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Abstract. We extend the classical Poincaré–Birkhoff–Witt theorem to higher algebra by es-
tablishing a version that applies to spectral Lie algebras. We deduce this statement from a basic

relation between operads in spectra: the commutative operad is the quotient of the associative

operad by a right action of the spectral Lie operad. This statement, in turn, is a consequence
of a fundamental relation between different En-operads, which we articulate and prove. We

deduce a variant of the Poincaré–Birkhoff–Witt theorem for relative enveloping algebras of En-

algebras. Our methods also give a simple construction and description of the higher enveloping
En-algebras of a spectral Lie algebra.
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1. Introduction

The classical Poincaré–Birkhoff–Witt theorem states that the universal enveloping algebra of
a Lie algebra g admits a natural filtration whose associated graded is the symmetric algebra on
the underlying vector space of g. This statement may be phrased in the language of operads; it
is essentially equivalent to the fact that the quotient of the associative operad by the right action
of the Lie operad on it is the commutative operad.

In this paper, we provide an extension of this statement to the world of higher algebra (see
Theorem 1.2), replacing the classical associative, Lie, and commutative operads by their lifts to
the ∞-category of spectra. Correspondingly, we deduce a Poincaré–Birkhoff–Witt theorem for
spectral Lie algebras (Corollary 1.10). In fact, these results are consequences of a more basic
relation between different En-operads, namely Theorem 1.6, which has no ‘classical’ analog. In
particular we deduce a result in the style of Poincaré–Birkhoff–Witt for En-algebras, which we
make explicit in Corollary 1.11. Finally, our methods provide a straightforward construction of
the higher enveloping algebra of a spectral Lie algebra g. In Theorem 1.8 we show that the
En-enveloping algebra of g may be calculated as the Chevalley–Eilenberg homology of the n-fold
loop object of g, showing that our construction agrees with the one of Ayala-Francis [AF15] and
Knudsen [Knu18] which relies on factorisation homology.

We will now review the results of this paper in more detail. The associative and commutative
operads have evident lifts to the world of higher algebra; indeed, they can easily be defined in the
∞-category of spectra (or any symmetric monoidal∞-category with coproducts). The case of the
Lie operad is less straightforward, but Salvatore [Sal98] and Ching [Chi05] have shown that it also
admits a lift to the ∞-category of spectra. Indeed, if we define L to be the Koszul dual K(Com)

1
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of the commutative operad, then the operadic suspension sL (see Section 2) is an operad whose
homology is concentrated in degree 0 and reproduces the classical Lie operad in abelian groups.
Moreover, this construction recovers the more classical Koszul duality between the commutative
and Lie operads in the derived ∞-category ModR of any commutative ring R.

To explain our first result, recall that operads in the ∞-category Sp of spectra may be defined
as asociative algebra objects in the ∞-category of symmetric sequences in spectra. The monoidal
structure is given by the composition product (see Section 2 for a brief review). In particular,
given a map of operads O→ P, we may interpret P as an O-bimodule in symmetric sequences.

Notation 1.1. In what follows, we will denote the associative operad Ass by E1 and the commu-
tative operad Com by E∞, to make the notation consistent with our later results on En-operads.
We take all of our operads to be nonunital (without emphasising this in the notation), meaning
they have no term of 0-ary operations. We will denote by 1 the trivial operad, which has a unit
in arity 1 and nothing else. This is also the nonunital E0-operad.

We can now state our first main theorem:

Theorem 1.2. There is a commutative square of operads in the ∞-category Sp as follows:

sL 1

E1 E∞.

Moreover, the induced map E1 ◦sL 1→ E∞ is an equivalence of left E1-modules.

Remark 1.3. In the statement of the theorem, E1 ◦sL 1 denotes the relative composition product
of E1 and 1 over sL. For an operad O with a right module M and a left module N, such a relative
composition product may be computed via the bar construction

M ◦O N = lim−→
∆op

(M ◦ O◦• ◦N).

Remark 1.4. The square of Theorem 1.2 is not a pushout square of operads (cf. Proposition 4.2).

In fact, Theorem 1.2 will follow as a limiting case of a statement about the relation between
different En-operads (see Theorem 1.6 below). To be precise, if En denotes the usual (nonunital)
operad of little n-cubes in the ∞-category of spaces, then we will be interested in the operad
Σ∞

+ En in spectra. Throughout this paper, we will use the short-hand En for this nonunital, stable
version of the En-operad. Given integers m,n ≥ 0, we will generically use the letter ι to denote
the usual morphism

Em → Em+n

arising from the standard inclusion Rm → Rm+n of Euclidean spaces.

