
Topics in Koszul Duality, Michaelmas 2019, Oxford University

Lecture 3: The Barr-Beck Theorem

Let R be a ring. Last week, we have reformulated three algebraic properties of left
R-modules Q ∈ Mod♡R in terms of categorical conditions on the associated functor

G = MapR(Q,−) : Mod♡R −→ Mod♡Z = Ab

to abelian groups. More specifically, we have seen:

Q is finitely presented ↭ G preserves filtered colimits, i.e. Q is compact;
Q is projective ↭ G preserves reflexive coequalisers;
Q is a generator ⇝ G is conservative.

If these conditions are satisfied, we wish to prove Proposition 2.1 from last lecture, asserting

that the natural lift G̃ of the functor G to S = EndQ(R)op-modules is an equivalence:

Mod♡S

Mod♡R G
>

G̃ ∼= >

Mod♡Z

U
∨

To give a categorical construction of Mod♡S and G̃, we will need to recall some basic notions.

3.1. Monads. Monads provide a way of axiomatising algebraic structures that is convenient
for certain abstract arguments. We illustrate this with a simple example:

Example 3.1 (Groups). Traditionally, groups are defined as setsX with a binary multiplication
(x, y) 7→ x · y, a unary inverse x 7→ x−1, and a unit e satisfying various axioms.

We could also choose a less economical approach, and specify many more operations, e.g.

(1) (x1, x2, x3) 7→ x1 · x103 · x−1
2 , (x1, x2, x3, x4) 7→ x41 · x22 · x3 · x−15

4 , etc.

More precisely, consider the endofunctor TGp : Set → Set sending a set X to the set of all
formal expressions

TGp(X) := { xa11 xa22 . . . xakk | k ≥ 0, xi ∈ X, ak ∈ Z− {0}, xi ̸= xi+1 for all i. }
Here the empty word () is considered a valid element of the set TGp(X).

In our uneconomical approach to groups, defining all operations as in (1) amounts to
specifying a single map α : TGp(X) → X sending a formal expression xa11 xa22 . . . xakk to the
value of the corresponding product xa11 · xa22 · . . . · xakk in X.

However, not all such maps α : TGp(X) → X define valid group structures on the set X,
as we have not yet imposed any of the group axioms. To fix this, we exhibit additional
structure on the endofunctor TGp by specifying the following natural maps for all sets X:

ηX : X → TGp(X) µX : TGp(TGp(X)) → TGp(X).

Exercise. Before turning the page, have a guess what these maps are.
1

2

The first map ηX takes an element s ∈ X to the corresponding one-letter word in TGp(X).

The second map µX sends a “word of words” (xa1111 . . . x
a1k1
1k1

)b1 (xan1
n1 . . . x

ankn
nkn

)bn in

TGp(TGp(X)) to the corresponding word in TGp(X) given by

(xa1111 . . . x
a1k1
1k1

) . . . (xa1111 . . . x
a1k1
1k1

)︸ ︷︷ ︸
b1

. (xan1
n1 . . . x

ankn
nkn

) . . . (xan1
n1 . . . x

ankn
nkn

)︸ ︷︷ ︸
bn

Here, we have implicitly simplified this word by reducing subwords of the form xaxb to xa+b.

Exercise. The maps ηX and µX are natural in X and satisfy the following identities:

µX ◦ TGp(µX) ∼= µX ◦ µTGp(X), µX ◦ ηTGp(X) = idTGp(X) = µX ◦ TGp(ηX).

Using the natural transformations η and µ, we can now formulate a condition for when
a map α : TGp(X) → X defines a group structure on X:

Exercise. Given a map α : TGp(X) → X, the operations (x, y) 7→ α(xy), x 7→ α(x−1),
e = α() define a group structure on X if and only if α◦ηX = idX and α◦µX = α◦TGp(α).

We therefore obtain a second definition of what a group is, namely a set X together
with a map of sets TGp(X) → X satisfying α ◦ ηX = idX and α ◦ µX = α ◦ TGp(α).

