Topics in Koszul Duality, Michaelmas 2019, Oxford University

Lecture 7: Koszul Duality for Algebras

Using the Barr-Beck-Lurie theorem, we have proven that if A is a small differential graded algebra over a field k (cf. Definition 6.18 in Lecture 6), then there is an equivalence

$$
\operatorname{Ind}\left(\operatorname{Coh}_{A}\right) \simeq \operatorname{Mod}_{\mathfrak{D}(A)^{o p}}
$$

Here $\mathfrak{D}(A) \simeq \mathbb{R} \operatorname{Hom}_{A}(k, k)$ is the Koszul dual of A, which satisfies $\pi_{*}(\mathfrak{D}(A)) \cong \operatorname{Ext}_{A}^{*}(k, k)$.
Today, we will single out a certain property of algebras known as the Koszul property. It is often satisfied in practice, and makes the computation of $\mathfrak{D}(A)$ extremely simple.
7.1. The Koszul property. Let A be an augmented differential graded k-algebra with vanishing differentials, i.e. a homologically graded augmented k-algebra. $\operatorname{Set} \bar{A}=\operatorname{ker}(A \rightarrow k)$.

Writing $T M=\bigoplus_{n \geq 0} M^{\otimes n}$, we consider the complex of graded A-modules

$$
B(A)=\operatorname{Bar}(k, A, k)=(T(\bar{A}), d),
$$

where $d\left(\left[a_{1}|\ldots| a_{n}\right]\right)=\sum_{i=2}^{n}(-1)^{\epsilon_{i}}\left[a_{1}|\ldots| a_{i-1} a_{i}|\ldots| a_{n}\right]$ with $\epsilon_{i}=\left(\left|a_{1}\right|+1\right)+\ldots+\left(\left|a_{i-1}\right|+1\right)$.
An element $\left[a_{1}|\ldots| a_{n}\right] \in\left(\bar{A}^{\otimes n}\right)_{i}=\operatorname{Bar}_{n}(k, A, k)_{i}$ lies in "internal degree" $i=\left|a_{1}\right|+\ldots+\left|a_{n}\right|$. Write $\operatorname{Tor}_{*}^{A}(k, k)_{*}$ for the bigraded A-module given by the homology of $B(A)$.
Remark 7.1. The chain complex $\mathrm{B}(A)=k \otimes_{A}^{L} k \in \operatorname{Mod}_{A}$ is obtained from the above chain complex of graded A-modules $B(A)$ by placing $\left[a_{1}|\ldots| a_{n}\right]$ in homological degree $\left(\left|a_{1}\right|+1\right)+\ldots+\left(\left|a_{n}\right|+1\right)$. Note the different fonts for B and B.

The key observation is that many algebras A as above admit an additional Adams grading indexed by the naturals. Write $A_{i}[w]$ for the component in homological degree i and Adams degree w, and assume that the augmentation induces an isomorphism $A_{\star}[0] \cong k$.

The Bar construction then picks up a third grading satisfying

$$
B(A)_{n}[w]_{*}=\bigoplus_{w_{1}+\ldots+w_{n}=w}\left(\bar{A}\left[w_{1}\right] \otimes \ldots \otimes \bar{A}\left[w_{n}\right]\right)_{*}
$$

Hence, we obtain a chain complex of bigraded A-modules.

$$
\begin{aligned}
& \ldots \longrightarrow 0 \longrightarrow B(A)_{3}[3]_{*} \rightarrow B(A)_{2}[3]_{*} \rightarrow B(A)_{1}[3]_{*} \longrightarrow 0 \\
& \ldots \longrightarrow 0 \longrightarrow B(A)_{2}[2]_{*} \longrightarrow B(A)_{1}[2]_{*} \longrightarrow 0 \\
& \ldots \longrightarrow 0 \longrightarrow B(A)_{1}[1]_{*} \longrightarrow 0 \\
& \ldots \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow
\end{aligned}
$$

Write $\operatorname{Tor}_{n}^{A}(k, k)[w]_{i}=\pi_{n}\left(B(A)[w]_{i}\right)$ for the component in homological degree n, internal degree i, and Adams degree w of the corresponding decomposition in homology.
Remark 7.2. More conceptually, $\operatorname{Tor}_{n}^{A}(k, k)_{*}[*]$ is the $n^{\text {th }}$ left derived functor of $k \otimes_{A}(-)$ on the abelian category of bigraded A-modules. This allows us to use other resolutions of k.