Definition 1.5 (Composition squares). A commutative square of operads

O P

Q R

is called a composition square if the induced map Q◦OP→ R is an equivalence (of Q-P-bimodules).

We then establish the following fundamental relation between different En-operads, with s
denoting operadic suspension (see Section 2):

Theorem 1.6. Given integers k,m, n ≥ 0 there is a composition square of operads in spectra

Ek+m Ek+m+n

skEm skEm+n,

β

ι

β

ι
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which means that the induced map skEm ◦Ek+m
Ek+m+n

≃−−→ skEm+n is an equivalence.

We will formally describe the morphism β : Em+k → skEm in detail in Section 3. For now, let
us outline two ways of thinking about it. Without loss of generality we take k = 1 – the general
case is obtained by a k-fold composition of such maps. First, β can be obtained as the Koszul
dual of the morphism ι : Em → Em+1, relying on the fact that the Koszul dual of the operad
Em is the operad s−mEm, see Remark 3.2. Secondly, under the ‘degree shifting’ equivalence
AlgsEm

(Sp) ≃ AlgEm
(Sp), the morphism β induces a left adjoint functor

β! : AlgEm+1
(Sp)→ AlgEm

(Sp).

which may be identified with the usual bar construction. This second perspective is the one used
to construct and characterise β in [HL24].

In addition to Theorem 1.2, we will deduce further limiting cases of Theorem 1.6:

Theorem 1.7. The following are composition squares of operads, where σ denotes the suspension
map (see Section 2):

L snL En E∞

1 En 1 snE∞.

σn

β

ι

σn

The morphism β : snL→ En featuring in Theorem 1.7 can be obtained as an inverse limit over
k of the morphisms β : s−kEn+k → En. Alternatively, it can be described as (a shift of) the Koszul
dual of the inclusion ι : En → E∞, see Remark 3.2. Identifying the ∞-categories AlgsnL(Sp) and
AlgL(Sp) via an n-fold degree shift, this morphism induces a left adjoint functor

β! : AlgL(Sp)→ AlgEn
(Sp)

which we refer to as the En-enveloping algebra functor and denote by Un.

A different construction of such a higher enveloping algebra has also been studied by Ayala–
Francis [AF15] and Knudsen [Knu18] using the methods of factorization homology. In the special
case n = 1, the functor U1 can be thought of as a lift of the classical universal enveloping algebra
functor to spectral Lie algebras. The degenerate case n = 0 gives the pushforward along the
augmentation map L→ 1, which shall be denoted by CE as it is an enhancement of the classical
Chevalley–Eilenberg functor.

We will show that the first composition square of Theorem 1.7 easily leads to Theorem 1.8
below. In particular, it shows that our Un is naturally equivalent to Knudsen’s, since the main
theorem of [Knu18] provides the same description for his functor.

Theorem 1.8. Given a spectral Lie algebra g ∈ AlgL(Sp) there is a natural equivalence

Un(g) ≃ CE(Ωng).

Remark 1.9. The first square of Theorem 1.7 gives an equivalence En ≃ 1 ◦L snL. For a given
spectrum X, the skeletal filtration on the bar construction 1 ◦L snL therefore gives a spectral
sequence converging to freeEn(X), which is the one used by Brantner–Hahn–Knudsen [BHK24] to
study the (generalised) homology of En-algebras.

Theorem 1.2 and Theorem 1.6 imply the following generalisations of the classical PBW theorem
via a filtration trick we learned from [GR17]:

Corollary 1.10 (PBW theorem for spectral Lie algebras). Given a spectral Lie algebra g, the
universal enveloping algebra Ug admits an exhaustive filtration with associated graded

gr(Ug) ≃ freeE∞(forget(g)).

Corollary 1.11 (PBW theorem for En-algebras). For A an En-algebra, the relative enveloping
algebra Uk(A) ∈ AlgskEn−k

(Sp) admits an exhaustive filtration with associated graded

gr(Uk(A)) ≃ freeskE∨
k
(forget(A)).
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Equivalently, the k-fold bar construction BarkA admits an exhaustive filtration with associated graded

gr(BarkA) ≃ freeE∨
k
(Σk forget(A)).

Acknowledgements. We are grateful to Jacob Lurie for several helpful discussions. L.B. was
supported by a Royal Society University Research Fellowship at Oxford (URF\R1\211075) and
by the CNRS at Orsay. G.H. was supported by an ERC Starting Grant (no. 950048) and an NWO
VIDI Grant (no. 223.093).

2. Symmetric sequences and operads

In this section, we give a brisk review of the basic facts about symmetric sequences and operads
we shall require. We take the point of view that an operad is an algebra for the monoidal structure
given by the composition product on the category of symmetric sequences.

