\qquad

1. Motivation (Part I)

The theory of solid modules does not clearly represent a classical object I construction. But at least the motivation behind it does! \leadsto completion
I. Gond $(A b) \leadsto$ Excellent Categorical Properties
\leadsto Computation of Ham, Ext with "good" results
But things break when forming tensor produces What cons. ab. gp structure shell we equip $\mathbb{Z}_{p} \otimes \mathbb{Z}_{l}$ wish?
Note: This is a defect already present in the classical theory, and port of the motivation for considering completions of tensor products of topological rings.
II. Eye towards analytic geometry mos Need to consider rings of conv. power series
Ex $A=\mathbb{Z}[\mathbb{N} \cup \operatorname{mon}] /([00]=0)$. The underlying ring of A is equipped with an element $T_{E} A$ with $T, T^{2}, \ldots, T_{n}, \ldots \rightarrow 0$ mus polynomid algebra. ZITS

As we are used to by now, whenever such difficulties occur, there exists a construction with excellent categorical properties to resolve them.

Motivation (Part II) ms structure of free cond. de gp.
Proposition: Let $S=\lim _{i} S_{i}^{s^{s}}$ be a profinite set. $\forall n$, let $\mathbb{Z}\left[s_{i}\right] \leq n \subset \mathbb{Z}\left[s_{i}\right]$ consist of the formal sums $\sum_{n \in S_{i}} n_{s}[s]$ sit. $\sum\left|n_{s}\right| \leqslant n$.

Note: $\mathbb{Z}\left[s_{i}\right]_{\text {sn }}$ is a finite set, the transition maps $\mathbb{Z}\left[s_{i}\right] \longrightarrow \mathbb{Z}\left[S_{j}\right]$ preserve these subsets.

There is a nature isomorphism of cont. abelian groups

$$
\mathbb{Z}[S] \cong \bigcup_{n} \lim _{\leftarrow_{i}} \mathbb{Z}\left[S_{i}\right]_{S n} \subset \lim _{i} \mathbb{Z}\left[S_{i}\right]
$$

Remark: $\mathbb{Z}[s]$ is a countable union of profinite secs, $\bigcup_{n} \lim _{\mathbb{Z}} \mathbb{Z}\left[S_{i}\right]_{S_{n}}$ is a subgroup of $\lim _{G_{i}} \mathbb{Z}\left[S_{i}\right]$

Proof Sketch: Step 1: Show that $\mathbb{Z}[s] \rightarrow \lim _{\kappa_{5}} \mathbb{Z}\left[s_{i}\right]$ is an injection.
Step 2: Show it factors through a surjection $\mathbb{Z}[s] \longrightarrow U_{n} \underline{l i m}, \mathbb{Z}\left[S_{i}\right]_{s_{n}}$

- The map of underlying abelian groups is injective.
For any finite formal sum $\sum_{j=1}^{k} n_{j}\left[s_{j}\right]$ with $S_{j} \in S, n_{j} \neq 0$, there exists some S_{i} where the images of the s_{j} are all distinct.

Then, $\sum_{j=1}^{k} n_{j}\left[s_{j}\right]$ projects to a nonzero element of $\mathbb{Z}\left[s_{i}\right]$.

- Now assume $\underset{\mathbb{U}}{\stackrel{f}{u}(T, S)]}$ ط $\longmapsto \underset{c_{i}}{\lim } \mathbb{Z}\left[S_{i}\right](T)$

Then $\forall t \in T, f(t)$ in $\mathbb{Z}[S]$ is 0 by ing. of under lying ab.goss

By the sheaf condition, It suffices to show that the preimage of f vanishes on $\mathbb{Z}\left[\left(\left(\tau_{m}, s\right)\right]\right.$ for some cover of T by profinice sets T_{m}.
$f=\sum_{j=1}^{k} n_{j}\left[g_{j}\right], g_{j}: T \rightarrow S$ distixt, continuous.
Choose $T_{j j}$ CT be the closed subset of T where $q_{j}=q_{j}$.

It is a cover, otherwise for some $t \in T$, the $g_{j}(t)^{\prime}$ s are pairwise distinct

$$
\Rightarrow \sum n_{j}\left[g_{j}(t)\right] \in \mathbb{Z}[s] \text { non-trivial. }
$$

Now, by passing to the cover, we reduce the number of the g_{j}^{\prime} 's \Rightarrow proceed by induction.

