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∞-Categories and Deformation Theory

Lecture 6. Towards formal Moduli Problems

In this lecture, we will tie up a few loose ends from last week and then begin discussing the
relationship between Lie algebras and deformation functors.

5.1. Koszul duality for complete local Noetherian algebras. Let k be a field. In the previous
lecture, we set up the Koszul duality functor

D ∶ SCRaug
k Ð→ AlgopLieπ

k
, R ↦ cot(R)∨

from augmented simplicial commutative k-algebras to partition Lie algebras; we introduced these
new objects in Definition 5.27 as algebras over a monad Lieπk on the∞-category of chain complexes.

For suitably nice augmented animated k-algebras R ∈ SCRaug
k , the complex cot(R)∨ with its

partition Lie algebra structure remembers the structure of R.

Theorem 5.1 ([BM19]). The functor D ∶ SCRaug
k Ð→ AlgopLieπ

k
, R ↦ cot(R)∨ last week restricts to

a contravariant equivalence between

(1) the full subcategory

SCRcN
k ⊂ SCR

aug
k

spanned by all R for which π0(R) is a complete local Noetherian ring and πi(R) is a finitely
generated π0(R)-module for all i.

(2) the (opposite of the) full subcategory

AlgLieπ
k
(Modftk,≤0) ⊂ AlgLieπ

k

spanned by all partition Lie algebras g whose underlying chain complex is coconnective and
satisfies dim(πi(g)) <∞ for all i.

Next week, we will give geometric models for all partition Lie algebras.

5.2. Explicit models for Lie algebras. We constructed the monad Lieπk making substantial use
of the theory of ∞-categories. First, we observed that the (contravariant) tangent fibre functor

A↦ cot(A)∨ = (k ⊗A LA/k)∨

from augmented simplicial commutative k-algebras to chain complexes over k is part of an adjunc-
tion. While the associated monad T naive on Modk behaved badly, we could approximate it by a
monad Lieπk which preserves filtered colimits and geometric realisations.

If V ● is a cosimplicial k-module with associated chain complex Tot(V ●), then

Lieπk(Tot(V ●)) ≃⊕
n

Tot (C̃●(Σ∣Πn∣◇, k)⊗ (V ●)⊗n)
Σn
.

Here Σ∣Πn∣◇ is a simplicial Σn-complex known as the nth (doubly suspended) partition complex. For
d > 0, the nondegenerate d-simplices of Σ∣Πn∣◇ correspond to chains of increasingly coarse partitions

[0̂ = x0 < x1 < . . . < xt = 1̂]

of the set {1, . . . n}.
One can also construct an explicit model category for the ∞-category of partition Lie algebras.
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Partition Lie algebras in characteristic zero. When our ground field k is of characteristic zero,
partition Lie algebras recover a familiar notion:

Definition 5.2 (Differential graded Lie algebras). Let k be a field of characteristic zero. A differ-
ential graded Lie algebra (‘DGLA’) over k is a complex

. . .→ g2 → g1 → g0 → g−1 → g−2 → . . .

with a bilinear map [−,−] ∶ gi × gj → gi+j satisfying the following rules:

(Antisymmetry) [x, y] = (−1)∣x∣∣y∣+1[y, x]

(Jacobi identity) (−1)∣x∣∣z∣[[x, y], z] + (−1)∣z∣∣y∣[[z, x], y] + (−1)∣y∣∣x∣[[y, z], x] = 0

(Leibniz rule) d([x, y]) = [dx, y] + (−1)∣x∣[x, dy].

Notation 5.3. The category dglak of differential graded Lie algebras admits the structure of a left
proper combinatorial model category (c.f. e.g. [Lur11, Proposition 2.1.10]) whose weak equivalences
are the quasi-isomorphisms and whose fibrations are the levelwise surjections. We write dglak for
the underlying ∞-category of dglak.