To make this precise, write Fin≃ for the groupoid of finite sets and bijections.

Definition 2.1. Let C be a symmetric monoidal ∞-category. The ∞-category of symmetric
sequences in C is given by

sSeq(C) := Fun(Fin≃,C).

The value of a symmetric sequence A on a set with n elements will be denoted by A(n) and it is
an object of C equipped with an action of the symmetric group Σn.

In this paper, it will be sufficient to consider the case where C is the ∞-category Sp of spectra,
although most of what we say will go through in much greater generality. We will need to consider
three different monoidal structures on the ∞-category sSeq(Sp).

Day convolution product. The first is given by Day convolution (cf. [Gla16] [HA, 2.2.6]) based on
the disjoint union monoidal structure on Fin≃. Explicitly, it is determined by the formula

(A⊗B)(n) =
⊕

a+b=n

Σ∞
+ Σn ⊗h(Σa×Σb) A(a)⊗B(b).

The functor ι : Sp → sSeq(Sp) given by ι(X)(0) = X and ι(X)(n) = 0 for n > 0 is symmetric
monoidal for this Day convolution structure, and we obtain a tensoring of sSeq(Sp) over Sp.

Composition product. The second monoidal structure is the composition product, which is de-
fined for sSeq(Sp) arguing from universal properties in [Bra, 4.1.2][BCN25, 3.1], following the
1-categorical argument of Carboni described by Kelly [Kel05] and Trimble [Tri]. On objects, the
composition product is given by

A ◦B =
⊕
n≥0

(
A(n)⊗B⊗n

)
hΣn

.

One can check that for a spectrum X and symmetric sequence A, the composition A ◦ ι(X) is
concentrated in degree 0, that is, it lies in the essential image of ι. Therefore, for a fixed A there
is a functor freeA ∈ End(Sp) satisfying ι(freeA(X)) = A ◦ ι(X). Explicitly, it is given by

freeA(X) =
⊕
n≥0

(
A(n)⊗X⊗n

)
hΣn

.

Since this action of A on spectra is given simply by restricting the composition product to the
essential image of ι, the functor free : sSeq(Sp)→ End(Sp) is monoidal, where End(Sp) is endowed
with the monoidal structure given by composition of functors.

Definition 2.2. Operads in spectra are defined to be algebra objects in the monoidal∞-category
(sSeq(Sp), ◦), and the ∞-category they form is denoted by Op(Sp) = Alg(sSeq(Sp)).
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The free functor described above therefore induces a functor free : Op(Sp)→ Monad(Sp). One
can consider left modules, right modules, and bimodules over an operad O in sSeq(O); a left
module of the form ι(X) is equivalently an algebra for the monad freeO and one says that X is an
O-algebra. We denote the ∞-category of O-algebras by AlgO(Sp) or simply AlgO if no confusion
can arise.

Levelwise product. The third and simplest monoidal structure on sSeq(Sp) we will need is the
levelwise tensor product, which is simply given by

(A⊗lev B)(n) = A(n)⊗B(n).

We will use this monoidal structure as an auxiliary tool in our discussion of the operadic suspension
and the suspension morphism. The main property we will need is the fact that

⊗lev : (sSeq(Sp)× sSeq(Sp), ◦ × ◦)→ (sSeq(Sp), ◦)

has a lax monoidal structure [BCN25, Proposition 3.9]. As a consequence, ⊗lev induces a functor

Op(Sp)×Op(Sp)→ Op(Sp)

so that given two operads P and Q, the symmetric sequence P⊗lev Q is again an operad. On the
level of algebras, we obtain a functor

(1) AlgP ×AlgQ → AlgP⊗levQ

sending a pair (A,B) to A⊗B. This functor varies naturally in the pair (P,Q).

Suspension functor. We now turn our attention to the operation of operadic suspension. The
suspension of a nonunital operad in spectra O is an operad sO such that the corresponding free
algebra monads satisfy

freesO ≃ Σ−1 ◦ freeO ◦ Σ,
and consequently, sO-algebra structures on X are in one-to-one correspondence O-algebra struc-
tures on ΣX. The underlying symmetric sequence of the operadic suspension is given by

(sO)(n) = Σ−1(S1)⊗n ⊗ O(n),

where S1 is the suspension of the sphere spectrum and the Σn action in the left factor permutes
the S1 factors and acts trivially on the suspension coordinate.