Note: There is a map $S=\lim _{\underset{T}{m}} S_{i} \rightarrow U \bigcup_{n} \lim _{i} \mathbb{Z}\left[S_{i}\right]_{\leq n}$, from which we get a map $\mathbb{Z}[s] \rightarrow \bigcup_{n} \lim _{i} \mathbb{Z}[s ;]_{\leq n}$. Suffices to show it is a surjection.
2. Definition

We now have a canditate for how "completion" shard behave on the free cont. $a b$. groups $\mathbb{Z}[s]$'s:

$$
\underset{\text { free solid abelian group }}{\operatorname{Z}[S]^{3}:=\lim _{e_{i}} \mathbb{Z}\left[S_{i}\right]}
$$

This is already promising since it addresses part of the motivation:
booking at underlying spore

$$
\begin{aligned}
& \mathbb{Z}[\mathbb{N} \cup\{\cos \}] /([\infty\}: 0)=\lim _{\pi} \mathbb{Z}[\{0,1, \ldots, n-1, \infty\}] /([\infty 0\}=0)= \\
& =\lim _{\kappa_{n}} \mathbb{Z}[T] / T^{0}=\mathbb{Z}[[T]] \text { no power series age bra. }
\end{aligned}
$$

We will now, counterintuitively, use the desired universal property of the $\mathbb{Z}[S]^{7}$ to define solid abelian groups in general:

Definition: (i) A solid abelian group is a condensed obelian group A such that for all profinite sets S and all maps $f: S \rightarrow A$, there is a unique map

$$
\tilde{f}: \mathbb{Z}[s] \longrightarrow A
$$ extending f.

3. Free solid abelian groups are solid abelian groups

Note: $\mathbb{Z}[S]^{T}=\lim _{i} \mathbb{Z}\left[S_{i}\right]=\lim _{C_{i}} \operatorname{Hom}_{\sin }(((S ; \mathbb{Z}), \mathbb{Z})=$
$\underset{1 \leqslant s i}{\oplus}$ Z
$=\operatorname{Hom}((L S, \mathbb{Z}), \mathbb{Z})$
The underlying abelian group of $\mathbb{Z}[S]^{\circ}$ is the space of all \mathbb{Z}-valued measures on the protinite set S:

$$
M(S, \mathbb{Z}):=\operatorname{Hom}(c(s, \mathbb{Z}), \mathbb{Z})
$$

Remark: For a solid delian group $A, f: S \rightarrow A$, $\mu \in M(S, Z)$, we can define

$$
\int_{f_{\mu}} \in A
$$

by evaluating $\tilde{f}: \mathbb{Z}[S]^{-} \longrightarrow A$. (carcsul wish interpri)
Before saying any thing meaning fol about $\mathbb{Z}[S]^{*}$, we thus need to first control $C(S, \mathbb{Z})$.

Theorem (Nöbeling, Specker)
For any profinite set S, the abelian group $C(S, Z)$ of continuous maps from S to \mathbb{Z} is a free abelian group.
\leadsto obvious for finite secs
\leadsto quite surprising that $C(S, \mathbb{Z}) \cong \nsubseteq \mathbb{Z}$, with $|I| \leq 2^{\text {(s] }}$

Corollary: $\mathbb{Z}[S]^{\star} \cong \prod_{I} \mathbb{Z}$.
Proof: $\left.\mathbb{Z}[s]^{\square}=\operatorname{Hom}(c \mid s, \mathbb{Z}), \mathbb{Z}\right) \cong \operatorname{Hom}(\underset{I}{\oplus} \mathbb{Z}, \mathbb{Z}) \cong \prod_{I} \mathbb{Z}$ ("same" behavior as finite sets)

Proposition: For any profinite set $S, \mathbb{Z}[s]^{\text {is }}$ solid.
Proof We will prove shh stronger, namely for all profinite sets T, we have

$$
R \operatorname{Hom}\left(\mathbb{Z}[T], \mathbb{Z} \backslash[s]^{\star}\right)=\operatorname{RHom}\left(\mathbb{Z}[T]^{\star}, \mathbb{Z}[s]^{\infty}\right) .
$$

(1) $\mathbb{Z}[s]^{\rrbracket} \cong \prod_{I} \mathbb{Z}$ for some I, so suffices to show

$$
\operatorname{RHom}(\mathbb{Z}[T], \mathbb{Z})=\operatorname{RHom}\left(\mathbb{Z}\{T\}^{\star}, \mathbb{Z}\right)
$$

