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Jacob Lurie David Lukas Benjamin Brantner

The Lubin-Tate Theory of Spectral Lie Algebras

Abstract

We use equivariant discrete Morse theory to establish a general technique in poset topology and

demonstrate its applicability by computing various equivariant properties of the partition complex and

related posets in a uniform manner. Our technique gives new and purely combinatorial proofs of results on

algebraic and topological André-Quillen homology. We then carry out a general study of the relation between

monadic Koszul duality and unstable power operations. Finally, we combine our techniques to compute the

operations which act on the homotopy groups K(n)-local Lie algebras over Lubin-Tate space.
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Exposition

Homotopy groups measure how spheres can map into a given space X. They constitute a powerful invariant

π∗(X) which detects equivalences between CW complexes. However, this invariant is not complete – for

example, the spaces S2 and S3 × CP∞ have the same homotopy groups but are not homotopy equivalent.

One strategy to address this issue is to reveal more structure on π∗(X). Whitehead observed in 1941 that any

two maps f : Sa → X, g : Sb → X from spheres into a space X give rise to a third map [f, g] : Sa+b−1 → X.

This Whitehead product gives π≥2(X) the structure of a graded Lie algebra. On π1(X), it recovers the usual

commutator. Even though the Lie algebra π≥2(X) can distinguish between the spaces S2 and S3×CP∞, it

is still far from a complete invariant.

Any space X has a so-called “arithmetic decomposition” into an infinite number of pieces: There is one

component XQ for the rational numbers and, for each prime p, a component X∧p corresponding to the finite

field Fp. In 1969 [Qui69], Quillen used the Whitehead product to model the rational homotopy type XQ of

any (simply connected) space X by a differential graded Lie algebra over Q. It is natural to ask whether or

not similar “Lie invariants” exist for the remaining components X∧p – to date, this question remains open.

Reminiscent of a prism separating a natural ray of light into its con-

stituent pure colours, chromatic homotopy theory decomposes each

space X∧p even further. For every natural number h, one can define

a space ΦhX
∧
p called the “vh-periodic component” of X∧p . Here Φh is

the Bousfield-Kuhn functor. Figure 1: The various periodic
components of a space.

In 2012, Behrens and Rezk [BR15] generalised Quillen’s construction and attached meaningful Lie invariants

to the various components ΦhXFp of any space X. Their construction has been studied further in work by

Heuts and Arone-Ching – we refer to [BR17] for a comprehensive survey.

Figure 2: The partition complex Π4.

The new invariants for ΦhXFp are Lie algebras in K(h)-local

spectra and therefore defined using the partition complex |Πn|.

The k-simplices of this simplicial complex correspond to chains

[x0 < · · · < xk] of finer and finer (proper nontrivial) partitions of

the set {1, . . . , n} – the symmetric group Σn acts naturally.

Our work was spurred by the following complaint: unlike Quillen’s rational Lie models, K(h)-local Lie

algebras are computationally intractable since their homotopy groups are modules over the mysterious ring

of K(h)-local homotopy groups of spheres.
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We address this objection by using Lubin-Tate theory (often called Morava E-theory), a homotopically

enhanced version of Lubin-Tate space from number theory. This is a coherently commutative ring spectrum E

with a maximal ideal m and an action by the (big) Morava stabiliser group G, which is a Galois twist of O×D
for D the division algebra of Hasse invariant 1

n over Qp.

Writing Mod
Cpl(m)
E,G for the category of K(h)-local E-modules with G-action (see Definition 4.1.1), work by

Hopkins–Ravenel implies the existence of a descent equivalence SpK(h)
'−→ Mod

Cpl(m)
E,G to the aforementioned

category of K(h)-local spectra (cf. [Mat17]). We therefore propose Lie algebras in Mod
Cpl(m)
E,G as modular

analogues of Quillen’s d.g. Lie algebras over the rational numbers Q.

In this work, we compute the operations which act on the homotopy groups of Lie algebras in Mod
Cpl(I)
E . 1

There is a Lie bracket, an action of a new ring HLie of “Hecke operations”, and a nonadditive operation θ,

and these all interact in interesting ways.

In order to prove this theorem, we shall take a scenic route, unravel unexpected connections to other branches

of combinatorics and geometry, and discover several substantially different results of independent interest

along the way.

In Chapter 1, we give precise statements of our main results.

In Chapter 2, we introduce new combinatorial methods to study the equivariant topology of the parti-

tion complex and related spaces. More precisely, we use the equivariant discrete Morse theory of Forman

[For98] and Freij [Fre09] to define an algorithm whose input is a finite lattice P with group action and

a list (F1, . . . , Fn) of functions and whose output is an algorithm collapsing a usually large subcomplex

of |P − {0̂, 1̂}| in an equivariant fashion, hence producing an equivalence to an indexed wedge of simpler

spaces. This algorithm is of independent interest. The simplest nontrivial instance recovers a strengthened

version of results by Björner-Walker [BW83], Kozlov [Koz98], and Welker [Wel90]. Using this machinery,

we compute the simple homotopy type of the fixed point spaces |Πn|H for general H ⊂ Σn in terms of

subgroup complexes, give a purely combinatorial proof of a strengthened version of Arone’s formula [Aro15]

for Young restrictions of |Πn|, and offer a formula for the parabolic restrictions of Bruhat-Tits buildings. We

introduce a general technique for the study of strict orbit spaces and apply it to deduce vanishing results for

strict Young-quotients of |Πn|. We fill these computations with more conceptual meaning by establishing a

surprising connection between strict Young quotients of |Πn|, commutative monoid spaces, and the algebraic

André-Quillen homology of ordinary commutative rings. Using this, we recover a splitting of Goerss [Goe90]

concerning the algebraic André-Quillen homology through entirely different combinatorial means. We then

1The interaction between our operations and the G-action on the homotopy of Lie algebras in Mod
Cpl(m)
E,G

is determined formally.
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link our computations to topological André-Quillen homology – this will later allow us to study operations

with many inputs acting on the homotopy of spectral Lie algebras (see Definition 4.1.11).

In Chapter 3, we introduce a general technique to intertwine unstable operations and monadic Koszul duality

under certain Koszulness assumptions. More precisely, we study the relation between unary operations on

algebras over a monad T and unary operations on coalgebras over the Koszul dual comonad KD(T ). Along

the way, we generalise and simplify the (completed) algebraic approximation functors of Barthel-Frankland

[BF15] and Rezk [Rez09]. This chapter is complemented by Appendix D on p.133 in which we discuss the

relation between Lurie’s Koszul duality for monoidal ∞-categories and more classical instances of Koszul

duality, namely the Yoneda product on Ext-groups and Ching’s comultiplication on the Bar construction via

tree grafting.

In Chapter 4, we use our technique from Chapter 3 to construct an additive action of the ring HLie of “Hecke-

like” operations (see Definition 4.3.1) on the homotopy groups of everyK(h)-local Lie algebra over Lubin-Tate

space. We then define a further operation θ and prove that it satisfies a congruence Ψ(x) = [x, x] + 2 · θ(x)

for some “Adams-like” operation Ψ ∈ HLie. We then compute the various the relations between these

operations. Using the EHP sequence and our work in Chapter 2, we prove that, up to completion, we have

produced a comprehensive list of operations and relations.

Our work has informed two subsequent collaborative projects (which are not included in this document):

In joint work with Arone, we set up an EHP sequence for strictly commutative monoid spaces and use it to

decompose the strict Young quotients of the partition complex into atomic building blocks Σ|Πn|�∧Σn
(Sj)∧n

for j odd. Notably, defining the Hopf map in this sequence seems to require the use of point set models.

Together with Heuts (cf. [BH17]), we study Goodwillie towers on wedges (generalising [AK98]) and cofibres

and use this to produce counterexamples which show that vn-periodic Goodwillie towers are neither finite nor

convergent on wedges and Moore spaces (this was unexpected as they are finite and convergent for spheres,

as proven in [AM99]).
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Chapter 1

Statement of Results

The body of our thesis is divided into three chapters: We first use combinatorics to study the partition

complex, then establish a general framework for the comparison of topological and algebraic Koszul duality,

and eventually compute the operations on the E-theory of spectral Lie algebras (see Definition 4.1.11). We

outline the results of Chapters 2, 3, and 4 in the three self-contained sections of this introductory chapter and

invite the reader to jump to whichever interests her or him the most. In the four parts of our Appendix, we

first review completion, tensored ∞-categories, and graded algebraic theories, and then discuss the relation

between ∞-categorical Koszul duality and more classical instances.

1.1 Discrete Morse Theory and the Partition Complex

The equivariant discrete Morse theory of Forman [For98] and Freij

[Fre09] gives a systematic way of collapsing complicated simplicial

complexes to points by iterating elementary collapses. Figure 3: An elementary collapse.

We restrict attention to specific complexes: given a finite poset P with an order-preserving action of a finite

group G, we can attach a G-simplicial complex, called the order complex , whose vertex set V is given by the

elements of P and whose face set F consists of chains [y0 < · · · < yn] with yi ∈ P.

Figure 4: The representation
sphere Sσ4−2

Example 1.1.1. The symmetric group Σn acts in an evident way on

the poset of proper nonempty subsets of {1, . . . , n}. The order com-

plex of this poset is the doubly desuspended representation sphere

Sσn−2 corresponding to the standard representation σn of Σn.
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A finite G-poset P is called a G-lattice if any two elements have a meet and a join.

Given such a lattice, we define an algorithm that simplifies the order complex of the poset P := P − {0̂, 1̂}

obtained by removing top and bottom. In order to state our theorem, we introduce the following notion:

Definition 1.1.2. Let P be a finiteG-lattice with face set FP containing nondegenerate chains [y0 < · · · < yn].

A function F : FP → P is called an orthogonality function if

1. F is G-equivariant and increasing (i.e. y ≤ F (σ) for all chains σ ∈ FP containing a vertex y).

2. For any σ = [y0 < · · · < ym] ∈ FP and z > ym, the following subposet is discrete:

{ym < y < z | y ∧ F (σ) = ym, y ∨ (F (σ) ∧ z) = z}

Lists F = (F1, . . . , Fn) of orthogonality functions are examples of orthogonality fans (see Definition 2.2.8 for

this more general notion), and there is a notion for when a chain σ = [y0 < · · · < yr] is orthogonal to F,

written σ ⊥ F. We use discrete Morse theory to prove:

Theorem 2.2.10 (Complementary Collapse). Let F = (F1, . . . , Fn) be an orthogonality fan on a finite

G−lattice P with F1([0̂]) 6= 0̂, 1̂. Then there is a G-equivariant simple homotopy equivalence

|P| ∼=
∨

[y0<···<yr]⊥F

Σr|P(0̂,y0)|
� ∧ |P(y0,y1)|� ∧ · · · ∧ |P(yr−1,yr)|� ∧ |P(yr,1̂)|

�

Here P(a,b) denotes the subposet of elements z with a < z < b and X� stands for the unreduced sus-

pension of a space X. An equivariant simple homotopy equivalence is an equivalence which can be ob-

tained by iterated elementary expansions and collapses (see Definition 2.1.7). This is a special case of

an equivariant homotopy equivalence. Applying our theorem to the single function F with F (0̂) = x for

some fixed point x and F (y) = 1̂ for y > 0̂, we recover a common generalisation of results by Björner-

Walker [BW83], Kozlov [Koz98], and Welker [Wel90].

Complementary collapse is a powerful tool, and we will now illustrate some of its applications. As before,

we write Πn for the partition complex on n elements. Given a subgroup G ⊂ Σn, it is natural to ask:

Question. What is the WΣn(G) := NΣn(G)/G-equivariant simple homotopy type of |Πn|G?

If G acts transitively on {1, . . . , n}, then a result of Klass identifies |Πn|G with the opposite of the poset of

subgroups {H ( K ( G} for H the stabiliser of {1}. For general subgroups, the question is more difficult.

We introduce some notation. If X is a pointed H-space for H ⊂ G a subgroup, then we can define the

induced G-space as IndGH(X) = G+ ∧H X. A subgroup G ⊂ Σn is said to be isotypical if all its orbits are
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isomorphic G-sets. Complementary collapse can then be used to reduce the general case of the above question

to the well-understood transitive setting:

Theorem 2.4.2. If G ⊂ Σn acts isotypically on {1, . . . , n}, we may assume after relabeling that G is a

transitive subgroup of Σd
∆−→ Σ

×nd
d ⊂ Σn for d | n and ∆ the diagonal map.

Then there is a WΣn(G) = NΣn(G)/G -equivariant simple homotopy equivalence

|Πn|G
'−→ Ind

WΣn (G)

WΣd
(G)×Σn

d

(|Πd|G)� ∧ |Πn
d
|�

Lemma 2.4.3. If G acts non-isotypically, then |Πn|G is WΣn(G)-equivariantly collapsible.

Our statements about fixed points can be combined with Proposition 6.2 in [ADL16] to express the fixed

point spaces of |Πn| under p-subgroups in terms of Bruhat-Tits buildings. We recall:

Lemma (Arone-Dwyer-Lesh). If G ⊂ Σn is a p-group, then |Πn|G is WΣn(G)-equivariantly contractible

unless G is elementary abelian and acts freely.

Corollary 2.5.19. Let Fkp ⊂ Σn be an elementary abelian p-group acting freely with ` orbits. Let AffFkp =

NΣ
pk

(Fkp) be the affine group and write AffFkpoΣ` = NΣn(Fkp). There is a simple equivalence of AffFkpoΣ`-spaces

|Πn|F
k
p = Ind

AffFkpoΣ`
AffFkp

×Σ`

(
|BT(Fkp)|� ∧ |Π�` |

)

Here BT(Fkp) denotes the poset of proper nonempty subspaces of Fkp.

We invite the reader to observe Remark 2.4.10 clarifying the relation of Lemma 2.4.3, Theorem 2.4.2, and

Corollary 2.5.19 to the work of Arone and Hausmann.

We can combine Corollary 2.5.19 with HKR character theory [HKR00] to compute the rationalised Morava

E-theory of homotopy quotients of |Πn| by Young subgroups and hence understand the rationalised E-theory

of free spectral Lie algebras on finitely many generators in degree zero (as modules). But one can do better.

Complementary collapse gives a new, algorithmic, and purely combinatorial proof of a “simple homotopy”

version of an equivalence of Arone [Aro15]:

Theorem 2.3.11. Let n = n1 +· · ·+nk and g = gcd(n1, . . . , nk). Then there is a Σn1
×· · ·×Σnk -equivariant

simple homotopy equivalence

|Πn| −→
∨
d | g

B(
n1
d ,...,

nk
d )

Ind
Σn1
×···×Σnk

Σd
(Σ−1S(nd−1)σd ∧ |Πd|�)

Here B(m1, . . . ,mk) denotes the set of Lyndon words (see 2.3.1) in k letters involving the ith generator mi

times and Sσd denotes the standard representation sphere of Σd.
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We can also give an asymmetric decomposition for Young restrictions of |Πn|. We fix a Young subgroup

ΣA × ΣB1
× · · · × ΣBk ⊂ Σn. Complementary collapse implies:

Theorem 2.3.15 (Breaking Symmetry).

There is a simple homotopy equivalence of ΣA × ΣB1
× · · · × ΣBk -spaces

|Πn| −→
∨

A=A1
∐
···

∐
Ar, Ai 6=∅

fi:Ai↪→B
s.t. im(fi+1)⊂im(fi)

Σ−1S|A1| ∧ · · · ∧ S|Ar| ∧ |ΠB |�

Partition complexes can be thought of as Bruhat-Tits buildings over “the field with one element”. In this

heuristic picture, Young subgroups correspond to parabolic subgroups. Complementary collapse also has a

nice consequence for Bruhat-Tits buildings. Let V be a finite-dimensional vector space over a finite field k.

Fix a flag A = [A0 < · · · < Ar] with associated parabolic PA. Choose a complementary flag B with parabolic

PB and intersecting Levi LAB = PA ∩ PB. Complementary collapse implies:

Lemma 2.3.17. There is a PA-equivariant simple equivalence |BT(V )| ∼= IndPA

LAB

(
Σr
∧r+1
i=0 |BT(gri(B))|�

)
.

Here gri(B) denotes the ith graded piece of the flag B.

Work of Arone raised the following question (cf. [Aro15]): What is the homology of |Πn|/Σn1
× · · · × Σnk?

We first study orbit spaces in general and introduce a new colimit decomposition for G-spaces and their

approximations for G any finite group. Fix a subposet C ⊂ cclG of the poset of conjugacy classes of G and

write D for the opposite of the category of nondegenerate simplices of C. Given a chain (H0 ⊂ · · · ⊂ Hm) of

subgroups, we set NG(H) := ∩iNG(Hi) and WG(H) := NG(H)/H0.

Lemma 2.5.14. The map colim
[K0⊂···⊂Km]∈D

( ∨
H0∈K0
...

Hm∈Km
H0⊂···⊂Hm

EWG(H0, . . . ,Hm)+∧XHm

)
→ X is a C-approximation

(in the sense of [AD01]).

Example 1.1.3. For any Σ3-space X and C = cclΣ3
, we write Σ2 = Σ12,3 and obtain a homotopy colimit

IndΣ3

Σ2

(
(EΣ2)+ ∧XΣ3

)
> (EΣ3)+ ∧XΣ3

IndΣ3

Σ2
XΣ3 >

>
XΣ3

>

IndΣ3

Σ2

(
(EΣ2)+ ∧XΣ2

)∨
> (EΣ3)+ ∧X

∨

IndΣ3

Σ2
XΣ2

∨
>

>
X
∨>

7



One can use this to deduce the following helpful result for maps between strict orbits:

Lemma 2.5.16. Assume that f : X → Y is a map of G-spaces such that for all chains of p-subgroups

H0 ⊂ · · · ⊂ Hn ⊂ G , the following map induces an isomorphism on H∗(−,Z(p)):

(EWG(H0, . . . ,Hm)+ ∧XHm))/NG(H0,...,Hm) −→ (EWG(H0, . . . ,Hm)+ ∧ Y Hm))/NG(H0,...,Hm)

Then f/G : X/G → Y/G induces an isomorphism on H∗(−,Z(p)).

We go back to the homology of |Πn|/Σn1 × · · · × Σnk . By the decomposition result for Young-restrictions,

it is enough to compute the homology of spaces S|Πn|� ∧Σn
(Sj)∧n.