Definitions of this kind can also be given for most other algebraic structures of interest
(like modules, rings, Lie algebras, . . .). We therefore axiomatise this situation:

Definition 3.2 (Monads). A monad on a category C is an associative algebra object in
the monoidal category End(C) of endofunctors (with the composition product ◦).

Concretely, this means that a monad is an endofunctor T : C → C equipped with natural
transformations idC → T and µ : T ◦T → T such that the following two diagrams commute:

T ◦ T ◦ T T (µ)
> T ◦ T

T ◦ T

µT

∨
µ

> T

µ

∨

T
ηT

> TT

T 2

T (η)
∨

µ
> T

µ

∨
id

>

Definition 3.3 (Algebras over monads). An algebra over a monad T on C is a T -module
object in the End(C)-tensored category C. Concretely, this means that an algebra is a pair
(A ∈ C, α : T (A) → A) for which the following two diagrams commute:

A
ηA

> T (A)

A

α

∨idA >

T (T (A))
T (α)

> T (A)

T (A)

µA

∨
α

> A

α

∨

We write AlgT (C) for the category of T -algebras in C.

3

In Example 3.1, we constructed a monad TGp acting on C = Set whose category of
algebras AlgTGp

(Set) is equivalent to the category of groups.

In the next exercise, we will construct similar monads for other algebraic structures:

Exercise 3.4.

a) Define a monad TAb on the category of sets Set such that AlgTAb
(Set) is equivalent to

the category Ab = Mod♡Z of abelian groups.

b) Define a monad TRing on the category Ab such that AlgTRing
(Ab) is the category of rings.

c) Given a ring R, define a monad TRing on Ab whose category of algebras is equivalent to
the category of (left) R-modules.

3.2. Monadic Adjunctions. In Example 3.1, we have adopted the perspective that the
monad TGp can be used as a tool for defining the notion of a group.

We could also reverse this logic and try to define the monad TGp assuming that we already
know what a group is. To this end, recall the following standard notion from category
theory (which we will later generalise to higher categories):

Definition 3.5 (Adjunctions). An adjunction consists of functors F : C ⇆ D : G together
with natural transformations η : idC → GF (the “unit”), ϵ : FG → idD (the “counit”) for
which the following diagrams commute:

F
F (η)

> FGF

F

ϵF
∨idF >

G
ηG

> GFG

G

G(ϵ)

∨idG >

The functor F is called the left adjoint, whereas G is called a right adjoint; we write F ⊣ G.

Remark 3.6. Fix an adjunction (F,G, η, ϵ) as in Definition 3.5. For any pair of objects
X ∈ C and Y ∈ D, we obtain natural isomorphisms

MapD(FX, Y) ∼= MapC(X,GY)

Indeed, given f : FX → Y in D, we attach the map f : X → GY defined by f = Gf ◦ ηX .
Conversely, to a map g : X → GY , we attach the map g = ϵY ◦ Fg : FX → Y .

In fact, specifying natural isomorphisms MapD(FX, Y) ∼= MapC(X,GY) leads to an
equivalent definition of adjunctions

Example 3.1 (continued). There is a free-forgetful adjunction Free : Set ⇆ Gp : Forget
between the category of sets and the category of groups. The right adjoint Forget sends a
group to its underlying set, and the left adjoint Free builds the free group on a given set.
The unit ηX : X → Forget(Free(X)) embeds a set X into the free group generated by X.
The counit ϵG : Free(Forget(G)) → G takes a formal product ga11 . . . gann in the free group
on the set G and computes the corresponding product ga11 · . . . · gann in the group G.

We note that the endofunctor TGp : Set → Set defined above is equal to the composite
Forget ◦Free. The transformation idSet → TGp agrees with the unit η of the adjunction,
and the monad multiplication µ : TGp ◦ TGp → TGp is given by GϵF : GFGF → GF .

4

The functor Gp → AlgTGp
(Set) sending a group G to the TGp-algebra(

Forget(G) , TGp(Forget(G))
Forget(ϵG)−−−−−−→ Forget(G)

)
gives the equivalence between groups and TGp-algebras mentioned above.

