] \otimes \overline{A}[1]^{\otimes w_2}) \oplus (\overline{A}[1]^{\otimes j_1} \otimes K_1[w_2]) \right) \xrightarrow{\beta} K_2[w].$

The map β is surjective. Indeed, for any decompositions $w = w_1 + w_2$, we tensor the short exact sequences $K_1[w_1] \rightarrow \overline{A}[1]^{\otimes w_1} \rightarrow \overline{A}[w_1]$ and $K_1[w_2] \rightarrow \overline{A}[1]^{\otimes w_2} \rightarrow \overline{A}[w_2]$ to obtain a diagram

Since k-vector spaces are flat, all columns and rows are exact. A diagram chase shows that

 $(K_1[w_1] \otimes \overline{A}[1]^{\otimes w_2}) \oplus (\overline{A}[1]^{\otimes w_1} \otimes K_1[w_2]) \longrightarrow \ker(\overline{A}[1]^{\otimes w_1} \otimes \overline{A}[1]^{\otimes w_2} \to \overline{A}[w_1] \otimes \overline{A}[w_2])$

is surjective, which implies that the map β is surjective as well.

As $H_*(\operatorname{Bar}(k, T(\overline{A}[1]), k)[w]_*) = \operatorname{Tor}_*^{T(\overline{A}[1])}(k, k)_*[w] = 0$ for all w > 1, the homology long exact sequence induced by (7) shows that $H_1(K_{\bullet}[w]) \cong \operatorname{Tor}_2^A(k, k)_*[w] = 0$ for all w > 2. As $K_0[w] = 0$, this implies that $K_2[w] \xrightarrow{\delta} K_1[w]$ is surjective for all w > 2, and hence the following map is also surjective:

$$\bigoplus_{\substack{w_1+w_2=w\\w_i>0}} \left((K_1[w_1] \otimes \overline{A}[1]^{\otimes w_2}) \oplus (\overline{A}[1]^{\otimes w_1} \otimes K_1[w_2]) \right) \xrightarrow{\delta \circ \beta} K_1[w].$$

4.4. **Dualising Koszul algebras.** Computing the dual of a Koszul algebra is not hard:

Theorem 4.17. Let A be a Koszul algebra with quadratic presentation A = T(V; R). Assume that $A_i[n]$ and $T(\Sigma^{-1}V^{\vee}; \Sigma^{-2}R^{\perp})_i$ are finite-dimensional for all i, n.

Then the Koszul dual is formal and given by $\mathfrak{D}^{(1)}(A) = \mathbb{R} \operatorname{Hom}_A(k,k) \simeq T(\Sigma^{-1}V^{\vee}; \Sigma^{-2}R^{\perp})$, where $V^{\vee} = \operatorname{Map}_{\operatorname{Mod}_k}(V,k)$ and $R^{\perp} \subset V^{\vee} \otimes V^{\vee}$ is spanned by all $\phi \otimes \psi$ vanishing on $R \subset V \otimes V$.

Proof. Consider the differential graded coalgebra $B(A) = (T(\Sigma \overline{A}), d)$, where

$$d([a_1|...|a_m]) = \sum_{i=2}^n (-1)^{\epsilon_i} [a_1|...|a_{i-1}a_i|...|a_m]$$

with $\epsilon_i = (|a_1| + 1) + \ldots + (|a_{i-1}| + 1)$. An element $[a_1| \ldots |a_n] \in (\overline{A}^{\otimes n})_i$ lies in homological degree $i = |a_1| + \ldots + |a_n| + n$ in B(A). Comultiplication sends $[a_1| \ldots |a_m]$ to $\sum_i [a_1| \ldots |a_k] \otimes [a_{k+1}| \ldots |a_m]$.

The graded differential graded coalgebra $B(A) \simeq \bigoplus_{w} B(A)[w]$ can be dualised in two ways:

- (1) Applying $\operatorname{Map}_{\operatorname{Mod}_k}(-,k)$ gives the differential graded k-algebra $\mathfrak{D}^{(1)}(A) = B(A)^{\vee}$;
- (2) Taking the Adams-graded dual gives an Adams-graded differential graded k-algebra with

$$(\mathfrak{D}^{(1)})^{\mathrm{Gr}}(A)[n] \coloneqq \mathrm{Map}_{\mathrm{Mod}_k}(\mathrm{B}(A)[n],k).$$

