Topics in Koszul Duality, Michaelmas 2019, Oxford University

Lecture 3: The Barr-Beck Theorem

Let R be a ring. Last week, we have reformulated three algebraic properties of left R-modules $Q \in \operatorname{Mod}_{R}^{\varrho}$ in terms of categorical conditions on the associated functor

$$
G=\operatorname{Map}_{R}(Q,-): \operatorname{Mod}_{R}^{\ominus} \longrightarrow \operatorname{Mod}_{\mathbb{Z}}^{\varrho}=\mathrm{Ab}
$$

to abelian groups. More specifically, we have seen:

Q is finitely presented	\leadsto	G preserves filtered colimits, i.e. Q is compact;
Q is projective		
Q is a generator	\rightsquigarrow	G preserves reflexive coequalisers;
G is conservative.		

If these conditions are satisfied, we wish to prove Proposition 2.1 from last lecture, asserting that the natural lift \widetilde{G} of the functor G to $S=\operatorname{End}_{Q}(R)^{o p}$-modules is an equivalence:

To give a categorical construction of $\operatorname{Mod}_{S}^{\odot}$ and \widetilde{G}, we will need to recall some basic notions.
3.1. Monads. Monads provide a way of axiomatising algebraic structures that is convenient for certain abstract arguments. We illustrate this with a simple example:
Example 3.1 (Groups). Traditionally, groups are defined as sets X with a binary multiplication $(x, y) \mapsto x \cdot y$, a unary inverse $x \mapsto x^{-1}$, and a unit e satisfying various axioms.

We could also choose a less economical approach, and specify many more operations, e.g.

$$
\begin{equation*}
\left(x_{1}, x_{2}, x_{3}\right) \mapsto x_{1} \cdot x_{3}^{10} \cdot x_{2}^{-1}, \quad\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto x_{1}^{4} \cdot x_{2}^{2} \cdot x_{3} \cdot x_{4}^{-15}, \quad \text { etc. } \tag{1}
\end{equation*}
$$

More precisely, consider the endofunctor $T_{\mathrm{Gp}}:$ Set \rightarrow Set sending a set X to the set of all formal expressions

$$
T_{\mathrm{Gp}}(X):=\left\{x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{k}^{a_{k}} \mid k \geq 0, x_{i} \in X, a_{k} \in \mathbb{Z}-\{0\}, x_{i} \neq x_{i+1} \text { for all } i .\right\}
$$

Here the empty word () is considered a valid element of the set $T_{\mathrm{Gp}}(X)$.
In our uneconomical approach to groups, defining all operations as in (1) amounts to specifying a single map $\alpha: T_{\mathrm{Gp}}(X) \rightarrow X$ sending a formal expression $x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{k}^{a_{k}}$ to the value of the corresponding product $x_{1}^{a_{1}} \cdot x_{2}^{a_{2}} \cdot \ldots \cdot x_{k}^{a_{k}}$ in X.

However, not all such maps $\alpha: T_{\mathrm{Gp}}(X) \rightarrow X$ define valid group structures on the set X, as we have not yet imposed any of the group axioms. To fix this, we exhibit additional structure on the endofunctor T_{Gp} by specifying the following natural maps for all sets X :

$$
\eta_{X}: X \rightarrow T_{\mathrm{Gp}}(X) \quad \mu_{X}: T_{\mathrm{Gp}}\left(T_{\mathrm{Gp}}(X)\right) \rightarrow T_{\mathrm{Gp}}(X)
$$

Exercise. Before turning the page, have a guess what these maps are.