LHS: $E_{x_{i}}{ }^{i}(\mathbb{Z}[T], \mathbb{Z})=H^{i}(T, \mathbb{Z})=\left\{\begin{array}{l}0 \text { for } i>0 \\ C(T, \mathbb{Z}) \text { for } i=0 \\ \text { si l }\end{array}\right.$

RHS: We will use the computations from Rotryo's tot:

$$
\operatorname{RHom}\left(\prod_{J} \mathbb{Z}, \mathbb{Z}\right)=\mathbb{T}_{J} \mathbb{Z}=C(S, \mathbb{Z})
$$

Starting with the short exact sequence

$$
0 \rightarrow \prod_{5} \mathbb{Z} \rightarrow \prod_{S} \mathbb{R} \rightarrow \prod_{3} \mathbb{R} / \mathbb{z} \rightarrow 0
$$

we note :

- $R \operatorname{Hom}\left(\prod_{J} \mathbb{R} / \mathbb{x}, \mathbb{Z}\right)=\underset{J}{\oplus} \mathbb{Z}[-1]$
- $\operatorname{RHom}\left(\prod_{J} \mathbb{R}, \mathbb{Z}\right)=0$

Recall thai we hat seen $\operatorname{RHom}(\mathbb{R}, \mathbb{Z})=0 \Rightarrow$ $\Rightarrow \operatorname{RHom}\left(\mathbb{R} \otimes^{2} M, \mathbb{Z}\right)=0 \quad \forall$ con. ab $g a M$. Take $M=\prod_{J} \mathbb{R} \leadsto \mathbb{R}$-module in Cont (Ab)

In particular $\prod_{J} \mathbb{R}$ is a retrace of $\mathbb{R} \theta^{l} \prod_{J} \mathbb{R}$ and the conclusion fellows.

$$
\Longrightarrow \operatorname{RHom}(\underset{J}{\Pi} \mathbb{Z}, \mathbb{Z})=\underset{J}{\oplus} \mathbb{Z}=C(S, \mathbb{Z})
$$

4. Main Theorem

The category Solid $c \operatorname{Cond}(A b)$ of solid abelian groups is on abelian subcategory stable under all limits, colimits and extensions.

The objects $\prod_{I} \mathbb{Z} \in$ Solid, where I is any set, form a family of compact projesive generators.

The inclusion Solid $C \operatorname{Cont}(A b)$ admits a left adjoint

$$
M \mapsto M^{\boldsymbol{D}}: \operatorname{Cond}(A b) \longrightarrow \text { Solid }
$$

that is the unique colimit-preserving extension of $\mathbb{Z}[s] \rightarrow \mathbb{Z}[s]^{7}$.

Proof strategy: - Isolate key categoricd property (Main Lemma)

- Show how main Lemma applies in our setup

5. Main Lemma

Let A be an abelian category with all colimits \leadsto to be identified later with lond (Ab) that admits a subcategory $A^{c p}$ of comp. prog. gen. Assume that $F: A^{c p} \rightarrow A$ is a functor \leadsto to be identified later wish $\mathbb{Z}[S] \longmapsto \mathbb{Z}[5]^{\pi}$ equipped with a natural transformation $X \rightarrow F(x)$ \rightarrow injection $\mathbb{Z}[s] \rightarrow \mathbb{Z}[s]^{\square}$ such that:

Condition: For any $X \in A^{c p}$, any $Y=\Theta_{i} F\left(P_{i}\right), Z=\oplus_{j} F\left(Q_{j}\right)$ and any $f: Y \rightarrow Z$ with kernel $K \in A$, the map

$$
\operatorname{RHom}(F(x), k) \rightarrow \operatorname{RHom}(x, k)
$$ is an isomorphism.

Let $A_{F} C A$ be the full subcategory of all $Y \in A$ sit. for all $X \in A^{c p}$, the map

$$
\operatorname{Hom}(F(x), y) \longrightarrow \operatorname{Hom}(x, y)
$$

is an isomorphism $\leadsto \gg$ to be identified with Solid. Then, $A_{F} \subset A$ is an abelian subcategory stable under all limits, colimits and extensions, and the objects $F(X), X \in A^{c p}$ are compact proj. generators. The inclusion $A_{F} C A$ admits a left adjoint $L: A \rightarrow A_{F}$ that is the unique colimit-preserving extension of $F: A^{A \varphi} \rightarrow A_{F}$.

