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Overview. If k is a field of characteristic zero, a theorem of Lurie–Pridham asserts
an equivalence between formal moduli problems and d.g. Lie algebras over k. We
generalise this equivalence to arbitrary fields by using partition Lie algebras. These
new gadgets are intimately related to the equivariant topology of the partition
complex, which allows us to access the operations acting on their homotopy groups.

An introduction to formal moduli problems. In order to study a given kind
of algebro–geometric object over a ground field k in families (e.g. elliptic curves
or GLn-bundles), it is desirable to construct a representing geometric object X
satisfying the following informal identity for all k-algebras R:

Map(Spec(R), X) ' { Spec(R)-families of objects of the given kind }.
Usually, we cannot find a variety or scheme with this property due to the pres-
ence of automorphisms. This obstacle can be circumvented by passing to stacks,
i.e. functors X : {Commutative k-algebras} → {Groupoids} satisfying suitable
geometricity conditions. By definition, we have X(R) = Map(Spec(R), X).

Recent advances in distinct branches of mathematics (e.g. [3],[6],[8]) have high-
lighted the importance of “homotopical enhancements” of algebraic geometry. Fol-
lowing Toën–Vezzosi [10] and Lurie [5][7], one can proceed in two ways: derived al-
gebraic geometry replaces commutative k-algebras with simplicial commutative k-
algebras, whereas spectral algebraic geometry is based on connective E∞-k-algebras.
The former theory seems more suitable for algebro–geometric applications, whereas
the latter applies in homotopical contexts. If char(k) = 0, the two theories agree.
We shall focus on the derived case, but will comment on how our results can be
modified to apply in the spectral setting. Families of derived algebro–geometric
objects of a given kind can often be represented by derived stacks, i.e. functors
X : SCRk → S, from the ∞-category of simplicial commutative k-algebras to the
∞-category S of spaces, satisfying suitable geometricity conditions.

The formal neighbourhood of a k-valued point x ∈ X(k) in a derived stack X is
then described by the functor SCRart

k → S given by R 7→ X(R)×hX(k) {x}. Here,

SCRart
k denotes the ∞-category of all A ∈ SCRk such that π0(A) is local Artinian

with residue field k and dimk(π∗(A)) < ∞. If X represents some family of de-
rived algebro–geometric objects, then a point x ∈ X(k) corresponds to a specific
object defined over Spec(k), and X∧x is the space of its infinitesimal deformations.

In sufficiently geometric situations, the functorX∧x satisfies the following conditions:

Definition 1. A formal moduli problem is a functor X : SCRart
k → S such that

X(k) ' ∗ and whenever A ' B×hDC is a pullback in SCRart
k with π0(B) � π0(D),

π0(C) � π0(D) surjective, applyingX gives a pullbackX(A) ' X(B)×hX(D)X(C).

Write Modulik ⊂ Fun(SCRart
k ,S) for the ∞-category of formal moduli problems.

If char(k) = 0, then formal moduli problems are controlled by d.g. Lie algebras.
More precisely, let D : (SCRaug

k )op → DGLAk be the right adjoint to the Chevalley-
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Eilenberg cochains functor from the ∞-category of d.g. Lie algebras to the ∞-
category of augmented simplicial commutative k-algebras. The underlying chain
complex of D(R) is the linear dual of the cotangent fibre cot(R), which can be com-
puted explicitly as cot(R) = |Bar•(1,Sym∗,mR)| for mR the augmentation ideal of
R and Sym∗ the monad parametrising nonunital simplicial commutative k-algebras.

The following theorem of Lurie [7] and Pridham [9] clarifies previous seminal work
of Deligne, Drinfel’d, Feigin, Hinich, Kontsevich-Soibelman, Manetti, and others:

Theorem 2. (Lurie , Pridham) If k is a field of characteristic zero, the functor
DGLAk → Modulik given by g 7→

(
R 7→ MapDGLAk

(D(R), g)
)

is an equivalence.

Partition Lie Algebras. We generalise Theorem 2 to arbitrary fields k and thus
give a Lie–algebraic description of the infinitesimal structure of moduli stacks.

To construct our equivalence, we want to define a functor D : (SCRaug
k )op → Λ

to some∞-category Λ of generalised Lie algebras in a way that makes the induced
functor Λ→ Modulik given by g 7→ (R 7→ MapΛ(D(R), g)) an equivalence.

