The Graph Complex via Category Theory

Thibault Décoppet

University of Oxford

The 8^{th} of June 2020

Recollections I

Notations

Fix a positive integer $d \ge 2$. We will use the following notations for g a positive integer:

- $M_g = \sharp^g S^d \times S^d$, $M_{g,1}$ is M_g with an open 2*d*-disk removed.
- $H_g = H_d(M_g; \mathbb{Z})$ (thought of as having degree 0)

$$\blacktriangleright V_g = s^{d-1} H_g \otimes \mathbb{Q}$$

- $\Gamma_g = Aut(H_g, \mu, q)$, where μ is the intersection pairing.
- ► L(V_g) the free Lie algebra on V_g is a minimal Quillen model for M_{g,1}.
- $\omega_g = \frac{1}{2} \Sigma_i [\alpha_i^{\sharp}, \alpha_i] \in \mathbb{L}(V_g)$ represents (up to sign) the homotopy class of the inclusion of the boundary $S^{2d-1} \hookrightarrow M_{g,1}$.

remark

The intersection pairing μ makes V_g into a graded anti-symmetric inner product space.

Recollections II

Notations

With d and g as above:

- $\blacktriangleright X_g = Baut_{\partial}(M_{g,1})$
- g_g = Der⁺_{ωg} L(V_g), the positive truncation of the dg Lie algebra of derivations of L(V_g) that kill ω_g.

Theorem [BM]

The Lie algebra \mathfrak{g}_g is a Quillen model for $Baut_{\partial,\circ}(M_{g,1})$, the connected component of the identity of X_g .

Theorem [BM]

The stabilization map $M_{g,1} \hookrightarrow M_{g+1,1}$ induces an isomorphism

$$H_k(X_g; \mathbb{Q}) \to H_k(X_{g+1}; \mathbb{Q})$$

for g > 2k + 4, and an epimorphism for g = 2k + 4.

Recollections III

Notation

Letting $g \to \infty$, we let $X_{\infty} = hocolim_g X_g$, $\Gamma_{\infty} = colim_g \Gamma_g$, and $\mathfrak{g}_{\infty} = colim_g \mathfrak{g}_g$, under the stabilization maps.

Observation

The canonical map $X_g o X_\infty$ induces an isomorphism

$$H^k(X_\infty;\mathbb{Q}) \to H^k(X_g;\mathbb{Q})$$

for g > 2k + 4.

Theorem [BM]

Let $d \ge 3$. There is an isomorphism of graded rings

$$H^*(X_{\infty};\mathbb{Q})\cong H^*(\Gamma_{\infty};\mathbb{Q})\otimes H^*_{CE}(\mathfrak{g}_{\infty})^{\Gamma_{\infty}}.$$

remark

As graded ring, $H^*(\Gamma_{\infty}; \mathbb{Q}) = \mathbb{Q}[x_1, x_2, ...]$ by results of Borel.

First Reduction

remark

Instead of computing $H^*_{CE}(\mathfrak{g}_{\infty})^{\Gamma_{\infty}}$, we may dually compute the coinvariants $H^{CE}_*(\mathfrak{g}_{\infty})_{\Gamma_{\infty}}$.

remark

Given that, for $g \geq 2$, $C_*^{CE}(\mathfrak{g}_g)$ is chain homotopic to $H_*^{CE}(\mathfrak{g}_g)$ as complexes of $\mathbb{Q}[\Gamma_g]$ -modules, it is enough to compute $C_*^{CE}(\mathfrak{g}_\infty)_{\Gamma_\infty}$.

Theorem 9.1 [BM]

There is an isomorphism of chain complexes

$$C^{CE}_*(\mathfrak{g}_\infty)_{\Gamma_\infty}\cong \Lambda \mathscr{G}^d(0).$$

$$\operatorname{\mathsf{remark}}$$

We have $H^{CE}_*(\mathfrak{g}_\infty)_{\Gamma_\infty}\cong \Lambda(H_*\mathscr{G}^d(0)).$

\mathbf{Sp} -modules

Definition

Fix a positive integer d. Let \mathbf{Sp}^d denote the category of graded finite dimensional anti-symmetric inner product spaces concentrated in degree d.

remarks

The spaces V_g are objects of \mathbf{Sp}^d . All the morphisms of \mathbf{Sp}^d are monomorphisms.

Definition

An \mathbf{Sp}^d -module in a category \mathscr{V} is a functor $\mathbf{Sp}^d \to \mathscr{V}$.