Main idea behind proof
Defining condition on A_{F} mas stable under kernels and all limits.

For cokernels: Let $f: Y \rightarrow Z$ in A_{f}. WTS coker $f \in A_{F}$.

Choose $\oplus P_{j} \rightarrow 2$ by compact projective
By def of A_{F} this extends to $\oplus F\left(P_{i}\right) \rightarrow Z$

$$
\begin{aligned}
\oplus F\left(Q_{0}\right) \rightarrow Z^{*} & \rightarrow \Theta F\left(R_{2}\right) \\
A_{*} \downarrow & \downarrow \\
Y & \longrightarrow Z
\end{aligned}
$$

We can thus assume that Y, Z are sums of objects in the image of F.

$$
\begin{aligned}
0 & \longrightarrow K \longrightarrow Y \longrightarrow Z
\end{aligned}>Q \longrightarrow 0
$$

We showed that every cokernel of a map between direct sums of objects in the image of F lies in A_{F}.

Conversely, let $y_{\in} \mathcal{A}_{F}$.

$\Rightarrow Y$ can be written as coker $\left(\oplus_{j} F\left(Q_{j}\right) \rightarrow \oplus F\left(P_{i}\right)\right)$
$\Rightarrow A_{F}$ is stable under direct sums and under extensions.
The theorem fallows formals after getting this description of A_{F}.

Note: We can replace the condition of the lemma with the fallowing:
For all $X \in \mathcal{A}^{\text {cp }}$ and any complex

$$
c_{:} \ldots \rightarrow c_{1} \rightarrow \ldots \rightarrow c_{1}^{\prime} \rightarrow c_{0} \rightarrow 0,
$$

where all C_{i} are direct sums of objects in the imogene \& F,

$$
R \operatorname{Hom}(F(x), c) \longrightarrow R H o m(x, c)
$$

is iso.
6. "Proof" of Main Theorem

We apply the Lemma above to $\mathcal{A}=\operatorname{Cond}(A b)$, $\mathcal{A}^{\text {cp }}$ the subcategory of $\mathbb{Z}[S]$ for S extremely disconnected, $F: \mathcal{A}^{[\varphi} \rightarrow \mathcal{A}$ taking $\mathbb{Z}[S] \longmapsto \mathbb{Z}[S]^{*}$.

Why is F_{a} functor? $\mathbb{Z}[s]^{n}=\operatorname{Ham}((1 s, \mathbb{Z}), \mathbb{Z})=$

$$
=\operatorname{Ham}(\operatorname{Hom}(\mathbb{Z} S S, Z), \mathbb{Z})
$$

An funstorial in ZSS.
Our goal is to show

$$
\operatorname{RHom}\left(\mathbb{Z}[s]^{\mathbb{}}, c\right)=\operatorname{RHom}(\mathbb{Z}[s], c)
$$

$C_{j}=\oplus \mathbb{Z}\left[T_{i}\right]^{\bullet}, T_{i}$ extremely disconnected
In fact more is true:

$$
\begin{aligned}
& R H \text { Mom }\left(\mathbb{Z}\left[s^{\star}, c\right)\left(s^{\prime}\right)=R \operatorname{Hom}\left(\mathbb{Z}\left[S \times s^{\prime}\right], C\right)\right. \\
& C_{j}=\mathbb{M} \prod_{J} \mathbb{Z}, S^{\prime}, S^{\prime} \text { profinite. }
\end{aligned}
$$

The key ingredient of the proof is to use the exact sem.

$$
\begin{gathered}
0 \rightarrow \mu(S, Z) \rightarrow \mu(S, \mathbb{R}) \rightarrow \mu(S, \mathbb{R} / z) \rightarrow 0 \\
\mu(S, \mathbb{R}) \cong \prod_{I} \mathbb{R}, \mu(S, \mathbb{R} / z) \cong \prod_{I} \mathbb{R} / \mathbb{Z}
\end{gathered}
$$

then show that

$$
R \text { How }\left(M(S, \mathbb{R} / Z),()\left(S^{\prime}\right)=\operatorname{RHom}(\mathbb{Z}[S * S\}, C)\{-1]\right.
$$

for all profane sets S, S^{\prime}.