Recall from Exercise 5.13 that if k is a field of characteristic 0, the category cdgak of commutative
differential graded k algebras carries a model structure whose weak equivalences are the quasi-
isomorphisms and whose fibrations are the levelwise surjections. Write cdgak for the underlying
∞-category of cdgak. We will also need the model category cdgaaugk = (cdgak)/k of augmented
commutative differential graded k-algebras and its underlying ∞-category cdgaaugk .

To compare differential graded Lie algebras with partition Lie algebras, we will rely on the
following well-known construction:

Construction 1 (Chevalley–Eilenberg complex). Given a differential graded Lie algebra g ∈ dglak,
consider its (homological) Chevalley–Eilenberg complex

CE∗(g) = (Sym∗(g[1]),D).
Here Sym∗(g[1]) is the sum of all symmetric powers of the underlying graded vector space of g[1].
The differential D sends the product of homogeneous elements xi in degree pi to

D(x1 . . . xn) = ∑
1≤i≤n

(−1)p1+...+pi−1x1 . . . xi−1dxixi+1 . . . xn

+ ∑
1≤i<j≤n

(−1)pi(pi+1+...+pj−1)x1 . . . xi−1xi+1 . . . xj−1[xi, xj]xj+1 . . . xn.

Write CE∗(g) for the linear dual of CE∗(g), and define a graded-commutative multiplication on
CE∗(g) by declaring the product of f ∈ CEp(g) and g ∈ CEq(g) to be the element fg ∈ CEn+m(g)
satisfying

(fg)(x1 . . . xn) = ∑
S,T

ϵ(S,T )f(xi1 . . . xim)g(xj1 . . . xjn−m).

Here xi ∈ gri are homogeneous elements, the sum is indexed by disjoint sets S = {i1, . . . , im},
T = {j1, . . . , jn−m} with S ∪ T = {1, . . . , n} and ri1 + . . . + rrm = p, and the sign ϵ(S,T ) is given by

ϵ(S,T ) = ∏
i∈S,j∈T,i<j

(−1)rirj .
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Exercise 5.4. Let Ug be the universal enveloping algebra of g. Show that there are weak equivalences

CE∗(g) ≃ k ⊗L
Ug k CE∗(g) ≃ RHomUg(k, k).

Noting that CE∗(g) is naturally augmented, the above construction defines a functor

CE∗ ∶ dlgaopk → cdgaaugk .

Definition 5.5. The Chevalley-Eilenberg cochains functor

CEdg ∶ dglaopk → cdgaaugk

from the ∞-category of differential graded Lie algebras to the ∞-category of augmented commuta-
tive differential graded k-algebras is obtained from CE∗ by inverting weak equivalences.

This functor preserves limits and therefore admits a left adjoint

Ddg ∶ cdgaaugk → dglaopk

Warning 5.6. The functor CE∗ does not admit a left adjoint as a functor of 1-categories, and to
describe Ddg explicitly, it is more convenient to work with L∞-algebras rather than d.g. Lie algebras.

The above ingredients allow us to prove:

Proposition 5.7. Let k be a field of characteristic zero. The composite

AlgLieπ
k
Ð→Modk

Σ−1ÐÐ→Modk

of the forgetful functor and the shift functor lifts to a canonical equivalence

AlgLieπ
k

≃ÐÐ→ dglak

along the forgetful functor dglak →Modk.

Proof. We consider the following pair of adjunctions:

cdgaaugk

Ddg

ÐÐÐÐÐÐÐ→
�←ÐÐÐÐÐÐÐÐ

CEdg

dglaopk

forgetdglaÐÐÐÐÐÐÐÐ→
�←ÐÐÐÐÐÐÐÐ

freedgla

Modopk .

By a straightforward computation (cf. [Lur11, Proposition 2.2.15]), we have

CEdg(freedgla(V )) ≃ k ⊕Σ−1V ∨ = sqzk(Σ−1V ∨).

Taking adjoints, we obtain an equivalence

forgetdgla(Ddg(A)) ≃ Σ−1 cotaug(A)∨.

