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Lecture 7: Koszul Duality for Algebras

Using the Barr–Beck–Lurie theorem, we have proven that if A is a small differential
graded algebra over a field k (cf. Definition 6.18 in Lecture 6), then there is an equivalence

Ind(CohA) ≃ ModD(A)op .

Here D(A) ≃ RHomA(k, k) is the Koszul dual of A, which satisfies π∗(D(A)) ≅ Ext∗A(k, k).
Today, we will single out a certain property of algebras known as the Koszul property.

It is often satisfied in practice, and makes the computation of D(A) extremely simple.

7.1. The Koszul property. Let A be an augmented differential graded k-algebra with
vanishing differentials, i.e. a homologically graded augmented k-algebra. SetA = ker(A→ k).

Writing TM =⊕
n≥0

M⊗n, we consider the complex of graded A-modules

B(A) = Bar(k,A, k) = (T (A), d),
where d([a1∣ . . . ∣an]) = ∑ni=2(−1)εi[a1∣ . . . ∣ai−1ai∣ . . . ∣an] with εi = (∣a1∣ + 1) + . . . + (∣ai−1∣ + 1).

An element [a1∣ . . . ∣an] ∈ (A⊗n)i = Barn(k,A, k)i lies in “internal degree” i = ∣a1∣+. . .+∣an∣.
Write TorA∗ (k, k)∗ for the bigraded A-module given by the homology of B(A).

Remark 7.1. The chain complex B(A) = k ⊗LA k ∈ ModA is obtained from the above
chain complex of graded A-modules B(A) by placing [a1∣ . . . ∣an] in homological degree
(∣a1∣ + 1) + . . . + (∣an∣ + 1). Note the different fonts for B and B.

The key observation is that many algebras A as above admit an additional Adams grading
indexed by the naturals. Write Ai[w] for the component in homological degree i and Adams
degree w, and assume that the augmentation induces an isomorphism A∗[0] ≅ k.

The Bar construction then picks up a third grading satisfying

B(A)n[w]∗ = ⊕
w1+...+wn=w

(A[w1]⊗ . . .⊗A[wn])∗,

Hence, we obtain a chain complex of bigraded A-modules.

. . . > 0 > B(A)3[3]∗ > B(A)2[3]∗ > B(A)1[3]∗ > 0

. . . > 0 > 0 > B(A)2[2]∗ > B(A)1[2]∗ > 0

. . . > 0 > 0 > 0 > B(A)1[1]∗ > 0

. . . > 0 > 0 > 0 > 0 > k

Write TorAn (k, k)[w]i = πn(B(A)[w]i) for the component in homological degree n, internal
degree i, and Adams degree w of the corresponding decomposition in homology.

Remark 7.2. More conceptually, TorAn (k, k)∗[∗] is the nth left derived functor of k⊗A (−)
on the abelian category of bigraded A-modules. This allows us to use other resolutions of k.
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From the Bar resolution above, it is clear that TorAn (k, k)∗[w] vanishes whenever n > w.
The following definition of Priddy asserts that vanishing also occurs for all n < w:

Definition 7.3. Let A be an augmented k-algebra with a homological grading and an
Adams grading as above. A is said to be Koszul if for all n ≠ w, we have

TorAn (k, k)∗[w] = ker(B(A)n[w]∗ → B(A)n−1[w]∗)/ im(B(A)n+1[w]∗ → B(A)n[w]∗) = 0

Warning 7.4. In his original work [Pri70], Priddy calls these homogeneous Koszul algebras.

For simplicity, we will assume from now on that our ground field k satisfies char(k) ≠ 2.

Definition 7.5 (Polynomial and exterior algebras). If x1, . . . , xn are generators in Adams
degree 1 and arbitrary homological degree, we define

k[x1, . . . , xn] ∶= T (x1, . . . , xn)/(xi ⊗ xj − xj ⊗ xi);

E[x1, . . . , xn] ∶= T (x1, . . . , xn)/(xi ⊗ xj + xj ⊗ xi).

