
Topics in Koszul Duality, Michaelmas 2019, Oxford University

Lecture 5: The Barr–Beck–Lurie Theorem

Last week, we discussed several basic notions in higher category theory. In particular,
we introduced monoidal ∞-categories C⊛ → N(∆op

), defined the relative nerve construc-
tion (J → sSet) ↝ (NF (J)→ N(J)), and used it to equip ∞-categories of endofunctors
C = End(D) with monoidal structures. This allowed us to define monads on ∞-categories
as algebra objects in endofunctors.

Today, we will explain Lurie’s higher categorical variant of Barr–Beck’s monadicity the-
orem from Lecture 3. This generalisation is a key tool in constructing equivalences between
higher categories, and will be of great value in our later applications.

4.1. Algebras over monads. To state the monadicity theorem, we will need to define
what we mean by algebras over a monad. We will use the setup of tensored ∞-categories.

Let C⊛ → N(∆op
) be a monoidal ∞-category, written informally as (C,⊗,1).

Definition 4.1 (Tensored ∞-categories). A C-tensored ∞-category is given by a diagram

of ∞-categories M⊛ q
Ð→ C

⊛ p
Ð→ N(∆op

) satisfying the following conditions:

a) p ○ q ∶M⊛
→ N(∆op

) is a coCartesian fibration;
b) q ∶M⊛

→ C
⊛ is a categorical fibration sending (p○q)-coCartesian to p-coCartesian edges;

c) For all n, the inclusion {n} ⊂ [n] induces an equivalence M⊛
[n]

≃
Ð→ C

⊛
[n] ×M

⊛
{n}.

We say that the ∞-categoryM ∶=M
⊛
[0] is equipped with a C-tensored structure, written ⊗.

Informally, elements ofM⊛
[n] correspond to tuples (c1, c2, . . . , cn,m) with ci ∈ C, m ∈M;

we think of the ci’s as labels of the bullets and m as a label of the +. The (p○q)-coCartesian
lifts tensor according to the arrows; for example, the coCartesian lift of the morphism

− ● ● ● ● ● ● +

−

∨>

● ●

>

● ●

∨>>
+

∨<

starting at a tuple (c1, c2, c3, c4, c5, c6,m) ends at the tuple (1, c2,1, c3 ⊗ c4 ⊗ c5, c6⊗m).

Example 4.2. Any ∞-categoryM = D is naturally tensored over the monoidal ∞-category
C = End(D), where the tensoring evaluates functors on objects.

To formally construct this tensored structure, observe that the simplicial set M = D is
equipped with an action by the simplicial monoid C = End(D).

We obtain the diagram N(∆op
) ×∆1

→ sSet drawn below.

. . . C × C ×M

��

//

//
// C ×Moo

oo

��

//
// M

��

oo

. . . C × C

//

//
// Coo

oo //
// [0]oo

1

2

Exercise. Applying the relative nerve construction to this diagram gives rise to an C =

End(D)-tensored structure on M = C.

Let C⊛
p
Ð→ N(∆op

) be a monoidal ∞-category and M⊛ q
Ð→ C

⊛ p
Ð→ N(∆op

) be a C-tensored
∞-category. Fix an algebra object A in C, parametrised by a section s ∶ N(∆op

)→ C
⊛ of p.

Definition 4.3 (Modules). An A-module M inM consists of a section s′ ∶ N(∆op
)→M

⊛

with q○s′ = s and such that all morphisms drawn below are sent to (p ○ q)-coCartesian edges:
− . . . ● ● ● ● ● . . . ● +

−

∨>>
●

∨
●

∨
●

∨
●

∨
. . . ●

∨
+

∨

Informally, an A-module is an element M ∈M with a multiplication map A ⊗M →M
which is unital and associative up to coherent homotopy.