From the Bar resolution above, it is clear that $\operatorname{Tor}_{n}^{A}(k, k)_{*}[w]$ vanishes whenever $n>w$. The following definition of Priddy asserts that vanishing also occurs for all $n<w$:

Definition 7.3. Let A be an augmented k-algebra with a homological grading and an Adams grading as above. A is said to be Koszul if for all $n \neq w$, we have

$$
\operatorname{Tor}_{n}^{A}(k, k)_{*}[w]=\operatorname{ker}\left(B(A)_{n}[w]_{*} \rightarrow B(A)_{n-1}[w]_{*}\right) / \operatorname{im}\left(B(A)_{n+1}[w]_{*} \rightarrow B(A)_{n}[w]_{*}\right)=0
$$

Warning 7.4. In his original work Pri70, Priddy calls these homogeneous Koszul algebras.
For simplicity, we will assume from now on that our ground field k satisfies $\operatorname{char}(k) \neq 2$.
Definition 7.5 (Polynomial and exterior algebras). If x_{1}, \ldots, x_{n} are generators in Adams degree 1 and arbitrary homological degree, we define

$$
\begin{aligned}
& k\left[x_{1}, \ldots, x_{n}\right]:=T\left(x_{1}, \ldots, x_{n}\right) /\left(x_{i} \otimes x_{j}-x_{j} \otimes x_{i}\right) \\
& E\left[x_{1}, \ldots, x_{n}\right]:=T\left(x_{1}, \ldots, x_{n}\right) /\left(x_{i} \otimes x_{j}+x_{j} \otimes x_{i}\right) .
\end{aligned}
$$

As we have not imposed the Koszul sign rule, $k\left[x_{1}, \ldots, x_{n}\right]$ need not be graded-commutative.
Before studying Koszul algebras in more detail, we give several simple examples.
Example 7.6. Consider $A=k[x]$ generated in Adams degree 1 and homological degree a. We use the following bigraded resolution of the A-module k :

$$
\ldots \rightarrow 0 \rightarrow \Sigma^{a} k[x][+1] \xrightarrow{1 \mapsto x} k[x] \rightarrow 0 \rightarrow \ldots
$$

Here [+1] denotes a shift by 1 in Adams grading and Σ^{a} is a shift by a in homological grading. Applying $k \otimes_{k[x]}(-)$, we obtain $\ldots \rightarrow 0 \rightarrow \Sigma^{a} k[+1] \xrightarrow{0} k \rightarrow 0 \rightarrow 0 \rightarrow \ldots$. Hence A is Koszul.
Example 7.7. Consider the exterior algebra $A=E[\epsilon]=k[\epsilon] / \epsilon^{2}$ on a generator in homological degree b and Adams degree 1. The bigraded A-module k admits a resolution

$$
\ldots \rightarrow \Sigma^{2 b}\left(k[\epsilon] / \epsilon^{2}\right)[+2] \xrightarrow{1 \mapsto \epsilon} \Sigma^{b}\left(k[\epsilon] / \epsilon^{2}\right)[+1] \xrightarrow{1 \mapsto \epsilon} k[\epsilon] / \epsilon^{2} .
$$

Applying $k \otimes_{A}(-)$ gives $\ldots \rightarrow \Sigma^{2 b} k[+2] \xrightarrow{0} \Sigma^{b} k[+1] \xrightarrow{0} k \rightarrow 0 \rightarrow \ldots$, hence A is Koszul.

Exercise 7.8.

a) Show that if A, A^{\prime} are Koszul algebras, then so is $A \otimes A^{\prime}$.
b) Given generators x_{1}, \ldots, x_{n} in Adams degree 1 and arbitrary homological degree, show that both $k\left[x_{1}, \ldots, x_{n}\right]$ and $E\left[x_{1}, \ldots, x_{n}\right]$ are Koszul.

Exercise 7.9. Prove directly that the following algebras in homological degree 0 are Koszul:
(1) The polynomial algebra $k[x, y]$ with x, y in Adams degree 1.
(2) The exterior algebra $E(x, y)$ with x, y in Adams degree 1.
(3) The quantum algebra $A=T(x, y) /(x \otimes y-q y \otimes x)$ for any fixed nonzero scalar $q \in k^{\times}$.
7.2. Quadratic generation. We will prove that all Koszul algebras are of the following type:

Definition 7.10 (Quadratic algebras). Given a graded k-vector space V and a homogeneous subspace $R \subset V \otimes V$, we define the following augmented k-algebra:

$$
T(V ; R)=T(V) /\langle R\rangle .
$$

Here $\langle R\rangle$ denotes the two-sided ideal generated by the subspace R. The algebra $T(V ; R)$ inherits a homological grading and an Adams grading, as the space of relations $R \subset V \otimes V$ is homogeneous for both the homological and the Adams grading on $T(V)$.

