The Graph Complex via Category Theory

Thibault Décoppet

University of Oxford

The $8^{\text {th }}$ of June 2020

Recollections I

Notations

Fix a positive integer $d \geq 2$. We will use the following notations for g a positive integer:

- $M_{g}=\sharp^{g} S^{d} \times S^{d}, M_{g, 1}$ is M_{g} with an open $2 d$-disk removed.
- $H_{g}=H_{d}\left(M_{g} ; \mathbb{Z}\right)$ (thought of as having degree 0)
- $V_{g}=s^{d-1} H_{g} \otimes \mathbb{Q}$
- $\Gamma_{g}=\operatorname{Aut}\left(H_{g}, \mu, q\right)$, where μ is the intersection pairing.
- $\mathbb{L}\left(V_{g}\right)$ the free Lie algebra on V_{g} is a minimal Quillen model for $M_{g, 1}$.
- $\omega_{g}=\frac{1}{2} \Sigma_{i}\left[\alpha_{i}^{\sharp}, \alpha_{i}\right] \in \mathbb{L}\left(V_{g}\right)$ represents (up to sign) the homotopy class of the inclusion of the boundary $S^{2 d-1} \hookrightarrow M_{g, 1}$.

remark

The intersection pairing μ makes V_{g} into a graded anti-symmetric inner product space.

Recollections II

Notations
With d and g as above:

- $X_{g}=\operatorname{Baut}_{\partial}\left(M_{g, 1}\right)$
- $\mathfrak{g}_{g}=\operatorname{Der}_{\omega_{g}}^{+} \mathrm{L}\left(V_{g}\right)$, the positive truncation of the dg Lie algebra of derivations of $\mathbb{L}\left(V_{g}\right)$ that kill ω_{g}.

Theorem [BM]

The Lie algebra \mathfrak{g}_{g} is a Quillen model for Baut $_{\partial, \circ}\left(M_{g, 1}\right)$, the connected component of the identity of X_{g}.

Theorem [BM]
The stabilization map $M_{g, 1} \hookrightarrow M_{g+1,1}$ induces an isomorphism

$$
H_{k}\left(X_{g} ; \mathbb{Q}\right) \rightarrow H_{k}\left(X_{g+1} ; \mathbb{Q}\right)
$$

for $g>2 k+4$, and an epimorphism for $g=2 k+4$.

Recollections III

Notation

Letting $g \rightarrow \infty$, we let $X_{\infty}=$ hocolim $_{g} X_{g}, \Gamma_{\infty}=$ colim $_{g} \Gamma_{g}$, and $\mathfrak{g}_{\infty}=$ colim $_{g} \mathfrak{g}_{g}$, under the stabilization maps.

Observation
The canonical map $X_{g} \rightarrow X_{\infty}$ induces an isomorphism

$$
H^{k}\left(X_{\infty} ; \mathbb{Q}\right) \rightarrow H^{k}\left(X_{g} ; \mathbb{Q}\right)
$$

for $g>2 k+4$.
Theorem [BM]
Let $d \geq 3$. There is an isomorphism of graded rings

$$
H^{*}\left(X_{\infty} ; \mathbb{Q}\right) \cong H^{*}\left(\Gamma_{\infty} ; \mathbb{Q}\right) \otimes H_{C E}^{*}\left(\mathfrak{g}_{\infty}\right)^{\Gamma_{\infty}}
$$

remark
As graded ring, $H^{*}\left(\Gamma_{\infty} ; \mathbb{Q}\right)=\mathbb{Q}\left[x_{1}, x_{2}, \ldots\right]$ by results of Borel.

First Reduction

remark
Instead of computing $H_{C E}^{*}\left(\mathfrak{g}_{\infty}\right)^{\Gamma}$, we may dually compute the coinvariants $\left.H_{*}^{C E}\left(\mathfrak{g}_{\infty}\right)\right)_{\Gamma_{\infty}}$.

remark

Given that, for $g \geq 2, C_{*}^{C E}\left(\mathfrak{g}_{g}\right)$ is chain homotopic to $H_{*}^{C E}\left(\mathfrak{g}_{g}\right)$ as complexes of $\mathbb{Q}\left[\Gamma_{g}\right]$-modules, it is enough to compute $C_{*}^{C E}\left(\mathfrak{g}_{\infty}\right) \Gamma_{\Gamma_{\infty}}$.