Definition 4.4 (Algebras over monads). Given a monad T on an ∞-category D, i.e. an
algebra object in the monoidal ∞-category End(D), a T -algebra is simply a T -module
object in the End(D)-tensored ∞-category D.

Remark 4.5. One could argue that T -algebras should be called T -modules instead, and
this notational convention is indeed implemented in [Lur07]. However, we decided against
this for higher consistency with the 1-categorical literature on monads.

4.2. A reflection on adjunctions. We wish to construct monads from adjunctions.
For ordinary categories, this was straightforward: given an an adjunction F ∶ C ⇆ D ∶ G

with unit η and counit ε, the triple (T = GF, GεF ∶ TT → T, η ∶ idC → T) evidently satisfies
the axioms of a monad (cf. Definition 3.2 of Lecture 3).

The corresponding construction for ∞-categories is more complicated, as we must supply
an infinite amount of coherence data to specify a monad.

Adjunctions of ∞-categories can be defined in several ways:

a) Most efficiently, we can define an adjunction as a functor F ∶ C → D for which the cor-
responding coCartesian fibrationM→ N(∆1

) has the property of also being Cartesian.

b) Slightly less efficiently, we could also specify both functors F ∶ C → D and G ∶ D → C.
However, this datum alone is overdetermined. To fix this, we must specify a unit natural
transformation u ∶ idC → GF verifying that F andG are indeed adjoint, which means that

MapD(FX,Y)→MapC(GFX,GY)
u○−
ÐÐ→MapC(X,GY) is a weak equivalence for all X,Y .

c) Even less efficiently, we could also specify two functors F ∶ C → D, G ∶ D → C and two
natural transformations η ∶ idC → GF, ε ∶ FG → idD satisfying the natural conditions
for a unit and counit. Again, this quadruple alone would be overdetermined, which we
can fix by also specifying a 2-simplex ∆2

→ Fun(C,D):

F
Fη
> FGF

F

εF
∨>

3

d) . . .

Continuing in this fashion, we obtain infinitely many definitions of what an adjunction
is; one can prove that all these notions are equivalent up to a contractible space of choices.

Exercise 4.6. Given a functor F ∶ C → D as in a) above, construct a functor G ∶ D → C

and a natural transformation u ∶ idC → GF satisfying the confitions specified in b).

For most applications, the most economical definition a) is entirely sufficient. However,
the infinitely many coherences required for a monad force us to use the “least” efficient
definition of adjunctions, which we will explain in the following sections.

4.3. The (∞,2)-category {C,D}. Given an ∞-category C, we have constructed a monoidal
structure End(C)⊛ → N(∆op

) on End(C) in Definition 4.36 of the preceeding lecture.
Shifting perspective, we may think of End(C) as a model for the full subcategory {C} of the

(∞,2)-category of (∞,1)-categories and (not necessarily invertible) natural transformations.
To construct monads from adjunctions, we will need a similar description of the full sub-

category {C,D} spanned by two ∞-categories C,D. To this end, we proceed in three steps:

a) Define a labelled version ∆op
{C,D} of ∆op. We have seen that ∆op is modelled by diagrams

[n] = (− ● ● . . . ● +),

with morphisms corresponding to order-preserving maps sending − to − and + to +.

The objects of ∆op
{C,D} are given by such diagrams with gaps labelled by either the

symbol C or the symbol D. For example, we have the following object:

(− C ● C ● D ● D ● C ● D +),

More formally, objects of ∆op
{C,D} are given by pairs ([n] ∈ ∆op, c ∶ [n] → {C,D}).

Morphisms in ∆op
{C,D} are order-preserving maps sending − to − and + to +, which have

the additional property that all gaps between two arrows carry the same label:

(1)

− C ● D ● C ● C ● D ● D ● C +

−

∨>

D ● D ●

>

C ● C ●

∨>>
D +

∨ <

b) Define a functor F ∶ ∆op
{C,D} → sSet. On objects, we define

(− c0 ● c1 ● . . . ● cn−1 ● cn +) ↦ Fun(c0, c1) × . . . × Fun(cn−1, cn).

