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Lecture 7. Classical deformation functors from Lie algebras

Last week, we constructed a deformation functor Dg for every differential graded Lie algebra g
in characteristic 0. Moreover, we saw that the deformation functor of a perfect chain complex M
is controlled by the differential graded Lie algebra gM = Hom−∗(M,M).

Before exploring derived deformation functors in general characteristics in week 8 and 9, we
will explain a second method of constructing classical deformation functors in characteristic zero
via semicosimplicial Lie algebras (following the treatment in Manetti’s book [Man22], which we
recommend). This method sometimes facilitates a more algebraic treatment of deformation functors
– we will illustrate this for vector bundles and complex varieties.

5.1. From nilpotent Lie algebras to groups. But first, let us recall a classical piece of algebra.
Fix a field k of characteristic zero, and let R be an associative k-algebra containing a nilpotent
ideal I. Consider the exponential function

e ∶ I → 1 + I

x↦ ex = ∑
n≥0

xn

n!

The formula exey = ex+y need not hold in the non-commutative setting, but there is always a product

● ∶ I × I → I

such that the following equation holds true for all x, y ∈ I:

exey = ex●y.

To define this Baker–Campbell–Hausdorff product (x, y) ↦ x ● y, we only need the underlying
nilpotent Lie algebra structure on I, which is defined by commutators

[x, y] = xy − yx.

The first few terms are given by

x ● y = x + y + 1

2
[x, y] + 1

12
([x, [x, y]] + 1

12
[y, [y, x]]) + 1

24
[x, [y, [y, x]]] +⋯.

The full formula can be made explicit as a sum

x ● y = ∑
n≥0

Zn(x, y)

where Zn(x, y) are defined in terms of iterated Lie brackets and the Bernoulli numbers B0,B1,B2, . . .
appearing in the series expansion

x

ex − 1
=∑

n

Bn

n!
xn.

We refer to [Man22, Section 2.5] for further details.

Definition 5.1 (From nilpotent Lie algebras to groups). Given a nilpotent Lie algebra g, we define
its exponential group exp(g) as the set of expressions {ex ∣x ∈ g} with the product

exey = ex●y.

Exercise 5.2. Familiarise yourself with the definition of the Baker–Campbell–Hausdorff product
and verify that exp(g) defines a group.
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5.2. From semicosimplicial Lie algebras to deformation functors. Semicosimplicial Lie al-
gberas are functors from the category ∆inj of finite linearly ordered sets and injections to the
category of Lie algebras over k, i.e. diagrams of the form

g● = ( g0 g1 ⋯ ).

Definition 5.3 (Deformation functor associated to a semicosimplicial Lie algebra). Given a semi-
cosimplicial Lie algebra g●, the deformation functpr Dg● associated to g● is defined as

Dg ∶ CRart
k → Set, A ↦ {ex ∈ exp(mA ⊗ g1) ∣ eδ1(x) = eδ2(x)eδ0(x)}/ exp(mA ⊗ g0)

Here the group exp(mA ⊗ g0) acts via the rule

ea ∗ ex ∶= eδ1(a)exe−δ0(a).

Exercise 5.4. Verify that the above action is indeed well-defined.

Thinking of semicosimplicial Lie algebras as ∆inj-indexed diagrams in the model category of
differential graded Lie algebras, we can compute their homotopy limit. The following notation will
be useful:

Notation 5.5. Given n ≥ 0, let us write

Ωn = k[x0, . . . , xn, dx0, . . . , dxn]/(x0 + . . . + xn = 1, dx0 + . . . + dxn = 0)

for the differential graded k-algebra of polynomial differential forms on the standard n-simplex

∆n = {(x0, . . . , xn) ∣ x0 + . . . + xn = 1)} ⊂ Rn+1.

Definition 5.6 (From semicosimplicial to differential graded Lie algebras). Given a semicosimpli-
cial object in differential graded Lie algebras g●, we can define a differential graded Lie algebra

Tot(g●) ∶= {(xn) ∈∏
n≥0

Ωn ⊗ gn ∣ (δ∗k ⊗ id)xn = (id⊗δk)xn−1 ∀0 ≤ k ≤ n},

where the differential and the Lie bracket are inherited from ∏n≥0Ω
n ⊗ gn.

Exercise 5.7. Show that Tot(g●) computes the homotopy colimit of g●.

Using the work of Hinich [Hin96], Manetti (cf. [Man22, Corollary 7.6.6]) relates Definition 5.3
and Definition 5.18:

Theorem 5.8. Given a semicosimplicial Lie algebra g●, there is an isomorphism of deformation functors

Dg● ≅DTot(g).
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5.3. Deformations of sheaves of OX-modules on complex varieties. Let us fix a complex
manifold (X,OX) and a sheaf of OX -modules F on X.