Indeed, we obtain a monad for every adjunction:

Exercise 3.7 (Monads from adjunctions). Given an adjunction F : C ⇆ D : G with unit
η : idC → GF and counit ϵ : FG → idD, show that the endofunctor T = GF is equipped
with the structure of a monad with unit η : idC → GF and multiplication GϵF : T ◦T → T .

Exercise 3.8. Show that all monads in Exercise 3.4 are induced by corresponding forgetful-
free adjunctions.

Exercise 3.9. Given a monad T on a category C, consider the functor FreeT : C → AlgT (C)
sending an object X ∈ C to the T -algebra (TX, T (T (X))

µX−−→ T (X)).

a) Prove that FreeT is a left adjoint to the forgetful functor ForgetT : AlgT (C) → C.
b) Verify that the adjunction FreeT ⊣ ForgetT induces the monad T .

This implies the interesting fact that any monad is induced by an adjunction.

Notation 3.10. We will usually denote the free T -algebra on an object X ∈ C by T (X)
instead of FreeT (X). Moreover, we will often drop the functor ForgetT from our notation.

If T = GF is a monad obtained from an adjunction F ⊣ G , we always obtain a functor

G̃ : D → AlgT (C)

sending an object X ∈ D to the T -algebra (G(X) , T (G(X))
G(ϵX)−−−−→ G(X)).

Definition 3.11. The adjunction F ⊣ G is monadic if G̃ : D → AlgT (C) is an equivalence.

In the case of groups, we have seen in Example 3.1 that the forgetful-free adjunction is
monadic (thereby giving an alternative definition of groups as TGp-algebras).

However, not all adjunctions share this desirable property:

Exercise 3.12 (A non-monadic adjunction). There is an adjunction F : Set ⇄ Top : G
between sets and topological spaces: the right adjoint G sends a space to its underlying
set of points; the left adjoint F equips a set with the discrete topology.

Show that this adjunction is not monadic. Hint: what does G do to isomorphisms?

3.3. Morita theory as an adjunction. We return to our toy example of Proposition 2.1
from last lecture, where we fixed a ring R and a compact projective generator Q ∈ Mod♡R.

We can now give a purely categorical construction of the category ModS and the functor

G̃ : Mod♡R → Mod♡S for S = EndR(Q)op, as desired.
To this end, observe that the tensor-hom-adjunction

Q⊗ (−) : Mod♡Z ⇆ Mod♡R : MapR(Q,−)

5

induces a monad T on Ab ∼= Mod♡Z sendingM to MapR(Q,Q⊗M). Hence T (Z) = EndR(Q).

In fact, we can use the conditions on Q to identify the endofunctor T more explicitly.
Since the right adjointG = MapR(Q,−) preserves biproducts, filtered colimits, and reflexive
coequalisers, it must preserve small colimits. As this is also true for the left adjoint Q⊗(−),
we deduce that the monad T : Ab → Ab preserves small colimits.

Exercise 3.13. Use Exercise 1.3 from Lecture 1 to identify AlgT (Ab) with the category
of left modules ModS over the ring S = EndR(Q)op.

3.4. The Barr-Beck theorem. To prove Proposition 2.1 from last class, we are therefore
reduced to showing that the tensor-hom-adjunctionQ⊗(−) : Mod♡Z ⇆ Mod♡R : MapR(Q,−)
is monadic. This follows from the following much more general and important result:

Theorem 3.14 (Barr-Beck theorem, crude version).
Assume that an adjunction F : C ⇆ D : G satisfies the following two properties:

a) D admits and G preserves reflexive coequalisers;
b) G is conservative (i.e. reflects isomorphisms).

Then (F ⊣ G) is monadic (cf. Definition 3.11), i.e. G̃ : D
∼=−−→ AlgT (C) is an equivalence.

For the proof, we will need two slightly different notions of coequalisers. First, we recall:

Definition 3.15 (Reflexive coequaliser). A reflexive pair in a category C is a diagram
consisting of two arrows d0, d1 : X1 ⇒ X0 and a common section s : X0 → X1:

A reflexive coequaliser is the colimit of a reflexive pair; it agrees with the coequaliser of d0, d1.