Our Lemma 2.5.16 for strict orbits can be combined with computations of Arone [Aro06] (cf. [ADL16]) for

homotopy orbits to see that for p a prime, j even and n 6= pa, 2pa for all a, or j odd and n 6= pa for all a,

the homology group H∗(|Πn|� ∧Σn
(Sj)∧n,Fp) vanishes.

A new conceptual insight is required to cover the remaining cases. We consider the pointed ∞-category

CMonaug of strictly commutative monoid spaces augmented over S0, the monoid with two elements 0 and 1.

Any space X gives rise to an augmented commutative monoid space S0∨X by declaring that a · b = 0 unless

a = 1 or b = 1. This is the trivial square zero extension of S0 by X. There is a natural notion of André-

Quillen homology, denoted by AQ, for these commutative monoid spaces. The André-Quillen homology of

trivial square zero extensions is intimately related to strict orbits of the partition complex:

Lemma 2.6.12. If X is a well-pointed space, then AQ(S0 ∨X) ∼=
∨
n≥1 Σ|Πn|� ∧Σn

X∧n.

Given any ring R, we can apply the reduced R-valued chains functor C̃•(−, R) to a commutative monoid

space X and obtain a simplicial commutative R-algebra. Heuristically speaking, we base-change from F1

to R. This operation sends the trivial square-zero extension S0 ∨ X to the trivial square zero extension

R ⊕ C̃•(X,R). Moreover, it intertwines AQ for strictly commutative monoid spaces with the usual AQ for

simplicial commutative rings:

Lemma 2.6.10. For any augmented monoid space X, we have an equivalence C̃•(AQ(X), R) ∼= AQR(C̃•(X,R)).

This shows that the R-valued homology of the space
∨
n≥1 Σ|Πn|� ∧Σn

X∧n computes the algebraic André-

Quillen homology of trivial square-zero extensions.

Our computation of Young restrictions of |Πn| via complementary collapse therefore gives a new proof of

the Hilton-Milnor splitting (cf. Corollary 5.4.16) for the algebraic André-Quillen homology (due to Go-

erss [Goe90] over F2). We find it remarkable that our purely combinatorial technique has this nontrivial

consequence in derived algebraic geometry.
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1.2 Background on Operations

We will give a brief survey of the study of operations on highly structured objects and introduce necessary

context and notation along the way. We encourage the impatient reader who is interested in our work

concerning operations on Lie algebras to jump directly to the Section 1.2.3 and then proceed to Section 1.4.

If the reader instead prefers to learn about our results relating algebraic and topological Koszul duality, we

recommend jumping to the Section 1.2.2 and then proceed to Section 1.3.

1.2.1 Operations and Geometry

We begin with an elementary problem:

Question. Are there 2 linearly independent vector fields on S5?

If this happens, then the map RP 5/RP 2 p−→ S5 projecting off to the top cell must admit a section s. In

order to find obstructions to this being possible, we can apply (reduced) singular cohomology H∗(−,F2). If

we think of this functor as landing in rings, then we cannot spot an obstruction. However, the cohomology

of any space has more structure: it forms an unstable algebra over the Steenrod algebra. The top class

x5 ∈ H̃5(RP 5/RP 2,F2) can be expressed by applying the operation Sq2 to the class x3 ∈ H̃3(RP 5/RP 2,F2).

This implies p∗(x5) = Sq2p∗(x3) = 0 and hence a section cannot exist. This technique can be pushed further

to prove that if 2m is the maximal power of 2 diving n+ 1, then there do not exist 2m vector fields on Sn.

This bound is not optimal.

In order to obtain the best possible bound (which is closely related to the Radon-Hurwitz number), a more

sophisticated approach is necessary. In [Ada62], Adams made use of topological K-theory, a generalised

cohomology theory which measures vector bundles on a space. Just like F2-cohomology, the K-theory of any

space is not just a ring, but comes equipped with additional structure known as Adams operations.

Topological K-theory, once completed at a prime p, has a higher height analogue: Lubin-Tate theory.

Operations on the E-cohomology of spaces have been studied by Ando, Rezk, and others, and will be crucial

to our work. They also appear in Ando–Hopkins–Rezk’s [AHR10] refinement of the Witten genus to a map

of highly structured ring spectra in MString → tmf .
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1.2.2 Operations on (co)Algebras over (co)Monads

All of the above examples of operations fit into a general framework. Given a space X and an E∞-ring

spectrum R (e.g. HF2, K, or E) which is complete1 with respect to some ideal I ⊂ π0(R) in the sense of

Definition 5.1.2 in Appendix A, the mapping spectrum RX naturally lies in the category AlgComm(Mod
Cpl(I)
R )

of commutative algebra objects in I-complete R-module spectra, i.e. I-complete E∞-rings under R. We are

therefore lead to study the operations which act naturally on the homotopy groups of all objects A ∈

AlgComm(Mod
Cpl(I)
R ).

Defining a (nonunital) commutative algebra object in Mod
Cpl(I)
R is equivalent to specifying an algebra over

the monad T (X) =
⊕

n≥1X
⊗n
hΣn

corresponding to the E∞-operad (see Definition 4.1.10).

There are other monads which are of interest in topology: the symmetric power monad on connective

module spectra over a field k building the free simplicial commutative k-algebra (or its extension to the non-

connective setting), the monad corresponding to the En-operad, and, most importantly for us, the monad

corresponding to the spectral Lie operad (see Definition 4.1.9). In full generality, we can ask:

Question. Given a monad T on the category Mod
Cpl(I)
R , what are the operations which act naturally on the

homotopy groups of all objects A ∈ AlgT (Mod
Cpl(I)
R )?

(A dual question can be formulated about the cohomotopy of coalgebras over comonads.)

Any class α ∈ πj(FreeAlgT (Σi1R + · · · + ΣikR)) gives rise to a k-ary operation on the homotopy groups of

T -algebras which takes k classes in degrees i1, . . . , ik and produces a single class in degree j as output.

Organising all the operations defined in this way in a coherent and tractable manner is a difficult task, and we

will now give an incomplete list of the cases for which it has been carried out. The usual strategy is to give the

homotopy groups three simultaneous pieces of structure: an algebra structure over some classical algebraic

monad (e.g. the structure of an ordinary commutative ring or an ordinary Lie algebra), an additive action of

some ring of unary operations, and a (usually very small) set of non-additive extra operations. These three

structures then satisfy nontrivial relations which can be worked out by computing universal examples.

Example 1.2.1. The homotopy groups of E∞-rings in the∞-category ModHFp of Fp-module spectra naturally

form a (graded) commutative Fp-algebra together with an unstable action of the Dyer-Lashof algebra, subject

to certain axioms (cf. [BMMS86], Section III.1). The action on π∗HFXp for X a space recover the usual

Steenrod operations.

Example 1.2.2. The homotopy groups of En-rings in the ∞-category ModHFp support the structure of a

1Working in a completed setting is necessary in the case of Morava E-theory. Here completion with respect to the maximal
ideal I ⊂ π0(Eh) = W (Fp)[[u1, . . . , uh−1]] is also known as K(h)-localisation.

10



restricted Poisson n-algebra which is acted on by the Dyer-Lashof algebra, again subject to certain rather

involved relations. This has been worked out by Steinberger in [Ste86], relying heavily on Fred Cohen’s

computation in the case of En-spaces (see [CLM76]).

Example 1.2.3. The homotopy groups of shifted spectral Lie algebras in connective modules in ModHF2
have

the structure of a shifted Lie algebra with an allowable action of the Dyer-Lashof-like algebra R introduced

by Behrens [Beh12]. This was worked out by Antoĺın-Camarena in [AC15]. The relation [Qx, y] = 0 was

first discovered by the author of this thesis and follows from a general transfer argument. [AC15] contains

a different proof that does not use the transfer. The Jacobi identity was proven in joint work with Antoĺın-

Camarena. A partial generalisation of the work of Behrens and Antoĺın-Camarena to odd primes has been

obtained by Kjaer [Kja16], who computes the Fp-homology of connective free spectral Lie algebras as Fp-

vector spaces (the composition structure of Dyer-Lashof-like operations remains open). In Section 4.1.3, we

will indicate how some of the computational problems which are left open in [Kja16] and [AC15] can be

solved.

1.2.3 On Rezk’s work

We briefly review the operations on the homotopy ofK(n)-local E∞-rings under Morava E-theory. At height 1,

these operations were initially studied by Adams in order to solve the vector fields problem, and computed

in a p−complete setting by Bousfield [Bou96] and McClure [BMMS86]:

Example 1.2.4. Let K be p-adic K-theory. The homotopy groups of every K(1)-local E∞-ring under K give

rise to a Z/2Z-graded θ-ring, i.e. a strictly commutative Z/2Z-graded ring R together with a map of sets

θ : R0 → R0 and group homomorphisms Ψ0 : R0 → R0, Ψ1 : R1 → R1, satisfying the following assertions:

• (R0, θ0) defines a θ-ring and Ψ0(x) = xp + pθ(x) for all x ∈ R0.

• Ψ1(xy) = Ψ0(x)Ψ1(y) for all x ∈ R0, y ∈ R1.

• θ(xy) = Ψ1(x)Ψ1(y) for all x, y ∈ R1.

This has been generalised by Rezk in [Rez09] to the setting of K(h)-local E∞-rings under the Morava

E-theory of some general height h. Using additive operations on degree 0, Rezk defines a weight-graded

associative ring Γ =
⊕

k≥1 Γ[pk] which contains E0 as a non-central commutative subring and shows that the

homotopy groups of the E∞-rings in question have the structure of Z/2Z-graded Γ-algebras (with respect to

a twisted tensor structure). There is also an additional non-additive operation θ and an additive Adams-like

operation Ψ acting on degree 0 such that Ψ(x) = xp + pθ(x) and such that all identities which would be

forced if p were invertible hold true.
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The ring Γ is a subject of active research - several important questions remain open, but there are several

known structural results which we would like to recall. By definition, the E0-linear dual Γ[pk]∨ of the (pk)th

graded piece of Γ is given by the quotient of the cohomology of the symmetric groups BΣpk by the transfer

ideal. Seminal work by Strickland [Str98] shows that these rings are free as E0-modules, Gorenstein local,

and that the associated formal scheme Spf(Γ[pk]∨) gives the moduli of subgroup schemes of degree pk inside

the universal formal group G over Lubin-Tate space.

Warning. The commutative cup product structure on the cohomology group Γ[pk]∨ is (of course) not equal

to the noncommutative product structure on Γ encoding the composition of operations.

The ring Γ is free as an E0-module. Its structure is far from being understood in terms of generators and

relations at general heights, but work by Rezk [Rez08] and Zhu [Zhu14] give a complete description at

height 2 and p = 2 or p = 3.

One of the major breakthroughs in the study of Γ, crucial to our later computations, was Rezk’s topological

proof that the graded ring Γ is Koszul (see [Rez12b], inspired by [AM99]). In [Rez12a], Rezk gives an

identification of the Bar complex of Γ with the so-called modular isogeny complex. This complex captures

flags of subgroups of the universal formal group G over Lubin-Tate space.
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1.3 Intertwining Algebraic and Topological Koszul Duality

Our method to relate algebraic and topological Koszul duality is both abstract and technical. We will

therefore limit ourselves to a brief overview here and invite the interested reader to jump straight to Chapter 3

for a detailed treatment.

Let R be an E2-ring for which π∗(R) is Noetherian and fix an ideal I ⊂ R0. We obtain an ∞-category

Mod
Cpl(I)
R of I-complete left R-module spectra (see Definition 5.1.2 in Appendix A).

If T ∈ Algaug(End(Mod
Cpl(I)
R )) is an augmented monad, Lurie’s Koszul duality [Lur11b], a far-reaching

generalisation of classical Moore duality, produces a Koszul dual comonad KD(T ) = |Bar•(1, T, 1)|.

It is then natural to ask:

Question. What is the relation between unary homotopy operations on T -algebras and unary cohomotopy

operations on KD(T )-coalgebras?

We introduce a class of convenient monads (see Definition 3.2.19) for which operations on T -algebras are

controlled by an augmented monad T̂ on the derived category D−≥0(Mod
Cpl(I)
R∗

). We think of T̂ as an object

living in the realm of algebra. In the case where T is the commutative monad axiomatising K(h)-local

E∞-rings under E-theory, our construction of the monad T̂ gives a substantially simplified treatment of the

completed approximation functors of Barthel-Frankland [BF15] (see page 89). The augmented monad T̂ also

has a Koszul dual comonad KD(T̂), and the study of operations on KD(T̂)-coalgebras in terms of operations

on T̂-algebras is located in the context of nonadditive derived functors in classical algebra as studied by

Dold-Puppe [DP61], and many others.

In Definition 3.3.3, we single out the objects M ∈ Mod
Cpl(I)
R for which maps (of KD(T̂)-coalgebras) out of

the free KD(T̂)-coalgebra on π∗(M) in algebra lift naturally to corresponding maps (of KD(T )-coalgebras)

out of the free KD(T )-coalgebra on M in topology. For this lifting, we use of the Pσ-construction from

Section 4.2 in [Lur11a] to construct a hybrid between Mod
Cpl(I)
E and Mod

Cpl(I)
E∗

, which can be thought of as

a modern version of the E2-model structure. In Theorem 3.5.1, we see that the “Yoneda-composition” of

the operations in algebra is compatible with composition of the lifted operations in topology.

We implement our technique for T the commutative monad on Mod
Cpl(I)
E in Chapter 4, but consider it likely

that our method yields interesting results for other possible combinations of monad T and ring spectrum

R (e.g. the ones discussed in Section 1.2) We remark that we also rely on Appendix D on p.133, which

clarifies the relationship between Lurie’s Koszul duality in monoidal ∞-categories, the Yoneda product on

Ext-groups, and Ching’s tree grafting.
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1.4 Operations on Lie Algebras in Mod
Cpl(I)
E

We fix a height h, a prime p, and write E for the corresponding Lubin-Tate spectrum with unique maximal

ideal I ⊂ π0(E) ∼= W (Fp)[[u1, . . . , uh−1]]. We can ask:

Question. What are the operations which act naturally on the homotopy groups of a K(h)-local Lie algebra

in E-module spectra?

Lie algebras in the ∞-category Mod
Cpl(I)
E of K(h)-local E-module spectra are defined as algebras over the

monad L(X) =
⊕

n≥1D(Σ|Πn|�) ⊗hΣn X
⊗n acting on Mod

Cpl(I)
E . The monad structure is defined as in

[Chi05] (see Definition 4.1.11).

Just like in the case of E∞-rings in Mod
Cpl(I)
E covered by Rezk, an explicit generators-and-relations descrip-

tion of the operations is out of reach. We will therefore settle for the next best result, namely an algorithmic

description of the operations on Lie algebras in terms of operations on E∞-rings.

For each i, Rezk introduces a weight-graded ring ∆i =
⊕

w ∆i[w] of operations which act additively on

the (−i)th degree of the cotangent space π∗(A)/(π∗(A))2 of any nonunital K(h)-local E∞-ring A under E.

These rings are all (non-canonically) isomorphic to the ring Γ from above. Suspension yields a sequence

of homomorphisms · · · → ∆2 → ∆1 → ∆0 → ∆−1 → . . . . and there are canonical twisting morphisms

Ek ⊗E0
∆−i ⊗E0

E−k −→ ∆−i−k.

One of the main facts which make the study of operations on the E-theory of K(h)-local E∞-rings pleasant

is that, up to scaling by a unit in E∗, additive operations preserve degree. This makes it possible to either

restrict attention to the degree 0 part altogether or use a Z/2Z-graded framework like Rezk. The situation

for Lie algebras is less convenient: up to scaling, additive operations of weight pk shift degree down by k.

We therefore phrase our results in terms of graded E∗-modules and abstain from a Z/2Z-graded approach.

1.4.1 Additive Unary Operations

We introduce the notion of a power ring P in Definition 3.1.7: For each i, j ∈ Z and v ∈ N, there is an

abelian group P ji [v] which will record additive operations from degree i to degree j of weight v. There are

composition maps P ji [v]⊗ P kj [w]→ P ki [vw] which satisfy natural associativity conditions. A module over a

power ring is a graded abelian group Mi with associative action maps P ji [v]⊗Mi →Mj .

We introduce the power ring which acts on the homotopy of Lie algebras in Mod
Cpl(I)
E :
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Definition 4.3.1. The power ring HLie of Hecke operations on Lie algebras is given by

(HLie)ji [w] =


Exta∆i(E0, E−i+j+a) if w = pa

0 if w is not a power of p

The multiplication map (HLie)ji [p
a]⊗ (HLie)kj [pb]→ (HLie)ki [pa+b] is the composite:

(Exta∆i(E0, E−i+j+a))⊗ (Extb∆j (E0, E−j+k+b))→ (Exta∆i(E0, E−i+j+a))⊗ (Extb∆j+a(E0, E−j+k+b))

→ (Exta∆i(E0, E−i+j+a))⊗ (Extb∆i(E−i+j+a, E−i+k+a+b))→ (Exta+b
∆i (E0, E−i+k+a+b))

The first map uses the suspension ∆j+a → ∆j, the second map uses the morphism Ext∗∆`(E0, Er) →

Ext∗∆`−s(Es, Er+s) coming from the twisting morphism, and the final map uses the Yoneda product.

Remark 1.4.1. We chose to call these operations “Hecke operations” since the ring ∆ is related to the Hecke

algebra for GLn(Zp) (see section 14 of [Rez06]).

In Chapter 3, we construct an additive action of the power ring HLie on the homotopy of every K(h)-local

Lie algebra under E. For this, we make use of Rezk’s Koszul property of Γ ([Rez12b], cf. [BR15]) to produce

maps (HLie)ji [w] → πj(D(Σ|Πn|�) ⊗hΣn
(ΣiE)⊗n) for i odd and extend our construction to i even by using

the EHP sequence to conclude Theorem 4.2.19. To check that the composition of operations agrees with the

multiplication in HLie, we implement the technology developed in Chapter 3 to “compose operations across

spectral sequences” and thereby establish Theorem 4.3.2.