Definition 5.9. A deformation of F over some local Artinian C-algebra A ∈ CRart
C is a pair

(FA, α),
where FA is a sheaf of A⊗OX -modules that is flat over A and α is an isomorphism α ∶ C⊗AFA ≅ F .

An isomorphism of deformations

(FA, α)→ (F ′A, α′)
is an A⊗OX -linear isomorphism of sheaves f ∶ FA → F ′A that α′ ○ (C⊗A f) = α.

The deformation functor
DefF

of F sends A ∈ CRart
C to the set of deformations of F to A up to isomorphism.

The first step in finding a Lie algebra governing DefF is to find a Lie algebra whose exponential
is the group of automorphisms of the trivial deformation. To this end, note that the group

g ∶= HomOX
(F ,F)

of endomorphisms of F carries a Lie bracket given by the commutator. We observe:

Exercise 5.10. Given a local Artinian C-algebra A ∈ CRart
C , show that the Lie algebra

mA ⊗ g

is isomorphic to
{ g ∈ HomA⊗OX

(A⊗F ,A⊗F) ∣ im(g) ⊂ mA ⊗F }
with its commutator bracket.

Proceeding as in Definition 5.1, we obtain a group

exp(mA ⊗ g) = exp({g ∶ HomA⊗OX
(A⊗F ,A⊗F) ∣ im(g) ⊂ mA ⊗F}).

The exponential

eg ↦ id+g + g
○2

2!
+ g

○3

3!
+ . . .

gives rise to a group homomotphism from exp(mA ⊗ g) to the group

AutA⊗OX
(A⊗F) = { f ∶ HomA⊗OX

(A⊗F ,A⊗F) ∣ im(f) − id ⊂ mA ⊗F }.

Exercise 5.11. Prove that this map is an isomorphism.

Pick an open cover U = {Ui} of our manifold X. We obtain a semicosimplicial Lie algebra

g●F ∶= ( ∏iHomOX
(F ,F)(Ui) ∏i,jHomOX

(F ,F)(Ui ∩Uj) ⋯ ) .

Given an element θ in

{ex ∈ exp(mA ⊗ g1F) ∣ eδ1(x) = eδ2(x)eδ0(x)} = exp(x ∈ mA ⊗ g1F ∣δ2(x) ● δ0(x) = δ1(x)),

we obtain automorphisms
θij ∈ AutA⊗OX ∣Ui∩Uj

(A⊗F ∣Ui∩Uj)
satisfying the usual cocycle conditions.
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We then obtain a sheaf Fθ of A⊗OX -modules on X by

Fθ(W ) = {si ∈ (A⊗F)(Ui ∩W ) ∣ ∀i, j ∶ θij(si) = sj}
This gluing construction gives rise to a natural transformation of deformation functors

Defg●F → DefF .

We then have (see [Man22, Theorem 4.2.3]):

Theorem 5.12. Assume F is locally free, and that U = {Ui} is a covering of X such that F ∣Ui is
trivial and H1(Ui,OUi) = 0 for all i. The above construction induces an isomorphism of functors

Defg●F
≅Ð→ DefF .

5.4. Deformations of vector bundles complex varieties. We will now study the formal de-
formations of a complex manifold (X,OX) (following [Man22, Sec.4.3]), these already made a brief
appearance in the first lecture. More precisely, we will study the following deformation functor:

Definition 5.13 (Deformation functor of a complex manifold). Given a complex manifold (X,OX)
and a local Artinian C-algebra A ∈ CRart

C , a deformation of X to A is a pair

(OA, α),

where OA is a flat sheaf of A-algebras on X and α ∶ C⊗A OA
≅Ð→ O is an isomorphism.

An isomorphism
(OA, α)→ (O′A, α′)

between two deformations is a map of sheaves of A-algebras f ∶ OA → O′A such that α′○(C⊗Af) = α.
Let us write

DefX(A)
for the set of deformations of X to A up to isomorphism.

Exercise 5.14. Give an interpretation of X in terms of pullbacks of schemes.

As before, the first step in finding a Lie algebra governing DefX is to find a Lie algebra whose
exponential is the group of automorphisms of the trivial deformation.

But first, let us make some observations in the affine case. Fix a morphism of C-algebras
S → R.

Notation 5.15. Given a local Artinian C-algebra A ∈ CRart
C with maximal ideal mA, write

Aut′A⊗S(A⊗R)
for the collection automorphisms of S ⊗A-algebras A⊗R → A⊗R such that the composite

A⊗R → A⊗R → R

is given by the projection.
Note that any map α ∶ A→ B induces a map α ∶ Aut′A⊗S(A⊗R)→ Aut′B⊗S(B ⊗R).

