
Topics in Koszul Duality, Michaelmas 2019, Oxford University

Lecture 2: Categorical Background

In this lecture, we will take a second look at Morita theory, and illustrate several
categorical concepts along the way. This will set the stage for the Barr–Beck theorem,
which will be discussed in the next lecture, and for its higher categorical generalisation.

Abstract categorical arguments of this kind can often be circumvented when dealing
with “discrete” objects such as rings or modules, but become an indispensable tool in the
study of “homotopical” objects like differential graded algebras or chain complexes.

As we have seen in the overview class last week, Koszul duality forces us into a differential
graded setting because certain hom-spaces only become nontrivial after having been derived
(e.g. remember that for R = k[ϵ]/ϵ2, we had HomR(k, k) = k but RHomR(k, k) ∼= k[x]).

2.1. A reminder on Morita theory. The first result from last class will serve as a toy
model; we recall it using Notation 1.7 from last class.

Proposition 2.1. Let Q ∈ Mod♡R be a left module over an associative ring R such that

(1) Q is finite projective, i.e. a direct summand of R⊕n for some n;
(2) Q is a generator, which means that the functor HomR(Q,−) is faithful.

ThenR and S = EndR(Q)op are Morita equivalent, which is witnessed by inverse equivalences

G̃ : Mod♡R → Mod♡S , M 7→ HomR(Q,M)

F̃ : Mod♡S → Mod♡R, N 7→ Q⊗S N.

Proving Proposition 2.1 by hand is a reasonably straightforward, yet tedious, exercise.

We will adopt a categorical approach which we have learned from Lurie [Lur] (for a related
discussion of Serre’s criterion for affineness, see [Mat]).

This approach might seem needlessly abstract, but has the advantage of generalising
nicely to the ∞-category ModR of chain complexes of R-modules.

We start by observing that the functor G̃ can be constructed in three steps:

(1) Consider M 7→ HomR(Q,M) as a functor G : Mod♡R → Mod♡Z to abelian groups;
(2) Define the associative ring S = EndR(Q)op;

(3) Lift G to an enhanced functor G̃ : Mod♡R → Mod♡S by exhibiting a left S-module
structure on every abelian group HomR(Q,M).
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Mod♡R
(1)

G
>

G̃ >
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∨

We will give a categorical reformulation of the assumptions of Proposition 2.1, eventually,
only referencing the functor G = HomR(Q,−) : Mod♡R → Mod♡Z to abelian groups.

1



2

2.2. Categorical notions. First, we reformulate condition (1) of Proposition 2.1, asserting

that Q ∈ ModR be finite projective, in terms of the functor G : Mod♡R → Mod♡Z . We treat
the “finite” and the “projective” part separately, and start with the former.

Compactness. The categorical notion of compactness aims to capture the smallness of a
given object X by asserting that it cannot be “spread out” arbitrarily.

For example, given a diagram Y0 → Y1 → Y2 → . . ., any map from a small object X to
the sequential colimit colimi Yi (which we might think of as an increasing union) should
factor through one of the finite stages Yi.

In fact, we will also want to take slightly more general diagrams into account:

Definition 2.2 (Filtered categories). A category I is filtered if it is nonempty and

a) any two objects x, y map into a third object z via morphisms x → z, y → z;
b) for all parallel morphisms f, g : x ⇒ y in C, there exists h : y → z with h ◦ f = h ◦ g.
A filtered colimit in a category C is a colimit over a diagram D : I → C, where I is filtered.

Exercise 2.3. Establish the following facts:

(1) The category N = (• → • → . . .) is filtered; hence sequential colimits are filtered;
(2) The product of filtered categories is filtered;
(3) The category • • is not filtered, and neither is ∆op, the opposite of the category

of nonempty finite linearly ordered sets.

We can explicitly compute filtered colimits in the category of sets:

Exercise 2.4 (Filtered colimits of sets). Given a diagram D : I → Set with I a small
filtered category, show that colim i∈ID(i) is given by the set

∐
i∈I D(i)/∼=, where ∼= is the

equivalence relation identifying a ∈ D(i), b ∈ D(j) if there are arrows f : i → k, g : j → k
with D(f)(a) = D(g)(b).