To describe the operad structure of sO, consider the endomorphism operad

sE∞ := End(S−1)

of S−1; our notation reflects the fact that it will be the operadic suspension of the commutative
operad. The spectrum of n-ary operations in sE∞ is given by map(S−n,S−1) ≃ Sn−1, and tracing
through the action of Σn on S−n ≃ (S−1)∧n we see that the action of Σn on sE∞(n) ≃ Σ−1(S1)∧n

is the one described above. (Equivalently, sE∞(n) is the representation sphere of ρ, the quotient
of the standard n-dimensional permutation representation by its diagonal.) Using the levelwise
tensor product, we define:

Definition 2.3. The operadic suspension functor is defined as

s := sE∞ ⊗lev (−) : Op(Sp)→ Op(Sp).

On the level of algebras, tensoring with the canonical sE∞-algebra S−1 (whose structure map
sE∞ → End(S−1) is the identity) gives a functor

(2) AlgO(Sp) −→ AlgsO(Sp), X 7→ S−1 ⊗X

via (1). There is also an operadic desuspension operation s−1 defined by tensoring with End(S1),
which is inverse to s. On the level of algebras, this shows that the morphism in (2) is an equivalence
of ∞-categories.
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Suspension morphism. Given an operad O in spectra, we will also need the suspension morphism

σ : O→ sO.

In the special case of O = E∞, the map σ : E∞ → End(S−1) is the map endowing S−1 with the
E∞-ring structure of the reduced spherical cochains of S1, which can also be described as ΩE∞S0.
Here S0, being the monoidal unit of Sp, is equipped with its canonical E∞-algebra stucture and
ΩE∞ is the loop functor on the ∞-category AlgE∞

(Sp). Notice that by construction this E∞-ring

structure on S−1 is the image under σ∗ of the canonical sE∞-algebra structure on S−1 used above.

For a general operad O the definition uses the the previous map σ:

Definition 2.4. Given a nonunital operad O in spectra, the suspension morphism is the composite

σ : O ≃ O⊗lev E∞
id⊗levσ−−−−−→ O⊗lev sE∞ ≃ sO.

Since O is nonunital (i.e. O(0) = 0), the free O-algebra on the zero spectrum 0 has underlying
spectrum freeO(0) = 0 and it is a zero object in AlgO(Sp). This implies that the loop functor
ΩO : AlgO(Sp)→ AlgO(Sp) and the forgetful functor forget : AlgO(Sp)→ Sp satisfy

forget ◦ΩO ≃ Ω ◦ forget .

Proposition 2.5. Given a nonunital operad O, the composite

AlgO
S−1⊗−−−−−→ AlgsO

σ∗

−→ AlgO

is equivalent to the loops functor ΩO. Here S−1⊗− is the equivalence in (2) and σ∗ is induced by
restricting along the suspension morphism σ : O −→ sO.

Proof. The equivalence of operads O⊗levE∞ ≃ O gives a functor

AlgO ×AlgE∞
→ AlgO

via (1). Since UO creates limits, tensoring with the E∞-ring spectrum ΩE∞S0 recovers the loops
functor ΩO. The map of pairs of operads

(id, σ) : (O,E∞)→ (O, sE∞)

gives rise to a commutative square of ∞-categories

AlgO ×AlgsE∞
AlgO ×AlgE∞

AlgsE∞⊗O AlgE∞⊗O

id×σ∗

⊗ ⊗

σ∗

Given an O-algebra X, tracing the pair (X,S−1) through this square gives a natural equivalence

σ∗(X ⊗ S−1) ≃ X ⊗ ΩE∞S0 ≃ ΩOX.

□

Remark 2.6. Heuts and Land [HL24] construct a suspension morphism σ : En → sEn in the
specific case of the En-operad and show that it is characterised essentially uniquely by the fact
that it satisfies the conclusion of Proposition 2.5. Since the morphism σ that we constructed above
also satisfies that conclusion, it follows that the two constructions of σ agree when they are both
defined.
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3. Proof of the main result

The aim of this section is to prove Theorem 1.6. In the next section we work out several
consequences and special cases, including Theorem 1.2.

To prove Theorem 1.6 it will suffice to establish the following special case: there exists a
commutative square

En En+1

sEn−1 sEn

β

ι

β

ι

inducing an equivalence

sEn−1 ◦En
En+1

≃−→ sEn

of (sEn−1,En+1)-bimodules. Indeed, the general case of Theorem 1.6 follows by composing copies
of this basic square horizontally and/or vertically. The relevant square was constructed by Land
and the third author in [HL24, Theorem 3.11]. To summarise, this goes as follows. First one
establishes a commutative diagram of left adjoint functors

(3)

AlgEn
(Sp) AlgEn+1

(Sp)

AlgEn−1
(Sp) AlgEn

(Sp).

Bar

ι!

Bar

ι!