An augmented bigraded k-algebra A is quadratic if $A \cong T(V ; R)$ for some $V, R \subset V \otimes V$.
Proposition 7.11. Every Koszul algebra is quadratic.
Proof. We will prove this result in two steps (following an argument presented in Rez12]). Given $w>1$, the assumption $\operatorname{Tor}_{1}^{A}(k, k)[w]_{*}=0$ implies that the following map is surjective:

$$
B(A)_{2}[w]_{*}=\underset{w_{1}+w_{2}=w}{ }\left(\bar{A}\left[w_{1}\right] \otimes \bar{A}\left[w_{2}\right]\right)_{*} \longrightarrow \bar{A}[w]_{*}=B(A)_{1}[w]_{*}
$$

Hence A is generated in Adams degree 1. Applying $\operatorname{Bar}(-)$ to the surjection $T(\bar{A}[1]) \xrightarrow{f} A$ and taking the kernel gives an exact sequence of complexes of bigraded A-modules:

$$
\begin{equation*}
0 \rightarrow K \rightarrow \operatorname{Bar}(T(\bar{A}[1])) \rightarrow \operatorname{Bar}(A) \rightarrow 0 . \tag{1}
\end{equation*}
$$

In degree 1 of this chain complex, our sequence is given by $0 \rightarrow K_{1} \rightarrow T(\bar{A}[1]) \rightarrow A \rightarrow 0$. To prove the result, it suffices to show that the following map is surjective for all $w>2$:

$$
\begin{equation*}
\bigoplus_{w_{1}+w_{2}=w}\left(K\left[w_{1}\right] \otimes \bar{A}[1]^{\otimes w_{2}} \oplus \bar{A}[1]^{\otimes w_{1}} \otimes K\left[w_{2}\right]\right) \longrightarrow K_{1}[w] . \tag{2}
\end{equation*}
$$

Indeed, let us restrict attention to degree 1 and degree 2 of the chain complexes in (1):

Consider the natural map

$$
\bigoplus_{w_{1}+w_{2}=w}\left(\left(K_{1}\left[w_{1}\right] \otimes \bar{A}[1]^{\otimes w_{2}}\right) \oplus\left(\bar{A}[1]^{\otimes j_{1}} \otimes K_{1}\left[w_{2}\right]\right)\right) \xrightarrow{\bar{\beta}} \bigoplus_{w_{1}+w_{2}=w} \bar{A}[1]^{\otimes w_{1}} \otimes \bar{A}[1]^{\otimes w_{2}}
$$

and its lift $\underset{w_{1}+w_{2}=w}{\bigoplus}\left(\left(K_{1}\left[w_{1}\right] \otimes \bar{A}[1]^{\otimes w_{2}}\right) \oplus\left(\bar{A}[1]^{\otimes j_{1}} \otimes K_{1}\left[w_{2}\right]\right)\right) \xrightarrow{\beta} K_{2}[w]$.
The map β is surjective. Indeed, for any decompositions $w=w_{1}+w_{2}$, we tensor the short exact sequences $K_{1}\left[w_{1}\right] \rightarrow \bar{A}[1]^{\otimes w_{1}} \rightarrow \bar{A}\left[w_{1}\right]$ and $K_{1}\left[w_{2}\right] \rightarrow \bar{A}[1]^{\otimes w_{2}} \rightarrow \bar{A}\left[w_{2}\right]$ to obtain a
diagram

Since k-vector spaces are flat, all columns and rows are exact. A diagram chase shows that $\left(K_{1}\left[w_{1}\right] \otimes \bar{A}[1]^{\otimes w_{2}}\right) \oplus\left(\bar{A}[1]^{\otimes w_{1}} \otimes K_{1}\left[w_{2}\right]\right) \longrightarrow \operatorname{ker}\left(\bar{A}[1]^{\otimes w_{1}} \otimes \bar{A}[1]^{\otimes w_{2}} \rightarrow \bar{A}\left[w_{1}\right] \otimes \bar{A}\left[w_{2}\right]\right)$ is surjective, which implies that the map β is surjective as well.

