Topics in Koszul Duality, Michaelmas 2019, Oxford University

LECTURE 7: KOSZUL DUALITY FOR ALGEBRAS

Using the Barr–Beck–Lurie theorem, we have proven that if A is a small differential graded algebra over a field k (cf. Definition 6.18 in Lecture 6), then there is an equivalence

 $\operatorname{Ind}(\operatorname{Coh}_A) \simeq \operatorname{Mod}_{\mathfrak{D}(A)^{op}}.$

Here $\mathfrak{D}(A) \simeq \mathbb{R} \operatorname{Hom}_A(k,k)$ is the Koszul dual of A, which satisfies $\pi_*(\mathfrak{D}(A)) \cong \operatorname{Ext}_A^*(k,k)$.

Today, we will single out a certain property of algebras known as the *Koszul property*. It is often satisfied in practice, and makes the computation of $\mathfrak{D}(A)$ extremely simple.

7.1. The Koszul property. Let A be an augmented differential graded k-algebra with vanishing differentials, i.e. a homologically graded augmented k-algebra. Set $\overline{A} = \ker(A \to k)$.

Writing $TM = \bigoplus_{n \ge 0} M^{\otimes n}$, we consider the complex of graded A-modules

$$B(A) = \operatorname{Bar}(k, A, k) = (T(A), d),$$

where $d([a_1|...|a_n]) = \sum_{i=2}^n (-1)^{\epsilon_i} [a_1|...|a_{i-1}a_i|...|a_n]$ with $\epsilon_i = (|a_1|+1) + ... + (|a_{i-1}|+1)$. An element $[a_1|...|a_n] \in (\overline{A}^{\otimes n})_i = \text{Bar}_n(k, A, k)_i$ lies in "internal degree" $i = |a_1| + ... + |a_n|$.

Write $\operatorname{Tor}_*^A(k,k)_*$ for the bigraded A-module given by the homology of B(A).

Remark 7.1. The chain complex $B(A) = k \otimes_A^L k \in Mod_A$ is obtained from the above chain complex of graded A-modules B(A) by placing $[a_1| \dots |a_n]$ in homological degree $(|a_1| + 1) + \dots + (|a_n| + 1)$. Note the different fonts for B and B.

The key observation is that many algebras A as above admit an additional Adams grading indexed by the naturals. Write $A_i[w]$ for the component in homological degree i and Adams degree w, and assume that the augmentation induces an isomorphism $A_*[0] \cong k$.

The Bar construction then picks up a third grading satisfying

$$B(A)_n[w]_* = \bigoplus_{w_1+\ldots+w_n=w} (\overline{A}[w_1] \otimes \ldots \otimes \overline{A}[w_n])_*,$$

Hence, we obtain a chain complex of bigraded A-modules.

$$\dots \longrightarrow 0 \longrightarrow B(A)_{3}[3]_{*} \longrightarrow B(A)_{2}[3]_{*} \longrightarrow B(A)_{1}[3]_{*} \longrightarrow 0$$
$$\dots \longrightarrow 0 \longrightarrow 0 \longrightarrow B(A)_{2}[2]_{*} \longrightarrow B(A)_{1}[2]_{*} \longrightarrow 0$$
$$\dots \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow B(A)_{1}[1]_{*} \longrightarrow 0$$
$$\dots \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow k$$

Write $\operatorname{Tor}_n^A(k,k)[w]_i = \pi_n(B(A)[w]_i)$ for the component in homological degree n, internal degree i, and Adams degree w of the corresponding decomposition in homology.

Remark 7.2. More conceptually, $\operatorname{Tor}_{n}^{A}(k,k)_{*}[*]$ is the n^{th} left derived functor of $k \otimes_{A}(-)$ on the abelian category of bigraded A-modules. This allows us to use other resolutions of k.