Exercise 2.5 (Limits of sets). Given a diagram D : I → Set from a small category I to
sets, write down its limit.

We will often need the following important fact:

Proposition 2.6 (Filtered colimits commute with finite limits in Set). Given a diagram
D : I × J → Set with I a small filtered category and J a category with finitely many
objects and morphisms, the following canonical arrow is an isomorphism:

colim
i∈I

(
lim
j∈J

D(i, j)

)
∼=−−→ lim

j∈J

(
colim
i∈I

D(i, j)

)
.

Proof. We leave this as an exercise; for a detailed proof, see [Bor94, Theorem 2.13.4]. □

The finiteness restriction in Proposition 2.6 is necessary:

Exercise 2.7. Show that filtered colimits generally do not commute with limits in Set.

Proposition 2.6 is not true in an arbitrary category:

Exercise 2.8. Show that in Setop, filtered colimits need not commute with finite limits.
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Filtered colimits and finite limits also commute in categories that are sufficiently similar
to sets. To make this precise, we need several notions.

Notation 2.9. Given a category I, the right cone I▷ is obtained from I by adding a new
object 1 and a unique morphism from every i ∈ I to the new object 1.

Definition 2.10. Let I be a category. We say that a functor F : C → D preserves and
reflects colimits of shape I if D▷ : I▷ → C is a colimit diagram if and only if this is true
for U ◦D▷ : I▷ → D. A similar definition applies to limits.

Using that faithful functors reflect isomorphisms (which we establish in Proposition 2.26
below), we can deduce the following basic fact from Proposition 2.6:

Corollary 2.11. Let U : C → Set be a faithful functor which preserves and reflects finite
limits and filtered colimits. Then finite limits commute with filtered colimits in C.

Exercise 2.12. Show that for any ring R, the forgetful functor U : Mod♡R → Set satisfies
the assumptions of Corollary 2.11. Hint: equip the colimit of sets colim i∈I(U ◦ D)(i)
constructed in Exercise 2.5 with the structure of an R-module.

We can now give a categorical notion of smallness:

Definition 2.13. An object X in a locally small category C is called compact if the functor
MapC(X,−) : C → Set preserves filtered colimits.

Using Proposition 2.6, we can prove a closure property for compact objects:

Corollary 2.14. Finite colimits of compact objects in a category C are compact.

Proof. For any finite diagram D : J → C which admits a colimit in C, we have a natural

isomorphism of functors MapC(colimj∈JD(j),−)
∼=−−→ limj∈J MapC(D(j),−). For any filtered

diagram D′ : I → C, compactness of all D(j) and Proposition 2.6 implies:

MapC(colimj∈JD(j), colim i∈ID
′(i)) ∼= limj∈J colim i∈I MapC(D(j), D′(i))

∼= colim i∈I limj∈J MapC(D(j), D′(i)) ∼= colim i∈I MapC(colimj∈JD(j), D′(i))

□

Example 2.15 (Compact sets). A set is compact if and only if it is finite.
For the “if” part, we first observe that the set ∗ with one object is compact. As finite

sets are finite coproducts of points, Corollary 2.14 shows that they are compact.
To see the “only if” part, let S be an infinite set and consider the category I with objects

{ xT | T ⊂ S finite } and a unique morphism xT → xT ′ whenever T is contained in T ′. An
easy check shows that I is filtered, and that S is the colimit of the functor D : I → Set
given by xT 7→ T . If S were compact, then MapSet(S, S)

∼= colim i∈I MapSet(S,D(i)) and
we could factor the identity map S → S through a finite subset, which is absurd.

Exercise 2.16 (Compact topological spaces). Compact objects in the category of topological
spaces are finite sets with the discrete topology. We will revisit this example later.
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Example 2.17 (Compact modules). A (left) module M over a ring R is compact if and
only if it is finitely presented. The proof is almost identical to Example 2.15.

First observe that R is compact because MapR(R,M) ∼= M and the forgetful functor

Mod♡R → Set preserves filtered colimits by Exercise 2.12. Since any finitely presented
R-module is an iterated finite colimit of copies of R, the “if” part follows.

For the converse direction, we need that any R-module is a filtered colimit of finitely
presented modules; we leave this as an exercise. If M is compact, then we can factor
the identity map on M through a finitely presented submodule. This shows that M is a
summand of a finitely presented module, and hence finitely presented itself.