All of these ∞-categories are monadic over Sp, giving a corresponding square of monads. The
functor assigning to an operad in Sp its corresponding monad on Sp is fully faithful on the
subcategory of En-operads and their (de)suspensions [HL24, Theorem 3.8], so that the given
square corresponds essentially uniquely to the desired square of operads. We record the following
(which is part of the statement of [HL24, Theorem 3.11]) for later use:

Lemma 3.1. In the square of operads above we have β ◦ι ≃ σ ≃ ι◦β, where σ : En → sEn denotes
the suspension morphism.

Remark 3.2. Let us write K : Op(Sp) → coOp(Sp) for the Koszul duality functor that takes
an operad O first to its bar construction Bar(O) (which is a cooperad) and then to the termwise
Spanier–Whitehead dual Bar(O)∨, which is an operad. It is a theorem of Ching–Salvatore [CS22]
that KEn

∼= s−nEn, see also Malin’s proof [Mal23] or the forthcoming [HL] for an ∞-categorical
version. Under this identification, the Koszul dual of the morphism ι : En → En+1 is (up to an
n+ 1-fold shift) precisely the morphism β : En+1 → sEn featuring above. A proof of this fact will
appear in [HL].

Before proving Theorem 1.6 it will be convenient to establish a certain recognition criterion for
composition squares. Let

(4)

O P

Q R

f

g g′

f ′

be a commutative square of operads in spectra. It induces a corresponding square of left adjoint
functors between algebra categories

AlgO(Sp) AlgP(Sp)

AlgQ(Sp) AlgR(Sp).

f!

g! g′
!

f ′
!
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Associated to this square is another, namely:

(5)

AlgO(Sp) AlgP(Sp)

AlgQ(Sp) AlgR(Sp).

g! ⇒ g′
!

f∗

(f ′)∗

This last square is generally only lax commutative, in the sense that there is a natural transfor-
mation g! ◦ f∗ ⇒ (f ′)∗g′! . This natural transformation is the adjoint of the composite

f ′
! ◦ g! ◦ f∗ ∼= g′! ◦ f! ◦ f∗ ⇒ g′!

where the arrow arises from the counit of the adjoint pair (f!, f
∗).

Lemma 3.3. The square of operads (4) is a composition square if and only if the lax commutative
square (5) is commutative, i.e., if the natural transformation g! ◦ f∗ ⇒ (f ′)∗g′! is an equivalence.

Proof. For a P-algebra X, the natural transformation of the lemma can be identified as the evident
map

Q ◦O X → R ◦P X.

On the left-hand side X is implicitly regarded as an O-algebra via f∗. Since both expressions
preserve sifted colimits in the variable X, the map is an equivalence if and only if it is so in the
special case of free P-algebras X = P ◦A with A ∈ Sp. Then it reduces to the natural map

(Q ◦O P) ◦A→ R ◦A.

This is a natural equivalence if and only if the underlying map of symmetric sequences Q◦OP→ R

is an equivalence; indeed, the ‘if’-direction is clear, whereas the ‘only if’ follows by taking the
Goodwillie derivatives of the natural transformation above. □

Proof of Theorem 1.6. In the commutative square (3) we can take right adjoints of the horizontal
functors to obtain the lax square

AlgEn
(Sp) AlgEn+1

(Sp)

AlgEn−1
(Sp) AlgEn

(Sp).

Bar ⇒ Bar

ι∗

ι∗

By Lemma 3.3 it will suffice to show that this square in fact commutes (up to natural equivalence).
But this is clear from the fact that ι∗ preserves tensor products and sifted colimits, which are the
two ingredients to form the bar construction.

□

4. Examples and higher enveloping algebras

We start this section by deducing the composition squares of Theorem 1.2 and Theorem 1.7
and afterwards discuss the implications for higher enveloping algebras.

Proofs of Theorem 1.2 and Theorem 1.7. Starting from the composition square

Ek+m Ek+m+n

skEm skEm+n.

β

ι

β

ι
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of Theorem 1.6, we can set m = 0 and take the colimit as n goes to infinity to obtain a composition
square

Ek E∞

1 skE∞.

β

ι

ι

To identify the right-hand vertical map we consider the commutative diagram (using Lemma 3.1):

En En+1 En+1 · · · E∞

sEn−1 sEn sEn+1 · · · sE∞.

ι

β
σ

ι

β
σ

ι

β σ

ι ι

We see that the colimit over n of the morphisms β : En → sEn−1 can be identified with the
colimit of the suspension morphisms σ : En → sEn, which is indeed the morphism σ : E∞ → sE∞
appearing in the statement of Theorem 1.7.

Applying the k-fold operadic desuspension to the composition square of Theorem 1.6 yields a
composition square

skEk+m skEk+m+n

Em Em+n.

