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Lecture 8. Koszul duality for formal moduli problems

In the last lectures, we discussed three examples of objects over C whose deformation functors
are controlled by differential graded Lie algebras: chain complexes, vector bundles, and varieties.

It is natural to ask:

Question. Given an algebro-geometric object Y over C, is there always a differential graded Lie
algebra that controls its infinitesimal deformation functor DY ? Is it unique?

Unfortunately, non-equivalent differential graded Lie algebras can control the same deformation
functor, and it is not always possible to pick a preferred one, not even up to quasi-isomorphism.

This is illustrated by the following example (cf. [CFK01, CFK02, Toë14]):

Exercise 8.1 (Hard). Fix a closed immersion of smooth complex varieties Z0 ⊂ Z defined by an
ideal sheaf I ⊂ OZ .

(1) Define the deformation functor encoding deformations of Z0 inside Z (deforming Z triv-
ially). Show that it is controlled by a differential graded Lie algebra with underlying chain
complex MapOZ0

(N ∨Z0,Z
[1],OZ0), where NZ0/Z denotes the normal bundle.

(2) Define the deformation functor encoding deformations of the quotient map of quasi-coherent
sheaves OZ → OZ/IZ = OZ0 (deforming OZ trivially). Show that it is controlled by a
differential graded Lie algebra with underlying chain complex MapOZ

(I,OZ0)
(3) Show that the two deformation functors are isomorphic, but that the differential graded Lie

algebras need not be quasi-isomorphic.

In fact, it seems impossible to functorially attach a differential graded Lie algebra gD to each
deformation functor D such that DgD

≅ D. This has the disturbing consequence that obstruction
classes do not vary functorially in the deformation functor.

8.1. Formal moduli problems. To rectify this behaviour, Drinfel’d proposed that one should
consider derived deformation functors. These are based on simplicial commutative, i.e. animated,
rings, see Definition 5.11 in Lecture 5. More precisely, we deform over the following class of rings:

Definition 8.2. Given a field k, an augmented animated k-algebra A is said to be Artinian if
π0(A) is a local Artin ring with residue field k and dimk π∗(A) < ∞.

We write CAlgan,artk ⊂ CAlgk//k for the full subcategory spanned by all Artinian objects.

Derived deformation functors generalise Definition 6.17, and are axiomatised as follows:

Definition 8.3. An (equal characteristic) formal moduli problem over a field k is a functor

D ∶ CAlgan,artk → S

from CAlgan,artk to the ∞-category S of spaces satisfying:

(1) Normalisation: the space D(k) is contractible.
(2) Gluing: applying D to a pullback square

Ã

��

// A′

��
A // A′′

with π0(A′) → π0(A′′) and π0(A) → π0(A′′) surjective gives another pullback square.
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We will write Modulik ⊂ Fun(CAlgan,artk ,S) for the ∞-category of formal moduli problems.

Exercise 8.4. Show that for any formal moduli problem D ∈Modulik, the composite

D♡ ∶ CRart ↪ CAlgan,artk

DÐ→ S π0Ð→ Set

defines a deformation functor in the sense of Definition 6.17.

Digression. To construct derived refinements of classical deformation functors, we will need a tech-
nique known as straightening.

We already briefly touched on unstraightening in Section 2.6: given a functor F ∶ J → sSet from
an ordinary category J to the category sSet of simplicial sets, we constructed the relative nerve
NF (J) → N(J). If F lands in ∞-categories, then NF (J) → N(J) is a cocartesian fibration.

One can show that this construction refines to an equivalence of ∞-categories

Fun(N(J),Cat∞) ≃ Catcocart∞/N(J)

between

(1) the ∞-category of functors from N(J) into the ∞-category Cat∞ of small ∞-categories and
(2) the (non-full) subcategory Catcocart∞/N(J) ⊂ Cat∞/N(J) consisting of cocartesian fibrations

p ∶ C → N(J)
and those functors between them which preserve cocartesian morphisms.