From the Bar resolution above, it is clear that $\operatorname{Tor}_n^A(k,k)_*[w]$ vanishes whenever n > w. The following definition of Priddy asserts that vanishing also occurs for all n < w:

Definition 7.3. Let A be an augmented k-algebra with a homological grading and an Adams grading as above. A is said to be *Koszul* if for all $n \neq w$, we have

$$\operatorname{Tor}_{n}^{A}(k,k)_{*}[w] = \ker(B(A)_{n}[w]_{*} \to B(A)_{n-1}[w]_{*})/\operatorname{im}(B(A)_{n+1}[w]_{*} \to B(A)_{n}[w]_{*}) = 0$$

Warning 7.4. In his original work [Pri70], Priddy calls these homogeneous Koszul algebras.

For simplicity, we will assume from now on that our ground field k satisfies $char(k) \neq 2$.

Definition 7.5 (Polynomial and exterior algebras). If x_1, \ldots, x_n are generators in Adams degree 1 and arbitrary homological degree, we define

$$k[x_1, \dots, x_n] \coloneqq T(x_1, \dots, x_n) / (x_i \otimes x_j - x_j \otimes x_i);$$
$$E[x_1, \dots, x_n] \coloneqq T(x_1, \dots, x_n) / (x_i \otimes x_j + x_j \otimes x_i).$$

As we have not imposed the Koszul sign rule, $k[x_1, \ldots, x_n]$ need not be graded-commutative.

Before studying Koszul algebras in more detail, we give several simple examples.

Example 7.6. Consider A = k[x] generated in Adams degree 1 and homological degree a. We use the following bigraded resolution of the A-module k:

$$. \to 0 \to \Sigma^a k[x][+1] \xrightarrow{1 \mapsto x} k[x] \to 0 \to \dots$$

Here [+1] denotes a shift by 1 in Adams grading and Σ^a is a shift by *a* in homological grading. Applying $k \otimes_{k[x]} (-)$, we obtain $\ldots \to 0 \to \Sigma^a k[+1] \xrightarrow{0} k \to 0 \to 0 \to \ldots$ Hence *A* is Koszul.

Example 7.7. Consider the exterior algebra $A = E[\epsilon] = k[\epsilon]/\epsilon^2$ on a generator in homological degree b and Adams degree 1. The bigraded A-module k admits a resolution

$$\dots \to \Sigma^{2b}(k[\epsilon]/\epsilon^2)[+2] \xrightarrow{1\mapsto\epsilon} \Sigma^b(k[\epsilon]/\epsilon^2)[+1] \xrightarrow{1\mapsto\epsilon} k[\epsilon]/\epsilon^2$$

Applying $k \otimes_A (-)$ gives $\ldots \to \Sigma^{2b} k[+2] \xrightarrow{0} \Sigma^b k[+1] \xrightarrow{0} k \to 0 \to \ldots$, hence A is Koszul.

Exercise 7.8.

- a) Show that if A, A' are Koszul algebras, then so is $A \otimes A'$.
- b) Given generators x_1, \ldots, x_n in Adams degree 1 and arbitrary homological degree, show that both $k[x_1, \ldots, x_n]$ and $E[x_1, \ldots, x_n]$ are Koszul.

Exercise 7.9. Prove *directly* that the following algebras in homological degree 0 are Koszul:

- (1) The polynomial algebra k[x, y] with x, y in Adams degree 1.
- (2) The exterior algebra E(x, y) with x, y in Adams degree 1.
- (3) The quantum algebra $A = T(x, y)/(x \otimes y qy \otimes x)$ for any fixed nonzero scalar $q \in k^{\times}$.

7.2. Quadratic generation. We will prove that all Koszul algebras are of the following type:

Definition 7.10 (Quadratic algebras). Given a graded k-vector space V and a homogeneous subspace $R \subset V \otimes V$, we define the following augmented k-algebra:

$$T(V;R) = T(V)/\langle R \rangle.$$

Here $\langle R \rangle$ denotes the two-sided ideal generated by the subspace R. The algebra T(V; R) inherits a homological grading and an Adams grading, as the space of relations $R \subset V \otimes V$ is homogeneous for both the homological and the Adams grading on T(V).