As we have not imposed the Koszul sign rule, k[x1, . . . , xn] need not be graded-commutative.

Before studying Koszul algebras in more detail, we give several simple examples.

Example 7.6. Consider A = k[x] generated in Adams degree 1 and homological degree a.
We use the following bigraded resolution of the A-module k:

. . .→ 0→ Σak[x][+1] 1↦xÐÐ→ k[x]→ 0→ . . . .

Here [+1] denotes a shift by 1 in Adams grading and Σa is a shift by a in homological grading.

Applying k ⊗k[x] (−), we obtain . . .→ 0→ Σak[+1] 0Ð→ k → 0→ 0→ . . .. Hence A is Koszul.

Example 7.7. Consider the exterior algebra A = E[ε] = k[ε]/ε2 on a generator in homo-
logical degree b and Adams degree 1. The bigraded A-module k admits a resolution

. . .→ Σ2b(k[ε]/ε2)[+2] 1↦εÐÐ→ Σb(k[ε]/ε2)[+1] 1↦εÐÐ→ k[ε]/ε2.

Applying k ⊗A (−) gives . . .→ Σ2bk[+2] 0Ð→ Σbk[+1] 0Ð→ k → 0→ . . ., hence A is Koszul.

Exercise 7.8.

a) Show that if A, A′ are Koszul algebras, then so is A⊗A′.
b) Given generators x1, . . . , xn in Adams degree 1 and arbitrary homological degree, show

that both k[x1, . . . , xn] and E[x1, . . . , xn] are Koszul.

Exercise 7.9. Prove directly that the following algebras in homological degree 0 are Koszul:

(1) The polynomial algebra k[x, y] with x, y in Adams degree 1.
(2) The exterior algebra E(x, y) with x, y in Adams degree 1.
(3) The quantum algebra A = T (x, y)/(x⊗y−qy⊗x) for any fixed nonzero scalar q ∈ k×.
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7.2. Quadratic generation. We will prove that all Koszul algebras are of the following type:

Definition 7.10 (Quadratic algebras). Given a graded k-vector space V and a homoge-
neous subspace R ⊂ V ⊗ V , we define the following augmented k-algebra:

T (V ;R) = T (V )/⟨R⟩.

Here ⟨R⟩ denotes the two-sided ideal generated by the subspace R. The algebra T (V ;R)
inherits a homological grading and an Adams grading, as the space of relations R ⊂ V ⊗V
is homogeneous for both the homological and the Adams grading on T (V ).

An augmented bigraded k-algebra A is quadratic if A ≅ T (V ;R) for some V,R ⊂ V ⊗ V .

Proposition 7.11. Every Koszul algebra is quadratic.

Proof. We will prove this result in two steps (following an argument presented in [Rez12]).

Given w > 1, the assumption TorA1 (k, k)[w]∗ = 0 implies that the following map is surjective:

B(A)2[w]∗ = ⊕
w1+w2=w

(A[w1]⊗A[w2])∗ ÐÐÐ→ A[w]∗ = B(A)1[w]∗.

Hence A is generated in Adams degree 1. Applying Bar(−) to the surjection T (A[1])
f
Ð→ A

and taking the kernel gives an exact sequence of complexes of bigraded A-modules:

(1) 0→K → Bar(T (A[1]))→ Bar(A)→ 0.

In degree 1 of this chain complex, our sequence is given by 0 → K1 → T (A[1]) → A → 0.
To prove the result, it suffices to show that the following map is surjective for all w > 2:

(2) ⊕
w1+w2=w

(K[w1]⊗A[1]⊗w2 ⊕A[1]⊗w1 ⊗K[w2])Ð→K1[w].