The first map η_{X} takes an element $s \in X$ to the corresponding one-letter word in $T_{\mathrm{Gp}}(X)$. The second map μ_{X} sends a "word of words" $\left(x_{11}^{a_{11}} \ldots x_{1 k_{1}}^{a_{1 k_{1}}}\right)^{b_{1}} \ldots \ldots\left(x_{n 1}^{a_{n 1}} \ldots x_{n k_{n}}^{a_{n k_{n}}}\right)^{b_{n}}$ in $T_{\mathrm{Gp}}\left(T_{\mathrm{Gp}}(X)\right)$ to the corresponding word in $T_{\mathrm{Gp}}(X)$ given by

$$
\underbrace{\left(x_{11}^{a_{11}} \ldots x_{1 k_{1}}^{a_{1 k_{1}}}\right) \ldots\left(x_{11}^{a_{11}} \ldots x_{1 k_{1}}^{a_{1 k_{1}}}\right)}_{b_{1}} \ldots \ldots \underbrace{\left(x_{n 1}^{a_{n 1}} \ldots x_{n k_{n}}^{a_{n k_{n}}}\right) \ldots\left(x_{n 1}^{a_{n 1}} \ldots x_{n k_{n}}^{a_{n k_{n}}}\right)}_{b_{n}}
$$

Here, we have implicitly simplified this word by reducing subwords of the form $x^{a} x^{b}$ to x^{a+b}.
Exercise. The maps η_{X} and μ_{X} are natural in X and satisfy the following identities:

$$
\mu_{X} \circ T_{\mathrm{Gp}}\left(\mu_{X}\right) \cong \mu_{X} \circ \mu_{T_{\mathrm{Gp}_{\mathrm{p}}}(X)}, \quad \mu_{X} \circ \eta_{T_{\mathrm{Gp}}(X)}=\operatorname{id}_{T_{\mathrm{Gp}}(X)}=\mu_{X} \circ T_{\mathrm{Gp}}\left(\eta_{X}\right)
$$

Using the natural transformations η and μ, we can now formulate a condition for when a map $\alpha: T_{\mathrm{Gp}}(X) \rightarrow X$ defines a group structure on X :
Exercise. Given a map $\alpha: T_{\mathrm{Gp}}(X) \rightarrow X$, the operations $(x, y) \mapsto \alpha(x y), x \mapsto \alpha\left(x^{-1}\right)$, $e=\alpha()$ define a group structure on X if and only if $\alpha \circ \eta_{X}=\operatorname{id}_{X}$ and $\alpha \circ \mu_{X}=\alpha \circ T_{\mathrm{Gp}}(\alpha)$.

We therefore obtain a second definition of what a group is, namely a set X together with a map of sets $T_{\mathrm{Gp}}(X) \rightarrow X$ satisfying $\alpha \circ \eta_{X}=\operatorname{id}_{X}$ and $\alpha \circ \mu_{X}=\alpha \circ T_{\mathrm{Gp}}(\alpha)$.

Definitions of this kind can also be given for most other algebraic structures of interest (like modules, rings, Lie algebras, ...). We therefore axiomatise this situation:

Definition 3.2 (Monads). A monad on a category \mathcal{C} is an associative algebra object in the monoidal category $\operatorname{End}(\mathcal{C})$ of endofunctors (with the composition product o).

Concretely, this means that a monad is an endofunctor $T: \mathcal{C} \rightarrow \mathcal{C}$ equipped with natural transformations $\operatorname{id}_{\mathcal{C}} \rightarrow T$ and $\mu: T \circ T \rightarrow T$ such that the following two diagrams commute:

Definition 3.3 (Algebras over monads). An algebra over a monad T on \mathcal{C} is a T-module object in the $\operatorname{End}(\mathcal{C})$-tensored category \mathcal{C}. Concretely, this means that an algebra is a pair $(A \in \mathcal{C}, \alpha: T(A) \rightarrow A)$ for which the following two diagrams commute:

We write $\operatorname{Alg}_{T}(\mathcal{C})$ for the category of T-algebras in \mathcal{C}.

In Example 3.1, we constructed a monad T_{Gp} acting on $\mathcal{C}=$ Set whose category of algebras $\mathrm{Alg}_{T_{\mathrm{Gp}}}$ (Set) is equivalent to the category of groups.