An augmented bigraded k-algebra A is quadratic if $A \cong T(V; R)$ for some $V, R \subset V \otimes V$.

Proposition 7.11. Every Koszul algebra is quadratic.

Proof. We will prove this result in two steps (following an argument presented in [Rez12]). Given w > 1, the assumption $\text{Tor}_1^A(k,k)[w]_* = 0$ implies that the following map is surjective:

$$B(A)_2[w]_* = \bigoplus_{w_1+w_2=w} (\overline{A}[w_1] \otimes \overline{A}[w_2])_* \longrightarrow \overline{A}[w]_* = B(A)_1[w]_*$$

Hence A is generated in Adams degree 1. Applying $\operatorname{Bar}(-)$ to the surjection $T(\overline{A}[1]) \xrightarrow{f} A$ and taking the kernel gives an exact sequence of complexes of bigraded A-modules:

(1) $0 \to K \to \operatorname{Bar}(T(\overline{A}[1])) \to \operatorname{Bar}(A) \to 0.$

In degree 1 of this chain complex, our sequence is given by $0 \to K_1 \to T(\overline{A}[1]) \to A \to 0$. To prove the result, it suffices to show that the following map is surjective for all w > 2:

(2)
$$\bigoplus_{w_1+w_2=w} (K[w_1] \otimes \overline{A}[1]^{\otimes w_2} \oplus \overline{A}[1]^{\otimes w_1} \otimes K[w_2]) \longrightarrow K_1[w].$$

Indeed, let us restrict attention to degree 1 and degree 2 of the chain complexes in (1):

Consider the natural map

$$\bigoplus_{w_1+w_2=w} \left((K_1[w_1] \otimes \overline{A}[1]^{\otimes w_2}) \oplus (\overline{A}[1]^{\otimes j_1} \otimes K_1[w_2]) \right) \xrightarrow{\overline{\beta}} \bigoplus_{w_1+w_2=w} \overline{A}[1]^{\otimes w_1} \otimes \overline{A}[1]^{\otimes w_2}$$
and its lift
$$\bigoplus_{w_1+w_2=w} \left((K_1[w_1] \otimes \overline{A}[1]^{\otimes w_2}) \oplus (\overline{A}[1]^{\otimes j_1} \otimes K_1[w_2]) \right) \xrightarrow{\beta} K_2[w].$$

The map β is surjective. Indeed, for any decompositions $w = w_1 + w_2$, we tensor the short exact sequences $K_1[w_1] \rightarrow \overline{A}[1]^{\otimes w_1} \rightarrow \overline{A}[w_1]$ and $K_1[w_2] \rightarrow \overline{A}[1]^{\otimes w_2} \rightarrow \overline{A}[w_2]$ to obtain a

diagram

Since k-vector spaces are flat, all columns and rows are exact. A diagram chase shows that $(K_1[w_1] \otimes \overline{A}[1]^{\otimes w_2}) \oplus (\overline{A}[1]^{\otimes w_1} \otimes K_1[w_2]) \longrightarrow \ker(\overline{A}[1]^{\otimes w_1} \otimes \overline{A}[1]^{\otimes w_2} \to \overline{A}[w_1] \otimes \overline{A}[w_2])$ is surjective, which implies that the map β is surjective as well.