Proposition

The assignment $V \mapsto Der_{\omega} \mathbb{L}(V)$ is an \mathbf{Sp}^{d} -module in the category of graded Lie algebras.

proof

$$0
ightarrow \textit{Der}_{\omega}\mathbb{L}(V)
ightarrow \textit{Der}\mathbb{L}(V)
ightarrow \mathbb{L}^{\geq 2}(V)
ightarrow 0$$

The Lie operad I

Recollection

There is a symmetric operad $\mathcal{L}ie$, called the Lie operad, with spaces $\mathcal{L}ie(n)$ spanned by the Lie monomials in $x_1, ..., x_n$ containing every generator exactly once.

Lemma

The Lie operad is a cyclic operad.

proof

Let t denote the permutation (12...n) in Σ_n . We extend the left Σ_{n-1} -action on $\mathscr{L}ie(n-1)$ via:

The Lie operad II

Observation

Let us denote $\mathscr{L}ie((n))$ the space $\mathscr{L}ie(n-1)$ with the Σ_n -action defined previously. The assignment

$$V \mapsto \mathscr{L}ie((V)) := s^{-2d} \bigoplus_{n \ge 2} \mathscr{L}ie((n)) \otimes_{\Sigma_n} V^{\otimes n}$$

defines an \mathbf{Sp}^{d} -module. This is a Schur functor.

Proposition [BM]

There is an isomorphism of \mathbf{Sp}^{d} -modules,

$$\mathscr{L}ie((V)) \cong Der_{\omega}\mathbb{L}(V).$$

remark

One can describe explicitly the Lie bracket on $\mathcal{L}ie((V))$ induced by the above isomorphism.

Σ -modules I

We fix $\ensuremath{\mathscr{V}}$ a cocomplete symmetric monoidal category.

Definition

Let Σ denote the groupoid of finite sets and bijections. A left Σ -module in \mathscr{V} is a functor $\Sigma \to \mathscr{V}$.

Example

Any object V of \mathscr{V} defines a right Σ -module via $S \mapsto \bigotimes_S V$. The functor $S \mapsto \mathscr{L}ie(S)$ is a Σ -module.

Notation

We denote by $(\Sigma \downarrow \Sigma)$ the category with objects the maps $f: S \to T$ of finite sets, and with morphisms pairs of bijections

Σ -modules II

Notation

Fix a finite set S. We denote by $(S \downarrow \Sigma)$ the category with objects the maps $f : S \to T$ of finite sets, and with morphisms bijections

Definition

Let $\mathscr C$ and $\mathscr D$ be $\Sigma\text{-modules}.$ Their composition $\mathscr C\circ\mathscr D$ is the $\Sigma\text{-module}$ specified by

$$\mathscr{C} \circ \mathscr{D}(S) := \operatorname{colim}_{(f:S \to T)} \mathscr{C}(T) \otimes \bigotimes_{s \in S} \mathscr{D}(f^{-1}(s)),$$

where the colimit is taken over the category $(S \downarrow \Sigma)$.

Σ -modules III

remark

Monoids in the category of $\Sigma\text{-modules}$ with monoidal structure given by \circ correspond precisely to symmetric operads.

Definition

Assuming \mathscr{V} is cocomplete and symmetric monoidal. The **Schur** functor associated to a Σ -module \mathscr{C} is the functor $\mathscr{C}[-] : \mathscr{V} \to \mathscr{V}$ specified by

$$\mathscr{C}[V] := \operatorname{colim}_{S \in \Sigma} \mathscr{C}(S) \otimes V^{\otimes S} \cong \bigoplus_{n \ge 0} \mathscr{C}(n) \otimes_{\Sigma_n} V^{\otimes n}.$$

remark

There is a natural isomorphism of functors

$$\mathscr{C}[\mathscr{D}[V]] \cong (\mathscr{C} \circ \mathscr{D})[V].$$

Matchings I

Definition

A matching on a finite set S is a set M of disjoint 2-element subsets whose union is S. We denote by M_S the set of all matchings on S.

remark

Notations

For a finite set S, we denote sgn_S the sign representation of Σ_S . Given $\sigma \in \Sigma_n$, V a graded vector space, and $x = x_1 \otimes ... \otimes x_n \in V^{\otimes n}$. We denote by $sgn(\sigma, x)$ the sign for which

$$(x_1 \otimes ... \otimes x_n)\sigma = sgn(\sigma, x)x_{\sigma_1} \otimes ... \otimes x_{\sigma_n}.$$

