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Recollections I
Notations
Fix a positive integer d ≥ 2. We will use the following notations for
g a positive integer:
I Mg = ]gSd × Sd , Mg ,1 is Mg with an open 2d-disk removed.
I Hg = Hd(Mg ;Z) (thought of as having degree 0)
I Vg = sd−1Hg ⊗Q
I Γg = Aut(Hg , µ, q), where µ is the intersection pairing.
I L(Vg ) the free Lie algebra on Vg is a minimal Quillen model

for Mg ,1.

I ωg = 1
2Σi [α

]
i , αi ] ∈ L(Vg ) represents (up to sign) the

homotopy class of the inclusion of the boundary
S2d−1 ↪→ Mg ,1.

remark
The intersection pairing µ makes Vg into a graded
anti-symmetric inner product space.



Recollections II

Notations
With d and g as above:
I Xg = Baut∂(Mg ,1)

I gg = Der+
ωg
L(Vg ), the positive truncation of the dg Lie

algebra of derivations of L(Vg ) that kill ωg .

Theorem [BM]
The Lie algebra gg is a Quillen model for Baut∂,◦(Mg ,1), the
connected component of the identity of Xg .

Theorem [BM]
The stabilization map Mg ,1 ↪→ Mg+1,1 induces an isomorphism

Hk(Xg ;Q)→ Hk(Xg+1;Q)

for g > 2k + 4, and an epimorphism for g = 2k + 4.



Recollections III

Notation
Letting g →∞, we let X∞ = hocolimgXg , Γ∞ = colimgΓg , and
g∞ = colimggg , under the stabilization maps.

Observation
The canonical map Xg → X∞ induces an isomorphism

Hk(X∞;Q)→ Hk(Xg ;Q)

for g > 2k + 4.

Theorem [BM]
Let d ≥ 3. There is an isomorphism of graded rings

H∗(X∞;Q) ∼= H∗(Γ∞;Q)⊗ H∗CE (g∞)Γ∞ .

remark
As graded ring, H∗(Γ∞;Q) = Q[x1, x2, ...] by results of Borel.



First Reduction

remark
Instead of computing H∗CE (g∞)Γ∞ , we may dually compute the
coinvariants HCE

∗ (g∞)Γ∞ .

remark
Given that, for g ≥ 2, CCE

∗ (gg ) is chain homotopic to HCE
∗ (gg ) as

complexes of Q[Γg ]-modules, it is enough to compute CCE
∗ (g∞)Γ∞ .

Theorem 9.1 [BM]
There is an isomorphism of chain complexes

CCE
∗ (g∞)Γ∞

∼= ΛG d(0).

remark
We have HCE

∗ (g∞)Γ∞
∼= Λ(H∗G d(0)).



Sp-modules

Definition
Fix a positive integer d . Let Spd denote the category of graded
finite dimensional anti-symmetric inner product spaces
concentrated in degree d .

remarks
The spaces Vg are objects of Spd . All the morphisms of Spd are
monomorphisms.

Definition
An Spd -module in a category V is a functor Spd → V .

Proposition
The assignment V 7→ DerωL(V ) is an Spd -module in the category
of graded Lie algebras.

proof 0→ DerωL(V )→ DerL(V )→ L≥2(V )→ 0



The Lie operad I
Recollection
There is a symmetric operad L ie, called the Lie operad, with
spaces L ie(n) spanned by the Lie monomials in x1, ..., xn
containing every generator exactly once.

Lemma
The Lie operad is a cyclic operad.

proof
Let t denote the permutation (12...n) in Σn. We extend the left
Σn−1-action on L ie(n − 1) via:



The Lie operad II

Observation
Let us denote L ie((n)) the space L ie(n − 1) with the Σn-action
defined previously. The assignment

V 7→ L ie((V )) := s−2d
⊕
n≥2

L ie((n))⊗Σn V
⊗n

defines an Spd -module. This is a Schur functor.

Proposition [BM]
There is an isomorphism of Spd -modules,

L ie((V )) ∼= DerωL(V ).

remark
One can describe explicitly the Lie bracket on L ie((V )) induced by
the above isomorphism.