Hence the composite of the above adjunctions is equivalent to

cdgaaugk

Σ−1 cotaug(−)∨
ÐÐÐÐÐÐÐÐÐÐÐÐÐ→

�←ÐÐÐÐÐÐÐÐÐÐÐ
sqz((Σ−)∨)

Modopk

Inserting the unit id→Ddg ○CEdg, we obtain a map of monads

Liedgk (−) = forgetdgla ○freedgla(−)ÐÐÐ→ Σ−1(cotaug(sqzaug(Σ−)∨)∨) ≃ Σ−1T naiveΣ(−)

Observe that Liedgk preserves the full subcategory Modftk,≤−1 ⊂ Modk of (−1)-coconnective chain
complexes V with dim(πi(V )) <∞ for all i, as Lie brackets decrease degree.
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By (a variant of) [Lur07, Lemma 2.3.5], the unit map g → Ddg(CEdg(g)) is an equivalence for

all differential graded Lie algebras g with underlying chain complex in Modftk,≤−1. Hence the above
transformation of monads

Liedgk (−)Ð→ Σ−1T naiveΣ(−)
restricts to an equivalence on Modftk,≤−1. We obtain an equivalence of monads

(ΣLiedgk Σ−1)∣Modft
k,≤0
≃ Lieπk ∣Modft

k,≤0

As ΣLiedgk Σ−1 preserves sifted colimits, Construction 5.26(3) gives an equivalence of monads

ΣLiedgk Σ−1 ≃ Lieπk , which implies the claim. □

Partition Lie algebras in characteristic p. Partition Lie algebras over a field k of characteristic p
are richer structures. They can be modelled by simplicial-cosimplicial restricted Lieπk -algebras, that
is, by cosimplicial-simplicial k-modules equipped with additional operations.

The following objects parametrise the barycentric subdivision of the partition complex:

Definition 5.8. A nested chain of partitions of {1, . . . , n} is a pair

(σ,S)

where

σ = [0̂ = x0 < x1 < . . . < xt = 1̂]
is a chain of increasingly coarse partitions of {1, . . . , n} and

S = (S0 ⊆ . . . ⊆ Sd)

is a chain of increasing subsets of Sd = {0, . . . , t}.

Construction 5.9. Let k be a field. A simplicial-cosimplicial restricted Lieπk -algebra is a simplicial
object in cosimplicial restricted Lieπk -algebras. To equip a cosimplicial k-module

g0 g1 g2 . . .

with the structure of a cosimplicial restricted Lieπk -algebra, we must specify an element

{a1, . . . , ar}(σ,S) ∈ gd

for any nested chain

(σ,S) = ([0̂ = x0 < ⋅ ⋅ ⋅ < xt = 1̂], S0 ⊆ ⋅ ⋅ ⋅ ⊆ Sd) ∈ Lieπk(r)d

and any tuple

a = (a1, . . . , ar) ∈ gd.
Moreover, for any tuple a = (a1, . . . , ar) in gd and any nested chain (σ,S) ∈ Lieπk(r)d, we must

specify a ‘divided power’ element

γ(σ,S)(a1, . . . , ar) ∈ gd.
These elements are then required to satisfy various relations specified in [BCN21, Construction 5.43].

In [BCN21, Theorem 5.42], it is shown that inverting weak equivalences of simplicial-cosimplicial
restricted Lieπk -algebras gives rise to the ∞-category of partition Lie algebras.
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5.3. The cotangent complex. Before proceeding to moduli problems, we will introduce one
more important piece of technology: the cotangent complex formalism of André and Quillen. It is
a derived variant of Kähler differentials, and generalises the cotangent fibre discussed in the last
lecture.

Kähler differentials. Let us begin by fixing a map of ordinary commutative rings

A→ C,

together with a C-module M .

Definition 5.10. The trivial square-zero extension

sqzC(M)
of C by M is the commutative C-algebra with underlying abelian group C ⊕M and multiplication

(c1,m1) ⋅ (c2,m2) ∶= (c1c2, c1m2 + c2m1).

Exercise 5.11. Show that the space of A-algebra sections of the projection C⊕M → C is isomorphic
to the C-module DerA(C,M) of A-linear derivations D ∶ C →M .