Matchings II

Theorem [BM]

Let V be a graded anti-symmetric inner product space concentrated in degree d - 1. There is a pairing

$$\langle -, -\rangle : \mathcal{M}_{2k} \otimes V^{\otimes 2k} \to sgn_{2k}$$
$$\langle \{\{\sigma_1, \sigma_2\}, ..., \{\sigma_{2k-1}, \sigma_{2k}\}\}, x_1 \otimes ... \otimes x_n \rangle = sgn(\sigma)sgn(\sigma, x) \langle x_{\sigma_1}, x_{\sigma_2} \rangle ... \langle x_{\sigma_{2k-1}}, x_{\sigma_{2k}} \rangle$$

~ ~ 1

This pairing gives rise to a morphism of Σ_{2k} -modules of degree -2k(d-1):

$$\psi: (V^{\otimes 2k})_{\mathsf{Sp}(V)} \to \mathcal{M}_{2k} \otimes \operatorname{sgn}_{2k}$$

$$\psi([x]) := \sum_{M \in \mathcal{M}_{2k}} \langle M, x \rangle M,$$

that is an isomorphism if $dim(V) \ge 2k$.

Matchings III

Definition

From now on, we fix \mathscr{V} as the category of graded Q-vector spaces. Fix a positive integer d. We denote by **Sp** the category of graded anti-symmetric inner product spaces concentrated in degree d - 1. Given an **Sp**-module $M : \mathbf{Sp} \to \mathscr{V}$, we denote

$$M_{\mathbf{Sp}} := colim_{V \in \mathbf{Sp}} M(V).$$

Example

There is an $\boldsymbol{Sp}-\boldsymbol{\Sigma}\text{-bimodules}$ given by

$$\mathsf{Sp} imes \Sigma^{op} o \mathscr{V}, \quad (V, S) \mapsto V^{\otimes S}.$$

Corollary

There is an isomorphism of right Σ -modules

$$(V^{\otimes S})_{\mathbf{Sp}} \cong s^{|S|(d-1)}\mathcal{M}_{S} \otimes sgn_{S}.$$

The Graph Complex I

Definition

A graph $G = (f : F \to V, E)$ consists of a set F of half-edges, a set V of vertices, a function $f : F \to V$, and a matching E on F. The elements of E are thought of as the edges of the graph.

Notation

We denote by $\mathcal{G}\mathit{raph}$ the groupoid of graphs and their isomorphisms.

Construction

Let $\mathscr{C}: \Sigma \to \mathscr{V}$. There is an induced functor $\mathscr{C}: \mathscr{G} \operatorname{raph} \to \mathscr{V}$, with value at $G = (f: F \to V, E)$ given by

$$\mathscr{C}(\mathsf{G}) = \bigotimes_{v \in V} \mathscr{C}(f^{-1}(v)).$$

Recollection: The Grothendieck Construction

Definition

Let *I* be a category, and $F : I \rightarrow Cat$ be a functor to the category of small categories. The Grothendieck construction $I \int F$ is the category whose objects are pairs (i, x), with $i \in I$ and $x \in F(i)$.

Lemma

For every functor $D: I \int F \to \mathscr{V}$ into a cocomplete category, there is a canonical isomorphism

$$colim_{(i,x)\in I} \int FD(i,x) \cong colim_{i\in I} colim_{x\in F(i)}D(i,x).$$

Example

There is a functor $(-\downarrow \Sigma) : \Sigma \to Cat$ that sends S to $(S \downarrow \Sigma)$. The Grothendieck construction $\Sigma \int (-\downarrow \Sigma)$ is isomorphic to $(\Sigma \downarrow \Sigma)$ (as a category over Σ).

The Graph Complex II

Example

Let $\mathcal{M} : (\Sigma \downarrow \Sigma) \rightarrow \mathbf{Cat}$ denote the functor that sends $f : S \rightarrow T$ to \mathcal{M}_S viewed as a discrete category. The Grothendieck construction on \mathcal{M} is isomorphic to \mathscr{G} raph.

Notation

Given a Σ -module \mathscr{C} , the Schur functor $V \mapsto \mathscr{C}((V))$ is an **Sp**-module with

$$\mathscr{C}((V)) := s^{2-2d} \bigoplus_{n \ge 0} \mathscr{C}(n) \otimes_{\Sigma_n} V^{\otimes n}.$$

remark

For $\mathscr{C} = \mathscr{L}ie((-))$ this agrees with the previously used notation, as $\mathscr{L}ie((0)) = \mathscr{L}ie((1)) = 0$.