Theorem 9.1 [BM]
There is an isomorphism of chain complexes

$$
C_{*}^{C E}\left(\mathfrak{g}_{\infty}\right)_{\Gamma_{\infty}} \cong \Lambda \mathscr{G}^{d}(0)
$$

remark
We have $H_{*}^{C E}\left(\mathfrak{g}_{\infty}\right) \Gamma_{\infty} \cong \Lambda\left(H_{*} \mathscr{G}^{d}(0)\right)$.

Sp-modules

Definition

Fix a positive integer d. Let $\mathbf{S p}^{d}$ denote the category of graded finite dimensional anti-symmetric inner product spaces concentrated in degree d.

remarks

The spaces V_{g} are objects of $\mathbf{S} \mathbf{p}^{d}$. All the morphisms of $\mathbf{S} \boldsymbol{p}^{d}$ are monomorphisms.

Definition

An $\mathbf{S p}^{d}$-module in a category \mathscr{V} is a functor $\mathbf{S p}^{d} \rightarrow \mathscr{V}$.

Proposition

The assignment $V \mapsto \operatorname{Der}_{\omega} \mathbb{L}(V)$ is an $\mathbf{S p}^{d}$-module in the category of graded Lie algebras.
proof

$$
0 \rightarrow \operatorname{Der}_{\omega} \mathbb{L}(V) \rightarrow \operatorname{Der} \mathbb{L}(V) \rightarrow \mathbb{L}^{\geq 2}(V) \rightarrow 0
$$

The Lie operad I

Recollection

There is a symmetric operad \mathscr{L} ie, called the Lie operad, with spaces \mathscr{L} ie(n) spanned by the Lie monomials in x_{1}, \ldots, x_{n} containing every generator exactly once.

Lemma

The Lie operad is a cyclic operad.

proof

Let t denote the permutation (12...n) in Σ_{n}. We extend the left Σ_{n-1}-action on \mathscr{L} ie $(n-1)$ via:

The Lie operad II

Observation
Let us denote $\mathscr{L} i e((n))$ the space \mathscr{L} ie $(n-1)$ with the Σ_{n}-action defined previously. The assignment

$$
V \mapsto \mathscr{L} i e((V)):=s^{-2 d} \bigoplus_{n \geq 2} \mathscr{L} i e((n)) \otimes_{\Sigma_{n}} V^{\otimes n}
$$

defines an $\mathbf{S p} \mathbf{p}^{d}$-module. This is a Schur functor.

Proposition [BM]

There is an isomorphism of $\mathbf{S p}^{d}$-modules,

$$
\mathscr{L} \operatorname{ie}((V)) \cong \operatorname{Der}_{\omega} \mathrm{L}(V)
$$

remark
One can describe explicitly the Lie bracket on \mathscr{L} ie $((V))$ induced by the above isomorphism.

\sum-modules I

We fix \mathscr{V} a cocomplete symmetric monoidal category.

Definition

Let Σ denote the groupoid of finite sets and bijections. A left Σ-module in \mathscr{V} is a functor $\Sigma \rightarrow \mathscr{V}$.

Example

Any object V of \mathscr{V} defines a right Σ-module via $S \mapsto \bigotimes_{S} V$. The functor $S \mapsto \mathscr{L}$ ie (S) is a Σ-module.

Notation

We denote by $(\Sigma \downarrow \Sigma)$ the category with objects the maps
$f: S \rightarrow T$ of finite sets, and with morphisms pairs of bijections

$$
\begin{aligned}
& S_{1} \cong S_{2} \\
& f_{1} \\
& \downarrow \\
& T_{1} \cong T_{2} \\
& T_{2}
\end{aligned}
$$

\sum-modules II

Notation

Fix a finite set S. We denote by $(S \downarrow \Sigma)$ the category with objects the maps $f: S \rightarrow T$ of finite sets, and with morphisms bijections

Definition

Let \mathscr{C} and \mathscr{D} be Σ-modules. Their composition $\mathscr{C} \circ \mathscr{D}$ is the Σ-module specified by

$$
\mathscr{C} \circ \mathscr{D}(S):=\operatorname{colim}_{(f: S \rightarrow T)} \mathscr{C}(T) \otimes \bigotimes_{s \in S} \mathscr{D}\left(f^{-1}(s)\right)
$$

where the colimit is taken over the category $(S \downarrow \Sigma)$.