As $H_{*}\left(\operatorname{Bar}(k, T(\bar{A}[1]), k)[w]_{*}\right)=\operatorname{Tor}_{*}^{T(\bar{A}[1])}(k, k)_{*}[w]=0$ for all $w>1$, the homology long exact sequence induced by (1) shows that $H_{1}\left(K_{\bullet}[w]\right) \cong \operatorname{Tor}_{2}^{A}(k, k)_{*}[w]=0$ for all $w>2$. As $K_{0}[w]=0$, this implies that $K_{2}[w] \xrightarrow{\delta} K_{1}[w]$ is surjective for all $w>2$, and hence $\underset{w_{1}+w_{2}=w}{\bigoplus}\left(\left(K_{1}\left[w_{1}\right] \otimes \bar{A}[1]^{\otimes w_{2}}\right) \oplus\left(\bar{A}[1]^{\otimes w_{1}} \otimes K_{1}\left[w_{2}\right]\right)\right) \xrightarrow{\delta \circ \beta} K_{1}[w]$ is also surjective.
7.3. Dualising Koszul algebras. Computing the dual of a Koszul algebra is not hard:

Theorem 7.12. Let A be a Koszul algebra with quadratic presentation $A=T(V ; R)$. Assume that $A_{i}[n]$ and $T\left(\Sigma^{-1} V^{\vee} ; \Sigma^{-2} R^{\perp}\right)_{i}$ are finite-dimensional for all i, n.

Then the Koszul dual is formal and given by $\mathfrak{D}(A)=\mathbb{R} \operatorname{Hom}_{A}(k, k) \simeq T\left(\Sigma^{-1} V^{\vee} ; \Sigma^{-2} R^{\perp}\right)$, where $V^{\vee}=\operatorname{Map}_{\operatorname{Mod}_{k}}(V, k)$ and $R^{\perp} \subset V^{\vee} \otimes V^{\vee}$ is spanned by all $\phi \otimes \psi$ vanishing on $R \subset V \otimes V$.
Proof. Consider the differential graded coalgebra $\mathrm{B}(A)=(T(\Sigma \bar{A}), d)$, where

$$
d\left(\left[a_{1}|\ldots| a_{m}\right]\right)=\sum_{i=2}^{n}(-1)^{\epsilon_{i}}\left[a_{1}|\ldots| a_{i-1} a_{i}|\ldots| a_{m}\right]
$$

with $\epsilon_{i}=\left(\left|a_{1}\right|+1\right)+\ldots+\left(\left|a_{i-1}\right|+1\right)$. An element $\left[a_{1}|\ldots| a_{n}\right] \in\left(\bar{A}^{\otimes n}\right)_{i}$ lies in homological degree $i=\left|a_{1}\right|+\ldots+\left|a_{n}\right|+n$ in $\mathrm{B}(A)$. Comultiplication sends $\left[a_{1}|\ldots| a_{m}\right]$ to $\sum_{k}\left[a_{1}|\ldots| a_{k}\right] \otimes\left[a_{k+1}|\ldots| a_{m}\right]$.
The graded differential graded coalgebra $\mathrm{B}(A) \simeq \underset{w}{\bigoplus} \mathrm{~B}(A)[w]$ can be dualised in two ways:
(1) Applying $\operatorname{Map}_{\operatorname{Mod}_{k}}(-, k)$ gives the differential graded k-algebra $\mathfrak{D}(A)=\mathrm{B}(A)^{\vee}$;
(2) Taking the Adams-graded dual gives an Adams-graded differential graded k-algebra with

$$
\mathfrak{D}^{\operatorname{Gr}}(A)[n]:=\operatorname{Map}_{\operatorname{Mod}_{k}}(\mathrm{~B}(A)[n], k) .
$$

These are related by a multiplicative comparison map $\bigoplus_{w} \mathfrak{D}^{\mathrm{Gr}}(A)[w] \rightarrow \mathfrak{D}(A)$ given by

$$
\begin{equation*}
\underset{w}{\bigoplus} \mathrm{~B}(A)[w]^{\vee} \longrightarrow \prod_{w} \mathrm{~B}(A)[w]^{\vee} \simeq \mathrm{B}(A)^{\vee} . \tag{3}
\end{equation*}
$$