β

ι

β

ι

Now we take the limit as k goes to ∞. Remark 3.2 allows us to identify the limit over k of the
maps β : skEk → 1 with the Koszul dual of the colimit over k of the maps ι : 1 → Ek. Thus
lim←−k

skEk is the Koszul dual of E∞, which is the spectral Lie operad L. Therefore, the limit of

the squares above becomes

smL sn+mL

Em Em+n.

β

σn

β

ι

The identification of the top horizontal morphism with the n-fold suspension σn is entirely analo-
gous to the argument in the first half of this proof. Now taking m = 0 gives the second composition
square of Theorem 1.7, whereas setting m = 1 and taking the colimit as n goes to ∞ gives the
composition square of Theorem 1.2. □

Recall that the morphism β : snL→ En appearing in Theorem 1.7 induces a functor

β! : AlgsnL(Sp)→ AlgEn
(Sp)

or, after identifying the ∞-categories AlgsnL(Sp) and AlgL(Sp) via degree shifting, a functor

Un : AlgL(Sp)→ AlgEn
(Sp)

that we refer to as the En-enveloping algebra functor. Theorem 1.8, which describes Un as the
composition CE ◦ Ωn, is now straightforward to deduce from our results:

Proof of Theorem 1.8. By Lemma 3.3, the first composition square of Theorem 1.7 gives a com-
mutative square

AlgL(Sp) AlgsnL(Sp)

Sp AlgEn
(Sp).

CE

(σn)∗

β!

forget
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By Proposition 2.5, the top arrow can be identified with the n-fold loop functor of Lie algebras
through the following commutative diagram, where the vertical arrow is the n-fold shift:

AlgsnL(Sp) AlgL(Sp).

AlgL(Sp)

(σn)∗

≃
Ωn

This concludes the proof. □

We establish one further family of composition squares to be used in our discussion of the
PBW theorem below. We will write E∨

k for the termwise Spanier–Whitehead dual of the (stable,
nonunital) Ek-operad and use the ‘self-duality’ of the Ek-operad established by Ching–Salvatore
[CS22], which gives an equivalence of symmetric sequences

1 ◦Ek
1 ∼= skE∨

k .

Proposition 4.1. There is a composition square as follows:

Ek+n 1

skEn skE∨
k .

β

Proof. Consider the following diagram:

Ek Ek+n 1

1 skEn skEn ◦Ek+n
1.

ι

β

The left square is a composition square by the case m = 0 of Theorem 1.6, the right square is
a composition square by construction. Composing the two shows that the outer rectangle is a
composition square, giving an equivalence skEn ◦Ek+n

1 ≃ 1 ◦Ek
1. The conclusion now follows

from the display preceding the statement of the proposition. □

So far we have focused on commutative squares of operads that are ‘composition squares’. A
natural question is whether our squares, e.g. the one of Theorem 1.2 involving the Lie, associative,
and commutative operads, are also pushout squares in the ∞-category of operads. In the 1-
category of operads (in abelian groups, say) the corresponding square is indeed a pushout, as one
may verify by using the fact that the three operads involved have straightforward presentations
with generators in arity 2 and relations in arity 3. However, this turns out to be a bit of an
accident:

Proposition 4.2. The square

sL 1

E1 E∞

is not a pushout in the ∞-category of operads in Sp. As a consequence, it cannot be the case that
the square of Theorem 1.6 is a pushout for all k and n when m = 0.

Proof. The operadic bar construction B : Op(Sp) → sSeq(Sp) is a colimit-preserving functor,
which turns the square of the proposition into the following:

sE∨
∞ 1

sE∨
1 L∨
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(This happens to be precisely the termwise Spanier–Whitehead dual of the square we started with,
up to operadic suspension.) This square is not a pushout of symmetric sequences; indeed, if it
were a pushout then for n ≥ 2 there would be a cofibre sequence

E∨
∞(n)→ E∨

1 (n)→ s−1L∨(n).

The homology of these spectra is concentrated in degree zero; their integral homology is finitely
generated and free of ranks 1, n!, and (n− 1)! respectively. The alternating sum of these numbers
does not equal zero as soon as n ≥ 3. This proves the first claim of the proposition. If the squares
of Theorem 1.6 were pushouts for all k and n when m = 0, then that would imply (by pasting
countably many such squares) that the square of the proposition is a pushout, which we have just
ruled out. □

5. Relation to the Poincaré–Birkhoff–Witt theorem

Given a Lie algebra g, we write Ug for its universal enveloping algebra. Concretely, this is the
quotient of the tensor algebra Tg by the two-sided ideal generated by elements of the form

x⊗ y − y ⊗ x− [x, y], x, y ∈ g.