As $H_*(\operatorname{Bar}(k, T(\overline{A}[1]), k)[w]_*) = \operatorname{Tor}_*^{T(\overline{A}[1])}(k, k)_*[w] = 0$ for all w > 1, the homology long exact sequence induced by (1) shows that $H_1(K_{\bullet}[w]) \cong \operatorname{Tor}_2^A(k, k)_*[w] = 0$ for all w > 2. As $K_0[w] = 0$, this implies that $K_2[w] \xrightarrow{\delta} K_1[w]$ is surjective for all w > 2, and hence $\bigoplus_{w_1+w_2=w} \left((K_1[w_1] \otimes \overline{A}[1]^{\otimes w_2}) \oplus (\overline{A}[1]^{\otimes w_1} \otimes K_1[w_2]) \right) \xrightarrow{\delta \circ \beta} K_1[w]$ is also surjective. \Box

7.3. Dualising Koszul algebras. Computing the dual of a Koszul algebra is not hard: Theorem 7.12. Let A be a Koszul algebra with quadratic presentation A = T(V; R). Assume that $A_i[n]$ and $T(\Sigma^{-1}V^{\vee}; \Sigma^{-2}R^{\perp})_i$ are finite-dimensional for all i, n.

Then the Koszul dual is formal and given by $\mathfrak{D}(A) = \mathbb{R} \operatorname{Hom}_A(k,k) \simeq T(\Sigma^{-1}V^{\vee}; \Sigma^{-2}R^{\perp}),$ where $V^{\vee} = \operatorname{Map}_{\operatorname{Mod}_k}(V,k)$ and $R^{\perp} \subset V^{\vee} \otimes V^{\vee}$ is spanned by all $\phi \otimes \psi$ vanishing on $R \subset V \otimes V.$

Proof. Consider the differential graded coalgebra $B(A) = (T(\Sigma \overline{A}), d)$, where

$$d([a_1|...|a_m]) = \sum_{i=2}^n (-1)^{\epsilon_i} [a_1|...|a_{i-1}a_i|...|a_m]$$

with $\epsilon_i = (|a_1|+1)+\ldots+(|a_{i-1}|+1)$. An element $[a_1|\ldots|a_n] \in (\overline{A}^{\otimes n})_i$ lies in homological degree $i = |a_1|+\ldots+|a_n|+n$ in B(A). Comultiplication sends $[a_1|\ldots|a_m]$ to $\sum_k [a_1|\ldots|a_k] \otimes [a_{k+1}|\ldots|a_m]$. The graded differential graded coalgebra B(A) $\simeq \bigoplus_w B(A)[w]$ can be dualised in two ways:

(1) Applying $\operatorname{Map}_{\operatorname{Mod}_k}(-,k)$ gives the differential graded k-algebra $\mathfrak{D}(A) = \mathrm{B}(A)^{\vee}$;

(2) Taking the Adams-graded dual gives an Adams-graded differential graded k-algebra with

$$\mathfrak{D}^{\mathrm{Gr}}(A)[n] \coloneqq \mathrm{Map}_{\mathrm{Mod}_k}(\mathrm{B}(A)[n], k).$$

These are related by a multiplicative comparison map $\bigoplus_{w} \mathfrak{D}^{\mathrm{Gr}}(A)[w] \to \mathfrak{D}(A)$ given by

(3)
$$\bigoplus_{w} \mathcal{B}(A)[w]^{\vee} \longrightarrow \prod_{w} \mathcal{B}(A)[w]^{\vee} \simeq \mathcal{B}(A)^{\vee}.$$

We begin by computing $\bigoplus_{w} B(A)[w]^{\vee}$. Dualising the maps

$$\operatorname{Tor}_{n}^{A}(k,k)[n]_{*-n} \cong \ker \left(B(A)_{n}[n]_{*-n} \hookrightarrow B(A)_{n-1}[n]_{*-n} \right) \longrightarrow \operatorname{B}(A)[n]_{*}$$

gives maps $B(A)[n]^{\vee}_* \to \operatorname{Ext}^n_A(k,k)[n]_{*+n}$. As A is Koszul, these assemble to an equivalence

$$\bigoplus_{w} \mathcal{B}(A)[n]_{*}^{\vee} \xrightarrow{\simeq} \bigoplus_{n} \mathcal{E}xt_{A}^{n}(k,k)[n]_{*+n}.$$