Σ-modules III

remark

Monoids in the category of Σ-modules with monoidal structure given by o correspond precisely to symmetric operads.

Definition

Assuming \mathscr{V} is cocomplete and symmetric monoidal. The Schur functor associated to a Σ-module \mathscr{C} is the functor $\mathscr{C}[-]: \mathscr{V} \rightarrow \mathscr{V}$ specified by

$$
\mathscr{C}[V]:=\operatorname{colim}_{S \in \Sigma} \mathscr{C}(S) \otimes V^{\otimes S} \cong \bigoplus_{n \geq 0} \mathscr{C}(n) \otimes_{\Sigma_{n}} V^{\otimes n}
$$

remark
There is a natural isomorphism of functors

$$
\mathscr{C}[\mathscr{D}[V]] \cong(\mathscr{C} \circ \mathscr{D})[V] .
$$

Matchings I

Definition

A matching on a finite set S is a set M of disjoint 2-element subsets whose union is S. We denote by \mathcal{M}_{S} the set of all matchings on S.
remark
Matchings define a Σ-module $\mathcal{M}: \Sigma \rightarrow$ Set. If $|S|$ is odd, $\mathcal{M}_{S}=\emptyset$.

Notations
For a finite set S, we denote $s g n_{S}$ the sign representation of Σ_{S}. Given $\sigma \in \Sigma_{n}, V$ a graded vector space, and $x=x_{1} \otimes \ldots \otimes x_{n} \in V^{\otimes n}$. We denote by $\operatorname{sgn}(\sigma, x)$ the sign for which

$$
\left(x_{1} \otimes \ldots \otimes x_{n}\right) \sigma=\operatorname{sgn}(\sigma, x) x_{\sigma_{1}} \otimes \ldots \otimes x_{\sigma_{n}}
$$

Matchings II

Theorem [BM]

Let V be a graded anti-symmetric inner product space concentrated in degree $d-1$. There is a pairing

$$
\begin{gathered}
\langle-,-\rangle: \mathcal{M}_{2 k} \otimes V^{\otimes 2 k} \rightarrow s g n_{2 k} \\
\left\langle\left\{\left\{\sigma_{1}, \sigma_{2}\right\}, \ldots,\left\{\sigma_{2 k-1}, \sigma_{2 k}\right\}\right\}, x_{1} \otimes \ldots \otimes x_{n}\right\rangle= \\
\operatorname{sgn}(\sigma) \operatorname{sgn}(\sigma, x)\left\langle x_{\sigma_{1}}, x_{\sigma_{2}}\right\rangle \ldots\left\langle x_{\sigma_{2 k-1}}, x_{\sigma_{2 k}}\right\rangle
\end{gathered}
$$

This pairing gives rise to a morphism of $\Sigma_{2 k}$-modules of degree $-2 k(d-1)$:

$$
\begin{gathered}
\psi:\left(V^{\otimes 2 k}\right)_{\mathbf{S p}(V)} \rightarrow \mathcal{M}_{2 k} \otimes \operatorname{sgn} n_{2 k} \\
\psi([x]):=\sum_{M \in \mathcal{M}_{2 k}}\langle M, x\rangle M
\end{gathered}
$$

that is an isomorphism if $\operatorname{dim}(V) \geq 2 k$.