These are related by a multiplicative comparison map $\bigoplus_{w} (\mathfrak{D}^{(1)})^{\mathrm{Gr}}(A)[w] \to \mathfrak{D}^{(1)}(A)$ given by

(9)
$$\bigoplus_{w} \mathcal{B}(A)[w]^{\vee} \longrightarrow \prod_{w} \mathcal{B}(A)[w]^{\vee} \simeq \mathcal{B}(A)^{\vee}.$$

We begin by computing $\bigoplus B(A)[w]^{\vee}$. Dualising the maps

$$\operatorname{Tor}_{n}^{A}(k,k)[\overset{\omega}{n}]_{*-n} \cong \ker \left(B(A)_{n}[n]_{*-n} \hookrightarrow B(A)_{n-1}[n]_{*-n}\right) \longrightarrow B(A)[n]_{*}$$

gives maps $B(A)[n]^{\vee}_* \to \operatorname{Ext}^n_A(k,k)[n]_{*+n}$. As A is Koszul, these assemble to an equivalence

$$\bigoplus_{w} \mathcal{B}(A)[n]^{\vee}_{*} \xrightarrow{\simeq} \bigoplus_{n} \mathcal{E}xt^{n}_{A}(k,k)[n]_{*+n}.$$

We can represent elements in

$$\operatorname{Ext}_{A}^{n}(k,k)[n]_{*+n} \cong \operatorname{coker}(\bigoplus_{k} (\overline{A}[1]^{\vee})^{\otimes k} \otimes \overline{A}[2]^{\vee} \otimes (\overline{A}[1]^{\vee})^{\otimes (n-k-1)} \longrightarrow (\overline{A}[1]^{\vee})^{\otimes n})_{*+n}$$

by expressions $[\alpha_1|\ldots|\alpha_n]$ with $\alpha_i \in \overline{A}[1]^{\vee} = V^{\vee}$. Here, we used $\dim_k(A_i[n]) < \infty$ for all i, n.

The product on $\bigoplus_{w} \mathbb{B}(A)[w]_{*}^{\vee}$ corresponds to the product on $\bigoplus_{w} \operatorname{Ext}_{A}^{*}(k,k)[w]_{*+n}$ sending elements represented by $[\alpha_{1}|\ldots|\alpha_{k}]$ and $[\alpha_{k+1}|\ldots|\alpha_{m}]$, respectively, to $[\alpha_{1}|\ldots|\alpha_{m}]$. The image of $(V^{\otimes 2}/R)^{\vee} \cong \overline{A}[2]^{\vee} \longrightarrow (\overline{A}[1]^{\vee})^{\otimes 2} \cong (V^{\vee})^{\otimes 2}$ is spanned by all elements $\alpha \otimes \beta$ vanishing on R. Hence $\operatorname{Ext}_{A}^{*}(k,k)[2]_{*+2} \cong ((V^{\vee})^{\otimes 2}/R^{\perp})_{*+2} \cong ((\Sigma^{-1}V^{\vee})^{\otimes 2}/\Sigma^{-2}R^{\perp})_{*}$, and more generally $\operatorname{Ext}_{A}^{*}(k,k)[w]_{*} \cong (\Sigma^{-1}V^{\vee})^{\otimes w} / \bigcup_{k} ((\Sigma^{-1}V^{\vee})^{\otimes k} \otimes (\Sigma^{-2}R^{\perp}) \otimes (\Sigma^{-1}V^{\vee})^{\otimes (w-k-1)})$. These observations combine to give an equivalence

$$\bigoplus_{w} \operatorname{Ext}_{A}^{*}(k,k)[w]_{*} \simeq T(\Sigma^{-1}V^{\vee};\Sigma^{-2}R^{\perp}).$$

Since $T(\Sigma^{-1}V^{\vee}; \Sigma^{-2}R^{\perp})_i$ is assumed to be finite-dimensional for all *i*, this also shows that the comparison map (9) is an equivalence.

We illustrate Theorem 4.17 in several examples.

Example 4.18. Let V be the graded k-vector space with basis x_1, \ldots, x_n in degree 0. Taking $R = \langle x_i \otimes x_j + x_j \otimes x_i \rangle$ gives the exteriour algebra $A = T(V; R) = E[x_1, \ldots, x_n]$.