We begin by computing $\bigoplus_{w} \mathrm{~B}(A)[w]^{\vee}$. Dualising the maps

$$
\operatorname{Tor}_{n}^{A}(k, k)[n]_{*-n} \cong \operatorname{ker}\left(B(A)_{n}[n]_{*-n} \leftrightarrow B(A)_{n-1}[n]_{*-n}\right) \longrightarrow \mathrm{B}(A)[n]_{*}
$$

gives maps $\mathrm{B}(A)[n]_{*}^{V} \rightarrow \operatorname{Ext}_{A}^{n}(k, k)[n]_{*+n}$. As A is Koszul, these assemble to an equivalence

$$
\bigoplus_{w} \mathrm{~B}(A)[n]_{*}^{\vee} \xrightarrow{\simeq} \bigoplus_{n} \operatorname{Ext}_{A}^{n}(k, k)[n]_{*+n} .
$$

We can represent elements in

$$
\operatorname{Ext}_{A}^{n}(k, k)[n]_{*+n} \cong \operatorname{coker}\left(\bigoplus_{k}\left(\bar{A}[1]^{\vee}\right)^{\otimes k} \otimes \bar{A}[2]^{\vee} \otimes\left(\bar{A}[1]^{\vee}\right)^{\otimes(n-k-1)} \longrightarrow\left(\bar{A}[1]^{\vee}\right)^{\otimes n}\right)_{*+n}
$$

by expressions $\left[\alpha_{1}|\ldots| \alpha_{n}\right]$ with $\alpha_{i} \in \bar{A}[1]^{\vee}=V^{\vee}$. Here, we used $\operatorname{dim}_{k}\left(A_{i}[n]\right)<\infty$ for all i, n.
The product on $\oplus_{w} \mathrm{~B}(A)[w]_{*}^{\vee}$ corresponds to the product on \oplus_{w} Ext $_{A}^{*}(k, k)[w]_{*+n}$ sending elements represented by $\left[\alpha_{1}|\ldots| \alpha_{k}\right]$ and $\left[\alpha_{k+1}|\ldots| \alpha_{m}\right]$, respectively, to $\left[\alpha_{1}|\ldots| \alpha_{m}\right]$. The image of $\left(V^{\otimes 2} / R\right)^{\vee} \cong \bar{A}[2]^{\vee} \longrightarrow\left(\bar{A}[1]^{\vee}\right)^{\otimes 2} \cong\left(V^{\vee}\right)^{\otimes 2}$ is spanned by all elements $\alpha \otimes \beta$ vanishing on R. Hence $\operatorname{Ext}_{A}^{*}(k, k)[2]_{*+2} \cong\left(\left(V^{\vee}\right)^{\otimes 2} / R^{\perp}\right)_{*+2} \cong\left(\left(\Sigma^{-1} V^{\vee}\right)^{\otimes 2} / \Sigma^{-2} R^{\perp}\right)_{*}$, and more generally $\operatorname{Ext}_{A}^{*}(k, k)[w]_{*} \cong\left(\Sigma^{-1} V^{\vee}\right)^{\otimes w} / \bigcup_{k}\left(\left(\Sigma^{-1} V^{\vee}\right)^{\otimes k} \otimes\left(\Sigma^{-2} R^{\perp}\right) \otimes\left(\Sigma^{-1} V^{\vee}\right)^{\otimes(w-k-1)}\right) .$.
These observations combine to give an equivalence $\oplus_{w} \operatorname{Ext}_{A}^{*}(k, k)[w]_{*} \simeq T\left(\Sigma^{-1} V^{\vee} ; \Sigma^{-2} R^{\perp}\right)$. Since $T\left(\Sigma^{-1} V^{\vee} ; \Sigma^{-2} R^{\perp}\right)_{i}$ is assumed to be finite-dimensional for all i, this also shows that the comparison map (3) is an equivalence.

We illustrate Theorem 7.12 in several examples.
Example 7.13. Let V be the graded k-vector space with basis x_{1}, \ldots, x_{n} in degree 0 . Taking $R=\left\langle x_{i} \otimes x_{j}+x_{j} \otimes x_{i}\right\rangle$ gives the exteriour algebra $A=T(V ; R)=E\left[x_{1}, \ldots, x_{n}\right]$.