Σ-modules I
We fix V a cocomplete symmetric monoidal category.

Definition
Let Σ denote the groupoid of finite sets and bijections. A left
Σ-module in V is a functor Σ→ V .

Example
Any object V of V defines a right Σ-module via S 7→

⊗
S V .

The functor S 7→ L ie(S) is a Σ-module.

Notation
We denote by (Σ ↓ Σ) the category with objects the maps
f : S → T of finite sets, and with morphisms pairs of bijections

S1

f1
��

∼= // S2

f2
��

T1 ∼=
// T2.



Σ-modules II

Notation
Fix a finite set S . We denote by (S ↓ Σ) the category with objects
the maps f : S → T of finite sets, and with morphisms bijections

S
f1

��

f2

  
T1 ∼=

// T2.

Definition
Let C and D be Σ-modules. Their composition C ◦D is the
Σ-module specified by

C ◦D(S) := colim(f :S→T )C (T )⊗
⊗
s∈S

D(f −1(s)),

where the colimit is taken over the category (S ↓ Σ).



Σ-modules III

remark
Monoids in the category of Σ-modules with monoidal structure
given by ◦ correspond precisely to symmetric operads.

Definition
Assuming V is cocomplete and symmetric monoidal. The Schur
functor associated to a Σ-module C is the functor C [−] : V → V
specified by

C [V ] := colimS∈ΣC (S)⊗ V⊗S ∼=
⊕
n≥0

C (n)⊗Σn V
⊗n.

remark
There is a natural isomorphism of functors

C [D [V ]] ∼= (C ◦D)[V ].



Matchings I

Definition
A matching on a finite set S is a set M of disjoint 2-element subsets
whose union is S . We denote byMS the set of all matchings on S .

remark
Matchings define a Σ-moduleM : Σ→ Set. If |S | is odd,
MS = ∅.

Notations
For a finite set S , we denote sgnS the sign representation of ΣS .
Given σ ∈ Σn, V a graded vector space, and
x = x1⊗ ...⊗ xn ∈ V⊗n. We denote by sgn(σ, x) the sign for which

(x1 ⊗ ...⊗ xn)σ = sgn(σ, x)xσ1 ⊗ ...⊗ xσn .



Matchings II

Theorem [BM]
Let V be a graded anti-symmetric inner product space
concentrated in degree d − 1. There is a pairing

〈−,−〉 :M2k ⊗ V⊗2k → sgn2k

〈{{σ1, σ2}, ..., {σ2k−1, σ2k}}, x1 ⊗ ...⊗ xn〉 =

sgn(σ)sgn(σ, x)〈xσ1 , xσ2〉...〈xσ2k−1 , xσ2k 〉

This pairing gives rise to a morphism of Σ2k -modules of degree
−2k(d − 1):

ψ : (V⊗2k)Sp(V ) →M2k ⊗ sgn2k

ψ([x ]) :=
∑

M∈M2k

〈M, x〉M,

that is an isomorphism if dim(V ) ≥ 2k .



Matchings III

Definition
From now on, we fix V as the category of graded Q-vector spaces.
Fix a positive integer d . We denote by Sp the category of graded
anti-symmetric inner product spaces concentrated in degree d − 1.
Given an Sp-module M : Sp→ V , we denote

MSp := colimV∈SpM(V ).

Example
There is an Sp− Σ-bimodules given by

Sp× Σop → V , (V ,S) 7→ V⊗S .

Corollary
There is an isomorphism of right Σ-modules

(V⊗S)Sp ∼= s |S |(d−1)MS ⊗ sgnS .



The Graph Complex I

Definition
A graph G = (f : F → V ,E ) consists of a set F of half-edges, a
set V of vertices, a function f : F → V , and a matching E on F .
The elements of E are thought of as the edges of the graph.

Notation
We denote by G raph the groupoid of graphs and their
isomorphisms.

Construction
Let C : Σ→ V . There is an induced functor C : G raph→ V , with
value at G = (f : F → V ,E ) given by

C (G ) =
⊗
v∈V

C (f −1(v)).