On morphisms, this functor is defined by composing functors and inserting the identi-
ties as dictated from the arrows. For example, the morphism (1) above sends an element

(C
F0
Ð→ D

F1
Ð→ C

F2
Ð→ C

F3
Ð→ D

F4
Ð→ D

F5
Ð→ C) to the element (D

idD
ÐÐ→ D

F1
Ð→ C

idC
ÐÐ→ C

F4○F3○F2
ÐÐÐÐÐ→ D).

c) Unstraighten. We apply the relative nerve construction introduced in Definition 4.28
of last class to obtain a coCartesian fibration p ∶ End(C,D)

⊛
→ N(∆op

{C,D}).

4

This construction will allow us access all functors between C and D, and all natural trans-
formation between such functors, in an effective way.

4.4. Adjunction data. We can now keep track of all higher coherence data of adjunctions.
We need the following auxiliary definition:

Definition 4.7. A morphism ([n], c)→ ([m], d) is said to be C-inert if any C-label in the
domain ([n], c) sits in one of the following five configurations:

− C ● . . .

−

∨ <

. . .

. . . ● C ● . . .

. . . −

∨ <

. . .

. . . ● C ● . . .

. . . ●

∨
C ●

∨
. . .

. . . ● C ● . . .

. . . +

∨>
. . . ● C +

. . . +

∨>

Definition 4.8 (Adjunction data). An adjunction datum for a pair of ∞-categories (C,D)

consists of a section s ∶ N(∆op
{C,D}) → End(C,D)

⊛ of p ∶ End(C,D)
⊛
→ N(∆op

{C,D}) sending

C-inert morphisms to p-coCartesian edges. Write Adj(C,D) for the full subcategory of
FunN(∆op

{C,D})
(N(∆op

{C,D}),End(C,D)
⊛
) spanned by such sections.

We now unravel the information contained in an adjunction datum N(∆op
{C,D})

s
Ð→ End(C,D)

⊛.

● First, define two functors F ∶= s (− C ● D +) and G ∶= s (− D ● C +);
these will serve as left and right adjoint, respectively.

● Next, define two endofunctors T ∶= s (− C ● C +) and ι ∶= s (− D ● D +);
while T will be the monad induced by the adjunction, ι will just be a version of idD.

● We obtain a natural transformation idC → T from the following morphism:

− C +

−

<

C ● C +

>

● We obtain a natural equivalence idC
≃
ÐÐ→ ι from the following C-inert morphism:

− D +

−

<

D ● D +

>

● The triangle s (− C ● D ● C +) gives two functors F ′
∶ C → D and G′

∶ D → C.

Exercise. Use C-inert morphisms to produce equivalences F ′
≃ F , G′

≃ G, G′F ′
≃ T .

● The triangle s (− D ● C ● D +) gives functors G′′
∶ D → C and F ′′

∶ C → D.

Exercise. Use C-inert morphisms to produce equivalences F ′′
≃ F , G′′

≃ G, and
find a non-C-inert morphism inducing a natural transformation ε ∶ F ′′G′′

→ idD;
this will be the counit.

5

We have produced functors F,G and natural transformations η ∶ idC → GF , ε ∶ FG→ idD.
A more elaborate argument, which appears as [Lur07, Lemma 3.2.9], then shows that these
satisfy the axioms of an adjunction between the homotopy categories hC and hD.

4.5. The Barr–Beck–Lurie theorem. Fix two ∞-categories C and D, and consider the
following maximally efficient definition of adjunctions:

Definition 4.9. A functor F ∶ C → D is a left adjoint if the corresponding coCartesian
fibration over ∆1 is also Cartesian. Write Fun′(C,D) ⊂ Fun(C,D) for the subcategory
whose objects are left adjoints and whose morphisms are natural equivalences.