We can represent elements in

$$\operatorname{Ext}_{A}^{n}(k,k)[n]_{*+n} \cong \operatorname{coker}(\bigoplus_{k} (\overline{A}[1]^{\vee})^{\otimes k} \otimes \overline{A}[2]^{\vee} \otimes (\overline{A}[1]^{\vee})^{\otimes (n-k-1)} \longrightarrow (\overline{A}[1]^{\vee})^{\otimes n})_{*+n}$$

by expressions $[\alpha_1|\ldots|\alpha_n]$ with $\alpha_i \in \overline{A}[1]^{\vee} = V^{\vee}$. Here, we used $\dim_k(A_i[n]) < \infty$ for all i, n.

The product on $\bigoplus_{w} \mathbb{B}(A)[w]_{*}^{\vee}$ corresponds to the product on $\bigoplus_{w} \operatorname{Ext}_{A}^{*}(k,k)[w]_{*+n}$ sending elements represented by $[\alpha_{1}|\ldots|\alpha_{k}]$ and $[\alpha_{k+1}|\ldots|\alpha_{m}]$, respectively, to $[\alpha_{1}|\ldots|\alpha_{m}]$. The image of $(V^{\otimes 2}/R)^{\vee} \cong \overline{A}[2]^{\vee} \longrightarrow (\overline{A}[1]^{\vee})^{\otimes 2} \cong (V^{\vee})^{\otimes 2}$ is spanned by all elements $\alpha \otimes \beta$ vanishing on R. Hence $\operatorname{Ext}_{A}^{*}(k,k)[2]_{*+2} \cong ((V^{\vee})^{\otimes 2}/R^{\perp})_{*+2} \cong ((\Sigma^{-1}V^{\vee})^{\otimes 2}/\Sigma^{-2}R^{\perp})_{*}$, and more generally $\operatorname{Ext}_{A}^{*}(k,k)[w]_{*} \cong (\Sigma^{-1}V^{\vee})^{\otimes w} / \bigcup_{k} \left((\Sigma^{-1}V^{\vee})^{\otimes k} \otimes (\Sigma^{-2}R^{\perp}) \otimes (\Sigma^{-1}V^{\vee})^{\otimes (w-k-1)} \right)$.

These observations combine to give an equivalence $\bigoplus_{w} \operatorname{Ext}_{A}^{*}(k,k)[w]_{*} \simeq T(\Sigma^{-1}V^{\vee};\Sigma^{-2}R^{\perp}).$ Since $T(\Sigma^{-1}V^{\vee};\Sigma^{-2}R^{\perp})_{i}$ is assumed to be finite-dimensional for all *i*, this also shows that the comparison map (3) is an equivalence.

We illustrate Theorem 7.12 in several examples.

Example 7.13. Let V be the graded k-vector space with basis x_1, \ldots, x_n in degree 0. Taking $R = \langle x_i \otimes x_j + x_j \otimes x_i \rangle$ gives the exteriour algebra $A = T(V; R) = E[x_1, \ldots, x_n]$. Consider the dual basis x_1^*, \ldots, x_n^* of V^{\vee} . An element $v^* = \sum_{i,j} \lambda_{ij} \ x_i^* \otimes x_j^* \in V^{\vee} \otimes V^{\vee}$

Consider the dual basis x_1^*, \ldots, x_n^* of V^{\vee} . An element $v^* = \sum_{i,j} \lambda_{ij} x_i^* \otimes x_j^* \in V^{\vee} \otimes V^{\vee}$ vanishes on R iff $\lambda_{ij} = -\lambda_{ji} = 0$ for all i, j, which happens iff $v^* \in R^{\perp} = \langle x_i^* \otimes x_j^* - x_j^* \otimes x_i^* \rangle$. Writing $y_i = \Sigma^{-1}(x_i^*)$, we deduce from Theorem 7.12 that

$$\mathfrak{D}(E[x_1,\ldots,x_n])\simeq k[y_1,\ldots,y_n]$$

Exercise 7.14. Prove that there is an equivalence $\mathfrak{D}(k[y_1,\ldots,y_n]) \simeq E[x_1,\ldots,x_n]$.