Generalising an argument of Rezk from elliptic curves to general heights in an evident way, one can compute

the dimensions of the free E0-modules which constitute the power ring HLie in terms of the Hasse-Weil Zeta

function counting points on the projective space Pn−1:

∞∑
a=0

rk(HLie)i−ai [pa] · T a =
1

ζ(Pn−1
Fp ,−T )

= (1 + T ) · (1 + pT ) · · · · · (1 + pn−1T )

As mentioned above, a generators-and-relations description of HLie at general heights is currently out of

reach. However, work by Priddy (see Theorem 2.5 of [Pri70]) gives a mechanical way to determine the

structure of HLie once a generators-and-relations description of the ring ∆ has been found.
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1.4.2 Nonadditive Unary Operations

After picking an orientation for E, we construct a nonadditive operation θ2n starting in degree 2n and

landing in degree 4n− 1 for every integer n (see Section 4.2.2). Along the way, we also specify an “Adams-

like” additive operation Ψ2n ∈ (HLie)4n−1
2n [2] such that Ψ2n(x) = [x, x] + 2 · θ2n(x). Relying on results by

Strickland [Str98] and Behrens-Rezk [BR15], we prove in Theorem 4.2.16 that free Lie algebras in Mod
Cpl(I)
E

have completed-free homotopy and that all components of HLie are free E0-modules. We deduce several

divisibility properties of HLie which will be necessary in the formulation of our main result:

Proposition 4.3.18. If m,n ∈ Z and λ ∈ E2m
∼= (HLie)2n

2(n−m)[1] is any scalar, there is a unique element

δλ2(n−m) ∈ (HLie)4n−1
2(n−m)[2] satisfying Ψ2n · λ− λ2 ·Ψ2(n−m) = 2 · δλ2(n−m).

Proposition 4.3.19. If m,n ∈ Z and α ∈ (HLie)2n
m [pk] is any operation with k > 0, there is a unique

element εαm ∈ (HLie)4n−1
m [2pa] satisfying Ψ2n · α = 2 · εαm

1.4.3 Hecke Lie Algebras

After having defined all unary operations, we turn to operations with more than one input. We show that

the homotopy groups of any Lie algebra in Mod
Cpl(I)
E form a shifted Lie algebra in E∗ in the sense of

Definition 4.4.1 . In Section 4.3, we then establish various relations between Lie bracket, θ-operations, and

the Hecke operations. We axiomatise the resulting structure (for p an odd prime, it simplifies substantially):

Definition 4.4.2. A Hecke Lie Algebra consists of a HLie-module M together with the structure of a shifted

Lie algebra on the underlying E∗-module M∗ and maps of sets θ2n : M2n →M4n−1 such that:

1. [x, α(y)] = 0 for all α ∈ (HLie)ji [w] with w > 1 and all x ∈Mk , y ∈Mi.

2. Ψ2n(x) = [x, x] + 2 · θ2n(x) for any x ∈M2n.

Additionally, we impose several additional identities which would all be forced in the torsion-free case:

3. [x, θ2n(y)] = [[x, y], y] for all x ∈Mm, y ∈M2n.

4. θ2n(x+ y) = θ2n(x) + θ2n(y)− [x, y] for all x, y ∈M2n.

5. θ2n(λ · x) = λ2 · θ2(n−m)(x) + δλ2(n−m)(x) for all λ ∈ E2m, x ∈M2(n−m).

6. θ2n(α(x)) = εαm(x) for all α ∈ (HLie)2n
m [w] with w > 1, x ∈Mm.

There is an evident notion of “morphism of Hecke Lie algebras”. We write LieH for the resulting category

of Hecke Lie algebras, and let FreeLieH : ModE∗ → LieH denote the left adjoint to the forgetful functor.

Remark 1.4.2. For p an odd prime, the operation Ψ vanishes, θ2n(x) = − 1
2 [x, x], the classes τa and δk vanish,

and the relations (3)− (6) hold trivially. We can therefore ignore θ and Ψ.
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1.4.4 The Main Computation

We can now proceed to state our main theorem on Lie algebras in Mod
Cpl(I)
E . Writing FreeΣ Lie for the

monad which builds the free (shifted) Lie algebra on a module in Mod
Cpl(I)
E , we have:

Theorem 4.4.4.

1. The homotopy groups of any Lie algebra in K(h)-local E-module spectra naturally carry the structure

of a Hecke Lie algebra.

2. Given a flat E-module spectrum M , the canonical map FreeLieH(π∗(M)) → π∗
(
FreeΣ Lie(LK(h)(M))

)
induces an isomorphism after completion.

Part 2) of this theorem says that, up to completion, we have constructed all operations and all relations

between them. We prove it in two steps. Relying on our discrete Morse theoretic computations, we establish:

Corollary 2.3.14. Given spectra X1, . . . , Xk, every Lie word in k letters gives a map of spectral Lie algebras

FreeΣ Lie(S1−|w| ⊗X⊗|w|11 ⊗ . . . X⊗|w|kk )
fw−−→ FreeΣ Lie(X1 ⊕ . . .⊕Xk). Summing up all fk for w ∈ Bk yields

an equivalence
⊕

w∈Bk FreeΣ Lie(S1−|w| ⊗X⊗|w|11 ⊗ . . .⊗X⊗|w|kk ) −→ FreeΣ Lie(X1 ⊕ . . .⊕Xk).

Here Bk denotes the set of Lyndon words in k different letters (see Section 2.3.1) and |w|i the number of

occurences of the letter i in the word w.

This reduces us to the case of free Lie algebras on one generator. Using the EHP-sequence, we further reduce

to the case of one generator in odd degree. This case follows from Rezk’s Koszulness of Γ. We also indicate

how the main results by [AC15] and [Kja16] can be extended to the nonconnective setting (cf. Section 4.1.3).

Remark 1.4.3. At height 1, the rings ∆i are polynomial on one generator of

weight p. This implies that their Koszul dual is exterior on one generator

of weight p. The first picture on the right illustrates the E-theory of a free

K(h)-local Lie algebra on a generator in odd degree at height h = 1.

The second gives the corresponding picture when our generator lives in

even degree and we work at the prime p = 2.

We observe from the rank formula above that the module (HLie)ji [p
a] van-

ishes whenever a exceeds the height h of E. From this, we deduce that if κ

is an additive operation of weight n, then θ ◦ κ = 0.

Figure 5: The free
Hecke Lie algebra at
height 1 on a sin-
gle generator in odd
and even degree re-
spectively.
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Chapter 2

Discrete Morse Theory and the Partition Complex

In this chapter, we will use combinatorial methods to study the equivariant topology of the partition poset

and uncover links to monoid spaces and to the algebraic André-Quillen homology of ordinary commutative

rings.

2.1 Preliminaries

We will first recall various basic constructions and results.

2.1.1 Combinatorial Models for Spaces

In order to ensure the compatibility of our work with both the combinatorial and the homotopy-theoretical

literature, we will recall the basic links between different combinatorial models for spaces.

In homotopy theory, we often model spaces as follows:

Definition 2.1.1. Let ∆ be the category of nonempty finite linearly ordered sets. A simplicial set is a

functor ∆op → Set. We write sSet for the resulting category.

Example 2.1.2. The Yoneda embedding i : ∆ ↪→ sSet sends the ordered set [n] to the simplicial n-simplex.

In combinatorial topology, the following notion is commonly used:

Definition 2.1.3. A simplicial complex is given by a pair (V, F ) consisting of a set V of vertices and a set

F ⊂ P(V ) of finite subsets of V , called faces, such that F is subset-closed and contains all singletons. A

morphism of simplicial complexes (V, F ) → (V ′, F ′) is a map of sets V → V ′ which sends subsets in F to

subsets in F ′. We write sCpl for the resulting category.
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Example 2.1.4. Let Fin+ be the category of nonempty finite sets. We can define a functor Fin+ → sCpl by

sending a set B to the simplicial complex (B,P(B)) which models a simplex with B vertices. Here P(B)

denotes the power set of B.

Yet another common model is given by CW complexes.

In order to link simplicial sets to simplicial complexes, we use the following gadget (cf. [RT03]):

Definition 2.1.5. The category SymsSet of symmetric simplicial sets is given by the category of functors

Finop+ → Set.

There is a natural diagram

∆
U

> Fin+

sSet

i

∨

∩

L
> SymsSet

j

∨

∩

|−|
> CW >

F

⊂

>
Top

The vertical arrows are given by Yoneda embeddings, the functor U forgets the order, the functor L is the

colimit-preserving extension making the diagram commute, the functor F sends a finite set B to the simplex

on B vertices, and the functor | − | is given by extending F in the natural way.

Every simplicial complex X gives a symmetric simplicial set B 7→ MapsCpl((B,P(B)), X), and this assign-

ment is in fact fully faithful.

Writing Po for the category of posets, there is a nerve functor N• : Po → sSet (defined by considering

posets as categories) and an order complex functor N : Po → sCpl (defined by sending a poset P to the

simplicial complex whose vertices are the elements of P and whose face set contains all subsets which are

chains in P ). These constructions are in fact compatible in the sense that the following diagram commutes:

Po
N

> sCpl

sSet

N•
∨

> SymsSet
∨ |−|

> CW > Top

We will abuse notation and denote all arrows landing in CW or in Top by | − |.

For the rest of this section, we fix a finite group G. We invite the reader to recall the notion of a

G-CW complex from [Lüc89] – note that this is not the same as a G-object in CW complexes. We write

PoG, sCplG, sSetG, and SymsSetG for the categories of objects with G-action in the undecorated versions

of these respective categories.
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One can then obtain an equivariant version of the above diagram:

PoG
N

> sCplG

sSetG

N•∨
> SymsSetG

∨
|−|
> CWG > TopG

Similar diagrams exist for pointed variants of the above categories.

2.1.2 Simple Equivariant Homotopy Theory

We briefly review the basic notions of simple homotopy theory in an equivariant setting. We begin by looking

at simplicial complexes and recall a notion from [Koz15]:

Definition 2.1.6. An inclusion (V, F ) ⊂ (V ′, F ′) of G-complexes is called an elementary G-collapse if there

is a σ ∈ F ′ such that

1. There is exactly one face in F ′ which properly contains σ.

2. For every g ∈ G with gσ 6= σ, there does not exist a simplex which simultaneously contains gσ and σ.

3. F is obtained from F ′ by deleting all faces which contain gσ for some g ∈ G.

There is a corresponding notion for G-CW complexes – our main reference is [Lüc89]. Write Dk for the

k-dimensional disc.

Definition 2.1.7. An elementary expansion consists of a pushout of G-CW complexes

G/H ×Dn−1 f
> X

G/H ×Dn
∨

∩

> Y

ι

∨

∩

such that the map Dn−1 → Dn is given by including the lower hemisphere of the bounding sphere via

Dn−1 ↪→ Sn ↪→ Dn and such that f(G/H×∂Dn−1) ⊂ Xn−2 and f(G/H×Dn−1) ⊂ Xn−1. Here Xk denotes

the k-skeleton of X.

Given such an elementary expansion ι : X ↪→ Y , we call any strong G-equivariant deformation retract

Y → X an elementary collapse.

An elementary collapse between G-simplicial complexes induces an elementary collapse between their geo-

metric realisations.
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Definition 2.1.8. A G-simplicial complex (or G-CW complex) is said to be collapsible if it can be mapped

to the point by a finite number of elementary collapses.

Definition 2.1.9. A G-map f : X → Y between G-CW complexes is a simple homotopy equivalence if it is

G-homotopic to a finite composition of expansions and collapses.

We can ask:

Question. Given an equivalence G : X → Y of G-CW complexes, when is it simple?

The Whitehead group is an abelian group WhG(Y ) attached to any G-CW complex Y . The Whitehead

torsion assigns an element τG(f) ∈WhG(Y ) to every map f : X → Y such that an equivalence f is simple if

and only if τG(f) = 0. We refer to [Lüc89] for a detailed treatment. One can use this formalism to establish:

Proposition 2.1.10. Let A be a contractible sub-G-CW complex of a G-CW complex X. Then X/A carries

a natural G-CW structure and the quotient map X → X/A is a simple homotopy equivalence.

Proof. This follows from additivity of the Whitehead torsion (Theorem 4.8 in [Lüc89]).

We now recall some further basic notions. We refer the reader to Sections 2.1.1. and 2.2.1 of [Aro15] for a

more comprehensive overview. As before, we write X� for the unreduced suspension of X and let X ∗ Y be

the join of two spaces. The unreduced suspension of a G-CW complex and the join of two G-CW complexes

inherit natural G-CW structures. The following Lemma is an easy strengthening of Lemma 2.5 in [Aro15]:

Lemma 2.1.11. Given a well-pointed space X and a space Y , there is an equivalence X ∗ Y ∼= X ∧ Y �. If

both X and Y are CW complexes, then this equivalence is simple.

There are compatible notions of the join for simplicial complexes and posets.

The star and the link of a chain σ = [x0 < · · · < xk] in a poset P are given by

St(σ) ∼= P(0̂,x0) ∗ {x0} ∗ P(x0,x1) ∗ {x1} ∗ · · · ∗ {xk} ∗ P(xk,1̂)

Lk(σ) ∼= P(0̂,x0) ∗ P(x0,x1) ∗ · · · ∗ P(xk,1̂)

In Section 2.2.1 of [Aro15], Arone establishes several basic properties of stars and links in the partition

complex ΠS on a set S. He calls a chain of partitions σ = [x0 < · · · < xk] binary if each class of xi is the

union of at most two classes of xi−1 for 0 ≤ i ≤ k. For such chains, it is not hard to analyse the geometric

realisation of the intervals and observe that |Lk(σ)| = Sσd0−2 ∗ · · · ∗ Sσdk−2 ∗ |Π`|. Here di is the number of

classes in xi which do not belong to xi−1 and ` is the number of equivalence classes of xk.
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2.1.3 Indexed Wedges

We recall the theory of indexed wedges from Section 2.2.3. of [HHR16]. Given a G-set J , we write BJG for

the category with ob(BJG) = J and MorBJG(j, j′) = {h ∈ G | h · j = j′} with the evident composition law.

Given a functor of ordinary categories X : BJG→ Top∗ with j 7→ Xj , the wedge product
∨
j∈J Xj picks up

a G-action defined as g · (x ∈ Xj) := X
(j

g·−→gj)
(x) ∈ Xgj .

We can rewrite indexed wedge products as inductions once we chose representatives:

Proposition 2.1.12. Given X : BJG→ Top∗, there is an equivalence of G-spaces

∨
[j]∈J/G

IndGStab(j)Xj
'−→
∨
j∈J

Xj

Proposition 2.1.13. If X
α−→ Y is a transformation of functors BJG → Top∗ such that all j ∈ J , the

restriction Xj → Yj is an equivalence of Stab(j)-spaces, then the induced map
∨
j∈J Xj −→

∨
j∈J Yj is an

equivalence of G-spaces.

Proof. Fix a subgroup H ⊂ G. Then H ⊂ Stab(j) for all j ∈ JH and hence:

( ∨
j∈J

Xj

)H
'
∨
j∈JH

XH
j '

∨
j∈JH

Y Hj '
( ∨
j∈J

Yj

)H

2.1.4 Removing Simplices

We start by observing the following basic fact:

Proposition 2.1.14. Assume we are given a square

A ⊂ > B

C
∨
⊂ > D

∨

of simplicial G-sets such that for each simplicial degree d, the map of sets (B−A)d → (D−C)d is bijective.

Taking horizontal quotients induces an isomorphism of simplicial G-sets.

If σ = [x0 < · · · < xr] is a chain in some poset P, we let N•(St(σ))σ≮ be the simplicial subset of N•(St(σ))

spanned by all simplices that do not contain the r-simplex σ. After geometric realisation, we can swap the
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order of the join-factors and obtain a Stab(x0) ∩ · · · ∩ Stab(xr)-equivariant diagram

|N•(Lk(σ))| ∗ ∂∆r > |N•(Lk(σ))| ∗∆r

|N•(St(σ))σ≮|

∼=∨
> |N•(St(σ))|

∼=
∨

Lemma 2.1.15. Let P be a G-poset with G-stable point x0. Let S be a G-stable family of chains which do

not contain [x0]. Assume moreover that no two chains σ, σ′ ∈ S have a common refinement. Write N(P)−S

for the simplicial subset containing precisely those simplices which do not contain any simplex in S.

The following diagram induces isomorphisms on horizontal quotients:

∨
σ∈S

N•(St(σ))
σ≮
+

⊂>
∨
σ∈S

N•(St(σ))+

N•(P)−S
∨

⊂ > N•(P)
∨

The point + is sent to x0 and the other maps are induced by the evident inclusions.

Proof. By the “refinement condition”, a d-simplex in Nd(P)−Nd(P)−S must contain exactly one σ ∈ S and

therefore has a unique preimage lying in Nd(St(σ)) −Nd(St(σ)σ≮) under the vertical map. The statement

follows from the preceding proposition.

Corollary 2.1.16. Under the above conditions, there is a homeomorphism of G-spaces

|N•(P)|/|N•(P)−S | ∼=
∨

σ=[y0<···<yr]∈S

Sr ∗ Lk(σ) ∼=
∨

σ=[y0<···<yr]∈S

Σr|P(0̂,y0)|
� ∧ · · · ∧ |P(yr,1̂)|

�

2.2 Complementary Collapse

We will now present an algorithm which collapses large subcomplexes of order complexes attached to lattices

and thereby produces equivariant equivalences to wedge sums of simpler complexes. We call this algorithm

“complementary collapse”. We fix a finite group G throughout this section.

2.2.1 A Reminder on Discrete Morse Theory

We briefly review the basics of discrete Morse theory for the reader’s convenience.
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Definition 2.2.1. A G-equivariant matching on a simplicial G-complex (V, F ) with fixed point x consists

of a partition σ of the face set F satisfying the following conditions:

• The partition is G-invariant, i.e. σ ∼ τ implies gσ ∼ gτ for all g ∈ G.

• Every equivalence class is either equal to {x} or has the form {σ−, σ+} with σ− < σ+ a face of

codimension 1.

Such a matching is called acyclic if there does not exist a chain σ−1 < σ+
1 > σ−2 < σ+

2 > · · · > σ−n < σ+
n > σ−1

with n > 1 and all σi distinct.

The following statement is due to Forman [For98] in the nonequivariant and to Freij [Fre09] in the equivariant case:

Theorem 2.2.2. If ∼ is a G-equivariant acyclic matching on a simplicial G-complex X = (V, F ) with fixed

point τ , then there is a G-equivariant collapse |X| 'G {τ}.

2.2.2 Complementary Collapse against Points

A finite G-lattice P is a G-poset whose underlying poset is a finite lattice, which means that every two

elements have a meet and a join. Such a lattice also possesses a least element 0̂ and a greatest element 1̂.

Fix a finite G-lattice P and write P = P − {0̂, 1̂}.