This ideal is not homogeneous, so the natural grading on Tg does not descend to Ug. However,
Ug inherits an increasing filtration whose nth piece Fn(Ug) consists of all images of elements
x1 ⊗ . . .⊗ xk with k ≤ n under the quotient map Tg→ Ug.

The canonical map g → Ug lands in the first filtered piece F 1Ug, and we therefore obtain a
map of modules

g→ gr1(Ug).

As the associative product on Ug descends to a commutative product on gr(Ug) =
⊕

i gr
i(Ug),

we can induce up to obtain a homomorphism of commutative algebras Sym∗(g)→ gr∗(Ug).

Theorem 5.1 (Poincaré–Birkhoff-Witt theorem). This induced morphism

Sym∗(g)→ gr∗(Ug)

is an isomorphism.

We will now generalise this result using some of the relative composition products we computed
above. To this end, we will adopt the strategy in the proof of [GR17, 6.5.2.6] to our setting.

Notation 5.2 (Filtered and graded spectra). We write N for the poset of nonnegative integers,
thought of as a category, and let Ndisc be the category with the same objects and only identity
morphisms. The ∞-categories of (nonnegatively) filtered and graded spectra are defined as

SpFil := Fun(N,Sp) and Spgr := Fun(Ndisc,Sp),

respectively. Day convolution equips these∞-categories with symmetric monoidal structures given
by

(X ⊗ Y )n = colim
i+j≤n

(Xi ⊗ Yj) and (X ⊗ Y )n =
⊕

i+j=n

(Xi ⊗ Yj),

and the functors

Sp
c−→ SpFil SpFil

gr−→ Spgr SpFil
colim−−−→ Sp

are symmetric monoidal. Here c sends X ∈ Sp to the constant object (X
id−→ X

id−→ . . .) ∈
SpFil, the functor gr sends a filtered spectrum (X0 → X1 → . . .) to the graded spectrum
(X0, X1/X0, X2/X1, . . .), and colim sends (X0 → X1 → . . .) to colimi Xi.

Let us now fix an ∞-operad O ∈ Op(Sp) = Alg(sSeq(Sp)) in spectra. Using the functors

c and gr ◦ c, we promote SpFil and Spgr to Sp-tensored ∞-categories, and obtain ∞-categories
AlgO(Sp

Fil) and AlgO(Sp
Gr) of filtered and graded O-algebras, respectively. Since the functors
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c, gr, and colim are lax symmetric monoidal and compatible with the Sp-tensored structure, they
induce functors

AlgO(Sp)
c−→ AlgO(Sp

Fil) AlgO(Sp
Fil)

gr−→ AlgO(Sp
gr) AlgO(Sp

Fil)
colim−−−→ AlgO(Sp).

Remark 5.3 (Adding filtration). There is a more interesting functor from O-algebras to filtered
O-algebras: given an O-algebra X, we can equip the filtered spectrum

(0→ X
id−→ X

id−→ . . .)

with an O-algebra structure. To this end, consider the functor c1 : Sp → SpFil sending X in

Sp to the filtered spectrum (0 → X
id−→ X

id−→ . . .) starting in degree 1. It admits a left
adjoint Fun(N,Sp) → Sp sending a filtered spectrum (X0 → X1 → X2 → . . .) to the cofibre
cof (X0 → colimn Xn).

As the functors (−)0, colim : Fun(N,Sp) → Sp are both symmetric monoidal, the functor
Sp→ Sp→ := Fun(∆1,Sp) given by X 7→ (X0 → colimn Xn) is also symmetric monoidal where the
arrow category is endowed with the pointwise monoidal structure. The functor cof : Sp→ → Sp is
left adjoint to the functor X 7→ (0→ X) which is symmetric monoidal. By [HHLN23, Proposition
A], we see first that cof is oplax symmetric monoidal, and next that so is the left adjoint to c1.
Again by [HHLN23, Proposition A], the right adjoint c1 is a lax symmetric monoidal functor. As it

is moreover compatible with the Sp-tensored structures on Sp and SpFil, we obtain a commutative
diagram

AlgO(Sp) AlgO(Sp
Fil) AlgO(Sp)

Sp SpFil Sp.

c1 colim

c1 colim

where the vertical arrows are forgetful functors and the horizontal arrows compose to the identity.
In other words, we have equipped every O-algebra with a natural filtration.

Let us now assume that O is reduced, i.e. that O(0) ≃ 0 and O(1) ≃ S0. We obtain a map of
operads O→ 1, where 1 is the identity operad. Pulling back along this map gives a functor

triv : Spgr → AlgO(Sp
gr).