It is not hard to show that any adjunction datum s ∈ Adj(C,D) determines a left adjoint
s(−C ●D+), and we can ask how much information is lost in this process. The following
hard theorem of Lurie (cf. [Lur07, Theorem 3.2.10]) shows that the infinitely many higher
coherences present in an adjunction datum can be added in an essentially unique way:

Theorem 4.10 (Adjunction data from adjunctions). Evaluation gives a trivial Kan fibration

Adj(C,D)→ Fun′(C,D)

s ↦ s(−C ●D+)

Now let F ∶ C → D be a left adjoint. Using Theorem 4.10 above, we pick a preimage
s ∈ Adj(C,D) from a contractible space. Write G = s(−D ● C+) for the corresponding
right adjoint. Restricting s to the full subcategory N(∆op

) ≃ N(∆op
C) of all diagrams

(− C ● . . . ● C +) labelled only by C gives rise to an algebra object T in End(C).

Just like in the 1-categorical case discussed in Lecture 3, we can construct a diagram

D
G̃

> AlgT (C)

C

U

∨G
>

For a formal construction of the functor G̃, we refer to [Lur07, Section 3.3].
We are finally ready to state the ∞-categorical monadicity theorem:

Theorem 4.11 (Barr–Beck–Lurie, crude version). Assume that

(1) D admits and G preserves geometric realisations, i.e. N(∆op
)-shaped colimits;

(2) G is conservative, i.e. if G(f) is an equivalence in C, then so is f in D.

Then the functor G̃ ∶ D
≃
Ð→ AlgT (C) is an equivalence of ∞-categories.

In this higher categorical result, geometric realisations play an analogous role to the
reflexive coequalisers appearing in the ordinary crude Barr–Beck theorem.

To give a sharp criterion, we need a higher categorical generalisation of split coequalisers.
To this end, we introduce the following enlargement of the simplex category:

6

Definition 4.12. The category ∆−∞ has objects the finite linearly ordered sets

[−1] = { } , [0] = {0} , [1] = {0 < 1} , [2] = {0 < 1 < 2} ,

Morphisms [n]→ [m] are given by order-preserving maps [n]∪{−∞}→ [m]∪{−∞} which
send −∞ to −∞; here −∞ is defined as the least element.

Exercise 4.13.

a) Exhibit the simplex category ∆ and the augmented simplex category ∆+ as subcate-
gories of ∆−∞.

b) Show that any ∆−∞-indexed diagram in an ordinary category gives a split coequaliser.

Definition 4.14 (Split simplicial objects).

a) A simplicial object X ∶ N(∆op
)→ C in an ∞-category C is split if it extends to N(∆op

−∞).
b) Given a functor G ∶ D → C, a simplicial object X ∶ N(∆op

) → D is said to be G-split if
the simplicial object G ○X ∶ N(∆op

)→ C is split.

Remark 4.15. If X is a split simplicial diagram, then the restriction of X to ∆+ is a
colimit diagram; in other words, X([−1]) is the geometric realisation of X ∣N(∆op).

Theorem 4.16 (Barr–Beck–Lurie, precise version). Given a left adjoint F ∶ C → D as
above, the induced functor D → AlgT (C) is an equivalence if and only if the following
conditions hold:

(1) D admits and G preserves colimits of G-split simplicial diagrams in D;
(2) G is conservative.

In practical applications, (1) is usually much harder to check than (2). In the next
weeks, we will give several concrete applications of this result.

7

References

[Lur07] Jacob Lurie, Derived algebraic geometry II: Noncommutative algebra, Preprint from the author’s
web page (2007).

	Lecture 5: The Barr–Beck–Lurie Theorem
	4.1. Algebras over monads
	4.2. A reflection on adjunctions
	4.3. The (,2)-category {C,D}
	4.4. Adjunction data
	4.5. The Barr–Beck–Lurie theorem

	References