Definition 2.2.3. The complement of a G-stable x ∈ P is given by x⊥ = {y ∈ P | x ∧ y = 0̂, x ∨ y = 1̂}.

Before stating “Complementary Collapse” in full generality, we will present a special case for the reader’s

convenience.

Theorem 2.2.4 (Complementary collapse against Points). Let P be a finite G-lattice containing a G-stable

vertex x ∈ P. Then N(P)−x
⊥

is G-equivariantly collapsible.

Remark 2.2.5. The contractibility of the space in the following theorem is originally due to Björner-Walker

in the nonequivariant and Welker in the equivariant case. The collapsibility in the nonequivariant case also

follows from work by Kozlov [Koz98] on nonevasiveness.

Using Corollary 2.1.16, Proposition 2.1.12, and the equivalence (X ∗ Y )� ' X� ∧ Y �, we deduce:

Theorem 2.2.6 (Applied Complementary collapse against Points). Let P be a finite G-lattice and write

P = (P − {0̂, 1̂}). Let x ∈ P be a G-stable element for which x⊥ is discrete.
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Then there are equivalences of G-spaces

|P| −→
∨
y∈x⊥

|P<y|� ∧ |P>y|� −→
∨

[z]∈x⊥/G

IndGStab(z) |P<z|� ∧ |P>z|�

2.2.3 Orthogonality Fans

We will now prove a generalisation of “Complementary collapse against Points” in which the “reference

simplex” x is allowed to vary across the poset. Once more, let P be a finite G-lattice. Write FP for the set

of nondegenerate simplices.

Notation 2.2.7. Given a chain σ and an element z, we write σ < z to indicate that all elements x in σ

satisfy x < z. We write [σ, z] for the chain obtained by adding z to σ. We let σ<z and σ>z denote the

subchain of σ spanned by all elements x in σ which satisfy x < z and x > z respectively.

If F : FP → P is any function and y ∈ P, we can define functions

F≤y : F[0̂,y] → [0̂, y], F≥y : F[y,1̂] → [y, 1̂]

F≤y(σ) := F (σ) ∧ y, F≥y(σ) := F ([0̂ < σ]) ∨ y

Here [0̂ < σ] denotes the chain obtained from σ by adding 0̂ as an initial vertex.

Definition 2.2.8. A list of functions F = (F1, . . . , Fr) from FP to P is called an orthogonality fan if r = 0 or

1. Fi is G-equivariant and increasing for all i (i.e. y ≤ Fi(σ) for all σ ∈ FP , y ∈ σ.)

2. The subposet F1([0̂])⊥ is discrete.

3. If F1([0̂]) 6= 1̂ , then we have for any y ∈ F1([0̂])⊥:

The list (F≤y2 , . . . , F≤yr ) is an orthogonality fan on the Staby-lattice [0̂, y].

The list (F≥y1 , F≥y2 , . . . , F≥yr ) is an orthogonality fan on the Staby-lattice [y, 1̂].

Definition 2.2.9. A (possibly empty) chain σ in P is invisible with respect to an orthogonality fan

F = (F1, . . . , Fr) if either r = 0, or F1([0̂]) = 1̂, or there is a vertex y ∈ [σ, 1̂] with

1. y ⊥ F1([0̂])

2. σ>y is (F≥y1 , F≥y2 , . . . , F≥yr )–invisible

3. σ<y is (F≤y2 , . . . , F≤yr )–invisible
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An F-invisible chain σ is said to be F-orthogonal if it is minimally invisible, i.e. if none of its proper subchains

are F-invisible. We write σ ⊥ F.

We can now state the main theorem of this section:

Theorem 2.2.10 (Complementary collapse against Fans). Let F be an orthogonality fan on a finite G-lattice

P with F1([0̂]) 6= 0̂, 1̂. Let N(P)−F⊥ be the simplicial complex obtained from N(P) by deleting all F-invisible

chains. Then N(P)−F⊥ collapses G-equivariantly to the point F1([0̂]).

Theorem 2.2.11. Under the above conditions, there is a simple homotopy equivalence

|P| ∼=
∨

[y0<···<yr]⊥F

Σr|P(0̂,y0)|
� ∧ |P(y0,y1)|� ∧ · · · ∧ |P(yr−1,yr)|� ∧ |P(yr,1̂)|

�

obtained by collapsing the subcomplex N(P)−F⊥ .

Complementary collapse for fans can be used to prove the weaker and more concrete statements from above:

Proof of Theorems 2.2.4, 2.2.6. Let x be a G-stable object in a finite G-lattice P. Consider the function

F (σ) =


x if σ = [0̂]

1̂ else

If x⊥ is discrete, we can apply Complementary collapse for fans to the fan (F ) consisting of one function.

A chain is F -invisible if it contains an object y ⊥ x.

A chain is F -orthogonal if it is of the form σ = [y] for y ⊥ x.

One can check that the general proof presented in Section 2.2.4 in fact demonstrates Theorem 2.2.4 without

the assumption that x⊥ is discrete.

Remark 2.2.12. One could use Theorem 2.2.6 and induction to prove the mere existence of an equivariant

simple homotopy equivalence between left and right hand side of the last Theorem 2.2.11. However, the

equivalence produced in this way would not be easily accessible due to their inductive definition. The

equivalence asserted in this theorem on the other hand is obtained by collapsing a large subcomplex all at

once – the involved maps are therefore entirely transparent.

The recursive axiom (3) in the definition of orthogonality fans might appear difficult to check. For this

reason, we introduce the following notion:
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Definition 2.2.13. Let G be a finite group and P a finite G-lattice with face set FP .

A function F : FP → P is called an orthogonality function if

1. F is G-equivariant and increasing (i.e. y ≤ F (σ) for all σ ∈ FP and all y ∈ σ.)

2. For any σ = [y0 < · · · < ym] ∈ FP and z > ym, the following subposet is discrete:

{ym < y < z | y ∧ F (σ) = ym, (y ∨ F (σ)) ∧ z = z}

Orthogonality functions will provide us with many examples of orthogonality fans:

Lemma 2.2.14. Let F = (F1, . . . , Fr) : FP → P be a list of orthogonality functions. Then F is an

orthogonality fan.

Proof. The first axiom of orthogonality fans is evidently satisfied. The second follows by using that F1 is

an orthogonality function. To verify the third, we fix some nonzero y ⊥ F1([0̂]). Observe that F≥yi and

F≤yi are again orthogonality functions for all i. By induction, this implies that (F≥y1 , F≥y2 , . . . , F≥yr ) and

(F≤y2 , . . . , F≤yr ) are both orthogonality fans on the relevant lattices. The claim follows.

2.2.4 Proof of Complementary Collapse against Fans

We will now prove Theorems 2.2.10 and 2.2.11. Let F = (F1, . . . , Fr) be an orthogonality fan on aG-lattice P.

Definition 2.2.15. The orthogonality tree TF(σ) of a chain σ = [y0 < · · · < yk] in P is an empty or planar

rooted tree whose nodes w are labelled by pairs (Z ∈ Iw) consisting of an interval Iw = [yα, yω] in P and a

Stabyα ∩Stabyω– stable point Z ∈ Iw, defined in the following recursive way:

1. If r = 0, then the tree is empty.

2. Otherwise, we create a root v of the tree TF(σ) and label it by (F1([0̂]) ∈ [0̂, 1̂]).

• If there does not exist a vertex of [σ < 1̂] lying in F1([0̂])⊥ or F (0̂) = 1̂, we stop.

• Otherwise assume y is the necessarily unique vertex of [σ < 1̂] which lies in F1([0̂])⊥.

By recursion, the orthogonality fan (F≤y2 , . . . , F≤yr ) on the Stab(y)-lattice [0̂, y] gives rise to an

orthogonality tree L for the chain σ<y.

Similarly, the orthogonality fan (F≥y1 , F≥y2 , . . . , F≥yr ) on [y, 1̂] gives rise to an orthogonality tree

R for the chain σ>y.
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We create the labelled rooted planar tree TF(σ) by declaring the root of L to be the left child

and the root of R to be the right child of v

We call a vertex of the orthogonality tree a leaf if it has no children.

Fix an orthogonality fan F on a G-lattice P.

Definition 2.2.16. Let σ be a chain and w a leaf of TF(σ) with label (Z ∈ [yα, yω]).

The simplex σ is said to be F-invisible at w if Z ∈ {yα, yω}.

Proposition 2.2.17. A chain σ is invisible for an orthogonality fan F (in the sense of Definition 2.2.9) if

σ is F-invisible at every leaf w of its orthogonality tree TF(σ) (in the sense of Definition 2.2.16).

Proof. If r = 0 or we have F1([0̂]) = 1̂, then the equivalence is obvious, and we may therefore assume

without restriction that F1([0̂]) 6= 1̂.

Suppose σ is F-invisible. Then there is a vertex y in [σ, 1̂] with y ⊥ F1([0̂]) such that σ>y is (F≥y1 , . . . F≥yr )-

invisible and such that σ<y is (F≤y2 , . . . F≤yr )-invisible. By induction, the two orthogonality trees L and R

used in the definition of TF(σ) therefore only have invisible leaves.

Assume conversely that every leaf of the orthogonality tree is invisible. We can deduce that [σ, 1̂] contains

some y ⊥ F1([0̂]). The left and right subtree L and R of TF(σ) contain only invisible vertices. By induction,

this implies that σ<y and σ>y are (F≤y2 , . . . F≤yr )-invisible and (F≥y1 , . . . F≥yr )-invisible respectively. Hence

σ is F-invisible.

The next two statements follow by similarly straightforward inductions:

Proposition 2.2.18. If σ ≤ τ is a subsimplex, then TF(σ) ≤ TF(τ) is a (labelled) subtree.

Proposition 2.2.19. Fix a simplex σ with orthogonality tree TF(σ) and assume w ∈ TF(σ) is a leaf with

label (Z ∈ [yα, yω]).

• Adding a vertex x ∈ (yα, yω) with x ∧ Z 6= yα or x ∨ Z 6= yω to σ gives rise to a simplex σ+ ≥ σ with

equal orthogonality tree.

• Removing a vertex x ∈ (yα, yω) from σ gives rise to a simplex σ− ≤ σ with equal orthogonality tree.

We can now prove complementary collapse for fans:

Proof of Theorem 2.2.10. We will define a G-equivariant perfect matching.

Fix a nondegenerate `-simplex σ = [y0 < · · · < y`] in N(Q)−F⊥ other than the zero-simplex F1([0̂]). Let
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w = wσ be the leftmost leaf of the orthogonality tree TF(σ) such that σ is not F-invisible at w. Write

(Z ∈ [yα, yω]) for the label of w. Since σ is not F-invisible at w, we have strict inequalities yα < Z < yω.

Let i ≥ α be the largest index with yi ∧Z = yα. Note that i < ω and observe that yi ∨Z < yω as otherwise

w would not be a leaf. Let j ≥ i be maximal with yj ≤ yi ∨ Z. We have j < ω.

We call (i, j,T) = (i(σ), j(σ),TF(σ)) the structure triple of σ.

The element yj+1∧ (yi∨Z) is larger than yα since it contains yj+1∧Z and smaller than yω as it is contained

in yi ∨ Z < yω.

If yj < (yi∨Z)∧yj+1, we match σ and σ+ := [· · · < yα < · · · < yj < ((yi∨Z)∧yj+1) < yj+1 < · · · < yω < . . . ].

If yj = (yi ∨ Z) ∧ yj+1, we pair up σ with σ− := [· · · < yα < · · · < yj−1 < yj+1 < · · · < yω < . . . ].

In the first case, we consider the orthogonality tree of σ+. Since yα < ((yi ∨ Z) ∧ yj+1) ∧ Z, we know by

Lemma 2.2.19 that σ and σ+ have the same orthogonality tree. Hence w is also the first non-invisible node of

the orthogonality tree for σ+ and it is also labelled by (Z ∈ [yα, yω]). We can now observe that i(σ) = i(σ+),

j(σ+) = j(σ) + 1, and hence (σ+)− = σ.

In the second case, we first observe that j > i as otherwise we would have yi = (yi∨Z)∧yi+1 which is absurd

as yα = yi ∧ Z and yα < ((yi ∨ Z) ∧ yi+1) ∧ Z. We hence remove a vertex in the open interval (yα, yω) and

again conclude by Lemma 2.2.19 that σ and σ− the first r nodes of the orthogonality trees of σ and σ− are

equal . We therefore have i(σ) = i(σ−) and j(σ) = j(σ−)− 1, T(σ) = T(σ−). We conclude that (σ−)+ = σ.

We have therefore defined a complete matching with fixed point F (0̂), and it is evidently G-equivariant.

To see that the matching is acyclic, assume for the sake of contradiction that we are given a cycle of distinct

non-degenerate simplices

σ1 < σ+
1 > σ2 = dt1(σ+

1 ) < σ+
2 > σ3 = dt2(σ+

2 ) < . . . σ+
N > σ1 = dtN (σ+

N )

Let (is, js,Ts) be the structure triple of σs. We have observed above that the triple attached to σ+
s is

(is, js+ 1,Ts). By Proposition 2.2.18, we have Ts+1 ≤ Ts. Since the above is a cycle, the orthogonality tree

Ts must be constant equal to T, say. Let w be the first nonorthogonal node of T with label (Z ∈ [yα, yω]).

We now want to examine how i and j change as s increases. Fix s. By definition, the number is+1 is the

largest number with α < is+1(< ω) such that the ists+1 vertex of σs+1 = dts(σ
+
s ) intersects Z in yα.

Since σs+1 6= σs, we know that ts 6= js + 1.

If ts ≤ is then is+1 = i(dks(σ
+
s )) = is − 1.

If ts > is and ts 6= js + 2, then σs+1 is an upper simplex in the matching, a contradiction.

If ts = js + 2, then (is+1, js+1) = (is, js + 1).
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The function (is, js,Ts) hence cannot visit the same point twice and so the above cycle cannot exist.

In order to deduce Theorem 2.2.11 from Theorem 2.2.10, we need the following Lemma:

Lemma 2.2.20. Every F-invisible chain σ contains a unique orthogonal chain.

Proof. Let σ be an F-invisible chain containing two orthogonal subchains τ1, τ2.

If F1([0̂]) = 1̂ or r = 0, then every chain is invisible and so both τi are equal to the empty chain.

Otherwise pick a vertex y in [σ, 1̂] with y ⊥ F1([0̂]). Clearly τ1 and τ2 must also contain y as otherwise

they would not be invisible. We obtain chains τ>yi in σ>y which must be (F≥y1 , . . . , F≥yr )-orthogonal. By

induction, this implies τ>y1 = τ>y2 . Similarly, we conclude that τ<y1 = τ<y2 . The claim follows.

Proof of Theorem 2.2.11. Combine Theorem 2.2.10, Proposition 2.2.20, and Corollary 2.1.16.

2.3 Young Restrictions

In this section, we will use the full strength of complementary collapse against orthogonality fans to study

the Young restrictions of the partition complex and the parabolic restrictions of Bruhat-Tits buildings.

2.3.1 Lyndon words

Definition 2.3.1. A word w in the alphabet c1, . . . , ck is said to be a (weak) Lyndon word if it is (weakly)

smaller than any of its cyclic rotations in the lexicographic order with c1 < · · · < ck. Write B(n1, . . . , nk)

(or Bw(n1, . . . , nk)) for the set of (weak) Lyndon words which involve the letter ci precisely ni times.

A Lyndon word w of length ` > 1 can be written uniquely as w = u · v with u < v both Lyndon words and v

as long as possible - this is called the standard factorisation. Given any two Lyndon words u < v, the word

w = uv is again a Lyndon word. The factorisation w = u · v is standard if and only if either u is a letter or

it has standard factorisation u = xy with y ≥ v. We refer to [Mel92] for a detailed exposition.

There is a unique injection φ from the set of Lyndon words in c1, . . . , ck to the free Lie algebra Lie[c1, . . . , ck]

over Z on generators c1, . . . , ck satisfying φ(w) = [φ(u), φ(v)] for each standard factorisation w = u · v.

Elements in its image shall be called basic monomials. They form a basis. For notational convenience, we

will sometimes abuse notation and confuse Lyndon words with their image under φ.

Any weak Lyndon word w can be written uniquely as w = ud with u a Lyndon word and d chosen as large as

possible. We call d the period of w. This gives a natural identification Bw(n1, . . . , nk) =
∐
d|ni B(n1

d , . . . ,
nk
d ).
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Now let S be a finite set and assume g : S → {1, . . . , k} is a map whose fibre Ci over i has size ni.

Definition 2.3.2. An (S, g)-labeling of a weak Lyndon word w = ud ∈ Bw(n1, . . . , nk) consists of a

bijection fs between Cs = g−1(s) and the set of occurrences of the letter cs in w for each s. We consider two

labelings to be equivalent if one can be obtained from the other by permuting the various copies of u. We

can represent the labeling by a single function f from S to the letters of w.

Write Bw(S,g)(n1, . . . , nk) for the ΣC1
× · · · × ΣCk -set of labelled weak Lyndon words in Bw(n1, . . . , nk).

Labelled Lyndon words give multilinear Lie monomials (cf. Definition 3.4 in [Aro15]):

Definition 2.3.3. Let w be a strict Lyndon word of multi-degree (n1, . . . , nk) together with an (S, g)-label

given by f = {fi}. The (S, g)-resolution of w, denoted w̃(S,g) ∈ Lie[S], is the Lie monomial obtained from w

by replacing all occurrences of the letter ci with their preimages under fi in S for all i.

If w = ud is a weak Lyndon word of period d with an (S, g)-label {fi}, we carry out exactly the same

procedure d times to obtain d different words in Lie[S] such that each letter in S is used exactly once.

There is a standard choice for (S, g): take S = {1, . . . , n} for n =
∑
ni and use the unique order-preserving

function g : {1, . . . , n} → {1, . . . , k} whose fibres have the required size, i.e. such that |g−1(i)| = ni. A

resolution for this standard choice will be called the standard resolution and written as w̃.

2.3.2 Young Restrictions of the Partition Complex

Let Π+
S be the lattice of partitions of the finite set S, ordered under refinement, so that ΠS = Π+

S . Fix a map

g from S to {1, . . . , k} and write Ci = g−1(i). Let Σg = ΣC1 × · · · ×ΣCk be the associated Young subgroup.