Indeed, let us restrict attention to degree 1 and degree 2 of the chain complexes in (1):

0 > K2[w] > ⊕
w1+w2=w

A[1]⊗w1 ⊗A[1]⊗w2
f⊗f

> ⊕
w1+w2=w

A[w1]⊗A[w2]

0 > K1[w]

δ

∨
> A[1]⊗w

∨
f

> A[w]
∨

Consider the natural map

⊕
w1+w2=w

((K1[w1]⊗A[1]⊗w2)⊕ (A[1]⊗j1 ⊗K1[w2]))
β

ÐÐÐÐÐÐ→ ⊕
w1+w2=w

A[1]⊗w1⊗A[1]⊗w2 .

and its lift ⊕
w1+w2=w

((K1[w1]⊗A[1]⊗w2)⊕ (A[1]⊗j1 ⊗K1[w2]))
β
ÐÐ→K2[w].

The map β is surjective. Indeed, for any decompositions w = w1+w2, we tensor the short
exact sequences K1[w1] → A[1]⊗w1 → A[w1] and K1[w2] → A[1]⊗w2 → A[w2] to obtain a
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diagram

K1[w1]⊗K1[w2] > A[1]⊗w1 ⊗K1[w2] > A[w1]⊗K1[w2]

K1[w1]⊗A[1]⊗w2

∨
> A[1]⊗w1 ⊗A[1]⊗w2

∨
> A[w1]⊗A[1]⊗w2

∨

K1[w1]⊗A[w2]
∨

> A[1]⊗w1 ⊗A[w2]
∨

> A[w1]⊗A[w2]
∨

Since k-vector spaces are flat, all columns and rows are exact. A diagram chase shows that

(K1[w1]⊗A[1]⊗w2)⊕ (A[1]⊗w1 ⊗K1[w2])Ð→ ker(A[1]⊗w1 ⊗A[1]⊗w2 → A[w1]⊗A[w2])
is surjective, which implies that the map β is surjective as well.

As H∗(Bar(k, T (A[1]), k)[w]∗) = Tor
T (A[1])
∗ (k, k)∗[w] = 0 for all w > 1, the homology

long exact sequence induced by (1) shows thatH1(K●[w]) ≅ TorA2 (k, k)∗[w] = 0 for all w > 2.

As K0[w] = 0, this implies that K2[w] δÐ→ K1[w] is surjective for all w > 2, and hence

⊕
w1+w2=w

((K1[w1]⊗A[1]⊗w2)⊕ (A[1]⊗w1 ⊗K1[w2]))
δ○β
ÐÐÐ→K1[w] is also surjective. �

7.3. Dualising Koszul algebras. Computing the dual of a Koszul algebra is not hard:

Theorem 7.12. Let A be a Koszul algebra with quadratic presentation A = T (V ;R).
Assume that Ai[n] and T (Σ−1V ∨; Σ−2R⊥)i are finite-dimensional for all i, n.

Then the Koszul dual is formal and given by D(A) = RHomA(k, k) ≃ T (Σ−1V ∨; Σ−2R⊥),
where V ∨ = MapModk

(V, k) and R⊥ ⊂ V ∨⊗V ∨ is spanned by all φ⊗ψ vanishing on R ⊂ V ⊗V .

Proof. Consider the differential graded coalgebra B(A) = (T (ΣA), d), where

d([a1∣ . . . ∣am]) =
n

∑
i=2

(−1)εi[a1∣ . . . ∣ai−1ai∣ . . . ∣am]

with εi = (∣a1∣+1)+. . .+(∣ai−1∣+1). An element [a1∣ . . . ∣an] ∈ (A⊗n)i lies in homological degree

i = ∣a1∣+. . .+∣an∣+n in B(A). Comultiplication sends [a1∣ . . . ∣am] to ∑
k

[a1∣ . . . ∣ak]⊗ [ak+1∣ . . . ∣am].