Consider the dual basis $x_{1}^{*}, \ldots, x_{n}^{*}$ of V^{\vee}. An element $v^{*}=\sum_{i, j} \lambda_{i j} x_{i}^{*} \otimes x_{j}^{*} \in V^{\vee} \otimes V^{\vee}$ vanishes on R iff $\lambda_{i j}=-\lambda_{j i}=0$ for all i, j, which happens iff $v^{*} \in R^{\perp}=\left\langle x_{i}^{*} \otimes x_{j}^{*}-x_{j}^{*} \otimes x_{i}^{*}\right\rangle$. Writing $y_{i}=\Sigma^{-1}\left(x_{i}^{*}\right)$, we deduce from Theorem 7.12 that

$$
\mathfrak{D}\left(E\left[x_{1}, \ldots, x_{n}\right]\right) \simeq k\left[y_{1}, \ldots, y_{n}\right]
$$

Exercise 7.14. Prove that there is an equivalence $\mathfrak{D}\left(k\left[y_{1}, \ldots, y_{n}\right]\right) \simeq E\left[x_{1}, \ldots, x_{n}\right]$.
This biduality is in fact a general phenomenon, which can be proven (under mild finiteness assumptions) using the Koszul complex. We refer to [BGS96, Secion 2.9] for a precise statement.

Remark 7.15. To see that the finiteness assumption in Theorem 7.12 is indeed necessary, consider the Koszul algebra $E[x]$ with x in Adams degree 1 and homological degree -1 . Then $\mathfrak{D}(A)=k[[y]]$ is a power series ring generated by y in homological degree 0 , while Theorem 7.12 would predict a polynomial ring.
7.4. Poincaré Series. Proposition 7.11 leads to the question whether every quadratic algebra is Koszul. To see that this is not the case, we use the following classical notion (in a form presented in [Ber14]):
Definition 7.16 (Poincaré Series). Let $A=\oplus_{i, w} A_{i}[w]$ be an Adams-graded graded algebra with $\operatorname{dim}_{k}\left(A_{i}[w]\right)<\infty$ for all i, w. The Poincaré series of A is given by

$$
A(t, z)=\sum_{i, w} \operatorname{dim}_{k}\left(A_{i}[w]\right) z^{i} t^{w} \in k[z, t] .
$$

We have the following criterion:
Proposition 7.17. If $A=\oplus_{i, w} A_{i}[w]$ is a Koszul algebra as in Theorem 7.12, then

$$
P_{\mathfrak{D}(A)}(t, z)=P_{A}\left(-\frac{t}{z}, z\right)^{-1} .
$$

Proposition 7.17 can be used to construct examples of quadratic algebras which are not Koszul. We work through an example of Lech:
Exercise 7.18. Consider the following quadratic algebra with its natural Adams grading, concentrated in homological degree $i=0$:

$$
A=k\left[x_{1}, x_{2}, x_{3}, x_{4}\right] /\left(x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{4}^{2}, x_{1} x_{2}+x_{3} x_{4}\right)
$$

(1) Show that $P_{A}(t, z)=1+4 w+5 w^{2}$.
(2) Compute $P_{\mathcal{D}(A)}$, and use the answer to prove that A is not a Koszul algebra.
7.5. PBW algebras. Theorem 7.12 allows us to dualise an algebra $A=T(V ; R)$ once we know that it is Koszul, but checking this property still requires some knowledge about the groups $\operatorname{Tor}_{*}^{A}(k, k)_{*}[*]$.

We will now introduce a simple condition on bases of V which implies that $T(V ; R)$ is Koszul: Priddy's PBW-property (cf. [PP05, Chapter 4] for a more detailed treatment). Let V be a graded vector space with basis $x_{1}, \ldots x_{n}$, and suppose that $R \subset V \otimes V$ is a homogeneous submodule of relations. Using the lexicographic order, we define

$$
S=\left\{(i, j) \mid x_{i} x_{j} \notin \operatorname{span}\left(x_{r} x_{s}\right)_{(r, s)<(i, j)} \subset(V \otimes V) / R\right\} .
$$

Exercise 7.19. Show that the set $\left\{x_{i} x_{j} \mid(i, j) \in S\right\}$ forms a basis of $(V \otimes V) / R$.
In particular, for any $(i, j) \notin S$, we can write

$$
x_{i} x_{j}=\sum_{(r, s)<(i, j)} c_{i j}^{r s} x_{r} x_{s} \in T(V ; R)
$$

for uniquely determined scalars $c_{i j}^{r s} \in k$.
Definition 7.20. We say that x_{1}, \ldots, x_{n} is a $P B W$ basis for the quadratic algebra $T(V ; R)$ if the following polynomials form a basis for $T(V ; R)$:

$$
\left\{x_{j_{1}} x_{j_{2}} \ldots x_{j_{n}} \in T(V ; R) \mid\left(j_{1}, j_{2}\right),\left(j_{2}, j_{3}\right), \ldots,\left(j_{n-1}, j_{n}\right) \in S\right\} .
$$

For $n=0$, the above product is 1 by convention.
Priddy then established the following useful criterion:

Theorem 7.21. If $A=T(V ; R)$ admits a PBW-basis, then A is a Koszul algebra.