Proposition 5.4. If X ∈ AlgO(Sp
gr) is concentrated in degree 1, then there is an equivalence of

graded O-algebras

triv(forget(X)) ≃ X,

where forget : AlgO(Sp)→ Sp is the forgetful functor.

Proof. Write q : C⊗ → LM⊗ for the cocartesian fibration of ∞-operads that exhibits Spgr as
(left)-tensored ∞-category over sSeq(Sp). Here LM⊗ is the ∞-operad defined in [HA, Section
4.2.1]; it has two objects a (for algebra) and m (for module), and we have q−1(a) = sSeq(Sp) and
q−1(m) = Spgr, respectively.

Consider the full subcategory Spgr=1 ⊂ Spgr of symmetric sequences concentrated in degrees 1,
which is a localisation. Write D⊗ ⊂ C⊗ for the full subcategory spanned by objects D1⊕ . . .⊕Dn

for which all objects over m belong to Spgr=1 ⊂ Spgr. Proposition 2.2.1.9.(3) in [HA] shows that
the inclusion D⊗ ⊂ C⊗ is a map of ∞-operads, and we obtain an equivalence

AlgO(Sp
gr
=1)

≃−→ AlgO(Sp
gr)=1.

Here AlgO(Sp
gr)=1 ⊂ AlgO(Sp

gr) is the full subcategory of O-algebras concentrated in degree 1.

The action of sSeq(Sp) on Spgr=1 factors over the truncation map F : sSeq(Sp)→ sSeq(Sp)≤1 to
1-truncated symmetric sequences, which is monoidal. This gives an equivalence

AlgO(Sp
gr
=1)

≃−→ AlgO1
(Spgr=1) ≃ Sp.
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To formally verify this, we model tensored∞-categories as in [DAG II, 2.1.1] (see also [HA, Remark
4.2.2.25]). The map of tensored ∞-categories (sSeq(Sp) ↷ Spgr=1)→ (sSeq(Sp)≤1 ↷ Spgr=1) is then
modelled by a square over ∆op:

M̃⊛ M⊛

sSeq(Sp)⊛ sSeq(Sp)⊛≤1.
F⊛

The desired equivalence follows as this square is a pullback (see [Bra, 5.2] for further details).

The claim now follows as the composite equivalence Sp
≃−→ AlgO(Sp

gr)=1 sends Y ∈ Sp to
triv(Y ). □

Corollary 5.5. Given an O-algebra X, there is a natural equivalence of graded O-algebras

gr(c1(X)) ≃ triv(forget(X)).

Proof. This follows immediately from Proposition 5.4 as gr(c1(X)) is concentrated in degree 1. □

Let us now fix a morphism of spectral operads

β : P→ Q.

The induced functor β∗ : AlgQ(Sp)→ AlgP(Sp) admits a left adjoint

β! : AlgP(Sp)→ AlgQ(Sp),

which we call the pushforward along β, and we denote the corresponding functors on filtered and
graded algebras by the same name. Note that they are compatible with the functors gr and colim.

Proposition 5.6. Given a P−algebra X, the Q-algebra β!(X) admits an exhaustive filtration
β!(c1(X)) with associated graded β!(triv(forget(X))).

Proof. To verify that this is indeed exhaustive, we compute

colimβ!(c1(X))) ≃ β!(colim c1(X))) ≃ β!(X).

Using Corollary 5.5, we obtain

gr(β!(c1(X)))) ≃ β!(gr(c1(X)))) ≃ β!(triv(forget(X))).

□

We will now establish analogues of the PBW theorem. To this end, we define:

Definition 5.7 (Universal envelope). The universal enveloping algebra functor

U : AlgsL(Sp)→ AlgE1
(Sp)

is given by the pushforward along the morphism of ∞-operads

sL→ E1,

which is Koszul dual do the inclusion E1 → E∞.

We can now prove Corollary 1.10, the PBW theorem for spectral Lie algebras.

Proof. By Proposition 5.6 gives an exhaustive filtration U(c1(g)) with associated graded

U(triv(forget(g))).

We have equivalences

U(triv(X)) ≃ U(|Bar•(sL, sL, triv(X))|) ≃ |Bar•(E1, sL, triv(X))| ≃ (E1 ◦sL 1)(X),

and so the claim follows from Theorem 1.2. □
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Definition 5.8 (Relative envelope). Given 0 ≤ k ≤ n, the relative enveloping algebra functor

Uk : AlgEn
(Sp)→ AlgskEn−k

(Sp)

is given by the pushforward along the morphism of ∞-operads

En → skEn−k

which is Koszul dual to the inclusion En−k → En.

We finish with a proof of the PBW theorem for En-algebras Corollary 1.11:

Proof. This follows from Proposition 4.1 by the same argument as in the proof of Corollary 1.10.
□
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