The graded differential graded coalgebra B(A) ≃⊕
w

B(A)[w] can be dualised in two ways:

(1) Applying MapModk
(−, k) gives the differential graded k-algebra D(A) = B(A)∨;

(2) Taking the Adams-graded dual gives an Adams-graded differential graded k-algebra
with

DGr(A)[n] ∶= MapModk
(B(A)[n], k).

These are related by a multiplicative comparison map ⊕
w

DGr(A)[w]→D(A) given by

(3) ⊕
w

B(A)[w]∨ Ð→∏
w

B(A)[w]∨ ≃ B(A)∨.
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We begin by computing ⊕
w

B(A)[w]∨. Dualising the maps

TorAn (k, k)[n]∗−n ≅ ker (B(A)n[n]∗−n ↪ B(A)n−1[n]∗−n)Ð→ B(A)[n]∗

gives maps B(A)[n]∨∗ → ExtnA(k, k)[n]∗+n. As A is Koszul, these assemble to an equivalence

⊕
w

B(A)[n]∨∗
≃ÐÐÐ→⊕

n
ExtnA(k, k)[n]∗+n.

We can represent elements in

ExtnA(k, k)[n]∗+n ≅ coker(⊕
k

(A[1]∨)⊗k ⊗A[2]∨ ⊗ (A[1]∨)⊗(n−k−1) Ð→ (A[1]∨)⊗n)∗+n

by expressions [α1∣ . . . ∣αn] with αi ∈ A[1]∨ = V ∨. Here, we used dimk(Ai[n]) <∞ for all i, n.

The product on⊕w B(A)[w]∨∗ corresponds to the product on⊕w Ext∗A(k, k)[w]∗+n send-
ing elements represented by [α1∣ . . . ∣αk] and [αk+1∣ . . . ∣αm], respectively, to [α1∣ . . . ∣αm].
The image of (V ⊗2/R)∨ ≅ A[2]∨ Ð→ (A[1]∨)⊗2 ≅ (V ∨)⊗2 is spanned by all elements α⊗ β
vanishing on R. Hence Ext∗A(k, k)[2]∗+2 ≅ ((V ∨)⊗2/R⊥)∗+2 ≅ ((Σ−1V ∨)⊗2/Σ−2R⊥)∗, and

more generally Ext∗A(k, k)[w]∗ ≅ (Σ−1V ∨)⊗w/⋃
k

((Σ−1V ∨)⊗k ⊗ (Σ−2R⊥)⊗ (Σ−1V ∨)⊗(w−k−1))..

These observations combine to give an equivalence⊕w Ext∗A(k, k)[w]∗ ≃ T (Σ−1V ∨; Σ−2R⊥).
Since T (Σ−1V ∨; Σ−2R⊥)i is assumed to be finite-dimensional for all i, this also shows that
the comparison map (3) is an equivalence. �

We illustrate Theorem 7.12 in several examples.

Example 7.13. Let V be the graded k-vector space with basis x1, . . . , xn in degree 0.
Taking R = ⟨xi ⊗ xj + xj ⊗ xi⟩ gives the exteriour algebra A = T (V ;R) = E[x1, . . . , xn].

Consider the dual basis x∗1 , . . . , x
∗
n of V ∨. An element v∗ = ∑i,j λij x∗i ⊗ x∗j ∈ V ∨ ⊗ V ∨

vanishes on R iff λij = −λji = 0 for all i, j, which happens iff v∗ ∈ R⊥ = ⟨x∗i ⊗ x∗j − x∗j ⊗ x∗i ⟩.
Writing yi = Σ−1(x∗i ), we deduce from Theorem 7.12 that

D(E[x1, . . . , xn]) ≃ k[y1, . . . , yn]

Exercise 7.14. Prove that there is an equivalence D(k[y1, . . . , yn]) ≃ E[x1, . . . , xn].

This biduality is in fact a general phenomenon, which can be proven (under mild
finiteness assumptions) using the Koszul complex. We refer to [BGS96, Secion 2.9] for
a precise statement.