Recollection: The Grothendieck Construction

Definition
Let I be a category, and F : I → Cat be a functor to the category
of small categories. The Grothendieck construction I

∫
F is the

category whose objects are pairs (i , x), with i ∈ I and x ∈ F (i).

Lemma
For every functor D : I

∫
F → V into a cocomplete category, there

is a canonical isomorphism

colim(i ,x)∈I
∫
FD(i , x) ∼= colimi∈I colimx∈F (i)D(i , x).

Example
There is a functor (− ↓ Σ) : Σ→ Cat that sends S to (S ↓ Σ).
The Grothendieck construction Σ

∫
(− ↓ Σ) is isomorphic to

(Σ ↓ Σ) (as a category over Σ).



The Graph Complex II

Example
LetM : (Σ ↓ Σ)→ Cat denote the functor that sends f : S → T
toMS viewed as a discrete category. The Grothendieck
construction onM is isomorphic to G raph.

Notation
Given a Σ-module C , the Schur functor V 7→ C ((V )) is an
Sp-module with

C ((V )) := s2−2d
⊕
n≥0

C (n)⊗Σn V
⊗n.

remark
For C = L ie((−)) this agrees with the previously used notation,
as L ie((0)) = L ie((1)) = 0.



The Graph Complex III

Theorem [BM]
One can describe the complex ΛsC ((V ))Sp explicitly.

proof
The Sp-module V 7→ ΛsV is identified with the Schur functor
associated to the Σ-module Λs given by Λs(T ) := s |T |sgnT . We
compute:

ΛsC ((V )) ∼= (Λs ◦ C )[V ]

= colimS∈Σ(Λs ◦ C )(S)⊗ V⊗S

= colimS∈Σcolimf :S→TΛs(T )⊗ C ((f ))⊗ V⊗S

∼= colimf ∈(Σ↓Σ)Λs(T )⊗ C ((f ))⊗ V⊗S .



The Graph Complex IV

proof continued
As colimits commute with colimits and tensor products of graded
vector spaces, we find:

ΛsC ((V ))Sp ∼= colimf ∈(Σ↓Σ)Λs(T )⊗ C ((f ))⊗ (V⊗S)Sp

∼= colimf ∈(Σ↓Σ)Λs(T )⊗ C ((f ))⊗ s |S |(d−1)MS ⊗ sgnS

ViewingMS as a discrete category, we may rewrite the above
expression as:

colimf ∈(Σ↓Σ)colimM∈MS
s |S |(d−1)Λs(T )⊗ C ((f ))⊗ sgnS

Using the above description of G raph as a Grothendieck
construction, and some changes of notations yield:

G dC := colimG∈G raphs
(3−2d)|V |+|F |(d−1)sgnV ⊗ sgnF ⊗ C ((G )).



Concluding remarks

remark
Any object of G dC is represented by a graph (f : F → V ,E )
together with an orientation of the vertices, an orientation of the
half-edges, and for every vertex v , an element ξv ∈ C (f −1(v)).

remark
If C is a cyclic operad, the Sp-module V 7→ C ((V )) admits a Lie
algebra structure. Thus, we are entitled to consider the chain
complex

CCE
∗ (C ((V )))Sp = (ΛsC ((V ))Sp, ∂).

Warning: This depends on d .

remark
For d = 1, this is the complex of C -labeled graphs. If, in addition,
C = L ie((−)), we recover the graph complex.



A proof of Theorem 9.1

We have:

CCE
∗ (g∞)Γ∞

∼= CCE
∗ (L ie((V )))Sp = G dL ie.

This isomorphism follows from

Der+
ωg
L(Vg ) = DerωgL(Vg ) ∼= L ie((Vg )),

together with the fact that Γg ⊆ Sp(Vg ) is dense, which implies
that

CCE
∗ (gg )Γg

∼= CCE
∗ (L ie((Vg )))Sp(Vg ).

If we denote by G d(0) the subcomplex of G dL ie on the connected
graphs, we have

G dL ie ∼= ΛG d(0),

as disjoint union of graphs endow G dL ie with a differential graded
commutative product.
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