In a first attempt to define D and Λ, we observe that the tangent fibre func-
tor cot∨ : (SCRaug

k )op → Modk admits a left adjoint. Writing L for the monad
associated with this adjunction, we obtain a functor (SCRaug

k )op → AlgL(Modk).
Unfortunately, this very natural functor does not allow us to establish an equiv-
alence between AlgL(Modk) and Modulik. Roughly speaking, the monad L fails
to preserve sifted colimits because it involves a double dualisation, which in turn
prohibits us from using Lurie’s ∞-categorical version of the Barr-Beck theorem.
Even though AlgL(Modk) is therefore the wrong target category, the assignment
(A 7→ cot(A)∨) is still the correct functor whenever A ∈ SCRart

k is Artinian. We
therefore want to replace L with a sifted-colimit-preserving monad Lπ that agrees
with L on some full subcategory of Modk containing cot(A)∨ for all Artinian A.

Indeed, let Coh≤0
k be the full subcategory of Modk spanned by all coconnective

k-module spectra with finite-dimensional homotopy groups in all degrees. Any
Artinian A ∈ SCRart

k has cot(A)∨ ∈ Coh≤0
k . In fact, the monad L from above pre-

serves Coh≤0
k (cf. [5, Proposition 3.2.14.]) and is well-behaved on this subcategory:

if X• is a simplicial diagram in Coh≤0
k with |X•| ∈ Coh≤0

k , then |L(X•)| ' L(|X•|).
From this, we can show that L |

Coh
≤0
k

lies in the image of the fully faithful monoidal

restriction functor End
Coh

≤0
k

Σ (Modk)→ End(Coh≤0
k ). Here, End

Coh
≤0
k

Σ (Modk) is the

∞-category of sifted-colimit-preserving endofunctors of Modk which preserve Coh≤0
k .

Let Lπ be the unique monad lifting L |
Coh

≤0
k

under the above restriction functor.

Definition 3. A partition Lie algebra is an algebra over the monad Lπ on Modk.

If M ∈ Coh≤0
k is represented by a cosimplicial k-module, Lπ(M) is given by

Lπ(M) =
⊕

n≥1(C̃•(Σ|Πn|�, k)⊗M⊗n)Σn .

Here, Σ|Πn|� denotes the reduced-unreduced suspension of the nth partition com-
plex |Πn|, i.e. the realisation of the poset of proper nontrivial partitions of {1, . . . , n}.
The functor C̃•(−, k) sends a space X to the cosimplicial set of reduced k-valued
singular cochains on X, and the functor (−)Σn takes strict Σn-fixed points.
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Since Lπ and L agree on Coh≤0
k , we have a functor cot(−)∨ from finitely pre-

sented simplicial commutative k-algebras to partition Lie algebras. Extending in a
filtered-limit-preserving way, we obtain a functor D : (SCRaug

k )op → AlgLπ (Modk).
This assignment is not fully faithful; for example, k[x]→ k[[x]] gives an equivalence
after applying D. However, it becomes fully faithful on a suitable subcategory:

Definition 4. An augmented simplicial commutative k-algebra A ∈ SCRaug
k is

topologically almost finitely generated if π0(A) is Noetherian and complete with
respect to m = ker(π0(A)→ k) and πi(A) is finitely generated over π0(A) for all i.

Theorem 5. The functor D restricts to an equivalence between the ∞-category
SCRtaf

k of topologically almost finitely generated A ∈ SCRaug
k and the∞-category

AlgLπ (Coh≤0
k ) of partition Lie algebras whose underlying module lies in Coh≤0

k .

Using this equivalence and an analysis of the functor D on “π0-surjective pull-
backs”, we can prove that D defines a deformation theory in the sense of Lurie (cf.
[7, Definition 12.3.3.2.]), which in turn implies our generalisation of Theorem 2:

Theorem 6. For any field k, the functor AlgLπ (Modk)→ Modulik given by
g 7→ (R 7→ MapAlgLπ (Modk)(D(R), g)) establishes an equivalence between the ∞-
category of partition Lie algebras and the ∞-category of formal moduli problems.

Remark 7. There is a parallel equivalence between formal moduli problems based
on connective E∞-k-algebras and an ∞-category of spectral partition Lie algebras.

Remark 8. Relying on the connection between partition complexes and parti-
tion Lie algebras (or spectral partition Lie algebras), we compute the homotopy
groups of free objects (thus extending computations in [1],[2],[4]). These groups
parametrise operations acting on the homotopy groups of partition Lie algebras.

Remark 9. Our equivalence generalises to mixed characteristic contexts, where
we can describe infinitesimal deformations of Spec(A)-valued families for A Noe-
therian with a map to a field k such that π0(A) is local with residue field k and
complete with respect to the augmentation ideal.
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