Remark 7.15. To see that the finiteness assumption in Theorem 7.12 is indeed necessary,
consider the Koszul algebra E[x] with x in Adams degree 1 and homological degree −1.
Then D(A) = k[[y]] is a power series ring generated by y in homological degree 0, while
Theorem 7.12 would predict a polynomial ring.
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7.4. Poincaré Series. Proposition 7.11 leads to the question whether every quadratic
algebra is Koszul. To see that this is not the case, we use the following classical notion (in
a form presented in [Ber14]):

Definition 7.16 (Poincaré Series). Let A =⊕i,wAi[w] be an Adams-graded graded alge-
bra with dimk(Ai[w]) <∞ for all i,w. The Poincaré series of A is given by

A(t, z) =∑
i,w

dimk(Ai[w])zitw ∈ k[z, t].

We have the following criterion:

Proposition 7.17. If A =⊕i,wAi[w] is a Koszul algebra as in Theorem 7.12, then

PD(A)(t, z) = PA (− t
z
, z)

−1
.

Proposition 7.17 can be used to construct examples of quadratic algebras which are not
Koszul. We work through an example of Lech:

Exercise 7.18. Consider the following quadratic algebra with its natural Adams grading,
concentrated in homological degree i = 0:

A = k[x1, x2, x3, x4]/(x21, x22, x23, x24, x1x2 + x3x4)
(1) Show that PA(t, z) = 1 + 4w + 5w2.
(2) Compute PD(A), and use the answer to prove that A is not a Koszul algebra.

7.5. PBW algebras. Theorem 7.12 allows us to dualise an algebra A = T (V ;R) once we
know that it is Koszul, but checking this property still requires some knowledge about the
groups TorA∗ (k, k)∗[∗].

We will now introduce a simple condition on bases of V which implies that T (V ;R)
is Koszul: Priddy’s PBW-property (cf. [PP05, Chapter 4] for a more detailed treatment).

Let V be a graded vector space with basis x1, . . . xn, and suppose that R ⊂ V ⊗ V is a
homogeneous submodule of relations. Using the lexicographic order, we define

S = { (i, j) ∣ xixj ∉ span(xrxs)(r,s)<(i,j) ⊂ (V ⊗ V )/R } .

Exercise 7.19. Show that the set { xixj ∣ (i, j) ∈ S } forms a basis of (V ⊗ V )/R.

In particular, for any (i, j) ∉ S, we can write

xixj = ∑
(r,s)<(i,j)

crsij xrxs ∈ T (V ;R)

for uniquely determined scalars crsij ∈ k.

Definition 7.20. We say that x1, . . . , xn is a PBW basis for the quadratic algebra T (V ;R)
if the following polynomials form a basis for T (V ;R):

{xj1xj2 . . . xjn ∈ T (V ;R) ∣ (j1, j2), (j2, j3), . . . , (jn−1, jn) ∈ S}.
For n = 0, the above product is 1 by convention.

Priddy then established the following useful criterion:
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Theorem 7.21. If A = T (V ;R) admits a PBW-basis, then A is a Koszul algebra.

Example 7.22. For V = ⟨x1, x2⟩ andR = ⟨x21, x1x2+x2x1, x22⟩, we have E(x1, x2) = T (V ;R).
We observe that S = {(1,2)}. Since {1, x1, x2, x1x2} is a basis for E(x1, x2), Theorem 7.21
gives an alternative proof that E(x1, x2) is Koszul.

Theorem 7.12 then has the following consequence:

Corollary 7.23. Let x1, . . . , xn be a PBW-basis for A = T (V ;R). Assume that all Ai[n]
and T (Σ−1V ∨; Σ−2R⊥)i are finite-dimensional. Write xixj = ∑

(r,s)<(i,j)
crsij xrxs ∈ A for (i, j) ∉ S.

Then D(A) is generated by y1, . . . , yn with yi in degree −∣xi∣ − 1 subject to the relations:

(−1)νi,jyiyj + ∑
(k,l)∉S

(−1)νk,lcijrsyrys = 0 if (i, j) ∈ S.