This biduality is in fact a general phenomenon, which can be proven (under mild finiteness assumptions) using the Koszul complex. We refer to [BGS96, Secion 2.9] for a precise statement.

Remark 7.15. To see that the finiteness assumption in Theorem 7.12 is indeed necessary, consider the Koszul algebra E[x] with x in Adams degree 1 and homological degree -1. Then $\mathfrak{D}(A) = k[[y]]$ is a power series ring generated by y in homological degree 0, while Theorem 7.12 would predict a polynomial ring.

7.4. **Poincaré Series.** Proposition 7.11 leads to the question whether every quadratic algebra is Koszul. To see that this is *not* the case, we use the following classical notion (in a form presented in [Ber14]):

Definition 7.16 (Poincaré Series). Let $A = \bigoplus_{i,w} A_i[w]$ be an Adams-graded graded algebra with $\dim_k(A_i[w]) < \infty$ for all i, w. The *Poincaré series* of A is given by

$$A(t,z) = \sum_{i,w} \dim_k(A_i[w]) z^i t^w \in k[z,t].$$

We have the following criterion:

Proposition 7.17. If $A = \bigoplus_{i,w} A_i[w]$ is a Koszul algebra as in Theorem 7.12, then

$$P_{\mathfrak{D}(A)}(t,z) = P_A\left(-\frac{t}{z},z\right)^{-1}$$

Proposition 7.17 can be used to construct examples of quadratic algebras which are not Koszul. We work through an example of Lech:

Exercise 7.18. Consider the following quadratic algebra with its natural Adams grading, concentrated in homological degree i = 0:

$$A = k[x_1, x_2, x_3, x_4] / (x_1^2, x_2^2, x_3^2, x_4^2, x_1x_2 + x_3x_4)$$

- (1) Show that $P_A(t,z) = 1 + 4w + 5w^2$.
- (2) Compute $P_{\mathcal{D}(A)}$, and use the answer to prove that A is not a Koszul algebra.

7.5. **PBW algebras.** Theorem 7.12 allows us to dualise an algebra A = T(V; R) once we know that it is Koszul, but checking this property still requires some knowledge about the groups $\operatorname{Tor}_*^A(k,k)_*[*]$.

We will now introduce a simple condition on bases of V which implies that T(V; R) is Koszul: Priddy's *PBW-property* (cf. [PP05, Chapter 4] for a more detailed treatment). Let V be a graded vector space with basis $x_1, \ldots x_n$, and suppose that $R \subset V \otimes V$ is a homogeneous submodule of relations. Using the lexicographic order, we define

$$S = \{ (i,j) \mid x_i x_j \notin \operatorname{span}(x_r x_s)_{(r,s) < (i,j)} \subset (V \otimes V)/R \}$$

Exercise 7.19. Show that the set $\{x_i x_j \mid (i, j) \in S\}$ forms a basis of $(V \otimes V)/R$.

In particular, for any $(i, j) \notin S$, we can write

$$x_i x_j = \sum_{(r,s) < (i,j)} c_{ij}^{rs} x_r x_s \in T(V;R)$$

for uniquely determined scalars $c_{ij}^{rs} \in k$.

Definition 7.20. We say that x_1, \ldots, x_n is a *PBW basis* for the quadratic algebra T(V; R) if the following polynomials form a basis for T(V; R):

$$\{x_{j_1}x_{j_2}\dots x_{j_n}\in T(V;R) \mid (j_1,j_2), (j_2,j_3),\dots, (j_{n-1},j_n)\in S\}.$$

For n = 0, the above product is 1 by convention.