In fact, there is a similar equivalence

(1) Fun(C,Cat∞) ≃ Catcocart∞/C

for every ∞-category C.
Given a cocartesian fibration p ∶X → C, the corresponding functor F ∶ C → Cat∞ satisfies

F (c) ≃ p−1({c}).
If f ∶ c → c′ is a morphism, the corresponding functor F (f) ∶ F (c) → F (c′) sends x ∈ F (c) to the
target of a p-cocartesian morphism of f starting at x.

Remark 8.5. Note that if p ∶ X → S is a left fibration, the corresponding functor lands in the
∞-category S of spaces.

We are not able to do justice to the technically involved straightening/unstraightening equiva-
lence (1) in these notes, and will treat it as a black box. A comprehensive treatment can be found
in Section 3.2 in [Lur09], and we also recommend [HHR21] for a more concise treatment.

We can now construct a derived refinement of the deformation functor in Definition 7.13:

Example 8.6 (Derived infinitesimal deformations of varieties). Let (Z,OZ) be a smooth and
proper variety over a field k. The (equal characteristic) derived deformation functor DefX is the

formal moduli problem sending A ∈ CAlgan,artk to the space of pushouts

A k

O′ OZ .
⌜

of sheaves of animated rings on Z.
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To formally construct the formal moduli problem DefX , we consider the ∞-category

C ∶= CAlgan,art ×Shv(Z,CAlgan) Fun(∆1,Shv(Z,CAlgan))
consisting of pairs

(A,A→ O′)
of animated Artin local k-algebras A and maps of sheaves of animated rings A→ O′. Here we abuse
notation and identify A with the corresponding constant sheaf on Z.

Exercise 8.7. Show that the projection q ∶ C → CAlgan,art is a cocartesian fibration and describe
its cocartesian morphisms.

We now consider the non-full ∞-category Ccocart ⊂ C containing all objects and only the q-
cocartesian morphisms. The cocartesian fibration q then restricts to a left fibration

q ∶ Ccocart/(k,k→OX) → CAlgan,art .

Straightening gives a formal moduli problem DefX ∶ CAlgan,art → S.

Remark 8.8. Given a classical Artin local k-algebra A, the set π0(DefX(A)) agrees with the value
of the classical deformation functor in Definition 7.13 on A.

To make the correspondence between formal moduli problems and Lie algebras precise, we will ex-
tend the Koszul duality for commutative algebras discussed in Lecture 5 to formal moduli problems.

8.2. The tangent fibre. Recall from Lecture 5 that given an augmented commutative k-algebra
R, its Koszul dual

D(R) = cot(R)∨ ≃ (k ⊗L
R LR/k)∨.

is defined by first computing its cotangent fibre cot(R) = k ⊗L
R LR/k, then taking the linear dual,

and finally equipping it with additional Lie algebraic structure. It can be thought of as the derived
tangent space of the pointed scheme Spec(R) at the k-point defined by the augmentation.

Note that there is an equivalence

MapModk
(cot(R), V ) ≃MapCAlgan,aug

k
(R, sqzk(V )),

and so cot(R) ‘measures’ maps into square-zero extensions sqzk(V ) = k ⊕ V .
We can in fact recover the chain complex cot(R)∨ from the functor

FR =MapCAlgan
k
(R,−) ∶ CAlgan,artk → S

corepresented by R. To this end, recall two basic facts from higher category theory:

(1) The ∞-category Modk,≥0 of connective chain complexes over k is equivalent to PΣ(Vectωk ),
the ∞-category of finite-product-preserving functors from (Vectωk )op to spaces.

(2) The ∞-category Modk of all chain complexes over k arises as the limit

Modk ≃ lim(. . .→Modk,≥0
ΩÐ→Modk,≥0

ΩÐ→Modk,≥0) ,

where Ω is given by M ↦ τ≥0(M[−1]).
As FR is a formal moduli problem, (1) and (2) together imply that the sequence of functors

( . . . , FR(k ⊕ (−)∨[2]), FR(k ⊕ (−)∨[1]), FR(k ⊕ (−)∨))
defines a chain complex over k.

Exercise 8.9. Show that the resulting chain complex is equivalent to cot(R)∨.
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Definition 8.10. Given a formal moduli problem D ∶ CAlgan,artk → S, we define the tangent fibre

TD ∈Modk

by applying the above construction to the functor D instead of FR.