Consider the dual basis x_1^*, \ldots, x_n^* of V^{\vee} . An element $v^* = \sum_{i,j} \lambda_{ij} x_i^* \otimes x_j^* \in V^{\vee} \otimes V^{\vee}$ vanishes on R iff $\lambda_{ij} = -\lambda_{ji} = 0$ for all i, j, which happens iff $v^* \in R^{\perp} = \langle x_i^* \otimes x_j^* - x_j^* \otimes x_i^* \rangle$. Writing $y_i = \Sigma^{-1}(x_i^*)$, we deduce from Theorem 4.17 that

$$\mathfrak{D}^{(1)}(E[x_1,\ldots,x_n])\simeq k[y_1,\ldots,y_n]$$

Exercise 4.19. Prove that there is an equivalence $\mathfrak{D}^{(1)}(k[y_1,\ldots,y_n]) \simeq E[x_1,\ldots,x_n]$.

This biduality is in fact a general phenomenon, which can be proven (under mild finiteness assumptions) using the Koszul complex. We refer to [BGS96, Section 2.9] for a precise statement.

Remark 4.20. To see that the finiteness assumption in Theorem 4.17 is indeed necessary, consider the Koszul algebra E[x] with x in Adams degree 1 and homological degree -1. Then $\mathfrak{D}^{(1)}(A) = k[[y]]$ is a power series ring generated by y in homological degree 0, while Theorem 4.17 would predict a polynomial ring.

4.5. **Poincaré Series.** Proposition 4.16 leads to the question whether every quadratic algebra is Koszul. To see that this is *not* the case, we use the following classical notion (in a form presented in [Ber14]):

Definition 4.21 (Poincaré Series). Let $A = \bigoplus_{i,w} A_i[w]$ be an Adams-graded graded algebra with $\dim_k(A_i[w]) < \infty$ for all i, w. The *Poincaré series* of A is given by

$$A(t,z) = \sum_{i,w} \dim_k(A_i[w]) z^i t^w \in k[z,t].$$

We have the following criterion:

Proposition 4.22. If $A = \bigoplus_{i,w} A_i[w]$ is a Koszul algebra as in Theorem 4.17, then

$$P_{\mathfrak{D}^{(1)}(A)}(t,z) = P_A\left(-\frac{t}{z},z\right)^{-1}$$

Proposition 4.22 can be used to construct examples of quadratic algebras which are not Koszul. We work through an example of Lech:

Exercise 4.23. Consider the following quadratic algebra with its natural Adams grading, concentrated in homological degree i = 0:

$$A = k[x_1, x_2, x_3, x_4] / (x_1^2, x_2^2, x_3^2, x_4^2, x_1x_2 + x_3x_4)$$

(1) Show that $P_A(t,z) = 1 + 4w + 5w^2$.

(2) Compute $P_{\mathfrak{D}^{(1)}(A)}$, and use the answer to prove that A is not a Koszul algebra.

4.6. **PBW algebras.** Theorem 4.17 allows us to dualise an algebra A = T(V; R) once we know that it is Koszul, but checking this property still requires some knowledge about the groups $\operatorname{Tor}_*^A(k,k)_*[*]$.

We will now introduce a simple condition on bases of V which implies that T(V; R) is Koszul: Priddy's *PBW-property* (cf. [PP05, Chapter 4] for a more detailed treatment). Let V be a graded vector space with basis $x_1, \ldots x_n$, and suppose that $R \subset V \otimes V$ is a homogeneous submodule of relations. Using the lexicographic order, we define

$$S = \left\{ (i,j) \mid x_i x_j \notin \operatorname{span}(x_r x_s)_{(r,s) < (i,j)} \subset (V \otimes V)/R \right\}.$$

Exercise 4.24. Show that the set $\{x_i x_j \mid (i, j) \in S\}$ forms a basis of $(V \otimes V)/R$.

In particular, for any $(i, j) \notin S$, we can write

$$x_i x_j = \sum_{(r,s) < (i,j)} c_{ij}^{rs} x_r x_s \in T(V;R)$$

for uniquely determined scalars $c_{ij}^{rs} \in k$.

Definition 4.25. We say that x_1, \ldots, x_n is a *PBW basis* for the quadratic algebra T(V; R) if the following polynomials form a basis for T(V; R):

 $\{x_{j_1}x_{j_2}\ldots x_{j_n}\in T(V;R) \mid (j_1,j_2), (j_2,j_3),\ldots, (j_{n-1},j_n)\in S\}.$

For n = 0, the above product is 1 by convention.

Priddy then established the following useful criterion:

Theorem 4.26. If A = T(V; R) admits a PBW-basis, then A is a Koszul algebra.