Priddy then established the following useful criterion:

Theorem 7.21. If A = T(V; R) admits a PBW-basis, then A is a Koszul algebra.

Example 7.22. For $V = \langle x_1, x_2 \rangle$ and $R = \langle x_1^2, x_1x_2+x_2x_1, x_2^2 \rangle$, we have $E(x_1, x_2) = T(V; R)$. We observe that $S = \{(1,2)\}$. Since $\{1, x_1, x_2, x_1x_2\}$ is a basis for $E(x_1, x_2)$, Theorem 7.21 gives an alternative proof that $E(x_1, x_2)$ is Koszul.

Theorem 7.12 then has the following consequence:

Corollary 7.23. Let x_1, \ldots, x_n be a PBW-basis for A = T(V; R). Assume that all $A_i[n]$ and $T(\Sigma^{-1}V^{\vee}; \Sigma^{-2}R^{\perp})_i$ are finite-dimensional. Write $x_i x_j = \sum_{(r,s)<(i,j)} c_{ij}^{rs} x_r x_s \in A$ for $(i,j) \notin S$.

Then $\mathfrak{D}(A)$ is generated by y_1, \ldots, y_n with y_i in degree $-|x_i| - 1$ subject to the relations:

$$(-1)^{\nu_{i,j}} y_i y_j + \sum_{(k,l) \notin S} (-1)^{\nu_{k,l}} c_{rs}^{ij} y_r y_s = 0 \quad \text{if} \quad (i,j) \in S.$$

Here $\nu_{ab} = |y_a| + (|y_a| - 1)(|y_b| - 1).$

We conclude this lecture by stating two classical applications of Koszul algebras in topology.

7.6. Application 1: The Homology of Loop Spaces. Koszul duality can be used to compute the homology of loop spaces (cf. [Ber14] for a detailed treatment):

Proposition 7.24. Let X be a simply connected space whose algebra of rational cochains $C^*(X; \mathbb{Q}) \simeq H^*(X, \mathbb{Q})$ is both formal and Koszul.

Then the homology of the loop space of X is given by the Koszul dual of $H^*(X; \mathbb{Q})$:

$$H_*(\Omega X; \mathbb{Q}) \cong \mathfrak{D}(H^*(X; \mathbb{Q}))$$

Example 7.25. For $X = S^2$, the cochain algebra $C^*(X, \mathbb{Q})$ is given by E[x] with x in homological degree -2. As this algebra is Koszul, we deduce $H_*(\Omega S^2; \mathbb{Q}) \simeq \mathfrak{D}(E[x]) \simeq \mathbb{Q}[y]$ with y in degree 1. An alternative proof uses the James splitting $\Sigma \Omega \Sigma S^1 \simeq \Sigma \bigvee_{i=1}^{\infty} S^m$.

7.7. Application 2: The Adams Spectral Sequence. We begin by recalling the Steenrod algebra, which is of key importance in topology:

Definition 7.26 (The Steenrod algebra). The Steenrod algebra \mathcal{A} (at p = 2) is the associative algebra generated by elements Sq^0, Sq^1, Sq^2, \ldots subject to the following relations:

(1)
$$\operatorname{Sq}^{0} = 1;$$

(2) If $i < 2j$, then $\operatorname{Sq}^{i} \operatorname{Sq}^{j} = \sum_{k=0}^{\lfloor \frac{j}{2} \rfloor} \operatorname{Sq}^{i+j-k} \operatorname{Sq}^{k}$

Given any space X, the \mathbb{F}_2 -valued cohomology $H^*(X, \mathbb{F}_2)$ is equipped with a natural action by the Steenrod algebra satisfying the following well-known conditions:

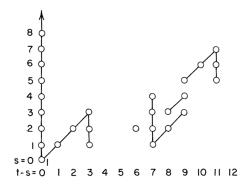
a) Sqⁿ: $H^*(X, \mathbb{F}_2) \to H^{*+n}(X, \mathbb{F}_2)$ shifts degree by n;