Words on chains. Given a chain of partitions σ = [y0 < · · · < ym] ∈ FΠ+
n

, we can attach a word

wK = wK(σ) ∈ F 〈c1, . . . , ck〉 in the free group on k generators to every equivalence class K of ym as follows:

• If m = 0, we attach the word c
|K∩C1|
1 . . . c

|K∩Ck|
k to K.

• If m > 0, we first use the chain [y0 < · · · < ym−1] to attach a word to every equivalence class in

ym−1. We then let wK be the product of all words attached to ym−1-classes which are contained in K,

multiplied in ascending lexicographical order (where c1 < · · · < ck).

Example 2.3.4. For S = {1, . . . , 6}, k = 3, and C1 = {1, 2}, C2 = {3, 4, 5}, C3 = {6}, we send the chain

[{1|23|4|5|6} < {1|23|45|6} < {123|456}] to the words c21c2, c22c3.
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An orthogonality fan F(S, g) on the Σg-lattice Π+
S

Given a chain σ = [y0 < · · · < ym], we use the above algorithm to attach a word in the free group F 〈c1, . . . , ck〉

to every class in ym and record them in ascending lexicographical order as wa < wb1 < · · · < wbs . Write A

for the set of ym-classes whose associated word is wa. Define B1, . . . , Bs in a similar manner.

We define F1(σ) = F1(S, g)(σ) to be the partition obtained from ym by merging all equivalence classes in

B1 ∪ · · · ∪ Bs (i.e. all classes K whose label wK is not minimal). We define F2(σ) = F2(S, g)(σ) to be the

partition obtained from ym by merging all equivalence classes K of σ whose label wK is minimal.

Figure 6: The bullets in the leftmost picture represent the equivalence classes of ym. The middle picture
represents the partition F1(σ) and the rightmost picture represents F2(σ).

Theorem 2.3.5. The pair F = F(S, g) = (F1(S, g), F2(S, g)) is an orthogonality fan on the Σg-lattice Π+
S f .

Proof of Theorem 2.3.5. By Lemma 2.2.14, it suffices to check that F1 and F2 are orthogonality functions in

the sense of Definition 2.2.13. The functions F1, F2 are clearly increasing and equivariant.

To check axiom (3) of an orthogonality function, let σ = [y0 < · · · < ym] be a chain of partitions in Π+
S and

let z > ym. As before, we attach words wa < wb1 < · · · < wbs to the classes of ym and write A for the family

of ym-classes whose associated word is the minimal wa and Bi for the collection of classes whose associated

word is the nonminimal wbi . Let A′ ⊂ A be the collection of ym-classes which are merged with a class in

B = ∪Bi in z. Similarly, write B′ ⊂ ∪Bi for the family of classes which are merged with a class in A in z.

For the function F1, we observe a natural injection

{A′ f−→ B′ | ∀a ∈ A′ : a 'z f(a)} ←↩ {ym < y < z | y ∧ F1(σ) = ym, (y ∨ F1(σ)) ∧ z = z}

obtained by sending a function f to the finest partition yf containing ym which merges a and f(a) for all a.

Figure 7: F1(σ) (left) and the partition yf corresponding to a function f : A→ B in the case z = 1̂ (right).
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The subposet is therefore discrete and F1 an orthogonality function. For F2, we observe the injection

{B′ g−→ A′ | ∀b ∈ B′ : b 'z g(b)} ←↩ {ym < y < z | y ∧ F2(σ) = ym, (y ∨ F2(σ)) ∧ z = z}

and conclude that the right hand side is discrete as well.

Figure 8: Here z = yf from the previous figure. We have illustrated F2(σ) on the left, F2(σ) ∧ z in the
middle, and the partition yg corresponding to some function g : B′ → A on the right.

We conclude from complementary collapse:

Theorem 2.3.6. There is a ΣP -equivariant equivalence

|ΠS |
'−→

∨
[y0<···<yr]⊥(F1,F2)

Σ−1(Σ|(ΠS)(0̂,y0)|
�) ∧ · · · ∧ (Σ|(ΠS)(yr−1,yr)|�) ∧ |(ΠS)(yr,1̂)|

�

Orthogonal Chains from Labelled Lyndon Words

We will now bring this last result into a more convenient form. For this, we want to find a tractable

description of the set of (F1, F2)-orthogonal chains which indexes the wedge sum in Theorem 2.3.6. We

freely use the terminology related to Lyndon words introduced in Section 2.3.1.

We will now describe an algorithm which attaches a chain of partitions to a weak labelled Lyndon word. We

begin with an informal description.

Assume we are given a weak Lyndon word w = x1x2x3 . . . xn in letters which are ordered as . . . < ck−1 < ck.

If n = 1, 2 or all letters are equal, we stop and assign the empty chain of partitions.

Otherwise, we pick the smallest index α such that the letter cα occurs in w.

We define an increasing chain of partitions y0 < y1 < ... < yt of the set {1, . . . n} by merging {a− i, ..., a} in

the partition y` whenever xa−i = . . . = xa−1 = cα, xa 6= cα, and i ≤ t+ 1. We proceed until we have defined

a partition yt for which all classes have the form {a− i, . . . , a} with xa−i = . . . = xa−1 = cα, xa 6= cα, i ≥ 0.

We then form a new weak Lyndon word by replacing each occurrence of ciαcj with j 6= α by a new letter

called cαij . We order these letters lexicographically as . . . < cα2k < . . . < cα(k−1) < cαk < . . . < ck−1 < ck

and thus obtain a shorter weak Lyndon word whose letters correspond to the classes of yt. We proceed
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in this manner and eventually obtain a chain of partitions y0 < y1 < . . . < yr which is orthogonal to

F = (F1(S, g), F2(S, g)). One can think of this process as “bracketing” the letters of w.

Example 2.3.7. When starting with the Lyndon word xxyxxzyz, our algorithm gives

x(xy)x(xz)yz < (xxy)(xxz)yz < (xxyxxz)yz < (xxyxxzy)z

More formally, let S → {1, . . . , k} be a surjection with fibres Ci of size ni. We will now show:

Lemma 2.3.8. There is a natural ΣC1
× · · · × ΣCk -equivariant bijection Bw(S,g)(n1, . . . , nk)

'−→ F⊥(S, g).

We proceed in two steps. At first, we observe that we can form new labelled weak Lyndon words by

rebracketing:

Lemma 2.3.9. Let k > 1 and ni = |Ci| > 0 for all i. There is a ΣC1
× · · · × ΣCk -equivariant bijection

F : Bw(S,g)(n1, . . . , nk)
∼=−→

∐
y⊥F1([0̂])

[z0<···<zm]⊥F2|(0̂,y)

Bw(Sy,gy)(. . . , n122, . . . , n12k, n12, . . . , n1k, n2, . . . , nk)

where Sy is the set of classes of y, and gy : Sy → {. . . , 122, . . . , 12k, 12, . . . , 1k, 2, . . . , k} is the “evident type

function”, and n1ai = |g−1
y (1ai)|.

Proof. Assume that we are given a weak Lyndon word w = ud ∈ Bw(S,g)(n1, . . . , nk) labelled by a function f .

We form a new weak Lyndon word F (w) ∈ Bw(. . . , n122, . . . , n12k, n12, . . . , n1r, n2, . . . , nk) by replacing sub-

words of the form ca1ci with i 6= 1 by a single new letter c1ai in a way that accounts for all copies of c1.

Write n1ai for the number of times c1ai occurred. We obtain a partition y of {1, . . . , n} which merges all sets

{d1, . . . , da ∈ C1, e ∈ Ci}, i 6= 1, for which f(d1) . . . f(da)f(e) is a subword of w. We observe that y ⊥ F1([0̂]).

We define zt to be the partition which merges all sets {d1, . . . , da ∈ C1, e ∈ Ci | a ≤ t+ 1}, i 6= 1, for which

f(d1) . . . f(da)f(e) is a subword of w. We observe [z0 < · · · < zm] ∈ F⊥2 |(0̂,y) for some m chosen maximally.

The word F (w) is naturally labelled by (Sy, gy) for gy : Sy → {. . . , 122, . . . , 12k, 12, . . . , 1k, 2, . . . , k} the

“evident type function”. We observe that all these choices are well-defined, i.e. do not depend on which

function f we chose to represent our initial (S, g)-labeling. We have thus produced the asserted bijection.

Lemma 2.3.10. Let k > 1 and ni = |Ci| > 0 for all i. There is a ΣC1
× · · · × ΣCk -equivariant bijection of

orthogonal chains

F(S, g)⊥
∼=−→

∐
y⊥F1([0̂])

[z0<···<zm]⊥F2|(0̂,y)

F(Sy, gy)⊥
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Here Sy is the set of equivalence classes of y and gy : Sy → {. . . , 122 . . . , 12k, 12 . . . , 1k, 2, . . . , k} is the

“evident type function”.

Proof. This follows straightforwardly from the definition of orthogonality with respect to F.

Proof of Lemma 2.3.8. We combine Lemma 2.3.10 with Lemma 2.3.9 and induct on the number
∑
ni.

These results give an algorithm for producing chains of partitions in F⊥ from labelled weak Lyndon words.

We can now reexamine Theorem 2.3.6. Take S = {1, . . . n} and let g : S → {1, . . . k} be the unique

order-preserving function g whose fibre over i has size ni. The analysis of intervals in binary chains ex-

plained in Section 2.1.2 allows us to read off a new and purely combinatorial proof of Arone’s formula from

Theorem 2.3.6:

Theorem 2.3.11. Let n = n1 + · · · + nk. Then there is a Σn1
× · · · × Σnk -equivariant simple homotopy

equivalence

|Πn| −→
∨

d | gcd(n1,...,nk)

( ∨
B(

n1
d ,...,

nk
d )

Ind
Σn1
×···×Σnk

Σd

(
Σ−1(Sd)∧

n
d−1 ∧ |Πd|�

))

Proof. By Lemma 2.3.8, we can rewrite the indexing set of the wedge sum appearing in Theorem 2.3.6 as

Bw(S,g)(n1, . . . , nk). Given a weak Lyndon word w = ud, the group Σn1
× . . .×Σnk acts transitively on the set

of all (S, g)-labels of w. Each orbit has a canonical representative where the ni occurrences of the letter ci

in w are labelled in “increasing order”. We deduce that the quotient of Bw(S,g)(n1, . . . , nk) by the action of

the group Σn1
× . . .× Σnk can be identified with Bw(n1, . . . , nk) =

∐
d|ni B(n1

d , . . . ,
nk
d ).

Assume that w = ud is a weak Lyndon word whose letters are labelled “in increasing order” as above. The

various different copies of the word u partition the set S = {1, . . . , n} into disjoint subsets S1, . . . , Sd via the

labeling. The stabiliser of w in Bw(S,g)(n1, . . . , nk) is equivalent to Σd.

Restriction gives an (Si, g|Si)-labeling of the word u for each i. Using our above procedure from Lemma 2.3.8,

we obtain an associated chain of partitions [yi0 < . . . < yir−1] of the set Si. The chain [y0 < y1 < . . . < yr]

associated to the labelled weak Lyndon word w = ud is then given by [
∐
i y
i
0 <

∐
i y
i
1 < . . . <

∐
i y
i
r−1 < yr],

where yr denotes the partition of S into the various sets Si. Here we used evident notation for the disjoint

union of partitions on the disjoint union of different sets.

We analyse the Σd-space Σ−1(Σ|(ΠS)(0̂,y0)|� ∧ · · · ∧ Σ|(ΠS)(yr−1,yr)|� ∧ |(ΠS)(yr,1̂)|�) corresponding to the

labelled weak Lyndon word w = ud in Theorem 2.3.6. The space |(ΠS)(yr,1̂)|� is evidently equivalent to |Πd|�.

In order to describe the space |(ΠS)(yj−1,yj)|�, we note that each class in yij is either a class in yij−1 or
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obtained by merging precisely two classes in yij−1 (the chain is binary). For j = 1, . . . , r, we write tj for

the number of classes in yij that are obtained by merging two classes in yij−1 (which is independent of i

by symmetry). We use the convention that yi−1 is the discrete and yir the indiscrete partition of Si. We

deduce an equivariant equivalence Σ|(ΠS)(yj−1,yj)|� ' (Stj )∧d. Since
∑
j tj = n

d − 1, the smash product

Σ−1(Σ|(ΠS)(0̂,y0)|� ∧ · · · ∧ Σ|(ΠS)(yr−1,yr)|�) is therefore indeed equivalent to Σ−1(S
n
d−1)∧d.

Remark 2.3.12. Given an (S, g)-labelled weak Lyndon word w = ud as in the proof above inducing a partition

S = S1

∐
. . .
∐
Sd, we can in fact factor the collapse map as

Σ|ΠS |� > (

d∧
i=1

Σ|ΠSi |�) ∧ Σ|Πd|� >

d∧
i=1

S
n
d−1 ∧ Σ|Πd|�

where the first map is given by tree ungrafting in the sense of Ching (see p.145 in Appendix D) and the second

map uses the chains σi = [yi0 < . . . < yir−1] to define collapse maps Σ|ΠSi |� → S
n
d−1 to the (suspended)

links of the various chains σi.

Free Lie Algebras on Many Generators

We will now use our methods to describe free Lie algebras on direct sums of spectra X1, . . . , Xk in terms of

free Lie algebras on a single spectrum.

We start by producing maps corresponding to Lyndon words. For this, assume that we are given a strict

Lyndon word w ∈ B(|w|1, . . . , |w|k) of length |w|. Let S = {1, . . . , |w|} be endowed with the unique order-

preserving function g to {1, . . . , k} whose fibre over i has size |w|i. We can assemble the collapse maps in

Theorem 2.3.11 corresponding to the various (S, g)-labels of w to obtain a single Σ|w|1×. . .×Σ|w|k -equivariant

collapse map

cw : Σ|Π|w||� −→ Ind
Σ|w|1×...×Σ|w|k
1 (S|w|−1)

In a second step, we apply the functor Ind
Σ|w|
Σ|w|1×...×Σ|w|k

(
D(−)⊗ (X

⊗|w|1
1 ⊗ . . .⊗X⊗|w|kk )

)
to cw and obtain

an arrow

Ind
Σ|w|
Σ|w|1×...×Σ|w|k

(
Ind

Σ|w|1×...×Σ|w|k
1 S1−|w| ⊗ (X

⊗|w|1
1 ⊗ . . .⊗X⊗|w|kk )

)

−→ Ind
Σ|w|
Σ|w|1×...×Σ|w|k

(
D(Σ|Π|w||�)⊗ (X

⊗|w|1
1 ⊗ . . .⊗X⊗|w|kk )

)
By the projection formula, this map is equivalent to a map

Ind
Σ|w|
1

(
(S1−|w|)⊗ (X

⊗|w|1
1 ⊗ . . .⊗X⊗|w|kk )

)
→
(
D(Σ|Π|w||�)⊗ Ind

Σ|w|
Σ|w|1×...×Σ|w|k

(X
⊗|w|1
1 ⊗ . . .⊗X⊗|w|kk )

)
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Using the “binomial formula”, we observe that the last (näıve) Σw-spectrum includes equivariantly into

D(Σ|Π|w||�)⊗ (X1 ⊕ . . .⊕Xk)⊗|w|. Applying (−)hΣ|w| to the composite yields a map fw given by

(S1−|w|)⊗ (X
⊗|w|1
1 ⊗ . . .⊗X⊗|w|kk ) −→ D(Σ|Π|w||�) ⊗

hΣ|w|1×...×Σ|w|k

X
⊗|w|1
1 ⊗ . . .⊗X⊗|w|kk

−→ D(Σ|Π|w||�) ⊗
hΣ|w|

(X1 ⊕ . . .⊕Xk)⊗|w| → FreeΣ Lie(X1 ⊕ . . .⊕Xk)

Remark 2.3.13. For Xi = Sji a sphere for all i, a lengthy but straightforward induction can be used to verify

that the class fw indeed classifies the k-ary operation corresponding to the Lie word w.

Corollary 2.3.14. Inducing up the maps fw and summing over all Lyndon words yields an equivalence

⊕
w∈Bk

FreeΣ Lie(S1−|w| ⊗X⊗|w|11 ⊗ . . .⊗X⊗|w|kk ) −→ FreeΣ Lie(X1 ⊕ . . .⊕Xk)

Proof. The spectrum FreeΣ Lie(X1 ⊕ . . .⊕Xk) is naturally Zk-graded. Since the map fk sends the spectrum

S1−|w| ⊗ X⊗|w|11 ⊗ . . . X⊗|w|kk into the summand of degree (|w|1, . . . , |w|k), the dth piece of the summand

corresponding to a word w on the left is sent to the summand of degree (d|w|1, . . . , d|w|k) on the right. It

therefore suffices to check that for all degrees (n1, . . . , nk) with n =
∑
i ni, the map

⊕
d|n1,...,nk

w∈B(
n1
d ,...,

nk
d )

D(Σ|Πd|�) ⊗
hΣd

(S1−nd ⊗X⊗
n1
d

1 ⊗ . . .⊗X⊗
nk
d

k )⊗d −→ D(Σ|Πn|�) ⊗
hΣn1

×...×Σnk

X⊗n1
1 ⊗ . . .⊗X⊗nkk

gives an equivalence of spectra. This in turn follows by combining Remark 2.3.12 with Theorem 2.3.11.

2.3.3 Breaking Symmetry

Complementary collapse can also be used to give an asymmetric version of Arone’s splitting. For this, fix

a partition S = A ∪ B1 ∪ · · · ∪ Bk corresponding to a map g : S → {1, . . . , k + 1}. Let x = F1([0̂]) be the

partition which identifies all points in B = ∪iBi. Let

F ′1(σ) =


x if σ = [0̂]

1̂ else

Let F ′2 = F2(S, g) be as in the previous section for the orbits ordered as A < B1 < · · · < Bk.

An easy special case of our argument in the last section shows that F ′1 is an orthogonality function. We have

already checked this for F ′2 = F2(S, g). We deduce from complementary collapse:
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Theorem 2.3.15 (Breaking Symmetry). There is a simple ΣA × ΣB1 × · · · × ΣBk -equivariant homotopy

equivalence

|Πn| −→
∨

A=A1
∐
···

∐
Ar, Ai 6=∅

fi:Ai↪→B
s.t. im(fi+1)⊂im(fi)

Σ−1S|A1| ∧ · · · ∧ S|A`| ∧ |ΠB |�

Proof. This is essentially a special case of the above – we will paraphrase it here for the reader’s convenience.