Unravelling the definitions, we see that for any V ∈ Vectωk and any n ≥ 0, we have an equivalence

MapModk
(V, τ≥0TD[n])) ≃ F(k ⊕ V ∨[n]).

The tangent complex is a powerful invariant; for example, it detects equivalences:

Proposition 8.11 (Conservativity trick). A natural transformation of formally cohesive functors
F → G is an equivalence if and only if the induced map TF → TG is a quasi-isomorphism.

The tangent fibre is often straightforward to compute via automorphisms of trivial deformations:

Proposition 8.12 (Looping trick). Given a formal moduli problem D, there is a canonical equiv-
alence of chain complexes over k:

TD ≃ ΣTΩD

In particular, we have equivalences

πn(TD) ≅
⎧⎪⎪⎨⎪⎪⎩

πn(D(k ⊕ k[0])) if n ≥ 1
π1(D(k ⊕ k[1 − n])) if n ≤ 1

,

Here the spaces D(k ⊕ k[i]) are pointed by the canonical map ∗ ≃ D(k) → D(k ⊕ k[i]) which picks
out the trivial deformation.

Exercise 8.13 (Tangent fibre of DefZ). Use the looping trick to show that the tangent fibre of the
formal moduli problem DefZ in is given by RΓ(Z,TZ)[1].

8.3. Formal moduli problens and Lie algebras. Given a differential graded Lie algebra g over
C and a local Artinian simplicial C-algebra A with maximal ideal mA, Hinich [Hin01] (generalising
work of Goldman-Millson [GM88]) constructed a space of Maurer–Cartan elements

MC(g⊗mA).

When A is discrete, π0(MC(mA ⊗ g)) is given by {x ∈ (gZ)−1 ⊗mA : dx + 1
2
[x,x] = 0}/ gauge

equivalence
.

In fact, one can show that this space is equivalent to the mapping space

Mapdglak(D
dg(A),g),

where Ddg(A) is defined as in Definition 6.5. Varying both A and g, we obtain a functor

Ψ ∶ dglaC →ModuliC,

g↦Mapdglak(D
dg(−),g)

from differential graded Lie algebras to formal moduli problems. The following result by Lurie
[Lur10b] and Pridham [Pri10], which generalises earlier work of many others including Kontsevich–
Soibelman [KS02] and Manetti [Man09b], asserts that differential graded Lie algebras control de-
rived (infinitesimal) deformation functors:
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Theorem 8.14 (Lurie, Pridham). The functor

Ψ ∶ dglaC →ModuliC, g↦Mapdglak(D
dg(−),g)

defines an equivalence between the ∞-categories of formal moduli problems and differential graded
Lie algebras over C.

Given a formal moduli problem D ∈ ModuliC, it is easy to describe the underlying spectrum of
the associated differential graded Lie algebra: it is given by the shifted tangent fibre TD[−1], cf.
Definition 8.10. Hence the Lurie–Pridham theorem promotes the tangent fibre construction to an
equivalence.

Remark 8.15. Given a smooth and propver variety Z over C, the equivalence in Theorem 8.14
sends the formal moduli problem DefZ from Example 8.6 to the differential graded Lie algebra

gZ = (A0,0(TZ) → A0,1(TZ) → A0,2(TZ) → . . .) .

The Lie bracket is defined in terms of the wedge product of differential forms and the commutator
of vector fields.

Remark 8.16. Theorem 8.14 in fact holds over any field of characteristic zero.

The equivalence in Theorem 8.14 admits a generalisation to fields k of characteristic p based on
partition Lie algebras. Recall that in Lecture 5, we constructed a Koszul duality functor

D ∶ CAlgan,augk → AlgopLieπ
k

from augmented animated k-algebras to partition Lie algebras, lifting the assignment

A↦ cot(A)∨ = (k ⊗A LA/k)∨.

In lecture 6, we stated that D restricts to a (contravariant) Koszul equivalence between complete
local Noetherian objects and coconnective partition Lie algebras g with dim(πi(g)) < ∞ for all i.