Holding the morphism A → C fixed and varying M , we obtain a functor M ↦ DerA(C,M),
which is representable by the module of Kähler differentials

Ω1
C/A,

i.e. the free C-module generated by symbols {dc}c∈C modulo the relations

da = 0 d(c1 + c2) = dc1 + dc2 d(c1c2) = c1dc2 + c2dc1 , a ∈ A, c1, c2 ∈ C.
We obtain an adjunction

F ∶ {A-algebras/C}⇆ {C −modules} ∶ G
B ↦ C ⊗B ΩB/A

sqzC(M) ↦M

The cotangent complex. To define the cotangent complex of A → C, let us restrict the functor
F ∶ B ↦ C⊗BΩ

1
B/A to the full subcategory C ⊂ CRA//C of A-algebras A[x1, . . . , xn] with a map to C.

Let us moreover think of F as taking values in the ∞-category of ModC,≥0 of connective chain
complexes over C.

Taking the nonabelian left derived functor in the sense of Definition 5.6, we obtain a functor

LF ∶ CAlganA//C →ModC,≥0.

Definition 5.12. The (relative) cotangent complex of A→ C is given by LC/A ∶= (LF )(C).

To compute LC/A in examples, we we can first pick a weakly equivalent cofibrant simplicial
A-algebra P● over C, then apply the functor F levelwise to obtain the simplicial abelian group

C ⊗P● ΩP●/A,

and finally apply Dold-Kan to obtain a connective chain complex of C-modules.

Exercise 5.13.

a) Use extension-of-scalars functors to construct the category PolyModff of pairs (A,M) with A a
polynomial ring and M a finite free A-module.

b) Use PolyModff to define the cotangent complex LC/A for maps of animated rings A→ C.
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The cotangent complex is very computable in practice. We state some of its most important
properties without proof:

Proposition 5.14.

(1) If C = A[x1, . . . , xn] is a polynomial ring, then LC/A is given by Ω1
C/A concentrated in degree 0.

(2) For any morphisms A→ B → C, there is a cofibre sequence in ModC,≥0 of the form

C ⊗B LB/A → LC/A → LC/B .

(3) Given morphisms of animated rings A→ B and A→ C, we have a canonical equivalence

C ⊗A LB/A
≃Ð→ LB⊗AC/C .

(4) If A→ B is surjective with kernel I generated by a regular sequence, then LB/A is given by

I/I2 concentrated in homological degree 1.

Exercise 5.15.

(1) Show that if C = A[x1, . . . xn]/(f1, . . . fm) with f1, . . . fm a regular sequence, then

LC/A ≃ (. . .→ 0→ 0→ I/I2 Ð→ C ⊗A[x1,...xn] ΩA[x1,...xn]/A).
(2) Identify the nonzero differential appearing in the complex LC/A above.

The cotangent complex generalises the cotangent fibre from Definition 5.18:

Exercise 5.16. Show that for A an animated ring and R ∈ CAlgan,augA an augmented animated
A-algebra, there is an equivalence

cot(R) ≃ A⊗R LR/A.

Hint: first prove the case where R is a polynomial A-algebra.

We are now finally ready to return to deformation functors and discuss their relation with Lie
algebras.

5.4. Classical deformation functors from differential graded Lie algebras. To begin with,
let us discuss classical deformation functors over a field k of characteristic 0.

Following Schlessinger [Sch68], we define:

Definition 5.17 (Deformation functor). A deformation functor is a functor

F ∶ CRart
k → Set

from the category of Artinian local commutative k-algebras with residue field k to the category of
sets such that

(1) F (k) has one element;
(2) for any pullback square

A

��

// A′

��
A // A′′

with A′ → A′′ surjective, the induced map α ∶ F (A)→ F (A′) ×F (A′′) F (A) is surjective;
(3) the map α is bijective whenever the lower horizontal arrow in the above square is given by

k[ϵ]/ϵ2 → k.
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Many deformation functors in characteristic 0 are controlled by differential graded Lie algebras.
To make this idea precise, we define:

Definition 5.18 (Deformation functor associated to a differential graded Lie algebra).
Given a differential graded Lie algebra g, the classical deformation functor

Dg ∶ CRart
k → Set

associated to g sends a given local Artinian A ∈ CRart
k with maximal ideal mA (and residue field k)

to the set

Dg(A) = {x ∈ g−1 ⊗mA ∣ dx +
1

2
[x,x] = 0}/≃ ,

where the equivalence relation ≃ identifies each x with

x +
∞
∑
n=0

[a,−]○n

(n + 1)!
([a, x] − da)

where a ranges over g0 ⊗mA.
Here we have equipped g⊗mA with the structure of a differential graded Lie algebra by setting

[x⊗ a, y ⊗ b] ∶= (−)deg(a)deg(y)[x, y]⊗ ab.

Exercise 5.19. Check that Dg defines a deformation functor in the sense of Definition 5.17.

We will now discuss a simple example of a deformation functor controlled by a differential graded
Lie algebra, following [M09].

Example 5.20 (Chain complexes). Let us fix a perfect complex

M = (. . .Ð→ 0→Mn
∂Ð→ Mn−1

∂Ð→Mn−2
∂Ð→ . . .

∂Ð→M0 Ð→ 0Ð→ . . .)
over a field k of characteristic 0. Given A ∈ CRart

k with maximal ideal mA, a deformation of M over
A is a perfect complex

M̃ = (. . .0→ A⊗k Mn
∂̃Ð→ A⊗k Mn−1

∂̃Ð→ A⊗k Mn−2
∂̃Ð→ . . .

∂̃Ð→ A⊗k M0 → 0→ . . .)
together with an isomorphism M̃ ⊗A k ≅M .

Using the decomposition

(1) A⊗k Mi ≅ Mi ⊕ (mA ⊗k Mi),

we can write the differential ∂̃ of M̃ as (the A-linear extension of)

∂ + ϕ,
where ϕ ∈ Hom1(M,M)⊗mA. The condition ∂̃2 = 0 is then equivalent to

∂ϕ + ϕ∂ + ϕ2 = 0.
We now consider the differential graded Lie algebra

(gM)∗ = Hom−∗(M,M)
with differential

d(f) = ∂f − (−1)deg ff∂
and Lie bracket

[f, g] = fg − (−1)deg(f)deg(g)gf.
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Then elements ϕ ∈ Hom1(M,M)⊗mA satisfying ∂ϕ + ϕ∂ + ϕ2 = 0 are exactly elements

ϕ ∈ (gM)−1 ⊗mA

satisfying

dϕ + 1

2
[ϕ,ϕ].

Two elements ϕ1, ϕ2 ∈ (gM)−1⊗mA = Hom1(M,M)⊗mA define isomorphic deformations if there
is a diagram

. . . 0 A⊗k Mn A⊗k Mn−1 . . . A⊗k M0 0 . . .

. . . 0 A⊗k Mn A⊗k Mn−1 . . . A⊗k M0 0 . . .

∂+ϕ1

α

∂+ϕ1

α

∂+ϕ1

α

∂+ϕ2 ∂+ϕ2 ∂+ϕ2

such that α reduces to the identity mod mA.
Using the decomposition (1), we can write α as (the A-linear extension of)

id+η
for some η ∈ Hom0(M,M)⊗mA.

Exercise 5.21.

(1) Show that id+η can be written as

id+η = ea

for a suitably chosen a ∈ Hom0(M,M)⊗mA;
(2) use the equation (∂ + ϕ2) = ea ○ (∂ + ϕ1) ○ e−a to prove that

ϕ2 = ϕ1 +
∞
∑
n=0

[a,−]○n

(n + 1)!
([a,ϕ1] − da).

In the next lecture, we will see other examples of classical deformation functors controlled by
differential graded Lie algebras, including the deformation functor of a smooth and proper variety
discussed in the first lecture.

We will then see why classical deformation functors are not sufficient for some problems in
deformation theory, and introduce formal moduli problems to resolve this obstacle.
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