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We discuss different generalisations of rational differential graded Lie algebras, and
outline some recent applications to unstable homotopy theory [5][15], formal de-
formation theory [10], and the (generalised) homology of configuration spaces [7][8]
away from characteristic zero.

1. Three applications of rational differential graded Lie algebras

Given a field k of characteristic zero, we recall the following notion:

Definition 1. A (shifted) differential graded Lie algebra g over k consists of a chain

complex . . . −→ g1
d−→ g0

d−→ g−1 → . . . of k-vector spaces together with bilinear

maps [−,−] : gi × gj → gi+j−1 such that for all x ∈ ga, y ∈ gb, z ∈ gc, we have:

(1) Antisymmetry: [x, y] = (−1)ab[y, x];

(2) Jacobi identity: (−1)ac[[x, y], z] + (−1)cb[[z, x], y] + (−1)ba[[y, z], x] = 0;

(3) Leibnitz rule: d([x, y]) = −[dx, y]− (−1)a[x, dy].

Remark 2. The shifted grading convention arises naturally from Koszul duality;
all Lie algebras appearing in this document are assumed to be shifted.

Rational differential graded Lie algebras have several classical applications:

Rational Lie models. Quillen [27] established an equivalence (S∗)Q,≥2 ' LieQ,≥2

between rational simply connected pointed spaces and differential graded Lie alge-
bras g with πi(g) = 0 for i < 2. Under this correspondence, the rational n-sphere
SnQ corresponds to the free Lie algebra on a class in degree n.

Rational homology of configuration spaces. Given a framed n-manifold M
and an integer m, there is a (weight-preserving) isomorphism

(1)
⊕
k

H∗ (Confk(M)⊗Σk
Sm;Q) ∼= HLie

∗
(
H−∗c (M ;Q)⊗ FreeLieQ(xn+m)

)
.

Here HLie
∗ (−) denotes Lie algebra homology, and H∗c (−;Q) is compactly supported

cohomology. The isomosphism (1) is due to Knudsen [18], and generalises work
of Bödigheimer–Cohen–Taylor [4], Félix–Thomas [14], Totaro [34], and others. In

practice, it is very useful; for example, we can read off that H∗(Ω
2S3;Q) ∼= Q[1].

Rational deformation theory. Deformations of algebro-geometric objects over
Q are controlled by rational differential graded Lie algebras. This general paradigm
was first observed by Deligne [12], Drinfel’d [13], and Feigin, explored further by
Hinich [16], Kontsevich–Soibelman [20], and Manetti [25], and finally formulated
as an equivalence of ∞-categories by Lurie [22] and Pridham [26].

The Lurie-Pridham theorem identifies formal moduli problems over Q, which
encode deformation functors of algebro-geometric objects, with rational differential
graded Lie algebras.

Remark 3. These applications extend to general fields of characteristic zero.
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2. Settings away from characteristic zero

The three classical applications presented above use rational chain complexes;
these model the ∞-category ModQ of module spectra over Q, i.e. Q-local spectra.

It is possible to extend some of these results to other settings:

Modular settings. We could also work in chain complexes over a field k of
characteristic p (e.g. Fp), or over a complete local Noetherian base (such as Zp).

Chromatic settings. For every prime p, chromatic homotopy theory constructs
infinitely many ring spectraK(0)=Q,K(1),K(2), . . . known as MoravaK-theories.
For h > 0, these satisfy K(h)∗ ∼= Fp[v±1

h ] with |vh| = 2(ph − 1); they may be
thought of as “generalised fields” sitting in between Q and Fp. Accordingly, the
∞-category SpK(h) of K(h)-local spectra interpolates between rational and p-local
spectra. As is customary, we suppress p from our notation for Morava K-theories.

3. Generalised Lie algebras and their applications

Away from characteristic 0, differential graded Lie algebras are not homotopically
well-behaved; for example, their “free functor” fails to preserve quasi-isomorphisms.

In recent years, more adequate substitutes were introduced for different applications:

Lie
models

Configuration
spaces

Deformation
theory

rational Differential graded Lie algebras

chromatic

Spectral Lie algebras

E∧∗ (−)

y
Hecke Lie algebras

modular

Partition Lie algebras
(derived algebraic geometry)

Spectral partition Lie algebras
(spectral algebraic geometry)

We will give a brisk outline of the definitions and recent applications of these
generalised Lie algebras;

Spectral Lie algebras. Let OComm be the commutative operad in spectra. Sal-
vatore [31] and Ching [11] have defined the spectral Lie operad as the dualised bar
construction D(Bar(OComm)); its algebras are called spectral Lie algebras. Over Q,
these are equivalent to the rational differential graded Lie algebras in Definition 1.

The free spectral Lie algebra on a spectrum X ∈ Sp is given by

Liesk(X) =
⊕
n

D(ΣΠ�n)⊗hΣn X
⊗n,

where ΣΠ�n is the unreduced-reduced suspension of the nth partition poset. This
makes spectral Lie algebras susceptible to methods from combinatorial topology [1].
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Unstable chromatic homotopy theory. Spectral Lie algebras were first linked
to unstable chromatic homotopy theory by Behrens and Rezk [5] who, for each
pointed space X, constructed a comparison map cX : Φ(X) → TAQSK(h)

(SXK(h))

from the Bousfield–Kuhn functor on X to the topological André–Quillen homology
of the E∞-ring SXK(h) – the latter is always a spectral Lie algebra.