Matchings III

Definition

From now on, we fix \mathscr{V} as the category of graded \mathbb{Q}-vector spaces. Fix a positive integer d. We denote by $S p$ the category of graded anti-symmetric inner product spaces concentrated in degree $d-1$. Given an Sp-module $M: \mathbf{S p} \rightarrow \mathscr{V}$, we denote

$$
M_{\mathbf{S p}}:=\operatorname{colim}_{V \in \mathbf{S p}} M(V)
$$

Example

There is an $\mathbf{S p}-\Sigma$-bimodules given by

$$
\mathrm{Sp} \times \Sigma^{o p} \rightarrow \mathscr{V}, \quad(V, S) \mapsto V^{\otimes S}
$$

Corollary
There is an isomorphism of right Σ-modules

$$
\left(V^{\otimes S}\right)_{\mathbf{S p}} \cong s^{|S|(d-1)} \mathcal{M}_{S} \otimes s g n_{S}
$$

The Graph Complex I

Definition

A graph $G=(f: F \rightarrow V, E)$ consists of a set F of half-edges, a set V of vertices, a function $f: F \rightarrow V$, and a matching E on F. The elements of E are thought of as the edges of the graph.

Notation

We denote by \mathscr{G} raph the groupoid of graphs and their isomorphisms.

Construction
Let $\mathscr{C}: \Sigma \rightarrow \mathscr{V}$. There is an induced functor $\mathscr{C}: \mathscr{G}$ raph $\rightarrow \mathscr{V}$, with value at $G=(f: F \rightarrow V, E)$ given by

$$
\mathscr{C}(G)=\bigotimes_{v \in V} \mathscr{C}\left(f^{-1}(v)\right)
$$

Recollection: The Grothendieck Construction

Definition

Let I be a category, and $F: I \rightarrow$ Cat be a functor to the category of small categories. The Grothendieck construction $/ \int F$ is the category whose objects are pairs (i, x), with $i \in I$ and $x \in F(i)$.

Lemma

For every functor $D: I \int F \rightarrow \mathscr{V}$ into a cocomplete category, there is a canonical isomorphism

$$
\operatorname{colim}_{(i, x) \in I ~ \int F} D(i, x) \cong \operatorname{colim}_{i \in I} \operatorname{colim}_{x \in F(i)} D(i, x)
$$

Example

There is a functor $(-\downarrow \Sigma): \Sigma \rightarrow$ Cat that sends S to $(S \downarrow \Sigma)$. The Grothendieck construction $\Sigma \int(-\downarrow \Sigma)$ is isomorphic to ($\Sigma \downarrow \Sigma$) (as a category over Σ).

The Graph Complex II

Example

Let $\mathcal{M}:(\Sigma \downarrow \Sigma) \rightarrow$ Cat denote the functor that sends $f: S \rightarrow T$ to \mathcal{M}_{s} viewed as a discrete category. The Grothendieck construction on \mathcal{M} is isomorphic to \mathscr{G} raph.

Notation
Given a Σ-module \mathscr{C}, the Schur functor $V \mapsto \mathscr{C}((V))$ is an Sp -module with

$$
\mathscr{C}((V)):=s^{2-2 d} \bigoplus_{n \geq 0} \mathscr{C}(n) \otimes \Sigma_{n} V^{\otimes n} .
$$

remark
For $\mathscr{C}=\mathscr{L}$ ie((-)) this agrees with the previously used notation, as $\mathscr{L i e}((0))=\mathscr{L} i e((1))=0$.

The Graph Complex III

Theorem [BM]

One can describe the complex $\wedge s \mathscr{C}((V))_{\text {sp }}$ explicitly. proof
The Sp-module $V \mapsto \Lambda s V$ is identified with the Schur functor associated to the Σ-module Λs given by $\Lambda s(T):=s^{|T|} \mid \operatorname{sgn} n_{T}$. We compute:

$$
\begin{aligned}
\wedge s \mathscr{C}((V)) & \cong(\Lambda s \circ \mathscr{C})[V] \\
& =\operatorname{colim}_{S \in \Sigma}(\Lambda s \circ \mathscr{C})(S) \otimes V^{\otimes S} \\
& =\operatorname{colim}_{S \in \Sigma} \operatorname{colim} \\
& \left.\cong \operatorname{colim}_{f: S \rightarrow T} \Lambda s(T) \otimes \mathscr{C}((f)) \otimes V^{\otimes S}\right) \\
& \wedge s(T) \otimes \mathscr{C}((f)) \otimes V^{\otimes S} .
\end{aligned}
$$