- b) $\operatorname{Sq}^{n}(x) = 0$ if $x \in H^{m}(X, \mathbb{F}_{2})$ with m < n;
- c) $\operatorname{Sq}^{n}(x) = x \cup x$ for $x \in H^{n}(X, \mathbb{F}_{2})$;
- d) $\operatorname{Sq}^{n}(x \cup y) = \sum_{a+b=n} \operatorname{Sq}^{a}(x) \cup \operatorname{Sq}^{b}(y).$

Theorem 7.27 (Adams spectral sequence). There is a spectral sequence of signature

$$E_s^{s,t} = \operatorname{Ext}_{\mathcal{A}}^{s,t}(\mathbb{F}_2,\mathbb{F}_2) \implies \pi_*^s(S)_2^{\prime}$$

We depict the E_2 -term of this spectral sequence (in Adams convention), cf. [Rav78]:



It is therefore an important computational problem to compute the algebra $Ext_{\mathcal{A}}^{s,t}(\mathbb{F}_2,\mathbb{F}_2)$, and our previous discussion leads to the hope that Koszul algebras might be helpful.

Since the defining relations of \mathcal{A} are not homogeneous, the natural grading on the tensor algebra $T(\operatorname{Sq}^0, \operatorname{Sq}^1, \ldots)$ does not descend to an Adams-grading on \mathcal{A} . However, it induces an ascending filtration whose n^{th} stage $F^n(\mathcal{A})$ is spanned by all products of at most n generators $\operatorname{Sq}^0, \operatorname{Sq}^1, \ldots$

The associated graded $Gr(\mathcal{A})$ of this filtration admits an Adams grading, and Theorem 7.21 can be used to prove that $Gr(\mathcal{A})$ is a Koszul algebra. Priddy then refines the analysis carried out in Theorem 7.12 to prove the following result:

Theorem 7.28. The Koszul dual $\mathfrak{D}(\mathcal{A})$ of the Steenrod algebra is given by the Λ -algebra, which is the differential graded \mathbb{F}_2 -algebra generated by $\lambda_1, \lambda_2, \lambda_3, \ldots$ subject to relations

$$\lambda_a \lambda_b = \sum_{j=2b}^{\lfloor \frac{2(a+b)}{3} \rfloor} \binom{a-j-1}{j-2b} \lambda_j \lambda_{a+b-j} \quad \text{if } a \ge 2b > 0$$

with differential

$$\delta(\lambda_a) = \sum_{j=1}^{\lfloor \frac{2a}{3} \rfloor} {a-j-1 \choose j} \lambda_j \lambda_{a-j}$$

The Λ -algebra provides a valuable tool in the computation of stable and unstable homotopy groups of spheres; we refer to [Rav03, Chapter 3] for a detailed discussion.

References

- [Ber14] Alexander Berglund, Koszul spaces, Transactions of the American Mathematical Society 366 (2014), no. 9, 4551–4569.
- [BGS96] Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel, Koszul duality patterns in representation theory, Journal of the American Mathematical Society **9** (1996), no. 2, 473–527.
- [Lur10] Jacob Lurie, Chromatic homotopy theory, Lecture notes online at http://www.math.harvard.edu/ lurie/252x.html (2010).
- [PP05] Alexander Polishchuk and Leonid Positselski, *Quadratic algebras*, vol. 37, American Mathematical Soc., 2005.
- [Pri70] Stewart B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39-60. MR 0265437
- [Rav78] Douglas C Ravenel, A novice's guide to the adams-novikov spectral sequence, Geometric Applications of Homotopy Theory II, Springer, 1978, pp. 404–475.
- [Rav03] _____, Complex cobordism and stable homotopy groups of spheres, American Mathematical Soc., 2003.
- [Rez12] Charles Rezk, Rings of power operations for Morava E-theories are Koszul, arXiv preprint arXiv:1204.4831 (2012).