In the next exercise, we will construct similar monads for other algebraic structures:

Exercise 3.4.

a) Define a monad T_{Ab} on the category of sets Set such that $\operatorname{Alg}_{T_{\mathrm{Ab}}}(\mathrm{Set})$ is equivalent to the category $\mathrm{Ab}=\operatorname{Mod}_{\mathbb{Z}}^{\ominus}$ of abelian groups.
b) Define a monad $T_{\text {Ring }}$ on the category Ab such that $\mathrm{Alg}_{T_{\text {Ring }}}(\mathrm{Ab})$ is the category of rings.
c) Given a ring R, define a monad $T_{\text {Ring }}$ on Ab whose category of algebras is equivalent to the category of (left) R-modules.
3.2. Monadic Adjunctions. In Example 3.1, we have adopted the perspective that the monad T_{Gp} can be used as a tool for defining the notion of a group.

We could also reverse this logic and try to define the monad T_{Gp} assuming that we already know what a group is. To this end, recall the following standard notion from category theory (which we will later generalise to higher categories):
Definition 3.5 (Adjunctions). An adjunction consists of functors $F: \mathcal{C} \leftrightarrows \mathcal{D}: G$ together with natural transformations $\eta: \mathrm{id}_{\mathcal{C}} \rightarrow G F$ (the "unit"), $\epsilon: F G \rightarrow \mathrm{id}_{\mathcal{D}}$ (the "counit") for which the following diagrams commute:

The functor F is called the left adjoint, whereas G is called a right adjoint; we write $F \dashv G$.
Remark 3.6. Fix an adjunction (F, G, η, ϵ) as in Definition 3.5. For any pair of objects $X \in \mathcal{C}$ and $Y \in \mathcal{D}$, we obtain natural isomorphisms

$$
\operatorname{Map}_{\mathcal{D}}(F X, Y) \cong \operatorname{Map}_{\mathcal{C}}(X, G Y)
$$

Indeed, given $f: F X \rightarrow Y$ in \mathcal{D}, we attach the map $\bar{f}: X \rightarrow G Y$ defined by $\bar{f}=G f \circ \eta_{X}$. Conversely, to a map $g: X \rightarrow G Y$, we attach the map $\bar{g}=\epsilon_{Y} \circ F g: F X \rightarrow Y$.

In fact, specifying natural isomorphisms $\operatorname{Map}_{\mathcal{D}}(F X, Y) \cong \operatorname{Map}_{\mathcal{C}}(X, G Y)$ leads to an equivalent definition of adjunctions

Example 3.1 (continued). There is a free-forgetful adjunction Free : Set \leftrightarrows Gp : Forget between the category of sets and the category of groups. The right adjoint Forget sends a group to its underlying set, and the left adjoint Free builds the free group on a given set. The unit $\eta_{X}: X \rightarrow \operatorname{Forget}(\operatorname{Free}(X))$ embeds a set X into the free group generated by X. The counit $\epsilon_{G}: \operatorname{Free}(\operatorname{Forget}(G)) \rightarrow G$ takes a formal product $g_{1}^{a_{1}} \ldots g_{n}^{a_{n}}$ in the free group on the set G and computes the corresponding product $g_{1}^{a_{1}} \cdot \ldots \cdot g_{n}^{a_{n}}$ in the group G.

We note that the endofunctor $T_{\mathrm{Gp}}:$ Set \rightarrow Set defined above is equal to the composite Forget \circ Free. The transformation id $\mathrm{Set} \rightarrow T_{\mathrm{Gp}}$ agrees with the unit η of the adjunction, and the monad multiplication $\mu: T_{\mathrm{Gp}} \circ T_{\mathrm{Gp}} \rightarrow T_{\mathrm{Gp}}$ is given by $G \epsilon_{F}: G F G F \rightarrow G F$.

The functor $\mathrm{Gp} \rightarrow \mathrm{Alg}_{T_{\mathrm{Gp}}}$ (Set) sending a group G to the $T_{\mathrm{Gp}^{2}}$-algebra

$$
\left(\operatorname{Forget}(G), T_{\mathrm{Gp}}(\operatorname{Forget}(G)) \xrightarrow{\operatorname{Forget}\left(\epsilon_{G}\right)} \operatorname{Forget}(G)\right)
$$

gives the equivalence between groups and T_{Gp}-algebras mentioned above.
Indeed, we obtain a monad for every adjunction:
Exercise 3.7 (Monads from adjunctions). Given an adjunction $F: \mathcal{C} \leftrightarrows \mathcal{D}: G$ with unit $\eta: \operatorname{id}_{\mathcal{C}} \rightarrow G F$ and counit $\epsilon: F G \rightarrow \operatorname{id}_{\mathcal{D}}$, show that the endofunctor $T=G F$ is equipped with the structure of a monad with unit $\eta: \mathrm{id}_{\mathcal{C}} \rightarrow G F$ and multiplication $G \epsilon_{F}: T \circ T \rightarrow T$.