Definition 5.16 (Extending derivations). Consider the morphism

(−) ∶ mA ⊗DerS(R,R)→ DerS⊗A(A⊗R,A⊗R)
sending

d⊗ a , d ∈ DerS(R,R), a ∈ mA

to the derivation
d⊗ a ∈ DerS⊗A(A⊗R,A⊗R), (x⊗ b)↦ (dx⊗ ab).
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Definition 5.17 (Exponentiating derivations). Given ϕ ∈ mA ⊗DerS(R,R), we consider the map

exp(ϕ) = 1 + ϕ + ϕ
○2

2!
+ ϕ

○3

3!
+ . . . .

Exercise 5.18. Verify that exp(ϕ) is a well-defined map A ⊗ R → A ⊗ R and in fact belongs to
Aut′A⊗S(A⊗R). What is its inverse?

Proposition 5.19. The exponential

exp ∶ mA ⊗DerS(R,R)→ Aut′A⊗S(A⊗R)

ϕ↦ exp(ϕ)
is bijective.

Proof. If A = k, then both sides just have one point and so the result is clear.
For general A, we can pick a surjection of local Artinian C-algebras

f ∶ A→ B

with kernel J ⊂ B such that mAJ = 0 and B has shorter length. By induction, we may assume the
claim holds true for B.

For injectivity, let us fix

ϕ1, ϕ2 ∈ mA ⊗DerS(R,R)
with

exp(ϕ1) = exp(ϕ2) ∈ Aut′A⊗S(A⊗R).
As the induced morphisms in Aut′B⊗S(B ⊗R) agree, the injectivity of

DerS(R,R)⊗mB → Aut′B⊗S(B ⊗R)
implies that ψ = ϕ2 − ϕ1 belongs to DerS(R,R)⊗ J .

We now observe that

ϕ1
i
ψ
j
= ψ

j
ϕ1

i
= 0

for all j > 0, i + j ≥ 2 since mAJ = 0, which in turn implies

exp(ϕ2) = exp(ϕ1 + ψ) = exp(ϕ1) + ψ = exp(ϕ2) + ψ.
Hence ψ = 0 and ϕ1 = ϕ2.

For surjectivity, pick some automorphism α ∈ Aut′A⊗S(A⊗R). By surjectivity of

DerS(R,R)⊗mB → Aut′B⊗S(B ⊗R)

and surjectivity of A→ B, we can pick ϕ ∈ mA ⊗DerS(R,R) such that f(α) = f(exp(ϕ)).
But then

h ∶= α − exp(ϕ) ∶ A⊗R → R⊗ J
satisfies

h(ab) = h(a)α(b) + exp(ϕ)(a)h(b).
But since J annihilated by mA, we also have

h(a)α(b) = h(a)b exp(ϕ)(a)h(b) = ah(b)

We conclude that h ∶ A ⊗R → R ⊗ J is a derivation and hence α = exp(ϕ) + h = exp(ϕ + h) by our
earlier considerations. □
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Let us return to the case of a complex manifold X with structure sheaf OX and holomorphic
tangent sheaf TX . Fix an open covering U = {Ui}, and consider the semicosimplicial Lie algebra

g●X ∶= (∏i TX(Ui) ∏i,j TX(Ui ∩Uj) ⋯ ),

where each Lie bracket is defined as the commutator bracket of vector fields.
Note that TX(U) = Derk(OX ,OX), and Proposition 5.19 gives a natural isomorphism

exp(mA ⊗ TX(U)) ≅ Aut′A(A⊗OX(U)).
for every open set U ⊂X.

Given an element θ in

{ex ∈ exp(mA ⊗ g1X) ∣ eδ1(x) = eδ2(x)eδ0(x)} = exp(x ∈ mA ⊗ g1X ∣ δ2(x) ● δ0(x) = δ1(x)),

we obtain automorphisms
θij ∈ Aut′A(A⊗OX)

satisfying the usual cocycle conditions.
We define a sheaf OX,θ of A-algebras on X by

OX,θ(W ) = {si ∈ A⊗OX(Ui ∩W ) ∣ ∀i, j ∶ θij(si) = sj}

We then have the following result (see [Man22, Theorem 4.3.8]):

Theorem 5.20. Assume U = {Ui} is an open covering such that H1(Ui, TX) = 0 for all i. Then
the assignment θ ↦ OX,θ induces a natural isomorphism

Dg●
X
→ DefX .

Remark 5.21. For U as above, the differential graded Lie algeba Tot(Dg●
X
) is quasi-isomorphic to

the Dolbeault complex

gX = (A0,0(TX)→ A0,1(TX)→ A0,2(TX)→ . . .) ,

where A0,k(TX) is locally generated by sections of the form

f dzi1 ∧ . . . ∧ dzik ⊗ α.
The Lie bracket is obtained by wedging differential forms and taking the commutator of vector fields.

The Newlander–Nirenberg theorem can be used to prove directly that the differential graded Lie
algebra gX controls deformations of X. We refer to [Huy05, Section 6] for a detailed treatment.
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