Choosing a chain [z1 < · · · < z` < y] orthogonal to F′ amounts to the following data:

1. First, we have to chose a function f : A→ B corresponding to a partition y = yf ⊥ x.

2. In a second step, we choose a set A1 containing one f -preimage for each point in f(A) ⊂ B. We obtain

a partition z1 = zA1 by identifying each point in A1 with its image under f .

3. In a third step, we chose a set A2 ⊂ A − A1 containing one f -preimage for each point in f(A − A1).

We obtain a partition z2 taking z1 and merging all points in A2 with their image under f .

Proceeding in this way, we obtain a chain [z1 < · · · < z` < y] ⊥ F′, and it is easy to see that every chain

occurs precisely once.

Remark 2.3.16. Symmetry breaking can also be used to give a neat inductive proof of the Hilton-Milnor

splitting in Theorem 2.3.11. The technical disadvantage of this approach is that it is hard to describe the

involved collapse maps.

2.3.4 Parabolic Restrictions of Bruhat-Tits Buildings

Let V be a finite-dimensional vector space over a finite field k. Fix a flag A = [A0 < · · · < Ar] with associated

parabolic subgroup PA. We define an orthogonality fan (F ) of length 1 by F ([B0 < · · · < Bi]) = Ar−i ∨Bi.

A flag [C0 < · · · < Cr] is then F -orthogonal if

C0 ∧Ar = 0, C0 ∨Ar = V

C1 ∧ (C0 ∨Ar−1) = C0, C1 ∨ (C0 ∨Ar−1) = V

. . .

These conditions are clearly equivalent to C0 ⊥ Ar, C1 ⊥ Ar−1, . . . , Cr ⊥ A0. Choosing a flag B com-

plementary to A with parabolic PB and intersecting Levi LAB = PA ∩ PB, we deduce from complementary

collapse:
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Lemma 2.3.17. There is a PA-equivariant simple homotopy equivalence

|BT(V )| ∼= IndPA

LAB
(Σr

r+1∧
i=0

|BT(gri(B))|�)

2.4 Fixed Points

Given a subgroup G ⊂ Σn, the subspace |Πn|G of G-fixed points carries a natural action of the Weyl group

WΣn(G) = NΣn(G)/G. In this section, we will provide an answer to the following question:

Question. What is the WΣn(G)-equivariant simple homotopy type of |Πn|G?

In order to present our analysis, we single out a special class of subgroups:

Definition 2.4.1. A subgroup G ⊂ Σn is said to be isotypical if all G-orbits are equivariantly isomorphic.

Our theorem reduces the general case of the question raised above to the transitive situation (note Remark 2.4.10):

Theorem 2.4.2. If G ⊂ Σn acts isotypically on {1, . . . , n}, we may assume after relabeling that G is a

transitive subgroup of Σd
∆−→ Σ

×nd
d ⊂ Σn for d | n and ∆ the diagonal map.

Then there is a WΣn(G) = NΣn(G)/G -equivariant simple homotopy equivalence

|Πn|G
'−→ Ind

WΣn (G)

WΣd
(G)×Σn

d

(|Πd|G)� ∧ |Πn
d
|�

Lemma 2.4.3. If G acts non-isotypically, then |Πn|G is WΣn(G)-equivariantly collapsible.

Remark 2.4.4. We could also view |Πn|G as a NΣn(G)-space or a CΣd(G)
n
d -space. In this case, the above

result implies equivalences

|Πn|G ∼= Ind
NΣn (G)

NΣd
(G)×Σn

d

(|Πd|G)� ∧ |Πn
d
|�, |Πn|G ∼= Ind

CΣd
(G)

n
d

CΣd
(G)×Σn

d

(|Πd|G)� ∧ |Πn
d
|�

Proof of Theorem 2.4.2 and Lemma 2.4.3. Without restriction, we assume that G is nontrivial.

Write x ∈ Πn for the partition of {1, . . . , n} into G-orbits. Since the action is not transitive and G is

nontrivial, we know that x 6= 0̂, 1̂.

Claim. The group G is isotypical if and only if x⊥ 6= ∅.

Proof of Claim. Let y ∈ x⊥ be a partition with corresponding equivalence relation 'y on {1, . . . , n}. Given

two elements a, b with a 'y b, we observe that for each c ∈ OrbG(a), there is a d ∈ OrbG(b) with c 'y d, and
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that this d must be unique as x ∧ y = 0̂. We obtain an G-equivariant function OrbG(a) → OrbG(b) which

by symmetry is bijective. Since y ∨ x = 1̂, this implies that all orbits are isomorphic G-sets.

For the converse, assume that the action is isotypical with orbits O1, . . . , Ok. We pick G-equivariant isomor-

phisms fi : Oi → Oi+1 and observe that the finest partition y of {1, . . . , n} with (a ∈ Oi) 'y (fi(a) ∈ Oi+1)

for all a and all i satisfies y ⊥ x.

Claim. The action of WΣn(G) on x⊥ is transitive.

Proof of Claim. Given y, z ∈ x⊥, we define σ ∈ Σn by setting σ(i) = j if and only if i, j lie in the same

G-orbit and there is an g ∈ G with i 'y g(1) and j 'z g(1). A simple argument shows that this gives a

permutation σ in NΣn(G) with σ(i) 'z σ(j) if and only if i 'y j, i.e. σ · z = y.

We can now deduce Theorem 2.4.2 and Lemma 2.4.3. The Lemma follows immediately from Theorem 2.2.6

since x⊥ = ∅. In order to prove Theorem 2.4.2, we take z ∈ x⊥ to be the G-invariant partition with

i 'z (i+ kd) for all numbers i, k. The transitivity of the WΣn(G)-action on x⊥ and Theorem 2.2.6 together

imply the existence of a WΣn(G)-equivariant equivalence |Πn|G ∼= Ind
WΣn (G)

Stab(z) (|Πn,<z|G)� ∧ (|Πn,>z|G)�.

The result then follows by observing that Stab(z) = WΣd(G)× Σn
d

, ΠG
n,<z

∼= Πn
d

, and ΠG
n,>z

∼= ΠG
d .

We are therefore reduced to the study of fixed points under transitive subgroups G of Σn. This case is the

subject of the following lemma of Klass:

Lemma 2.4.7. If G ⊂ Σn is a transitive subgroup and H the stabiliser of 1, then the poset of G-invariant

partitions of {1, . . . , n} is isomorphic to the opposite of the poset of subgroups H ⊆ K ⊆ G.

We recall a crucial result from [ADL16]:

Lemma 2.4.8 (Arone-Dwyer-Lesh). If G ⊂ Σn is a p-group, then |Πn|G is WΣn(G)-equivariantly con-

tractible unless G is elementary abelian and acts freely.

As already mentioned in the introduction, we can combine our results about fixed points with this Lemma

to compute the fixed point spaces of the partition complex |Πn| under general p-subgroups in terms of

Bruhat-Tits buildings:

Corollary 2.4.9. Let Fkp ⊂ Σn be an elementary abelian p-group acting freely with ` orbits. Let AffFkp =

NΣ
pk

(Fkp) be the affine group and write AffFkpoΣ` = NΣn(Fkp). There is a simple equivalence of AffFkpoΣ`-spaces

|Πn|F
k
p = Ind

AffFkpoΣ`
AffFkp

×Σ`

(
|BT(Fkp)|� ∧ |Π�` |

)
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This can be used to compute the rationalised Morava E-theory of |Πn|�hΣn1
×···×Σnk

using HKR character

theory without appealing to the above general computation of the Young restrictions.

Remark 2.4.10. Our proof of Theorem 2.4.2 and Corollary 2.5.19 were originally discovered in the spring of

2014 and presented at a presentation in Bonn in May 2015. Arone independently discovered a substantially

different and more complicated proof of the “non-simple” version of this statement which was made public

in August of 2015 in [Aro15]. The “contractible version” of Lemma 2.4.3 was also observed independently

by M. Hausmann.

2.5 A Colimit Decomposition for G-Spaces

Using the idea of “dual fracture cubes”, we give a computationally useful colimit formula for G-spaces and

deduce a criterion for when a map f : X → Y of G-spaces induces an isomorphism on H∗((−)/G,Z(p)).

Decompositions on classifying spaces and G-spaces have been studied by several people before us (see for

example [Dwy97] and [JSo01]). Fracture cubes in the form of homotopy limits have also been studied by

many authors (recent examples include [ACB14] and [Gla15]).

2.5.1 G-spaces and their Approximations

Let G be a finite group. We write SG∗ for the ∞-category of pointed G-spaces and let OG,∗ be the full

subcategory spanned by all orbits (G/H)+. These form a family of compact projective generators for SG∗ .

The poset of conjugacy classes of G will be denoted by cclG. We write [H] ≤ [K] if H is subconjugate to K.

Definition 2.5.1. The iterated normaliser of a chain of subgroups H = (H0 ⊂ · · · ⊂ Hm) is given by

NG(H) := ∩iNG(Hi). The iterated Weyl group is defined as WG(H) := NG(H)/H0.

Notation 2.5.2. We write gH = g−1Hg for g ∈ G and H ⊂ G a subgroup.

Definition 2.5.3. We define the strict orbit functor (−)/G : SG∗ −→ S∗ by left Kan extending the constant

functor with value S0 from OG,∗ to SG∗ along the natural inclusion j : OG,∗ → SG∗ .

Let C ⊂ cclG be a collection of conjugacy classes. Write OC,∗ ↪→ OG,∗ for the full subcategory of all orbits

of the form (G/H)+ for [H] ∈ C. We now recall the classical theory of C-approximations (cf. [AD01]) in our

setting:

Definition 2.5.4. The∞-category SG∗ (C) of pointed spaces with isotropy in C is the smallest full subcategory

of SG∗ which is closed under small colimits and contains OC,∗.
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The inclusion ι : SG∗ (C) ↪→ SG∗ admits a right adjoint RC since it preserves small colimits.

Definition 2.5.5. The counit (−)C = ι ◦ RC → idSG∗ is called the C-approximation functor. An arrow

Y → X is called a C-approximation to X if it is equivalent to XC → X in (SG∗ )/X .

Proposition 2.5.6. The functor RC is given by Lan
SG∗
SG∗ (C)(id |SG∗ (C)) ∼= Lan

SG∗
OC,∗(OC,∗ ↪→ S

G
∗ (C)). In partic-

ular, the unit of the above adjunction is given by the identity functor.

Proof. The first identification is standard. The second follows from id |SG∗ (C) ∼= Lan
SG∗ (C)
OC,∗

(
OC,∗ ↪→ SG∗ (C)

)
.

The following two propositions are straightforward:

Proposition 2.5.7. Since G is finite, the functors RC and (−)C commute with small colimits.

Proposition 2.5.8. If C ⊂ C′, then SG∗ (C) ⊂ SG∗ (C′).

Proposition 2.5.9. If X ∈ SG∗ (C) is a pointed space with isotropy in C and the conjugacy class [H] is not

contained in any element of C, then X[H]
∼= ∗ and XH ∼= ∗.

Proof. Since the functors (−)[H] and (−)H commute with small colimits, it is enough to prove the claim for

X = (G/K)+ where K ∈ C. Here, it follows from the observation that for any H ′ ∈ [H], we have

MapSG∗ ((G/H ′)+, (G/K)+) ∼= ((G/K)H
′
)+
∼= {g ∈ G | g−1H ′g ⊂ K}+ ∼= ∗

The following is very close to Proposition 2.3. in [AD01]:

Proposition 2.5.10. An arrow Y → X is a C-approximation if and only if Y H → XH is an equivalence

for all [H] ∈ C and Y lies in SG∗ (C).

Proof. The “only if”-direction is clear. For the “if”-direction, we apply (−)C → id to Y → X and obtain

YC > XC

Y
∨

> X
∨

The top arrow is an equivalence by the first condition and Proposition 2.5.6, the left arrow is an equivalence

by the second assumption.

42



If C = [K] a single conjugacy class, the following Lemma gives an explicit characterisation of XC :

Lemma 2.5.11 (Arone-Dwyer-Lesh). The following map is a C-approximation to X:

∨
H∈[K]

(EWH)+ ∧XH ∼= IndGNK ((EWK)+ ∧XK)→ X

2.5.2 A Normaliser Decomposition for Spaces

We give a new colimit formula for the approximation of G-spaces and thereby generalise Lemma 2.5.11 to

general C. Our formula is nontrivial even for C = cclG the collection of all conjugacy classes. We begin with

two easy cases:

Example 2.5.12. For a Σ2-space X and C = cclΣ2
, we obtain a homotopy pushout

(EΣ2)+ ∧XΣ2 > XΣ2

(EΣ2)+ ∧X
∨

> X
∨

Example 2.5.13. For a Σ3-space X and C = cclΣ3 , we write Σ2 = Σ12,3 and obtain a homotopy colimit

IndΣ3

Σ2

(
(EΣ2)+ ∧XΣ3

)
> (EΣ3)+ ∧XΣ3

IndΣ3

Σ2
XΣ3 >

>
XΣ3

>

IndΣ3

Σ2

(
(EΣ2)+ ∧XΣ2

)∨
> (EΣ3)+ ∧X

∨

IndΣ3

Σ2
XΣ2

∨
>

>
X
∨>

In general, fix a subposet C ⊂ cclG and write D for the opposite of the category of nondegenerate simplices

of C. Objects of D are chains [H] = ([H0] < · · · < [Hm]) of strict inclusions of conjugacy classes in C. There

is a unique morphism [H]→ [K] if [K] can be obtained from [H] by removing some of the conjugacy classes.

Given a pointed G-space X, we define a functor βX : D −→ SG∗ by the formula

[H] = ([H0] ⊂ · · · ⊂ [Hm]) 7−→ ((. . . (X)[Hm]) . . . )[H0]

Lemma 2.5.14. The natural map colim
[H]∈D

βX([H])→ X is a C-approximation to X.
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Lemma 2.5.15. The value of βX on a chain [K] =

(
[K0] ⊂ · · · ⊂ [Km]

)
is given by

βX([K]) ∼=
∨

H0∈[K0]
...

Hm∈[Km]
H0⊂···⊂Hm

(
EWG(H0, . . . ,Hm)

)
+

∧XHm

∼=
∨

gm−1∈NG(Km)\G/NG(Km−1)
gm−2∈NG(gm−1Km−1,Km)\G/NG(Km−2)

...
g0∈NG(g1K1,...,

gm−1Km−1,Km)\G/NG(K0)
(g0K0)⊂(g1K1)⊂···⊂Km

IndGNG(g0K0,g1K1,...,Km)

(
EWG(g0K0,

g1K1, . . . ,Km)+ ∧XKm

)

Lemma 2.5.16. Let f : X → Y be a map of G-spaces such that for all chains of p-subgroups H0 ⊂ . . . ⊂

Hn ⊂ G, the following map induces an isomorphism on H∗(−,Z(p)):

(EWG(H0, . . . ,Hm)+ ∧XHm))/NG(H0,...,Hm) −→ (EWG(H0, . . . ,Hm)+ ∧ Y Hm))/NG(H0,...,Hm)

Then f/G : X/G → Y/G induces an isomorphism on H∗(−,Z(p)).

Proof of Lemma 2.5.14. Since the domain of colim
[H]∈D

βX([H])→ X lies in SG∗ (C) (combine Proposition 2.5.7

with Proposition 2.5.8), it is enough to check that the map induces an isomorphism on K-fixed points for

any [K] ∈ C (by Proposition 2.5.10). Given such K, write D′ for the full subcategory of D spanned by

all ([H0] < · · · < [Hm]) with [K] ≤ [H0]. We observe that D′ has no outgoing morphisms to objects in

D\D′. Write D′′ for the full subcategory spanned by all chains ([K] < [H1] < · · · < [Hm]) starting with [K].

Observe that there is a functor τ : D′ −→ D′′ given by ([H0] < · · · < [Hm]) 7→ ([K] ≤ [H0] < · · · < [Hm]).

We now prove that all arrows in the following diagram are equivalences:
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βX |D′′([K])
'
> XK

(5)

colim
[H]∈D′′

(βX |D′′([H]))K

'
∧

> XK

'
∧

(4)

colim
[H]∈D′

(βX |D′′ ◦ τ([H]))K

'∧

> XK

'
∧

(3)

colim
[H]∈D′

βX |D′([H])K

'∨
> XK

'
∨

(2)

colim
[H]∈D

βX([H])K

'∨
> XK

'
∨

(1)(
colim
[H]∈D

βX([H])

)K'∨

> XK

'
∨

The left vertical arrows in square (1) are equivalences since K is finite.

The left vertical arrow in (2) is an equivalence: for any [H] =

(
[H0] < · · · < [Hm]

)
∈ D\D′, the G-space

β([H]) has isotropy in [H0]. Since [K] � [H0], we use Proposition 2.5.9 to conclude βX([H])K is contractible.

The canonical morphism LanDD′ β
K
X |D′ → βKX is therefore an equivalence.

The left vertical arrow in square (3) is an equivalence since [K]-approximation preserves (−)K-fixed points.

The left vertical arrow in square (4) is an equivalence since the functor τ is cofinal (indeed, D′ ×D′′ (D′′)d/

has an initial object (d, idd) for all d ∈ D′′).

Finally, the left vertical arrow in square (5) is an equivalence since [K] is a terminal object in the category D′′.

We can now prove our general formula:

Proof of Lemma 2.5.15. : We proceed by induction on the length m of the chain.

The base case m = 0 is just Proposition 2.5.11.

Assume now that m > 0 and the statement holds true for m− 1. Then:

((
. . .

(
X

)
[Km]

)
. . .

)
[K0]

∼=
∨

H0∈[K0]

EWG(H0)+ ∧

( ∨
H1∈[K1]

...
Hm∈[Km]
H1⊂···⊂Hm

(
EWG(H1, . . . ,Hm)+ ∧XHm

))H0
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∼=
∨

H0∈[K0]

(
EWG(H0)+ ∧

∨
H1∈[K1]

...
Hm∈[Km]
H1⊂···⊂Hm

H0⊂NG(H1,...,Hm)

(
EWG(H1, . . . ,Hm)H0

+ ∧ (XHm)H0

)

If H0 6⊂ H1, then EWG(H1, . . . ,Hm)H0
+ is contractible and the summand can be ignored. Hence:

((
. . .

(
X

)
[Hm]

)
. . .

