Topology Advanced Class, Michaelmas 2018, Oxford University

AN INTRODUCTION TO CHROMATIC HOMOTOPY THEORY

(1) Overview.

(2) Complex Oriented Cohomology Theories.
Review the geometric definition of complex K-theory via vector bundles ([Ati89], [Hat03])
and complex cobordism via manifolds ([Sto15]). Describe their values on a point.
Explain the Eilenberg-Steenrod axioms and Brown’s representability theorem ([Bro62]),
thereby introduing the notion of a spectrum. Give a direct construction of the ring spectra
KU and MU in terms of classifying spaces of unitary groups and their Thom spaces.
Introduce the notion of a complex oriented cohomology theory following [Hop99, Sections 1].

(3) Formal Group Laws and Complex Cobordism.

Explain why MU is the universal complex oriented cohomology theory ([Lurl0, Lecture
6]). Describe how these theories give rise to formal group laws and introduce the Lazard
ring L ([Rav03, Theorem A2.1.8., Theorem A2.1.10]). State Quillen’s Theorem L = MU,
([Ada74, Part II], [Hop99, Sections 1 — 4], [Lurl0, Lectures 2-11]).

Refine Quillen’s Theorem as follows. First show that the pair of functors (FGL(-),SI(—))
is representable by two rings (L, LB) ([Rav03, Proposition A2.1.15]). Then observe that
(L,LB) is a Hopf algebroid ([Rav03, Definition Al.1.1]), a notion you should introduce.
Construct the Hopf algebroid (MU,, MU, MU) and state the Landweber-Novikov isomor-
phism (L,LB) =2 (MU,, MU, MU) ([Rav03, Theorem 4.1.11]).

(4) The Brown-Peterson Spectrum.
Over Q, every formal group law is strictly isomorphic to Gg ([Rav03, Theorem A2.1.6]).
Cartier’s Theorem ([Rav03, Definition A2.1.18]) asserts that over Z,), every formal group
law is strictly isomorphic to a p-typical one ([Rav03, Definition A2.1.17]). Define the idem-
potent ¢ : L&Z,) — L®Z,) and use it to construct the universal p-typical formal group law
on thering V' ([Rav03, A2.1.25]). Introduce Hazewinkel generators for V' ([Rav03, A2.2.1]).
Lift ¢ to the Quillen idempotent on MU,), and use this to define the complex oriented ring
spectrum BP ([Rav03, p.107]). Enhance V to a Hopf algebroid (V, VT) ([Rav03, p.347]) and
state the “p-typical Landweber-Novikov isomorphism” (V,VT) = (BP,, BP,BP) ([Rav03,
Theorem 4.1.19]). Describe the structure maps of this Hopf algebroid in terms of ¢;’s as in
[Rav03, A2.1.27] and explain the “mod p formula” [Rav76, Theorem 1] for the right unit ng.

(5) The Adams-Novikov Spectral Sequence and Invariant Ideals.
Construct the Adams Spectral Sequence for a generalised homology theory E ([Rav03,
Chapter 2]) using the theory of comodules over Hopf algebroids ([Rav03, Appendix Al]).
For E = BP, the Es-page of the resulting Adams-Novikov spectral sequence is given by
Extpp pp(BP., BP,). Present the figure depicted on ([Rav03, p.13]).
Prove Landweber-Morava’s Invariant Prime Ideal Theorem ([Rav03, Theorem 4.3.2]). In-
troduce Johnson-Wilson theory E(n) and Morava K-theory K(n) by following [Rav03,
p.111-112]. If there is time, mention the Landweber Exact Functor Theorem and the
Conner-Floyd isomorphism MU*(X) M(%* KU* 2 KU*(X) (|CF66]) .

1



(6)

AN INTRODUCTION TO CHROMATIC HOMOTOPY THEORY

Smith-Toda complexes and Greek Letter Elements.

Construct Greek letter elements aﬁ") in the Es-page of the ANSS ([MRW77, Section 3.B],
[Rav03, Section 5.1]). Caveat: the ¢;’s in [Rav03] are called m;’s in [MRW77]).

Construct the Adams self-map on Moore spaces ([Ada, Theorem 1.7, Section 12], or spell out
[Rav03, p.18]). Deduce that for p odd, each element in the a-family represents a permanent
cycle in the ANSS ([MRW77, p.478], no need to prove nonvanishing of the a-family here).
Discuss the image of J ([Rav03, Section 5.3]). State existence results for higher Smith-Toda
complexes (cf. [Nav10, Introduction], [Rav03, Theorem 5.5.2], [Smi70], [Tod71]).

The Chromatic Spectral Sequence.

Set up the chromatic spectral sequence ([MRWT77, Section 3.A], [Rav03, Proposition 5.1.8]).
Describe the Hopf algebra K (n).K(n) ((MRW77, (3.14)]) and discuss the Change-of-Rings
Theorem Extpp pp(BPi, M) = Exti (), k(n)(K(n)«, K(n)« @pp, M) ([MR77, Theorem
2.10], [MRW77, Theorem 3.15]).

Prove nontriviality of the a- and g-family ([MRW77, Theorem 2.2.a)] and [MRW77, The-
orem 2.6] both follow from [MRW?77, Corollary 4.8]) and state the nontriviality of the
~-family ([MRW77, Theorem 2.7]).

The Chromatic Tower.

Review Bousfield localisation ([Rav84, Chapter 1-2], [Bou75][Bou79], [Lurl0, Lecture 20]).
Define the notion of a type n complex.

Discuss L, (BP) ([Rav84, Theorem 6.2]) and state Ravenel’s Localization Conjecture [Rav84,
Conjecture 5.8]. Outline a proof (see [Rav16, Theorem 7.5.2]) assuming Mitchell’s Theorem
on existence of type n complexes [Mit85]. If there is time, you could mention the Smash
Product Theorem [Rav16, Theorem 7.5.6]).

Set up the chromatic tower ([Rav16, Definition 7.5.3]) and state the Chromatic Convergence
Theorem ([Rav16, Theorem 7.5.7]). If there is time, describe the chromatic fracture square

Ly (X) =~ Lp-1(X) X}Ll/nfl(LK(n)(X)) Lk (n) (X).

Nilpotence and Periodicity.

State the Nilpotence Theorem ([DHS88], [HS98]) and use it to deduce Nishida’s Nilpotence
Theorem ([Lurl0, Lecture 25]) and the Thick Subcategory Theorem ([Lurl0, Lecture 26]).
State the Periodicity Theorem ([HS98]) and deduce it from the Thick Subcategory Theorem
assuming that complexes of type n with v,-self maps exist ([Lurl0, Lecture 27]).

Discuss how the Periodicity Theorem allows us to generate periodic families in the homotopy
groups of spheres ([BL10, Introduction]). If there is time, you could discuss v,-periodic
homotopy groups (JAM99, Appendix A]) and the Bousfield-Kuhn functor.
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