Exercise 3.8. Show that all monads in Exercise 3.4 are induced by corresponding forgetfulfree adjunctions.

Exercise 3.9. Given a monad T on a category \mathcal{C}, consider the functor Free ${ }_{T}: \mathcal{C} \rightarrow \operatorname{Alg}_{T}(\mathcal{C})$ sending an object $X \in \mathcal{C}$ to the T-algebra $\left(T X, T(T(X)) \xrightarrow{\mu_{X}} T(X)\right)$.
a) Prove that Free_{T} is a left adjoint to the forgetful functor $\operatorname{Forget}_{T}: \operatorname{Alg}_{T}(\mathcal{C}) \rightarrow \mathcal{C}$.
b) Verify that the adjunction $\mathrm{Free}_{T} \dashv$ Forget $_{T}$ induces the monad T.

This implies the interesting fact that any monad is induced by an adjunction.
Notation 3.10. We will usually denote the free T-algebra on an object $X \in \mathcal{C}$ by $T(X)$ instead of $\mathrm{Free}_{T}(X)$. Moreover, we will often drop the functor Forget $_{T}$ from our notation.

If $T=G F$ is a monad obtained from an adjunction $F \dashv G$, we always obtain a functor

$$
\widetilde{G}: \mathcal{D} \rightarrow \operatorname{Alg}_{T}(\mathcal{C})
$$

sending an object $X \in \mathcal{D}$ to the T-algebra $\left(G(X), T(G(X)) \xrightarrow{G\left(\epsilon_{X}\right)} G(X)\right)$.
Definition 3.11. The adjunction $F \dashv G$ is monadic if $\widetilde{G}: \mathcal{D} \rightarrow \operatorname{Alg}_{T}(\mathcal{C})$ is an equivalence.
In the case of groups, we have seen in Example 3.1 that the forgetful-free adjunction is monadic (thereby giving an alternative definition of groups as T_{Gp}-algebras).

However, not all adjunctions share this desirable property:
Exercise 3.12 (A non-monadic adjunction). There is an adjunction F : Set $\rightleftarrows \mathrm{Top}: G$ between sets and topological spaces: the right adjoint G sends a space to its underlying set of points; the left adjoint F equips a set with the discrete topology.

Show that this adjunction is not monadic. Hint: what does G do to isomorphisms?
3.3. Morita theory as an adjunction. We return to our toy example of Proposition 2.1 from last lecture, where we fixed a ring R and a compact projective generator $Q \in \operatorname{Mod}_{R}^{\ominus}$.

We can now give a purely categorical construction of the category Mod_{S} and the functor $\widetilde{G}: \operatorname{Mod}_{R}^{\ominus} \rightarrow \operatorname{Mod}_{S}^{\ominus}$ for $S=\operatorname{End}_{R}(Q)^{o p}$, as desired.

To this end, observe that the tensor-hom-adjunction

$$
Q \otimes(-): \operatorname{Mod}_{\mathbb{Z}}^{\varrho} \leftrightarrows \operatorname{Mod}_{R}^{\varrho}: \operatorname{Map}_{R}(Q,-)
$$

induces a monad T on $\mathrm{Ab} \cong \operatorname{Mod}_{\mathbb{Z}}^{\infty}$ sending M to $\operatorname{Map}_{R}(Q, Q \otimes M)$. Hence $T(\mathbb{Z})=\operatorname{End}_{R}(Q)$.
In fact, we can use the conditions on Q to identify the endofunctor T more explicitly. Since the right adjoint $G=\operatorname{Map}_{R}(Q,-)$ preserves biproducts, filtered colimits, and reflexive coequalisers, it must preserve small colimits. As this is also true for the left adjoint $Q \otimes(-)$, we deduce that the monad $T: \mathrm{Ab} \rightarrow \mathrm{Ab}$ preserves small colimits.