Here νab = ∣ya∣ + (∣ya∣ − 1)(∣yb∣ − 1).

We conclude this lecture by stating two classical applications of Koszul algebras in topology.

7.6. Application 1: The Homology of Loop Spaces. Koszul duality can be used to
compute the homology of loop spaces (cf. [Ber14] for a detailed treatment):

Proposition 7.24. Let X be a simply connected space whose algebra of rational cochains
C∗(X;Q) ≃H∗(X,Q) is both formal and Koszul.

Then the homology of the loop space of X is given by the Koszul dual of H∗(X;Q):
H∗(ΩX;Q) ≅D(H∗(X;Q)).

Example 7.25. For X = S2, the cochain algebra C∗(X,Q) is given by E[x] with x in
homological degree −2. As this algebra is Koszul, we deduce H∗(ΩS2;Q) ≃D(E[x]) ≃ Q[y]
with y in degree 1. An alternative proof uses the James splitting ΣΩΣS1 ≃ Σ ⋁

m>0
Sm.

7.7. Application 2: The Adams Spectral Sequence. We begin by recalling the Steen-
rod algebra, which is of key importance in topology:

Definition 7.26 (The Steenrod algebra). The Steenrod algebra A (at p = 2) is the asso-
ciative algebra generated by elements Sq0,Sq1,Sq2, . . . subject to the following relations:

(1) Sq0 = 1;

(2) If i < 2j, then Sqi Sqj = ∑
⌊ i
2
⌋

k=0 Sqi+j−k Sqk.

Given any space X, the F2-valued cohomology H∗(X,F2) is equipped with a natural
action by the Steenrod algebra satisfying the following well-known conditions:

a) Sqn ∶H∗(X,F2)→H∗+n(X,F2) shifts degree by n;
b) Sqn(x) = 0 if x ∈Hm(X,F2) wirth m < n;
c) Sqn(x) = x ∪ x for x ∈Hn(X,F2);
d) Sqn(x ∪ y) = ∑a+b=n Sqa(x) ∪ Sqb(y).
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Descent along the morphism of E∞-rings S → F2 can be used to prove the following
result of Adams – we refer to [Lur10, Lecture 8] for a more detailed discussion.

Theorem 7.27 (Adams spectral sequence). There is a spectral sequence of signature

Es,ts = Exts,tA (F2,F2) ⇒ πs∗(S)∧2

We depict the E2-term of this spectral sequence (in Adams convention), cf. [Rav78]:

It is therefore an important computational problem to compute the algebra Exts,tA (F2,F2),
and our previous discussion leads to the hope that Koszul algebras might be helpful.

Since the defining relations of A are not homogeneous, the natural grading on the tensor
algebra T (Sq0,Sq1, . . .) does not descend to an Adams-grading on A. However, it induces
an ascending filtration whose nth stage Fn(A) is spanned by all products of at most n
generators Sq0,Sq1, . . ..

The associated graded Gr(A) of this filtration admits an Adams grading, and Theo-
rem 7.21 can be used to prove that Gr(A) is a Koszul algebra. Priddy then refines the
analysis carried out in Theorem 7.12 to prove the following result:

Theorem 7.28. The Koszul dual D(A) of the Steenrod algebra is given by the Λ-algebra,
which is the differential graded F2-algebra generated by λ1, λ2, λ3, . . . subject to relations

λaλb =
⌊ 2(a+b)

3
⌋

∑
j=2b

(a − j − 1

j − 2b
)λjλa+b−j if a ≥ 2b > 0

with differential

δ(λa) =
⌊ 2a

3
⌋

∑
j=1

(a − j − 1

j
)λjλa−j

The Λ-algebra provides a valuable tool in the computation of stable and unstable ho-
motopy groups of spheres; we refer to [Rav03, Chapter 3] for a detailed discussion.
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