The map cX is an equivalence for X a sphere [3], and also for special unitary
and symplectic groups [6]. In [9], we proved (with Heuts) that cX fails to be an
equivalence on wedges of spheres and Moore spaces.

Heuts [15] later equipped the Bousfield–Kuhn functor Φ(X) with the structure
of a spectral Lie algebra, and used this to establish an equivalence between K(h)-
local spectral Lie algebras and a certain ∞-category MK(h) of periodic spaces.

Hecke Lie algebras. Lie algebras in SpK(h) are not amenable to explicit com-

putations, as their homotopy groups involve the K(h)-local homotopy groups
of spheres. However, SpK(h) is equivalent to K(h)-local module spectra over a
height h Morava E-theory E with action by the stabiliser group G.

In [7], we introduced Hecke Lie algebras to describe the operations acting on the
homotopy groups of spectral Lie algebras in Mod∧E , the∞-category of K(h)-local E-
modules. In particular, E∧∗ (Φ(X)) is a Hecke Lie algebra for any pointed space X.

Very roughly, Hecke Lie algebras are Lie algebras in E∗-modules, equipped
with an additional additive action by the cohomology of Rezk’s ring Γ, which is
closely related to the Hecke algebra of GLn(Zp) [29] [30]. There is an additional
congruence at p = 2, and special care must be taken when composing operations.

These concrete algebraic structures facilitated recent computational advances:

Chromatic homotopy theory of configuration spaces. Computing the Morava
K- or E-theory of unordered configuration spaces of manifoldsM is a hard problem.

For M = Rn, the problem is of partcular interest, as the relevant groups
parametrise Dyer-Lashof operations on En-algebras. At chromatic height h = 1,
the problem was solved by Langsetmo [21]. In dimensions n = 2, 3, 4, it was solved
by Yamaguchi [35] and Tamaki [32] [33] with increasingly laborious methods. For
general chromatic heights h and dimensions n, Ravenel stated a conjecture in [28].

With Hahn and Knudsen [8], we apply the theory of Hecke Lie algebras to
Knudsen’s spectral generalisation of (1) (cf. [19, Section 3.4.]) to compute the
Morava K- and E-homology groups (at a prime p) of the configuration space of p
points in Rn, for all heights h and all dimensions n.

We carry out similar computations for configuration spaces of punctured surfaces.
Letting h tend to infinity, we can read off previously unknown Fp-homology groups.

One might hope to perform this computation without reference to E-theory by
using spectral Lie algebras over Fp. Their operations have been computed at p = 2
by Antoĺın-Camarena [2]. For p odd, partial progress has been made by Kjaer [17],
but the Adem relations remain unknown. Our method from [7] does not immedi-
ately apply, as it usesK(h)-local Tate vanishing to identify orbits with fixed points.

However, algebraic geometry leads to other generalised Lie algebras over Fp:
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Formal moduli. The infinitesimal deformations of a given algebro-geometric ob-
ject over a field k are described by a corresponding formal moduli problem, which is
a functor of points defined on suitable Artin k-algebras satisfying a gluing axiom.

Away from characteristic 0, there are two variants of formal moduli problems, as
algebraic geometry can either be based on simplicial commutative rings (“derived
algebraic geometry”) or on connective E∞-rings (“spectral algebraic geometry”).

Partition Lie algebras & spectral partition Lie algebras. Together with
Mathew [10], we introduce two new generalisations of Lie algebras, called partition
Lie algebras and spectral partition Lie algebras, over any base field k.

In characteristic 0, both recover the differential graded Lie algebras from Defini-
tion 1. In characteristic p, they are distinct from previously known generalisations
(e.g. spectral Lie algebras or simplicial/cosimplicial restricted Lie algebras).

We then prove that our Lie algebras control fomal moduli problems in derived
and spectral algebraic geometry, respectively. This generalises the Lurie–Pridham
theorem from characteristic 0 to base fields of arbitrary characteristic (e.g. Fp);
we also offer a version over mixed characteristic bases (like Zp).

Our new Lie algebras are no longer governed by operads; instead, they are
algebras over monads. Given a field k, we construct monads Lieπk,∆ and Lieπk,E∞
on the ∞-category Modk of k-module spectra. These preserve filtered colimits,
geometric realisations, and are given on coconnective objects X ∈ Modk,≤0 by

Lieπk,∆(X) =
⊕
n

C̃∗(ΣΠ�n, k)⊗ΣnX⊗n ; Lieπk,E∞(X) =
⊕
n

C̃∗(ΣΠ�n, k)⊗hΣnX⊗n.

Here C̃∗(−, k) denotes the reduced k-valued singular cochains of a space, whereas
(−)Σn and (−)hΣn denote strict invariants and homotopy invariants, respectively.
The precise definition of strict fixed points uses the genuine equivariant topology
of partition complexes and requires some care.

Future directions. As partition Lie algebras involve fixed points rather than
orbits, one can adapt the arguments in [7] to compute their operations and rela-
tions. Following the strategy in [18] and [8] then leads to a new approach to the
Fp-homology of configuration spaces – a subject where many computations are yet
to be done.

Two other tasks for the future are to give a Lie algebraic description of defor-
mation theory in chromatic contexts, and to construct Lie models for the modular
homotopy type of spaces (Koszul dual to Mandell’s commutative models in [24]).
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