Example 7.22. For $V=\left\langle x_{1}, x_{2}\right\rangle$ and $R=\left\langle x_{1}^{2}, x_{1} x_{2}+x_{2} x_{1}, x_{2}^{2}\right\rangle$, we have $E\left(x_{1}, x_{2}\right)=T(V ; R)$. We observe that $S=\{(1,2)\}$. Since $\left\{1, x_{1}, x_{2}, x_{1} x_{2}\right\}$ is a basis for $E\left(x_{1}, x_{2}\right)$, Theorem 7.21 gives an alternative proof that $E\left(x_{1}, x_{2}\right)$ is Koszul.

Theorem 7.12 then has the following consequence:
Corollary 7.23. Let x_{1}, \ldots, x_{n} be a PBW-basis for $A=T(V ; R)$. Assume that all $A_{i}[n]$ and $T\left(\Sigma^{-1} V^{\vee} ; \Sigma^{-2} R^{\perp}\right)_{i}$ are finite-dimensional. Write $x_{i} x_{j}=\sum_{(r, s)<(i, j)} c_{i j}^{r s} x_{r} x_{s} \in A$ for $(i, j) \notin S$.
Then $\mathfrak{D}(A)$ is generated by y_{1}, \ldots, y_{n} with y_{i} in degree $-\left|x_{i}\right|-1$ subject to the relations:

$$
(-1)^{\nu_{i, j}} y_{i} y_{j}+\sum_{(k, l) \notin S}(-1)^{\nu_{k, l}} c_{r s}^{i j} y_{r} y_{s}=0 \quad \text { if } \quad(i, j) \in S
$$

Here $\nu_{a b}=\left|y_{a}\right|+\left(\left|y_{a}\right|-1\right)\left(\left|y_{b}\right|-1\right)$.
We conclude this lecture by stating two classical applications of Koszul algebras in topology.
7.6. Application 1: The Homology of Loop Spaces. Koszul duality can be used to compute the homology of loop spaces (cf. Ber14] for a detailed treatment):
Proposition 7.24 . Let X be a simply connected space whose algebra of rational cochains $C^{*}(X ; \mathbb{Q}) \simeq H^{*}(X, \mathbb{Q})$ is both formal and Koszul.

Then the homology of the loop space of X is given by the Koszul dual of $H^{*}(X ; \mathbb{Q})$:

$$
H_{*}(\Omega X ; \mathbb{Q}) \cong \mathfrak{D}\left(H^{*}(X ; \mathbb{Q})\right)
$$

Example 7.25. For $X=S^{2}$, the cochain algebra $C^{*}(X, \mathbb{Q})$ is given by $E[x]$ with x in homological degree -2 . As this algebra is Koszul, we deduce $H_{*}\left(\Omega S^{2} ; \mathbb{Q}\right) \simeq \mathfrak{D}(E[x]) \simeq \mathbb{Q}[y]$ with y in degree 1. An alternative proof uses the James splitting $\Sigma \Omega \Sigma S^{1} \simeq \Sigma \bigvee_{m>0} S^{m}$.
7.7. Application 2: The Adams Spectral Sequence. We begin by recalling the Steenrod algebra, which is of key importance in topology:
Definition 7.26 (The Steenrod algebra). The Steenrod algebra \mathcal{A} (at $p=2$) is the associative algebra generated by elements $\mathrm{Sq}^{0}, \mathrm{Sq}^{1}, \mathrm{Sq}^{2}, \ldots$ subject to the following relations:
(1) $\mathrm{Sq}^{0}=1$;
(2) If $i<2 j$, then $\mathrm{Sq}^{i} \mathrm{Sq}^{j}=\sum_{k=0}^{\left\lfloor\frac{i}{2}\right\rfloor} \mathrm{Sq}^{i+j-k} \mathrm{Sq}^{k}$.