Exercise 3.13. Use Exercise 1.3 from Lecture 1 to identify $\operatorname{Alg}_{T}(\mathrm{Ab})$ with the category of left modules Mod_{S} over the ring $S=\operatorname{End}_{R}(Q)^{o p}$.
3.4. The Barr-Beck theorem. To prove Proposition 2.1 from last class, we are therefore reduced to showing that the tensor-hom-adjunction $Q \otimes(-): \operatorname{Mod}_{\mathbb{Z}}^{\infty} \leftrightarrows \operatorname{Mod}_{R}^{\infty}: \operatorname{Map}_{R}(Q,-)$ is monadic. This follows from the following much more general and important result:
Theorem 3.14 (Barr-Beck theorem, crude version).
Assume that an adjunction $F: \mathcal{C} \leftrightarrows \mathcal{D}: G$ satisfies the following two properties:
a) \mathcal{D} admits and G preserves reflexive coequalisers;
b) G is conservative (i.e. reflects isomorphisms).

Then $(F \dashv G)$ is monadic (cf. Definition 3.11), i.e. $\widetilde{G}: \mathcal{D} \xrightarrow{\cong} \operatorname{Alg}_{T}(\mathcal{C})$ is an equivalence.
For the proof, we will need two slightly different notions of coequalisers. First, we recall:
Definition 3.15 (Reflexive coequaliser). A reflexive pair in a category \mathcal{C} is a diagram consisting of two arrows $d_{0}, d_{1}: X_{1} \rightrightarrows X_{0}$ and a common section $s: X_{0} \rightarrow X_{1}$:

A reflexive coequaliser is the colimit of a reflexive pair; it agrees with the coequaliser of d_{0}, d_{1}.
We need a second notion of coequaliser, which looks similar, but is in fact quite different:
Definition 3.16 (Split coequaliser). Two parallel arrows $d_{0}, d_{1}: X_{1} \rightrightarrows X_{0}$ in a category \mathcal{C} are called a split pair if there exist arrows

$$
h: X_{0} \rightarrow X_{-1}, \quad s: X_{-1} \rightarrow X_{0}, \quad t: X_{0} \rightarrow X_{1}
$$

satisfying the following identities:

$$
h d_{0}=h d_{1} \quad h s=\operatorname{id}_{X_{-1}} \quad d_{0} t=\mathrm{id}_{X_{0}} \quad d_{1} t=s h
$$

Exercise 3.17. Show that in the situation of Definition $3.16, X_{1} \rightrightarrows X_{0} \rightarrow X_{-1}$ is a coequaliser. Deduce that it is preserved by any functor - we call this an absolute colimit.

Using split coequalisers, we can build canonical free resolutions of algebras over monads:
Proposition 3.18 (Free resolutions). Fix a monad T on a category \mathcal{C} and a T-algebra $(A, \alpha: T(A) \rightarrow A)$. The following diagram of T-algebras is a coequaliser in $\operatorname{Alg}_{T}(\mathcal{C})$:

$$
\begin{equation*}
T(T(A)) \xrightarrow[\mu_{A}]{\xrightarrow{T(\alpha)}} T(A) \xrightarrow{\alpha} A \tag{2}
\end{equation*}
$$

Here, we have used the free functor $\mathcal{C} \rightarrow \operatorname{Alg}_{T}(\mathcal{C})$ from Exercise 3.9 (using Notation 3.10), which sends an object $X \in \mathcal{C}$ to the free T-algebra $\left(T(X), T(T(X)) \xrightarrow{\mu_{X}} T(X)\right)$ on X.
Proof. Observe that after applying the forgetful functor $\operatorname{Alg}_{T}(\mathcal{C}) \rightarrow \mathcal{C}$, the above diagram is part of a split coequaliser with maps $s=\eta_{A}: A \rightarrow T(A)$ and $t=\eta_{T(A)}: T(A) \rightarrow T(T(A))$.