As a condensed abelian group, \mathbb{R} is pseado to hereat. Recall this is characterized by the following equiv. conditions (for pa. μ)
(1) $E x t^{i}(M,-)$ commutes with filtered collmits for all ;
(2) M admits a proj, resolution by compact projective condensed abelian grays.
(pseudocoherence of \mathbb{R} follows from $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{R} \rightarrow \mathbb{R} / \mathbb{Z}_{-0}$) We have seen that

$$
\mathbb{Z}[s]^{*}=\operatorname{Hom}((\mid s, \mathbb{Z}), \mathbb{Z})=\operatorname{Hom}(\operatorname{Hom}(\mathbb{Z}\{s], z), \mathbb{Z})
$$

Thus, 12) implies that for all pseudocoherent cond. ab. groups M,

$$
\begin{aligned}
M^{n} & =\operatorname{Hom}(\operatorname{Hom}(M, \mathbb{Z}), \mathbb{Z}) . \\
\Rightarrow & \mathbb{R}^{n}=0 .
\end{aligned}
$$

m motivating input for liquid theory?
7. Completed tensor product

Theorem: There is a unique way to endow Solid with a symmetric monoidal tensor product *" such that the solidification functor

$$
H \mapsto M^{\wedge}: \operatorname{Cond}(A b) \longrightarrow \text { Solid }
$$

is symmetric monoidal.
Proof
symmetric monoidal \Rightarrow uniqueness since our only possible choice is $M \otimes^{*} N=(M \otimes N)^{+}$

This choice works: WTS $(M \odot N)^{2} \rightarrow\left(M^{N} \circ N^{\Perp}\right)^{1}$

$$
(M \odot N)^{\star} \rightarrow\left(M^{\wedge} \otimes N\right)^{\star} \rightarrow\left(M^{*} \odot N^{*}\right)^{\star}
$$

Assume $M=\mathbb{Z}[s], N=\mathbb{Z}[T] \leadsto$ all funcoors here preserve colimits UTS $\mathbb{Z}[T x S]^{n} \longrightarrow\left(\mathbb{Z}[S]^{\circledR} \otimes \mathbb{Z}[T]\right)^{0}$ is iso But we know $\operatorname{Hom}\left(\mathbb{Z}\left[53^{\circ}, A\right)(T) \stackrel{A^{3}}{\rightarrow}\right.$ How $(\mathbb{Z}[s], A)(T)$ $\operatorname{Hom}\left(\mathbb{Z}[s]^{\bullet} \otimes Z[T], A\right) \quad \operatorname{Hom}(Z[S A T, A)$
8. Examples

To do any computations, note that Q^{n} commutes with filtered co limits in both variables (solidification is colimit preserving and symmetric monoidal)

After resolving with comport projecaves, we need to control $\prod_{I} \mathbb{Z} \otimes_{J}^{*} \prod^{2}$.

Prop: $\prod_{I} \mathbb{Z} \otimes \frac{\pi}{J} \mathbb{Z} \cong \prod_{I \times J} \mathbb{Z}$
Proof: $\prod_{I} \mathbb{Z} \theta^{\theta} \prod_{J} \mathbb{Z}=\operatorname{Han}(\underset{I}{\otimes} \mathbb{Z}, \mathbb{Z}) \otimes \operatorname{Han}(\underset{J}{\otimes} \mathbb{Z}, \mathbb{Z}) \cong$

$$
\begin{aligned}
& \cong \operatorname{Hom}\left(((S, \mathbb{Z}), \mathbb{Z}) \otimes^{\wedge} \text { Ham }((t 7, \mathbb{Z}), \mathbb{Z})=\right. \\
& =\mathbb{Z}[S]^{*} \otimes^{*} \mathbb{Z}[7]^{*}=Z[S \times T]^{*} \cong \prod_{I \times T} \mathbb{Z}
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \mathbb{Z}_{p} \otimes \mathbb{R}=0 \quad 0 \rightarrow \mathbb{Z}\left[[T] \xrightarrow{T-\mu} \mathbb{Z}[\{T]\} \rightarrow \mathbb{Z}_{p} \rightarrow 0\right. \\
& \mathbb{Z}[[0]] \theta^{*} \mathbb{Z}[T T T]=\mathbb{Z}[[0, T]]
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{Z}_{p} \theta^{\theta} \mathbb{Z}_{[S T]}=\mathbb{Z}_{p}[L T] \\
& \mathbb{Z}_{p} \otimes_{p}=\mathbb{Z}_{p}
\end{aligned}
$$