We need a second notion of coequaliser, which looks similar, but is in fact quite different:

Definition 3.16 (Split coequaliser). Two parallel arrows d0, d1 : X1 ⇒ X0 in a category C
are called a split pair if there exist arrows

h : X0 → X−1, s : X−1 → X0, t : X0 → X1

satisfying the following identities:

hd0 = hd1 hs = idX−1 d0t = idX0 d1t = sh

Exercise 3.17. Show that in the situation of Definition 3.16, X1 ⇒ X0 → X−1 is a
coequaliser. Deduce that it is preserved by any functor – we call this an absolute colimit.

6

Using split coequalisers, we can build canonical free resolutions of algebras over monads:

Proposition 3.18 (Free resolutions). Fix a monad T on a category C and a T -algebra
(A,α : T (A) → A). The following diagram of T -algebras is a coequaliser in AlgT (C):

(2) T (T (A))
T (α)−−−−−→−−−−−→
µA

T (A)
α−−−→ A

Here, we have used the free functor C → AlgT (C) from Exercise 3.9 (using Notation 3.10),

which sends an object X ∈ C to the free T -algebra (T (X), T (T (X))
µX−−→ T (X)) on X.

Proof. Observe that after applying the forgetful functor AlgT (C) → C, the above diagram is
part of a split coequaliser with maps s = ηA : A → T (A) and t = ηT (A) : T (A) → T (T (A)).

To verify that (2) is also a coequaliser in AlgT (C), assume we are given a T -algebra
(B, β : T (B) → B) together with a map of T -algebras f : TA → B with f ◦T (α) = f ◦µA.
By Exercise 3.17, there is a unique g = f◦ηA in C such that the following triangle commutes:

TA
α

> A

B

g

∨f
>

Hence, it suffices to check that g is a map of T -algebras, which follows from the computation

β ◦ Tf ◦ T (ηA) = f ◦ µA ◦ T (ηA) = f = f ◦ µA ◦ ηTA = f ◦ T (α) ◦ ηTA = (f ◦ ηA) ◦ α.
Here, we have used that f is a map of T -algebras, the monad axioms for T , and the
naturality of η. □

With these free resolutions at our disposal, we can now prove the Barr-Beck theorem.

Proof of Theorem 3.14. We proceed in three main steps.

Step 1: Left adjoint F̃ to G̃.

We have a commuting triangle

AlgT (C)

D
G

>

G̃
>

C

ForgetT
∨

where both G and ForgetT admit left adjoints (cf. Exercise 3.9).

As left adjoints of commuting right adjoints commute, we know that if G̃ admits a left

adjoint F̃ , then its value on free T -algebras must be given by F̃ (T (X)) = F (X).
Since left adjoints also preserve small colimits, Proposition 3.18 motivates us to define

the value of F̃ on a general T -algebra (A,α) as the following coequaliser in D:

(3) F (T (A))
F (α)−−−−−−→−−−−−−→
ϵFA

F (A)
θ−−−→F̃ (A)

7

This makes sense as F (T (A))
F (α)−−−−−−→−−−−−−→
ϵFA

F (A) is a reflexive pair in D with common

section FηA. One easily extends this definition to morphisms of T -algebras.

To verify that F̃ is indeed left adjoint to G̃, we make the following computation:

F̃ (A,α) → B

FA
f−→ B s.t. f ◦ F (α) = f ◦ ϵFA

A
f−→ B s.t. f ◦ α = G(ϵB)G(Ff)

(A,α) → G̃(B) = (GB,GϵB).

In the second step, we have used that f ◦α = f ◦ F (α) = f ◦ ϵFA
3)
= G(f)

4)
= G(ϵB)G(F (f)).

Here () denotes the adjoint bijection on morphisms introduced in Remark 3.6. The first two
equalities are straightforward; equalities 3) and 4) follow from the commutative diagrams

3)

GFA > GB

GFGFA

ηGFA

∨
GϵFA

> GFA

Gf

∧
id

>
4)

FA
Ff

> FGB

B

ϵB
∨f >

.

Step 2: The unit idAlgT (C) → F̃ ◦ G̃ is an equivalence.