To verify that (2) is also a coequaliser in $\operatorname{Alg}_{T}(\mathcal{C})$, assume we are given a T-algebra $(B, \beta: T(B) \rightarrow B)$ together with a map of T-algebras $f: T A \rightarrow B$ with $f \circ T(\alpha)=f \circ \mu_{A}$. By Exercise 3.17, there is a unique $g=f \circ \eta_{A}$ in \mathcal{C} such that the following triangle commutes:

Hence, it suffices to check that g is a map of T-algebras, which follows from the computation

$$
\beta \circ T f \circ T\left(\eta_{A}\right)=f \circ \mu_{A} \circ T\left(\eta_{A}\right)=f=f \circ \mu_{A} \circ \eta_{T A}=f \circ T(\alpha) \circ \eta_{T A}=\left(f \circ \eta_{A}\right) \circ \alpha
$$

Here, we have used that f is a map of T-algebras, the monad axioms for T, and the naturality of η.

With these free resolutions at our disposal, we can now prove the Barr-Beck theorem.
Proof of Theorem 3.14. We proceed in three main steps.
Step 1: Left adjoint \widetilde{F} to \widetilde{G}.
We have a commuting triangle

where both G and Forget $_{T}$ admit left adjoints (cf. Exercise 3.9).
As left adjoints of commuting right adjoints commute, we know that if \widetilde{G} admits a left adjoint \widetilde{F}, then its value on free T-algebras must be given by $\widetilde{F}(T(X))=F(X)$.

Since left adjoints also preserve small colimits, Proposition 3.18 motivates us to define the value of \widetilde{F} on a general T-algebra (A, α) as the following coequaliser in \mathcal{D} :

$$
\begin{equation*}
F(T(A)) \xrightarrow[\epsilon_{F A}]{\stackrel{F(\alpha)}{\longrightarrow}} F(A) \xrightarrow{\theta} \widetilde{F}(A) \tag{3}
\end{equation*}
$$

This makes sense as $F(T(A)) \xrightarrow[\epsilon_{F A}]{F(\alpha)} F(A)$ is a reflexive pair in \mathcal{D} with common section $F \eta_{A}$. One easily extends this definition to morphisms of T-algebras.

To verify that \widetilde{F} is indeed left adjoint to \widetilde{G}, we make the following computation:

$$
\begin{aligned}
& \frac{\widetilde{F}(A, \alpha) \rightarrow B}{F A \xrightarrow{f} B \text { s.t. } f \circ F(\alpha)=f \circ \epsilon_{F A}} \\
& \frac{A \xrightarrow{\bar{f}} B \text { s.t. } \bar{f} \circ \alpha=G\left(\epsilon_{B}\right) G(F \bar{f})}{(A, \alpha) \rightarrow \widetilde{G}(B)=\left(G B, G \epsilon_{B}\right) .}
\end{aligned}
$$

In the second step, we have used that $\bar{f} \circ \alpha=\overline{f \circ F(\alpha)}=\overline{f \circ \epsilon_{F A}} \stackrel{3)}{=} G(f) \stackrel{4)}{=} G\left(\epsilon_{B}\right) G(F(\bar{f}))$. Here $\overline{()}$ denotes the adjoint bijection on morphisms introduced in Remark 3.6. The first two equalities are straightforward; equalities 3) and 4) follow from the commutative diagrams
3)

4)

Step 2: The unit $\operatorname{id}_{\operatorname{Alg}_{T}(\mathcal{C})} \rightarrow \widetilde{F} \circ \widetilde{G}$ is an equivalence.
Given $(A, \alpha) \in \operatorname{Alg}_{T}(\mathcal{C})$, we have a reflexive coequaliser $F(T(A)) \xrightarrow[\epsilon_{F A}]{\stackrel{F(\alpha)}{\longrightarrow}} F(A) \xrightarrow{\theta} \widetilde{F}(A)$.
Using that G preserves reflexive coequalisers, we obtain another coequaliser diagram

$$
G F(G F(A)) \xrightarrow[G \epsilon_{F A}]{G F(\alpha)} G F(A) \xrightarrow{G \theta} G \widetilde{F}(A)
$$

As in the proof of Proposition 3.18, the following diagram admits a splitting:

$$
G F(G F(A)) \xrightarrow[G \epsilon_{F A}]{\xrightarrow{G F(\alpha)}} G F(A) \xrightarrow{\alpha} A
$$

Hence, we have computed the coequaliser of $G F(G F(A)) \xrightarrow[G \epsilon_{F A}]{G F(\alpha)} G F(A)$ in two ways, and obtain an isomorphism

We can therefore identify A with $G \widetilde{F}(A, \alpha)$.