Given any space X, the \mathbb{F}_{2}-valued cohomology $H^{*}\left(X, \mathbb{F}_{2}\right)$ is equipped with a natural action by the Steenrod algebra satisfying the following well-known conditions:
a) $\mathrm{Sq}^{n}: H^{*}\left(X, \mathbb{F}_{2}\right) \rightarrow H^{*+n}\left(X, \mathbb{F}_{2}\right)$ shifts degree by n;
b) $\operatorname{Sq}^{n}(x)=0$ if $x \in H^{m}\left(X, \mathbb{F}_{2}\right)$ wirth $m<n$;
c) $\mathrm{Sq}^{n}(x)=x \cup x$ for $x \in H^{n}\left(X, \mathbb{F}_{2}\right)$;
d) $\mathrm{Sq}^{n}(x \cup y)=\sum_{a+b=n} \mathrm{Sq}^{a}(x) \cup \mathrm{Sq}^{b}(y)$.

Descent along the morphism of \mathbb{E}_{∞}-rings $S \rightarrow \mathbb{F}_{2}$ can be used to prove the following result of Adams - we refer to [Lur10, Lecture 8] for a more detailed discussion.
Theorem 7.27 (Adams spectral sequence). There is a spectral sequence of signature

$$
E_{s}^{s, t}=\operatorname{Ext}_{\mathcal{A}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \Rightarrow \pi_{*}^{s}(S)_{2}^{\wedge}
$$

We depict the E_{2}-term of this spectral sequence (in Adams convention), cf. Rav78:

It is therefore an important computational problem to compute the algebra $E x t_{\mathcal{A}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$, and our previous discussion leads to the hope that Koszul algebras might be helpful.

Since the defining relations of \mathcal{A} are not homogeneous, the natural grading on the tensor algebra $T\left(\mathrm{Sq}^{0}, \mathrm{Sq}^{1}, \ldots\right)$ does not descend to an Adams-grading on \mathcal{A}. However, it induces an ascending filtration whose $n^{\text {th }}$ stage $F^{n}(\mathcal{A})$ is spanned by all products of at most n generators $\mathrm{Sq}^{0}, \mathrm{Sq}^{1}, \ldots$.

The associated graded $\operatorname{Gr}(\mathcal{A})$ of this filtration admits an Adams grading, and Theorem 7.21 can be used to prove that $\operatorname{Gr}(\mathcal{A})$ is a Koszul algebra. Priddy then refines the analysis carried out in Theorem 7.12 to prove the following result:

Theorem 7.28. The Koszul dual $\mathfrak{D}(\mathcal{A})$ of the Steenrod algebra is given by the Λ-algebra, which is the differential graded \mathbb{F}_{2}-algebra generated by $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots$ subject to relations

$$
\lambda_{a} \lambda_{b}=\sum_{j=2 b}^{\left\lfloor\frac{2(a+b)}{3}\right\rfloor}\binom{a-j-1}{j-2 b} \lambda_{j} \lambda_{a+b-j} \quad \text { if } a \geq 2 b>0
$$

with differential

$$
\delta\left(\lambda_{a}\right)=\sum_{j=1}^{\left\lfloor\frac{2 a}{3}\right\rfloor}\binom{a-j-1}{j} \lambda_{j} \lambda_{a-j}
$$

The Λ-algebra provides a valuable tool in the computation of stable and unstable homotopy groups of spheres; we refer to [Rav03, Chapter 3] for a detailed discussion.

References

[Ber14] Alexander Berglund, Koszul spaces, Transactions of the American Mathematical Society $\mathbf{3 6 6}$ (2014), no. 9, 4551-4569.
[BGS96] Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel, Koszul duality patterns in representation theory, Journal of the American Mathematical Society 9 (1996), no. 2, 473-527.
[Lur10] Jacob Lurie, Chromatic homotopy theory, Lecture notes online at http://www.math.harvard.edu/ lurie/252x.html (2010).
[PP05] Alexander Polishchuk and Leonid Positselski, Quadratic algebras, vol. 37, American Mathematical Soc., 2005.
[Pri70] Stewart B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39-60. MR 0265437
[Rav78] Douglas C Ravenel, A novice's guide to the adams-novikov spectral sequence, Geometric Applications of Homotopy Theory II, Springer, 1978, pp. 404-475.
[Rav03] , Complex cobordism and stable homotopy groups of spheres, American Mathematical Soc., 2003.
[Rez12] Charles Rezk, Rings of power operations for Morava E-theories are Koszul, arXiv preprint arXiv:1204.4831 (2012).