The Graph Complex III

Theorem [BM]

One can describe the complex $\Lambda s \mathscr{C}((V))_{Sp}$ explicitly.

proof

The **Sp**-module $V \mapsto \Lambda s V$ is identified with the Schur functor associated to the Σ -module Λs given by $\Lambda s(T) := s^{|T|} sgn_T$. We compute:

$$\begin{split} \Lambda s \mathscr{C}((V)) &\cong (\Lambda s \circ \mathscr{C})[V] \\ &= colim_{S \in \Sigma} (\Lambda s \circ \mathscr{C})(S) \otimes V^{\otimes S} \\ &= colim_{S \in \Sigma} colim_{f:S \to T} \Lambda s(T) \otimes \mathscr{C}((f)) \otimes V^{\otimes S} \\ &\cong colim_{f \in (\Sigma \downarrow \Sigma)} \Lambda s(T) \otimes \mathscr{C}((f)) \otimes V^{\otimes S}. \end{split}$$

The Graph Complex IV

proof continued

As colimits commute with colimits and tensor products of graded vector spaces, we find:

$$\begin{split} \Lambda s \mathscr{C}((V))_{\mathsf{Sp}} &\cong \operatorname{colim}_{f \in (\Sigma \downarrow \Sigma)} \Lambda s(T) \otimes \mathscr{C}((f)) \otimes (V^{\otimes S})_{\mathsf{Sp}} \\ &\cong \operatorname{colim}_{f \in (\Sigma \downarrow \Sigma)} \Lambda s(T) \otimes \mathscr{C}((f)) \otimes s^{|S|(d-1)} \mathcal{M}_S \otimes \operatorname{sgn}_S \end{split}$$

Viewing \mathcal{M}_S as a discrete category, we may rewrite the above expression as:

$$colim_{f \in (\Sigma \downarrow \Sigma)} colim_{M \in \mathcal{M}_S} s^{|S|(d-1)} \Lambda s(T) \otimes \mathscr{C}((f)) \otimes sgn_S$$

Using the above description of \mathscr{G} raph as a Grothendieck construction, and some changes of notations yield:

$$\mathscr{G}^{d}\mathscr{C} := colim_{G \in \mathscr{G}raph} s^{(3-2d)|V|+|F|(d-1)} sgn_{V} \otimes sgn_{F} \otimes \mathscr{C}((G)).$$

Concluding remarks

remark

Any object of $\mathscr{G}^d\mathscr{C}$ is represented by a graph $(f : F \to V, E)$ together with an orientation of the vertices, an orientation of the half-edges, and for every vertex v, an element $\xi_v \in \mathscr{C}(f^{-1}(v))$.

remark

If \mathscr{C} is a cyclic operad, the **Sp**-module $V \mapsto \mathscr{C}((V))$ admits a Lie algebra structure. Thus, we are entitled to consider the chain complex

$$C^{CE}_*(\mathscr{C}((V)))_{\mathbf{Sp}} = (\Lambda \mathfrak{sC}((V))_{\mathbf{Sp}}, \partial).$$

Warning: This depends on *d*.

remark

For d = 1, this is the complex of C-labeled graphs. If, in addition, $C = \mathcal{L}ie((-))$, we recover the graph complex.

A proof of Theorem 9.1

We have:

$$C^{CE}_*(\mathfrak{g}_\infty)_{\Gamma_\infty} \cong C^{CE}_*(\mathscr{L}ie((V)))_{\mathbf{Sp}} = \mathscr{G}^d\mathscr{L}ie.$$

This isomorphism follows from

$$Der_{\omega_g}^+ \mathbb{L}(V_g) = Der_{\omega_g} \mathbb{L}(V_g) \cong \mathscr{L}ie((V_g)),$$

together with the fact that $\Gamma_g \subseteq Sp(V_g)$ is dense, which implies that

$$C^{CE}_*(\mathfrak{g}_g)_{\Gamma_g} \cong C^{CE}_*(\mathscr{L}ie((V_g)))_{\operatorname{Sp}(V_g)}.$$

If we denote by $\mathscr{G}^d(0)$ the subcomplex of $\mathscr{G}^d \mathscr{L}ie$ on the connected graphs, we have

$$\mathscr{G}^{d}\mathscr{L}$$
ie $\cong \Lambda \mathscr{G}^{d}(0),$

as disjoint union of graphs endow $\mathscr{G}^d \mathscr{L}ie$ with a differential graded commutative product.