)
[H0]

∼=

( ∨
H0∈[K0]
H1∈[K1]

...
Hm∈[Km]

H0⊂H1⊂···⊂Hm

EWG(H0) ∧ EWG(H1, . . . ,Hm)+ ∧XHm

)

Given a subgroup K ⊂ NG(H0, . . . ,Hm), the space

(EWG(H0))K+ ∧ (EWG(H1, . . . Hm))K+

is contractible unless K ⊂ H0, in which case it is S0. We have an equivalence of NG(H0, . . . ,Hm)-spaces

EWG(H0) ∧ EWG(H1, . . . Hm) ∼= EWG(H0, . . . ,Hm)

and the first asserted formula for the functor β follows.

For the second expression, we first recall that we can rewrite a wedge
∨
j∈J Aj indexed by a G-set J as∨

[j]∈J/G IndGStab(j)Aj .

For us, the G-action on J :=

{
H0 ∈ [K0], . . . ,Hm ∈ [Km] | H0 ⊂ · · · ⊂ Hm

}
has orbits

J/G =

{
H0 ∈ [K0], . . . ,Hm−1 ∈ [Km−1] | H0 ⊂ · · · ⊂ Hm−1 ⊂ Km

}
/NG(Km)

= · · · =

{ gm−1∈NG(Km)\G/NG(Km−1)
gm−2∈NG(gm−1Km−1,Km)\G/NG(Km−2)

...
g0∈NG(g1K1,...,

gm−1Km−1,Km)\G/NG(K0)
(g0K0)⊂(g1K1)⊂···⊂Km

}

The stabiliser of a given chain (H0 ⊂ · · · ⊂ Hm) ∈ J is evidently given by NG(H0, . . . ,Hm).

Proof of Theorem 2.5.16. Let C = Sp ⊂ cclG be the family of conjugacy classes of p-subgroups. Write D for
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the category of nondegenerate simplices of this poset . Consider:

H∗(X/G,Z(p)) > H∗(Y/G,Z(p))

(1)

HG
∗ (X,Z(p))

∼=∨
> HG

∗ (Y,Z(p))

∼=∨

(2)

HG
∗ (XSp ,Z(p))

∼=∨
> HG

∗ (YSp ,Z(p))

∼=∨

(3)

H∗((XSp)/G,Z(p))

∼=
∨

> H∗((XSp)/G,Z(p))

∼=
∨

(4)

H∗

((
colim
[H]∈D

βX([H])

)
/G

, Z(p)

)
∼=

∨

> H∗

((
colim
[H]∈D

βY ([H])

)
/G

, Z(p)

)
∼=

∨

(5)

H∗

(
colim
[H]∈D

(
βX([H])/G

)
, Z(p)

)
∼=

∨

> H∗

(
colim
[H]∈D

(
βY ([H])/G

)
, Z(p)

)
∼=

∨

(6)

π∗

(
colim
[H]∈D

(
Σ∞βX([H])/G ⊗HZ(p)

))
∼=

∨

> π∗

(
colim
[H]∈D

(
Σ∞βY ([H])/G ⊗HZ(p)

))
∼=

∨

The vertical arrows in square

• (1) and (3) are equivalences by elementary properties of Bredon homology.

• (2) are equivalences because the constant Mackey functor Z(p) has the p-transfer property and is hence

projective relative to p-subgroups by Lemma 3.8 of [ADL16].

• (4) are equivalences by Lemma 2.5.14.

• (5) are equivalences because for G finite, strict orbits and homotopy colimits commute.

• (6) are equivalences because the smash product commutes with (homotopy) colimits.

The assumptions imply that Σ∞βX([H])/G ⊗ HZ(p) −→ Σ∞βY ([H])/G ⊗ HZ(p) is an equivalence for all

[H] ∈ ob(D) and the claim follows.

Lemma 2.5.16 can be used to deduce certain statements on strict orbits from their corresponding statements

on homotopy orbits. As an example, we start with the following result of Arone [Aro06]:

47



Theorem 2.5.17. Let p be an odd prime. If j is odd and n 6= pa or j is even and n 6= pa, 2pa for all a, we

have H∗(|Πn|� ∧hΣn
(Sj)∧n,Fp) = 0

We can use our machinery to prove the analogous statement for strict coinvariants:

Theorem 2.5.18. Let p be an odd prime. If j is odd and n 6= pa or j is even and n 6= pa, 2pa for all a, we

have H∗(|Πn|� ∧Σn
(Sj)∧n,Fp) = 0.

Proof. We apply Lemma 2.5.16 to the map |Πn|� ∧Σn
(Sj)∧n → ∗. It suffices to check that

H∗

(
EWΣn(H0, . . . ,Hm)+ ∧ (|Πn|� ∧

Σn
(Sj)∧n)Hm/NΣn (H0,...,Hm),Z(p)

)
= 0

for all chains of p-subgroups H = (H0 ⊂ · · · ⊂ Hm). If Hm is not of the form ∆k(F`p), then this is clear by

the contractibility result of Arone-Dwyer-Lesh. If H = ∆k(K) for some flag K = (K0 ⊂ · · · ⊂ Km = F`p)

with associated parabolic PK, we use Theorem 2.4.2 to write:

H∗

(
EWΣn(H0, . . . ,Hm)+ ∧ (|Πn|� ∧ (Sj)∧n)Hm/NΣn (H0,...,Hm),Fp

)

∼= H∗

((
E

(F`p o PK

K0

)
+

∧ ΣS|BT(F`p)|

)
F`poPK

,Fp
)
⊗ H∗

((
|Πk|� ∧ (Sj)∧k

)
hΣk

,Fp

)

This tensor product vanishes by applying Theorem 2.5.17 to the right factor.

Remark 2.5.19. We can combine Lemma 2.5.14 with our Corollary and Lemma 2.4.8(Arone-Dwyer-Lesh) to

obtain an interesting colimit decomposition of the approximation of |Πn| relative to p-subgroups.
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2.6 Strict Quotients and Commutative Monoid Spaces

Work of Arone [Aro15] raised the following question:

Question. What is the Fp-homology of the strict quotient of |Πn| by a Young subgroup Σn1×· · ·×Σnk ⊂ Σn?

In this section, we will uncover the conceptual significance of quotient spaces of this form, establish a

surprising link to algebraic André-Quillen homology, and thereby give an answer to the above question for

p = 2.

2.6.1 Commutative Monoid Spaces and Simplicial Commutative Monoids

We start with the following definition:

Definition 2.6.1. A commutative monoid space is a (compactly generated Hausdorff) space R together

with two distinguished points 0, 1 ∈ R and an associative and commutative multiplication R × R → R

such that 1 acts as a unit and x · 0 = 0 · x = 0 for all x ∈ X. Equivalently, the pointed space (R, 0) is a

(unital) commutative algebra object in the symmetric monoidal category (Top∗,∧, S0) of pointed (compactly

generated Hausdorff) spaces, i.e. an algebra for the monad T (X) =
∨
n≥0X

∧n
Σn

.

We write CMon for the category of commutative monoid spaces. This category and variants thereof have

been studied by many before us (see for example [Kuh04]).

Theorem 2.6.2 (Schwänzl - Vogt [SV91]). The category CMon of commutative monoid spaces with 0 admits

the structure of a cofibrantly generated model category where a map f is a fibration or weak equivalences if

and only if the underlying map of pointed spaces has this property.

We say a commutative monoid space R is well-pointed if its underlying pointed space (R, 0) has the corre-

sponding property. We now introduce some variants.

The category of augmented commutative monoid spaces is the overcategory CMonaug := CMon/S0 , where

S0 denotes the commutative monoid space with two elements 0 and 1. It inherits a model category structure

such that the forgetful functor preserves fibrations, cofibrations, and weak equivalences.

The category CMonnu consists of algebras for the monad T>0(X) =
∨
n>0X

∧n
Σn

. Once more, it is endowed

with a model category structure whose fibrations and weak equivalences are defined on the level of spaces.

The augmentation ideal functor I(−) : CMonaug → CMonnu takes an augmented monoid space A → S0

and assigns the preimage of the base point 0 ∈ S0.
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Every nonunital commutative monoid space X gives rise to a unital augmented monoid space S0 ∨ X by

adding a disjoint unit 1.

Warning. The functors

CMonaug
I
>

<
S0∨(−)

CMonnu

do not assemble to an equivalence.

We can also start with the symmetric monoidal model category (sSet∗,∧, S0) of pointed simplicial sets and

follow Quillen to define a model structure on its category SCM of commutative algebra objects. Weak

equivalences and fibrations are again defined using the forgetful functor to sSet∗. Objects are just Quillen’s

simplicial commutative monoids (with 0 and 1). Again, there is an augmented version SCMaug and a

nonunital variant SCMnu.

2.6.2 Extension of Scalars

Given a ring R and a commutative monoid space X, we will produce a simplicial commutative R-algebra

R⊗X. Heuristically speaking, we “extend scalars” from F1 to R.

Fix an ordinary ring R. Consider the Quillen adjunction sSet∗
F̃R

>
<

U
sModR. Here F̃R(∗ → X) =

coker(FreeModR(∗) → FreeModR(X)) is the reduced levelwise free R-module construction, and U forgets.

This adjunction is monoidal. We therefore obtain a Quillen adjunction SCM � SCRR, which can be

promoted to a Quillen adjunction SCMaug � SCRaug
R .

Definition 2.6.3. The functor R ⊗ (−) : CMonaug → SCMaug → SCRaug
R given by composing singular

chains Sing• and F̃R is called extension of scalars to R.

Proposition 2.6.4. The functor R⊗ (−) preserves weak equivalences and homotopy colimits.

Proof. If M → N is a weak equivalence of monoid spaces, then it is a weak equivalence of underlying spaces.

The morphisms

Sing•(M)→ Sing•(N), (F̃R ◦ Sing•)(M)→ (F̃R ◦ Sing•)(N)

are weak equivalences of simplicial sets and hence also weak equivalences of simplicial commutative monoids

and simplicial R-algebras respectively.

To see the second claim, we observe that the functor Sing• : CMon → SCM is the right half of a Quillen

equivalence, which implies that its right derived functor RSing• preserves homotopy colimits. However, since

every space is fibrant, we know that every monoid space is fibrant and hence Sing• computes its own right
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derived functor. It must therefore preserve homotopy colimits.

The functor F̃R is left Quillen, and so its left-derived functor LF̃R preserves homotopy colimits. If Q→ id is a

cofibrant replacement, we use that F̃R preserves weak equivalences to see that LF̃R(X) ∼= F̃R(QX)
'−→ F̃R(X)

is a weak equivalence. Hence, given a diagram D : I → CMon, we compute:

F̃R(hocolim
I

D)
'←− LF̃R(hocolim

I
D) ∼= hocolim

I
((LF̃R) ◦D)

'−→ hocolim
I

(F̃R(D))

In the last step, we used that the pointwise equivalence of diagrams F̃R ◦ Q ◦ D → F̃R ◦ D induces an

equivalence on homotopy colimits.

2.6.3 André-Quillen Homology for Commutative Monoid Spaces

We follow Quillen’s general approach in the context of our commutative monoid spaces. We begin with the

following definition:

Definition 2.6.5. The indecomposables functor V : CMonnu → Top∗ assigns to a nonunital commutative

monoid space A the quotient space V(A) = A/A ·A. Here A ·A ⊂ A is the space of all elements which can

be decomposed into a product of two elements in A.

We can also form square-zero extensions:

Definition 2.6.6. Given a space X, we write X for the nonunital commutative monoid space obtained by

declaring that x · y = 0 for all points x, y in X.

Algebraic and topological square-zero extensions interact well as R⊗ (S0 ∨X) is just the trivial square zero

extension R⊕ C̃•(X,R) of R by the simplicial module C̃•(X,R) of reduced R−valued singular chains on X.

The above functors in fact determine a Quillen adjunction CMonnu
V

>
<

(−)

Top∗.

Definition 2.6.7. The André-Quillen chains AQ(A) of a nonunital commutative monoid spaceA ∈ CMonnu

are given by the value of the left derived functor L(V)(A) ∈ Ho(Top∗). The André-Quillen chains of an

augmented commutative monoid space are given by AQ(LIA), where IA denotes the augmentation ideal (i.e.

the fibre over 0). The André-Quillen homology of an augmented monoid space is given by the homotopy

groups HQ
∗ (A) := π∗(AQ(A)).

We can give a formula for the André-Quillen chains of a commutative monoid space:

Proposition 2.6.8. If A ∈ CMonnu is a nonunital commutative monoid space, then the André-Quillen

chains of A are given by AQ(A) ∼= hocolim∆op(Bar•(1,T
>0, A)).
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Proof. The augmented simplicial T>0-algebra Bar•(T
>0,T>0, A) → A has a contracting homotopy. Hence

hocolim∆op(Bar•(T
>0,T>0, A)) ∼= A. The left derived functor LV preserves homotopy colimits. Hence:

AQ(A) = LV(A) ∼= hocolim
∆op

LV(Bar•(T
>0,T>0, A)) ∼= hocolim

∆op
(Bar•(1,T

>0, A))

André-Quillen chains for commutative monoid spaces behaves well under “base-change” to ordinary rings.

Fix an ordinary ring R and write V : SCRaug
R → sModR for the “indecomposables functor” defined on

nonunital simplicial commutative R-algebras. Recall:

Definition 2.6.9. The André-Quillen chains of a nonunital simplicial commutative R-algebra S are defined

as AQR(S) := LV(S) ∈ Ho(sModR).

Write Sym>0
R (X) =

⊕
n>0X

⊗Rn
Σn for the nonunital commutative algebra monad on sModR. We can give

an explicit formula for the André-Quillen chains as AQR(S) = hocolim∆op Bar•(1,Sym>0
R , S). Reduced

R-valued chains C̃•(−, R) interact well with symmetric powers in the sense that there is an identification

C̃•(T
>0(X), R) ∼= Sym>0

R (C̃•(X,R)). André-Quillen chains therefore intertwine with extension of scalars:

Lemma 2.6.10. There is a commutative square

Ho(CMonnu)
AQ

> Ho(Top∗)

Ho(CAlgnuR )

R⊗(−)
∨

AQR

> Ho(sModR)

C̃•(−,R)
∨

Proof. Given a nonunital commutative monoid space A, we compute

C̃•(AQ(A), R) ∼= (C̃•(−, R) ◦ LV)(A) ' hocolim
∆op

(C̃•(Bar•(1,T
>0, A), R))

' hocolim
∆op

(Bar•(1,Sym>0
R , C̃•(A,R)) ∼= AQR(R⊗A)

Definition 2.6.11. The strict nonunital commutative operad Onu
Comm on the model category Top∗ of pointed

spaces has (Onu
Comm)n = S0 for all n > 0, (Onu

Comm)0 = 0, and all structure maps are the identity.

By an elementary combinatorial argument, one can compute the (strict) operadic bar construction to obtain

a Koszul dual cooperad OcoLie = Bar(Onu
Comm) with

OcoLie(n) = |Bar•(O
nu
Comm)(n)| = Σ|Πn|�
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for all n. The cooperad structure was defined by Ching [Chi05] using tree crafting and by Salvatore [Sal98].

Any symmetric sequence {Pn ∈ TopΣn
∗ } defines an endofunctor SP (X) =

∨
n≥0 Pn ∧Σn

X∧n. Here we take

strict orbits. We define a functor CcoLie by CcoLie(X) = SOcoLie(X) =
∨
n≥1 Σ|Πn|� ∧Σn

X∧n.

We now get back to our initial problem of computing strict orbits of the partition complex under the action

of Young subgroups. The quotient space Σ|Πn|�/Σn1
×···×Σnk

naturally appears as the piece of multi-degree

(n1, . . . , nk) in CcoLie((S0)∨k) =
∨
n Σ|Πn|� ∧Σn

((S0)∨k)∧n =
∨
n1,...,nk

Σ|Πn1+···+nk |�/Σn1×···×Σnk
.

Hence we need to study the value of the functor CcoLie on wedges of spheres. Using Theorem 2.3.11, we can

split up CcoLie evaluated on wedges of spaces X1, . . . , Xk and obtain an equivalence of pointed spaces (this

strategy is a variant of the computation of Goerss [Goe90]):

∨
`1,...,`k

w∈B(`1,...,`k)

CcoLie(S`1+···+`k−1 ∧X∧`11 ∧ · · · ∧X∧`kk ) ' CcoLie(X1 ∨ · · · ∨Xk)

Here the degree d piece in a summand of signature (`1, . . . , `k) on the left has multi-degree (d`1, . . . , d`k) on

the right. Taking Xi = S0 again, this equivalence gives CcoLie((S0)∨k) ∼=
∨

`1,...,`k
w∈B(`1,...,`k)

CcoLie(S`1+···+`k−1).

Restricting to some multi-degree (n1, . . . , nk) with
∑
i ni = n, we recover a suspened version of Proposition

10.1 in [Aro15]. The functor CcoLie is closely related to square zero extensions by the following crucial

observation:

Lemma 2.6.12. If X is a well-pointed space, then AQ(S0 ∨X) ∼= CcoLie(X).

Proof. We have T>0 = SOnu
Comm

and hence

AQ(S0 ∨X) = hocolim
∆op

Bar•(1, SOnu
Comm

, X) = hocolim
∆op

SBar•(Onu
Comm)(X) =

∨
n≥1

Σ|Πn|� ∧
Σn
X∧n = CcoLie(X)

We can now establish a surprising link between the reduced homology of strict quotients of the partition

complex and a familiar invariant in derived algebraic geometry:

Theorem 2.6.13. If X is a space and R is a ring, then

H̃∗

(
CcoLie(X), R

)
= H̃∗

( ∨
d≥1

Σ|Πd|� ∧
Σd
X∧d, R

)
∼= AQR∗

(
R⊕ C̃•(X,R)

)

Here R⊕ C̃•(X,R) denotes the trivial square zero extension of R by C̃•(X,R).
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Proof. Combine Lemma 2.6.12 with Lemma 2.6.10.

Fix a ring R and write R ⊕ [εd1
, . . . , εdn ] for the trivial square zero extension of R by the free R-module

with generators in degree d1, . . . , dn ≥ 0. We can “tensor up” the above splitting of CcoLie(Sd1 ∨ · · · ∨ Sdk)

(proved using Theorem 2.3.11) “from F1 to R” and deduce the following result from Theorem 2.6.13:

Corollary 2.6.14. There is a splitting

AQR∗ (R⊕ [εd1 , . . . , εdk ]) ∼=
⊕

`1,...,`k
w∈B(`1,...,`k)

AQR∗ (R⊕ [ε(1+d1)`1+...+(1+dk)`k−1])

Over F2, this has been proven by Goerss [Goe90] with algebraic means. We find it remarkable that our

purely combinatorial techniques have such a nontrivial consequence in derived algebraic geometry.
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Chapter 3

Intertwining Topological and Algebraic Koszul Duality

In this chapter, we fix an E2-ring R for which π∗(R) is Noetherian and an ideal I ⊂ R0. We write Mod
Cpl(I)
R

for the ∞-category of I-complete R-module spectra as introduced in Appendix A. Given an augmented

monad T ∈ Algaug(End(Mod
Cpl(I)
R )) with Koszul dual comonad KD(T ) = |Bar•(1, T, 1)| (as defined in

[Lur11b]), we can ask:

Question.