Example 4.27. For $V = \langle x_1, x_2 \rangle$ and $R = \langle x_1^2, x_1x_2 + x_2x_1, x_2^2 \rangle$, we have $E(x_1, x_2) = T(V; R)$. We observe that $S = \{(1, 2)\}$. Since $\{1, x_1, x_2, x_1x_2\}$ is a basis for $E(x_1, x_2)$, Theorem 4.26 gives an alternative proof that $E(x_1, x_2)$ is Koszul.

Theorem 4.17 then has the following consequence:

Corollary 4.28. Let x_1, \ldots, x_n be a PBW-basis for A = T(V; R). Assume that all $A_i[n]$ and $T(\Sigma^{-1}V^{\vee}; \Sigma^{-2}R^{\perp})_i$ are finite-dimensional. Write $x_i x_j = \sum_{(r,s)<(i,j)} c_{ij}^{rs} x_r x_s \in A$ for $(i,j) \notin S$. Then $\mathfrak{D}^{(1)}(A)$

is generated by y_1, \ldots, y_n with y_i in degree $-|x_i| - 1$ subject to the relations:

$$(-1)^{\nu_{i,j}} y_i y_j + \sum_{(k,l) \notin S} (-1)^{\nu_{k,l}} c_{rs}^{ij} y_r y_s = 0 \quad if \quad (i,j) \in S.$$

Here $\nu_{ab} = |y_a| + (|y_a| - 1)(|y_b| - 1).$

We conclude this lecture by stating two classical applications of Koszul algebras in topology.

4.7. Application 1: The Homology of Loop Spaces. Koszul duality can be used to compute the homology of loop spaces (cf. [Ber14] for a detailed treatment):

Proposition 4.29. Let X be a simply connected space whose algebra of rational cochains $C^*(X; \mathbb{Q}) \simeq H^*(X, \mathbb{Q})$ is both formal and Koszul.

Then the homology of the loop space of X is given by the Koszul dual of $H^*(X; \mathbb{Q})$:

$$H_*(\Omega X; \mathbb{Q}) \cong \mathfrak{D}^{(1)}(H^*(X; \mathbb{Q}))$$

Example 4.30. For $X = S^2$, the cochain algebra $C^*(X, \mathbb{Q})$ is given by E[x] with x in homological degree -2. As this algebra is Koszul, we deduce $H_*(\Omega S^2; \mathbb{Q}) \simeq \mathfrak{D}^{(1)}(E[x]) \simeq \mathbb{Q}[y]$ with y in degree 1. An alternative proof uses the James splitting $\Sigma \Omega \Sigma S^1 \simeq \Sigma \bigvee S^m$.

4.8. Application 2: The Adams Spectral Sequence. We begin by recalling the Steenrod algebra, which is of key importance in topology:

Definition 4.31 (The Steenrod algebra). The *Steenrod algebra* \mathcal{A} (at p = 2) is the associative algebra generated by elements $\mathrm{Sq}^{0}, \mathrm{Sq}^{1}, \mathrm{Sq}^{2}, \ldots$ subject to the following relations:

- (1) $Sq^0 = 1;$
- (2) If i < 2j, then $\operatorname{Sq}^{i} \operatorname{Sq}^{j} = \sum_{k=0}^{\lfloor \frac{i}{2} \rfloor} {j-k-1 \choose i-2k} \operatorname{Sq}^{i+j-k} \operatorname{Sq}^{k}$.

Given any space X, the \mathbb{F}_2 -valued cohomology $H^*(X, \mathbb{F}_2)$ is equipped with a natural action by the Steenrod algebra satisfying the following well-known conditions:

- a) $\operatorname{Sq}^n : H^*(X, \mathbb{F}_2) \to H^{*+n}(X, \mathbb{F}_2)$ shifts degree by n;
- b) Sqⁿ(x) = 0 if $x \in H^m(X, \mathbb{F}_2)$ with m < n;
- c) $\operatorname{Sq}^{n}(x) = x \cup x$ for $x \in H^{n}(X, \mathbb{F}_{2});$
- d) $\operatorname{Sq}^{n}(x \cup y) = \sum_{a+b=n} \operatorname{Sq}^{a}(x) \cup \operatorname{Sq}^{b}(y).$

Descent along the morphism of \mathbb{E}_{∞} -rings $S \to \mathbb{F}_2$ can be used to prove the following result of Adams – we refer to [Lur10, Lecture 8] for a more detailed discussion.