In fact, partition Lie algebras satisfy the following gold standard property (cf. [BM19, Theo-
rem 1.11]), which singles them out as the correct analogues of differential graded Lie algebras in
characteristic p:

Theorem 8.17 ([BM19])). Given a field k of arbitrary characteristic, the functor

AlgLieπ
k
≃Modulik, g↦Mapdglak(D(−),g)

defines an equivalence between the∞-categories of partition Lie algebras and formal moduli problems
over k.

Hence partition Lie algebras classify derived infinitesimal deformation functors, and thereby pro-
vide a useful tool in deformation theory.

Remark 8.18. For D ∈Modulik a formal moduli problem over k, the underlying spectrum of the
associated partition Lie algebra is given by the tangent fibre TD of D.

Remark 8.19. Theorem 8.17 admits a generalisation to mixed characteristic formal moduli prob-
lems, see [BM19, Section 6].

Next week, we will discuss an application of the equivalence between Lie algebras and formal
moduli problems to the theory of Calabi–Yau varieties.
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[Lur] Jacob Lurie. Higher algebra. Preprint from the author’s web page.
[Lur04] Jacob Lurie. Derived algebraic geometry. PhD thesis, Massachusetts Institute of Technology, 2004.

[Lur07] Jacob Lurie. Derived algebraic geometry II: Noncommutative algebra. Preprint from the author’s web

page, 2007.
[Lur09] Jacob Lurie. Higher topos theory, volume 170 of Annals of Mathematics Studies. Princeton University

Press, Princeton, NJ, 2009.

[Lur10a] Jacob Lurie. Chromatic homotopy theory. Lecture notes online at
http://www.math.harvard.edu/ lurie/252x.html, 2010.

[Lur10b] Jacob Lurie. Moduli problems for ring spectra. In Proceedings of the International Congress of Mathe-

maticians. Volume II, pages 1099–1125. Hindustan Book Agency, New Delhi, 2010.
[Lur11] Jacob Lurie. Derived algebraic geometry X: Formal moduli problems. Preprint from the author’s web page,

2011.
[Lur16] Jacob Lurie. Spectral algebraic geometry. Preprint available from the author’s web page, 2016.

[Man09a] Marco Manetti. Differential graded lie algebras and formal deformation theory. In Algebraic geome-

try—Seattle 2005. Part 2, pages 785–810, 2009.
[Man09b] Marco Manetti. Differential graded Lie algebras and formal deformation theory. In Algebraic geometry—

Seattle 2005. Part 2, volume 80 of Proc. Sympos. Pure Math., pages 785–810. Amer. Math. Soc., Provi-

dence, RI, 2009.
[Man22] Marco Manetti. Lie methods in deformation theory. Springer Nature, 2022.

[Mor58] Kiiti Morita. Duality for modules and its applications to the theory of rings with minimum condition.
Science Reports of the Tokyo Kyoiku Daigaku, Section A, 6(150):83–142, 1958.

[PP05] Alexander Polishchuk and Leonid Positselski. Quadratic algebras, volume 37. American Mathematical Soc.,

2005.

[Pri70] Stewart B. Priddy. Koszul resolutions. Trans. Amer. Math. Soc., 152:39–60, 1970.
[Pri10] Jon P Pridham. Unifying derived deformation theories. Advances in Mathematics, 224(3):772–826, 2010.

[Qui06] Daniel G Quillen. Homotopical algebra, volume 43. Springer, 2006.
[Rav78] Douglas C Ravenel. A novice’s guide to the adams-novikov spectral sequence. In Geometric Applications

of Homotopy Theory II, pages 404–475. Springer, 1978.



80

[Rav03] Douglas C Ravenel. Complex cobordism and stable homotopy groups of spheres. American Mathematical
Soc., 2003.

[Rez12] Charles Rezk. Rings of power operations for Morava E-theories are Koszul. arXiv preprint arXiv:1204.4831,

2012.
[Sch68] Michael Schlessinger. Functors of Artin rings. Trans. Amer. Math. Soc., 130:208–222, 1968.
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