We have completed the first step towards the desired reformulation of Proposition 2.1:

Corollary 2.18. A module Q ∈ ModR is finitely presented if and only if the functor
G = MapModR(Q,−) : Mod♡R → Mod♡Z preserves filtered colimits.

Remark 2.19. Since the forgetful functor Mod♡Z → Set preserves and reflects filtered
colimits, this is an instance of Definition 2.13.

Projectivity. We now give a reformulation of the condition that a module Q ∈ ModR be
projective, with an eye towards later higher-categorical generalisations.

First, we recall a well-known result in homological algebra:

Proposition 2.20. Given a module Q ∈ Mod♡R, the following are equivalent:

a) Q is a summand of a free module;
b) The functor MapR(Q,−) preserves surjections;
c) The functor MapR(Q,−) preserves short exact sequences;
d) The functor MapR(Q,−) preserves cokernels.

If these conditions hold, we call the module Q projective.

We will reformulate the “cokernel” condition d) using the following notion:

Definition 2.21. A reflexive pair in a category C is a diagram consisting of two arrows
d0, d1 : X1 ⇒ X0 and a common section s : X0 → X1 satisfying f ◦s = g◦s = idX0 . In other
words, it is a ∆op

≤1-indexed diagram; we will return to this perspective in the next lectures.

A reflexive coequaliser is the colimit of a reflexive pair. Note that this agrees with the
coequaliser of the arrows d0 and d1.

We also record the following notion:
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Definition 2.22. A functor F : Mod♡R → Mod♡Z is called additive if for all M,N , the
functor MapR(M,N) → MapZ(FM,FN) is a homomorphism of abelian groups.

Condition d) in Proposition 2.20 can be reformulated in terms of reflexive coequalisers:

Proposition 2.23. An additive functor F : Mod♡R → Mod♡Z preserves cokernels if and
only if it preserves reflexive coequalisers.

Proof. Assume that F preserves cokernels. The coequaliser of a reflexive pair A
f−−→←−−→
g

B is

the cokernel ofA
f−g−−→ B.As F is additive, this shows that it preserves reflexive coequalisers.

Conversely, assume that F preserves reflexive coequalisers. The cokernel of A
f−→ B agrees

with the coequaliser of the reflexive pair A⊕B
f+idB−−−−→←−−−−→
idB

B, which implies the claim. □

Corollary 2.24. A module Q ∈ ModR is projective if and only if the functor MapR(Q,−)
preserves reflexive coequalisers.

Exercise 2.25.

a) Prove that the forgetful functor Mod♡Z → Set preserves and reflects reflexive coequalisers.
b) Show that this becomes false once we drop the word “reflexive”.

2.3. Conservativity. Finally, we reformulate condition (2) of Proposition 2.1 by making
the following simple observation:

Proposition 2.26. Any faithful functor G : Mod♡R → Mod♡Z is conservative. Conversely,
any conservative functor which preserves coequalisers is faithful.

Here G is called conservative if f : X → Y in Mod♡R is an isomorphism iff G(f) is one.

Proof. First assume that G is faithful. If G(f) is an isomorphism, then it is both an
epi- and a monomorphism. Since G is faithful, this implies that f is both an epi- and a
monomorphism, which shows that f is an isomorphism since Mod♡R is an abelian category.

Conversely, assume that G is a conservative functor which preserves coequalisers. Note

that arrows f, g : A → B are equal if and only if in the coequaliser diagram A
f−−→−−→
g

B
h−→ C,

the map h is an isomorphism; this condition is preserved and reflected by the functor G. □

Combining Corollary 2.18, Corollary 2.24, and Proposition 2.26 with two straightforward
observations a), b), we conclude that Proposition 2.1 is an instance of the following setup:

Setup 2.27. Let G : Mod♡R → Mod♡Z be a functor satisfying the following conditions:

a) G admits a left adjoint;
b) G preserves finite coproducts;
c) G preserves filtered colimits;
d) G preserves reflexive coequalisers;
e) G is conservative.

In the next class, we will give a proof of Proposition 2.1 starting from these purely
categorical assumptions, and establish the Barr-Beck theorem along the way.
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