Theorem 4.32 (Adams spectral sequence). There is a spectral sequence of signature

$$E_s^{s,t} = \operatorname{Ext}_{\mathcal{A}}^{s,t}(\mathbb{F}_2,\mathbb{F}_2) \implies \pi_*^s(S)_2^{\prime}$$

We depict the E_2 -term of this spectral sequence (in Adams convention), cf. [Rav78]:

It is therefore an important computational problem to compute the algebra $Ext_{\mathcal{A}}^{s,t}(\mathbb{F}_2,\mathbb{F}_2)$, and our previous discussion leads to the hope that Koszul algebras might be helpful.

Since the defining relations of \mathcal{A} are not homogeneous, the natural grading on the tensor algebra $T(\mathrm{Sq}^0, \mathrm{Sq}^1, \ldots)$ does not descend to an Adams-grading on \mathcal{A} . However, it induces an ascending filtration whose n^{th} stage $F^n(\mathcal{A})$ is spanned by all products of at most n generators $\mathrm{Sq}^0, \mathrm{Sq}^1, \ldots$

The associated graded $Gr(\mathcal{A})$ of this filtration admits an Adams grading, and Theorem 4.26 can be used to prove that $Gr(\mathcal{A})$ is a Koszul algebra. Priddy then refines the analysis carried out in Theorem 4.17 to prove the following result:

Theorem 4.33. The Koszul dual $\mathfrak{D}^{(1)}(\mathcal{A})$ of the Steenrod algebra is given by the Λ -algebra, which is the differential graded \mathbb{F}_2 -algebra generated by $\lambda_1, \lambda_2, \lambda_3, \ldots$ subject to relations

$$\lambda_a\lambda_b=\sum_{j=2b}^{\lfloor\frac{2(a+b)}{3}\rfloor}\binom{a-j-1}{j-2b}\lambda_j\lambda_{a+b-j}\quad \text{if }a\geq 2b>0$$

with differential

$$\delta(\lambda_a) = \sum_{j=1}^{\lfloor \frac{2a}{3} \rfloor} {a-j-1 \choose j} \lambda_j \lambda_{a-j}$$

The Λ -algebra provides a valuable tool in the computation of stable and unstable homotopy groups of spheres; we refer to [Rav03, Chapter 3] for a detailed discussion.

References

- [Ber14] Alexander Berglund. Koszul spaces. Transactions of the American Mathematical Society, 366(9):4551–4569, 2014.
- [BGS96] Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel. Koszul duality patterns in representation theory. Journal of the American Mathematical Society, 9(2):473–527, 1996.
- [Dri] V. Drinfeld. A letter from Kharkov to Moscow. EMS Surv. Math. Sci., 1(2):241–248. Translated from Russian by Keith Conrad.
- [KS58] K. Kodaira and D. C. Spencer. On deformations of complex analytic structures. I, II. Ann. of Math. (2), 67:328–466, 1958.
- [Lur] Jacob Lurie. Higher algebra. Preprint from the author's web page.
- [Lur07] Jacob Lurie. Derived algebraic geometry II: Noncommutative algebra. Preprint from the author's web page, 2007.
- [Lur09] Jacob Lurie. Higher topos theory, volume 170 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2009.
- [Lur10] Jacob Lurie. Chromatic homotopy theory. Lecture notes online at http://www.math.harvard.edu/ lurie/252x.html, 2010.
- [Lur11] Jacob Lurie. Derived algebraic geometry X: Formal moduli problems. Preprint from the author's web page, 2011.
- [Mor58] Kiiti Morita. Duality for modules and its applications to the theory of rings with minimum condition. Science Reports of the Tokyo Kyoiku Daigaku, Section A, 6(150):83-142, 1958.
- [PP05] Alexander Polishchuk and Leonid Positselski. Quadratic algebras, volume 37. American Mathematical Soc., 2005.
- [Pri70] Stewart B. Priddy. Koszul resolutions. Trans. Amer. Math. Soc., 152:39-60, 1970.
- [Rav78] Douglas C Ravenel. A novice's guide to the adams-novikov spectral sequence. In Geometric Applications of Homotopy Theory II, pages 404–475. Springer, 1978.
- [Rav03] Douglas C Ravenel. Complex cobordism and stable homotopy groups of spheres. American Mathematical Soc., 2003.
- [Rez12] Charles Rezk. Rings of power operations for Morava E-theories are Koszul. arXiv preprint arXiv:1204.4831, 2012.