Next, we check that $G \epsilon_{\widetilde{F}(A, \alpha)}=\alpha$. Since $\alpha=G \theta$, it suffices to check that $\epsilon_{\widetilde{F}(A, \alpha)}=\theta$. This follows from the following computation:

$$
\theta=\theta \circ F \alpha \circ F \eta_{A}=\theta \circ \epsilon_{F A} \circ F \eta_{A}=\epsilon_{\widetilde{F}(A, \alpha)} \circ F G(\theta) \circ F \eta_{A}=\epsilon_{\widetilde{F}(A, \alpha)}
$$

In the first and last step, we used the algebra axiom for (A, α), in the second the adjunction axiom relating unit and counit, in the third a naturality square for ϵ.

Altogether, we have verified that $\widetilde{G}(\widetilde{F}(A, \alpha))=\left(G \widetilde{F}(A, \alpha), G \epsilon_{\widetilde{F}(A, \alpha)}\right) \cong(A, \alpha)$.
Step 3: The counit $\widetilde{G} \circ \widetilde{F} \rightarrow \mathrm{id}_{\mathcal{D}}$ is an equivalence.
By definition, we have a coequaliser diagram computing $\widetilde{F}(\widetilde{G}(B))$:

$$
\begin{equation*}
F G F G B \xrightarrow[\epsilon_{F G B}]{\stackrel{F G \epsilon_{B}}{ }} F G B \xrightarrow{\theta} \widetilde{F}(\widetilde{G}(B)) \tag{4}
\end{equation*}
$$

By the universal property, the map $\epsilon_{B}: F G B \rightarrow B$ induces a map $\tau: \widetilde{F}(\widetilde{G}(B)) \rightarrow B$.
Applying the functor G to the entire situation, we obtain a diagram

The top line is a coequaliser as G preserves reflexive coequalisers. The diagram

$$
G F G F G B \xrightarrow[G \epsilon_{F G B}]{\stackrel{G F G \epsilon_{B}}{\longrightarrow}} G F G B \rightarrow G B
$$

is a split coequaliser (cf. Proposition 3.18). Together, these facts imply that the map $G \widetilde{F}(\widetilde{G}(B)) \rightarrow G B$ is an isomorphism, which shows that $\widetilde{F}(\widetilde{G}(B)) \cong B$ as G is conservative.

In fact, we have almost proven a sharp version of the Barr-Beck theorem. To state it, we need the following notion:
Definition 3.19. Given a functor $G: \mathcal{D} \rightarrow \mathcal{C}$, a parallel pair $d_{0}, d_{1}: X_{1} \rightrightarrows X_{0}$ is said to be G-split if $G\left(d_{0}\right), G\left(d_{1}\right): X_{1} \rightrightarrows X_{0}$ is a split pair in the sense of Definition 3.16.

We can now state the desired refinement:
Theorem 3.20 (Barr-Beck theorem, precise version).
An adjunction $F: \mathcal{C} \leftrightarrows \mathcal{D}: G$ is monadic if and only if it has the following two properties:
a) \mathcal{D} admits and G preserves coequalisers of G-split pairs; this means that whenever a pair $d_{0}, d_{1}: X_{1} \rightrightarrows X_{0}$ has the property that $G\left(X_{1}\right), G\left(X_{0}\right): G\left(X_{1}\right) \rightrightarrows G\left(X_{0}\right)$ is part of a split coequaliser diagram, then $d_{0}, d_{1}: X_{1} \rightrightarrows X_{0}$ admits a colimit, which G preserves.
b) G is conservative (i.e. reflects isomorphisms).

Exercise 3.21. Taking inspiration from the proof of the crude Barr-Beck Theorem 3.14, prove Theorem 3.20 .