Given (A,α) ∈ AlgT (C), we have a reflexive coequaliser F (T (A))
F (α)−−−−−→−−−−−→
ϵFA

F (A)
θ−−−→F̃ (A).

Using that G preserves reflexive coequalisers, we obtain another coequaliser diagram

GF (GF (A))
GF (α)−−−−−−→−−−−−−−→
GϵFA

GF (A)
Gθ−−−−→GF̃ (A)

As in the proof of Proposition 3.18, the following diagram admits a splitting:

GF (GF (A))
GF (α)−−−−−−→−−−−−−−→
GϵFA

GF (A)
α−−−→ A

Hence, we have computed the coequaliser of GF (GF (A))
GF (α)−−−−−−→−−−−−−−→
GϵFA

GF (A) in two ways,

and obtain an isomorphism

GFA
Gθ

> GF̃ (A,α)

A

∼=
∨α

>

We can therefore identify A with GF̃ (A,α).

8

Next, we check that Gϵ
F̃ (A,α)

= α. Since α = Gθ, it suffices to check that ϵ
F̃ (A,α)

= θ.

This follows from the following computation:

θ = θ ◦ Fα ◦ FηA = θ ◦ ϵFA ◦ FηA = ϵ
F̃ (A,α)

◦ FG(θ) ◦ FηA = ϵ
F̃ (A,α)

In the first and last step, we used the algebra axiom for (A,α), in the second the adjunction
axiom relating unit and counit, in the third a naturality square for ϵ.

Altogether, we have verified that G̃(F̃ (A,α)) = (GF̃ (A,α), Gϵ
F̃ (A,α)

) ∼= (A,α).

Step 3: The counit G̃ ◦ F̃ → idD is an equivalence.

By definition, we have a coequaliser diagram computing F̃ (G̃(B)):

(4) FGFGB
FGϵB−−−−−−→−−−−−−−→
ϵFGB

FGB
θ−−−→F̃ (G̃(B))

By the universal property, the map ϵB : FGB → B induces a map τ : F̃ (G̃(B)) → B.
Applying the functor G to the entire situation, we obtain a diagram

GFGFGB
GFGϵB−−−−−−−−→−−−−−−−−→
GϵFGB

GFGB −−−→GF̃ (G̃(B))

GB
∨>

The top line is a coequaliser as G preserves reflexive coequalisers. The diagram

GFGFGB
GFGϵB−−−−−−−→−−−−−−−−→
GϵFGB

GFGB −→ GB

is a split coequaliser (cf. Proposition 3.18). Together, these facts imply that the map

GF̃ (G̃(B)) → GB is an isomorphism, which shows that F̃ (G̃(B)) ∼= B as G is conservative.
□

In fact, we have almost proven a sharp version of the Barr-Beck theorem. To state it,
we need the following notion:

Definition 3.19. Given a functor G : D → C, a parallel pair d0, d1 : X1 ⇒ X0 is said to
be G-split if G(d0), G(d1) : X1 ⇒ X0 is a split pair in the sense of Definition 3.16.

We can now state the desired refinement:

Theorem 3.20 (Barr-Beck theorem, precise version).
An adjunction F : C ⇆ D : G is monadic if and only if it has the following two properties:

a) D admits and G preserves coequalisers of G-split pairs; this means that whenever a pair
d0, d1 : X1 ⇒ X0 has the property that G(X1), G(X0) : G(X1) ⇒ G(X0) is part of a
split coequaliser diagram, then d0, d1 : X1 ⇒ X0 admits a colimit, which G preserves.

b) G is conservative (i.e. reflects isomorphisms).

Exercise 3.21. Taking inspiration from the proof of the crude Barr-Beck Theorem 3.14,
prove Theorem 3.20.

	Lecture 3: The Barr-Beck Theorem
	3.1. Monads
	3.2. Monadic Adjunctions
	3.3. Morita theory as an adjunction
	3.4. The Barr-Beck theorem
	Step 3: 2pt The counit G"0365G F"0365F`3́9`42`"̇613A``45`47`"603Aid D is an equivalence