The Graph Complex IV

proof continued

As colimits commute with colimits and tensor products of graded vector spaces, we find:

$$
\begin{aligned}
\Lambda s \mathscr{C}((V))_{\mathbf{S p}} & \cong \operatorname{colim}_{f \in(\Sigma \downarrow \Sigma)} \Lambda s(T) \otimes \mathscr{C}((f)) \otimes\left(V^{\otimes S}\right)_{\mathbf{S p}} \\
& \cong \operatorname{colim}_{f \in(\Sigma \downarrow \Sigma)} \Lambda s(T) \otimes \mathscr{C}((f)) \otimes s^{|S|(d-1)} \mathcal{M}_{S} \otimes s g n_{S}
\end{aligned}
$$

Viewing \mathcal{M}_{S} as a discrete category, we may rewrite the above expression as:

$$
\operatorname{colim}_{f \in(\Sigma \downarrow \Sigma)} \operatorname{colim}_{M \in \mathcal{M}_{S}} s^{|S|(d-1)} \Lambda s(T) \otimes \mathscr{C}((f)) \otimes \operatorname{sgn}_{S}
$$

Using the above description of \mathscr{G} raph as a Grothendieck construction, and some changes of notations yield:

$$
\mathscr{G}^{d} \mathscr{C}:=\operatorname{colim}_{G \in \mathscr{G} r a p h} s^{(3-2 d)|V|+|F|(d-1)} \operatorname{sgn}_{V} \otimes \operatorname{sgn}_{F} \otimes \mathscr{C}((G))
$$

Concluding remarks

remark
Any object of $\mathscr{G}^{d} \mathscr{C}$ is represented by a graph $(f: F \rightarrow V, E)$ together with an orientation of the vertices, an orientation of the half-edges, and for every vertex v, an element $\xi_{v} \in \mathscr{C}\left(f^{-1}(v)\right)$.
remark
If \mathscr{C} is a cyclic operad, the Sp-module $V \mapsto \mathscr{C}((V))$ admits a Lie algebra structure. Thus, we are entitled to consider the chain complex

$$
C_{*}^{C E}(\mathscr{C}((V)))_{\mathbf{s p}}=\left(\Lambda s \mathscr{C}((V))_{\mathbf{s p}}, \partial\right)
$$

Warning: This depends on d.

remark

For $d=1$, this is the complex of \mathscr{C}-labeled graphs. If, in addition, $\mathscr{C}=\mathscr{L}$ ie $((-))$, we recover the graph complex.

A proof of Theorem 9.1

We have:

$$
C_{*}^{C E}\left(\mathfrak{g}_{\infty}\right)_{\Gamma_{\infty}} \cong C_{*}^{C E}(\mathscr{L} i e((V)))_{\mathbf{S p}}=\mathscr{G}^{d} \mathscr{L} i e
$$

This isomorphism follows from

$$
\operatorname{Der}_{\omega_{g}}^{+} \mathbb{L}\left(V_{g}\right)=\operatorname{Der}_{\omega_{g}} \mathbb{L}\left(V_{g}\right) \cong \mathscr{L} i e\left(\left(V_{g}\right)\right)
$$

together with the fact that $\Gamma_{g} \subseteq S p\left(V_{g}\right)$ is dense, which implies that

$$
C_{*}^{C E}\left(\mathfrak{g}_{g}\right)_{\Gamma_{g}} \cong C_{*}^{C E}\left(\mathscr{L} \operatorname{ie}\left(\left(V_{g}\right)\right)\right)_{\mathbf{S p}\left(V_{g}\right)} .
$$

If we denote by $\mathscr{G}^{d}(0)$ the subcomplex of $\mathscr{G}^{d} \mathscr{L}$ ie on the connected graphs, we have

$$
\mathscr{G}^{d} \mathscr{L} i e \cong \Lambda \mathscr{G}^{d}(0)
$$

as disjoint union of graphs endow $\mathscr{G}^{d} \mathscr{L}$ ie with a differential graded commutative product.