1. Can we produce cohomotopy operations on KD(T )-coalgebras from homotopy operations on T -algebras?

2. Can we compute the composition of cohomotopy operations on KD(T )-coalgebras from the composition

of homotopy operations on T -algebras?

By Corollary 5.1.21 in Appendix A, the homotopy category hMod
Cpl(I)
R,f of completed-free R-module spectra

is equivalent to the “algebraic” category Mod
Cpl(I)
R∗,f

of completed-free graded modules over the graded ring R∗.

This fact implies that if T preserves completed-free module spectra, then operations on the homotopy of

T -algebras are controlled by an augmented monad T̂ on the algebraic category Mod
Cpl(I)
R∗,f

.

A natural first guess for an answer to the question raised above is that operations on KD(T )-algebras are

controlled by the Koszul dual KD(T̂) = |Bar•(T̂)| of this algebraic comonad.

In this chapter, we give a precise formulation of this statement and introduce conditions under which it is true.

In the fourth chapter of this thesis, we will then apply our machinery to the monad T =
⊕

n≥1X
⊗n
hΣn

and

use this to study K(h)-local Lie algebras in module spectra over Morava E-theory.
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3.1 Operations on the (co)Homotopy of (co)Algebras

The ∞-category End(Mod
Cpl(I)
R ) is naturally endowed with a monoidal structure given by composition, and

Mod
Cpl(I)
R is left-tensored over End(Mod

Cpl(I)
R ) (see Section 5.2.3 in Appendix B).

Given a monad T on Mod
Cpl(I)
R , i.e. an algebra object in End(Mod

Cpl(I)
R ), we can consider left T -modules in

Mod
Cpl(I)
R . In order to conform with classical nomenclature, we shall call such modules T-algebras and write

AlgT (Mod
Cpl(I)
R ) for the resulting ∞-category. Note that this diverges from the notation used in [Lur14].

There is a forgetful-free adjunction1 T : Mod
Cpl(I)
R � AlgT (Mod

Cpl(I)
R ) : U .

In this section, we will set up the language which we will later use to study the operations on the homotopy

groups of T -algebras. The monad T induces a monad hT on the homotopy category hMod
Cpl(I)
R .

Write hAlgffT for the homotopy category of the full subcategory of AlgT spanned by all T -algebras of the

form T (Σi1R⊕ · · · ⊕ ΣikR).

Remark 3.1.1. A simple argument shows that hAlgffT is equivalent to AlgffhT , where AlgffhT denotes the full

subcategory of AlghT spanned by all hT -algebras of the form T (Σi1R⊕ · · · ⊕ ΣikR).

The category PT = (hAlgffT )op then forms a Z-graded algebraic theory in the sense of Definition 5.3.4 in

Appendix C. Define the required functor F : Z∗ → PT by sending a word (t1, . . . , tk) to T (Σt1R⊕· · ·⊕ΣtkR).

A morphism s1 . . . sn → t1 . . . tk lying over the function f : {1, . . . , k} → {1, . . . n} with sf(i) = ti for all i is

sent to the arrow T (Σt1R⊕ · · · ⊕ ΣtkR)→ T (Σs1R⊕ · · · ⊕ ΣsnR) fitting into the commutative square

Σt1R⊕ · · · ⊕ ΣtkR > Σs1R⊕ · · · ⊕ ΣsnR

T (Σt1R⊕ · · · ⊕ ΣtkR)
∨

> T (Σs1R⊕ · · · ⊕ ΣsnR)
∨

Here the top arrow is a map of spectra obtained by using codiagonals according to the structure of f and

the lower arrow is a map of hT -algebras.

Given any T -algebra M , the graded set πi(M) = π0(Map
Mod

Cpl(I)
R

(ΣiR,M)) forms an algebra over PT (in

the sense of Definition 5.3.4). We shall write

P ji1,...,ik(T ) := π0 MapAlgT
(T (ΣjR), T (Σi1R⊕ · · · ⊕ Σi1R)) = MapP(T (Σi1R⊕ · · · ⊕ Σi1R), T (ΣjR))

for the group of operations with k inputs in degrees i1, . . . ik and one output in degree j.

1These notions are defined carefully in section 4.7 of [Lur14].
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Applying T to the codiagonal gives rise to a morphism T (ΣiR⊕ . . .⊕ΣiR)→ T (ΣiR) which induces a map

P ji,...,i(T )→ P ji (T ) corresponding to plugging in the same variable into all slots of a given operation.

Proposition 3.1.2. Every map of monads T1
α−→ T2 naturally induces a morphism of associated Z-graded

algebraic theories Pα : PT1 −→ PT2 .

Proof. We shall construct a morphism hAlgffT1
→ hAlgffT2

and then apply (−)op in the end.

On the level of objects, we send T1(M) to Pα(T1(M)) := T2(M).

Given a morphism f : T1(A)→ T1(B), we first produce the arrow A→ T1(A)
f−→ T1(B)

αB−−→ T2(B) and then

induce up to obtain a map of T2-algebras Pα(f) : T2(A)→ T2(B).

Given i = 1, 2 and two morphisms represented by A
f
> Ti(B) and B

g
> Ti(C), the axioms of a monad

imply that the composite g ◦ f is represented by the arrow A
f
> Ti(B)

Ti(g)
> Ti(Ti(C))

µC
> Ti(C).

The functoriality of Pα is now proven by observing the following commutative diagram:

A
f
> T1(B)

T1(g)
> T1(T1(C))

µ1
> T1(C)

T2(B)

αB
∨

T2(g)
>

Pα(f) >

T2(T1(C))

αT1(C)

∨

T2(T2(C))
∨

µ2
>

T2(Pα(g)) >
T2(C)
∨

Some operations preserve additive structure:

Lemma 3.1.3. An operation α ∈ P ji (T ) = πjT (ΣiR) acts additively on the homotopy of T -algebras if and

only if it lies in the equaliser of the two following maps:

πjT (ΣiR)
πjT (∆)

> πjT (ΣiR⊕ ΣiR)

πjT (ΣiR)⊕ πjT (ΣiR)

πjT (ι1)⊕πjT (ι2)
∧

πj∆T (ΣiR)
>

Here ∆(−) denotes diagonal maps and ι(−) stand for the inclusions of summands.

Proof. Let α ∈ P ji (T ) be in the required equaliser and fix x, y ∈ πi(M) for M a T -algebra. Then we consider
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the following diagram:

ΣjE ⊕ ΣjE > T (ΣiR)⊕ T (ΣiR)

ΣjE >

∆ΣjR
>

T (ΣiR)
T (∆ΣiR)

>

∆T (ΣiR)
>

T (ΣiR⊕ ΣiR)

T (ι1)⊕T (ι2)
∨

x⊕y
> M

x⊕y

>

ΣiR

∧

∆ΣiR

> ΣiR⊕ ΣiR

∧
x⊕y

>

where all squares and triangles except for the middle triangle commute and the various maps are defined

in an evident manner. We notice that the top composite is given by α(x) + α(y) whereas the horizontal

composite gives α(x+ y). If the middle triangle commutes, then these composites must agree. The converse

direction follows by taking the universal case M = T (ΣiR⊕ ΣiR).

A similar family of definitions can be introduced for operations on the cohomotopy groups of coalgebras over a

comonad C. The ith cohomotopy group of anR-module M is defined by πi(M) := π0 Map
Mod

Cpl(I)
R

(M,ΣiR).

We have a forgetful-free adjunction U : coAlgC(Mod
Cpl(I)
R )� Mod

Cpl(I)
R : C.

Definition 3.1.4. The Z-graded algebraic theory PC attached to a comonad C ∈ coAlg(End(Mod
Cpl(I)
R ))

is defined as the opposite of the full subcategory of coAlg(hC) spanned by all coalgebras of the form

(hC)(Σi1R⊕ . . .⊕ ΣikR).

The cohomotopy groups of a C-coalgebra A in Mod
Cpl(I)
R assemble into a PC-module M(A)i = πi(A). Write

P ji1,...,ik(C) := π0 MapcoAlgC
(C(Σi1R⊕ · · · ⊕ Σi1R), C(ΣjR)) = MapPC (C(ΣjR), C(Σi1R⊕ · · · ⊕ Σi1R))

Dual to our reasoning above, every map C1 → C2 of comonads induces a morphism of associated graded

algebraic theories PC2
→ PC1

. Dually to 3.1.3, one proves the following criterion for additivity of operations:

Lemma 3.1.5. An operation α ∈ P ji (C) = πj(C(ΣiR)) acts additively on the homotopy of C-coalgebras if

and only if it lies in the equaliser of the two following maps:

πjC(ΣiR)
πjC(co∆)

> πjC(ΣiR⊕ ΣiR)

πjC(ΣiR)⊕ πjC(ΣiR)

πjC(p1)⊕πjC(p2)
∧

πjco∆C(ΣiR)
>

We will now introduce a certain new structure which will later help us to formulate additive operations in

the case where C is defined by an operad:
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Definition 3.1.6. The weighted power category W has objects ob(W) = {i ∈ Z} and morphisms HomW(i, j) =

{w ∈ N}. Composition is defined in an evident way from multiplication of natural numbers: if i
v−→ j and

j
w−→ k, then w ◦ v =: v · w : i→ k.

Definition 3.1.7. A power ring P is a lax functor P : W → BModZ to the symmetric monoidal category

with a single object, with morphisms indexed by ModZ, and with product defined using the tensor product.

A morphism of power algebra objects f : P → Q consists of an oplax natural transformation α : P ⇒ Q for

which αi = Z ∈ EndBModZ(∗) = ModZ for all i. We write PowWZ for the resulting 1-category.

More concretely, a power ring is a collection of abelian groups P ji [w] for each (i, j, w) ∈ Z2 × N together

with composition maps P ji [v]⊗P kj [w]→ P ki [vw] satisfying evident associativity conditions. A module over a

power ring is a graded abelian group M∗ together with multiplication maps P ji [w]⊗Mi →Mj which satisfy

the natural associativity conditions.

3.2 Bridged Koszul Duality

In this section, we introduce a technical tool which we will later use to relate monadic Koszul duality in

algebra and topology.

Bridged Endofunctors. We begin by recalling the following definition of Lurie:

Definition 3.2.1. An ∞-category C is called a socle if it is locally small, admits small coproducts, every

object is a cogroup, and there is an essentially small full subcategory C0 such that any object is a retract of

a coproduct of objects in C0.

Definition 3.2.2. Given such a socle C, we write Pσ(C) ⊂ P(C) = Fun(Cop,S) for the ∞-category of

contravariant functors to spaces which preserve small products.

By Proposition 4.2.1.(6) in [Lur11a], this construction freely adds geometric realisations to C:

Proposition 3.2.3. Given any ∞-category D with geometric realisations, precomposition with the Yoneda

embedding determines an equivalence Funσ(Pσ(C),D) −→ Fun(C,D).

Here Funσ(−,−) denotes the full subcategory spanned by all functors which preserve geometric realisations.

Notation 3.2.4. In the above situation, we denote the realisation-preserving functor corresponding to

F : C → D by LF : Pσ(C)→ D and think of it as the left derived functor of F .

Coming back to the situation of interest to us, we observe that the∞-categories Mod
Cpl(I)
R,f and hMod

Cpl(I)
R,f

∼=

Mod
Cpl(I)
R∗,f

introduced in Appendix A are evidently socles. Proposition 3.2.3 gives rise to a canonical diagram
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of ∞-categories

Mod
Cpl(I)
R,f

h
> Mod

Cpl(I)
R∗,f

Mod
Cpl(I)
R <

Lι

ι

<
Pσ(Mod

Cpl(I)
R,f )

∨
Lh

> Pσ(Mod
Cpl(I)
R∗,f

)

∨

such that both Lι and Lh preserve geometric realisations.

Let S be the category (• ← • → •) and consider the diagram

Mod
Cpl(I)
R <

Lι
Pσ(Mod

Cpl(I)
R,f )

Lh
> Pσ(Mod

Cpl(I)
R∗,f

)

as an element in the ∞-category Fun(N(S), Ĉat∞).

Definition 3.2.5. The coCartesian fibration B p−→ N(S) obtained from this functor by unstraightening is

called the resolution bridge.

The three categories appearing as fibres of p admit small colimits. The functors Lι and Lh preserve geometric

realisations and ι and h preserve small coproducts. By Proposition 4.2.12 and Proposition 4.2.11.(3) in

[Lur11a], we conclude that both Lι and Lh preserve all small colimits. Corollary 4.3.1.11 in [Lur09] implies

that the category B admits all small p-colimits.

Definition 3.2.6. We write EndcS(B) for the full monoidal subcategory of EndS(B) spanned by all functors

which preserve coCartesian edges.

We will make use of the following result of Shah [Sha17]:

Lemma 3.2.7. Let p : C → S be a coCartesian fibration of ∞-categories. Suppose we are given a diagram

φ : K → FunS(C,D), and suppose that for every x ∈ C, the evaluation functor evx φ : K → Dp(x) has a

colimit, and for every f : x → y, the canonical map colimK(evf!x φ) → f! colimK (evxφ) is an equivalence.

Then colimKφ : C → D exists and is computed on objects x ∈ C by colimK(evxφ).

Corollary 3.2.8. The∞-category EndcS(B) admits geometric realisations. Given some c ∈ B, the evaluation

functor evc preserves them.

Definition 3.2.9. The monoidal ∞-category Endc,σS (B) of bridged endofunctors of Mod
Cpl(I)
R is given by

the full subcategory of EndcS(B) spanned by all functors which preserve p-geometric realisations.

The functor category Endc,σS (B) is closed under geometric realisations.
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Proposition 3.2.10. Restriction gives rise to a diagram of strictly monoidal realisation preserving functors

Endc,σS (B)

Endσ(Mod
Cpl(I)
R )

p1

<
Endσ(Pσ(Mod

Cpl(I)
R,f ))

p2∨
Endσ(Pσ(Mod

Cpl(I)
R∗,f

))

p3

>

Proof. Since the induced functors Lι and Lh between the fibres of p preserve geometric realisations, Propo-

sition 4.3.1.10 in [Lur09] implies that restricting an endofunctor which preserves p-geometric realisations to

one of the three fibres of p : B → S yields a functor which preserves realisations. The restriction functors

are evidently strictly monoidal.

Remark 3.2.11. Informally, a bridged endofunctor is therefore given by a diagram

Mod
Cpl(I)
R <

Lι
Pσ(Mod

Cpl(I)
R,f )

Lh
> Pσ(Mod

Cpl(I)
R∗,f

)

Mod
Cpl(I)
R

A∨
<

Lι
Pσ(Mod

Cpl(I)
R,f )

B∨
Lh

> Pσ(Mod
Cpl(I)
R∗,f

)

C∨

where A,B, and C preserve geometric realisations.

We see that every algebra object T ∈ Alg(Endc,σS (B)) gives rise to three monads

p1(T ) ∈ Alg(Endσ(Mod
Cpl(I)
R )), p2(T ) ∈ Alg(Endσ(Pσ(Mod

Cpl(I)
R,f ))), p3(T ) ∈ Alg(Endσ(Pσ(Mod

Cpl(I)
R∗,f

)))

We will now construct functors

Algp1(T )

(
Mod

Cpl(I)
R

)
< Algp2(T )

(
Pσ(Mod

Cpl(I)
R,f )

)
> Algp3(T )

(
Pσ(Mod

Cpl(I)
R∗,f

)

)

For this, we introduce a technical gadget:

Definition 3.2.12. The ∞-category E of bridged I-complete R-module spectra consists of the ∞-category

of coCartesian sections of B → S.

We have a natural diagram
E

Mod
Cpl(I)
R

<
Pσ(Mod

Cpl(I)
R,f )

∨
Pσ(Mod

Cpl(I)
R∗,f

)

>
(3.1)

Remark 5.4.7.16. in [Lur09] implies the following fact:

Proposition 3.2.13. Evaluating a section on the middle object of S defines an equivalence E '−→ Pσ(Mod
Cpl(I)
R,f ).
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Remark 3.2.14. Thinking of an object in Pσ(Mod
Cpl(I)
R,f ) as a formal geometric realisation of a simplicial

diagram X• : N(∆op)→ Mod
Cpl(I)
R,f , we can think of bridged module as a triple (|X•|, X•, π∗(X•)).

In order to construct the aforementioned functors, we observe the following diagram in the ordinary category

̂CatMod
ord

of strictly tensored ∞-categories introduced in Section 5.2.3 in Appendix B:

(Endc,σS (B), E)

< >

(Endc,σS (B),Mod
Cpl(I)
R ) (Endc,σS (B), Pσ(Mod

Cpl(I)
R,f ))

∼=∨
(Endc,σS (B), Pσ(Mod

Cpl(I)
R∗,f

))

(Endσ(Pσ(Mod
Cpl(I)
R,f )), Pσ(Mod

Cpl(I)
R,f ))

∨

(Endσ(Mod
Cpl(I)
R ),Mod

Cpl(I)
R )

∨
(Endσ(Pσ(Mod

Cpl(I)
R∗,f

)), Pσ(Mod
Cpl(I)
R∗,f

))

∨

Applying the construction Θ : N( ̂CatMod
ord

)→ ̂CatMod defined in Section 5.2.3 in Appendix B, we obtain

a diagram of tensored ∞-categories in the sense of Definition 5.2.4 (in the interest of readability, we will

drop the arrows and just use commata instead):

(E~,Endc,σS (B)~)

< >

(Mod
Cpl(I)~

R ,Endc,σS (B)~) (Pσ(Mod
Cpl(I)
R,f )~,Endc,σS (B)~)

∼=∨
(Pσ(Mod

Cpl(I)
R∗,f

)~,Endc,σS (B)~)

(Pσ(Mod
Cpl(I)
R,f )~,Endσ(Pσ(Mod

Cpl(I)
R,f ))~)

restrictive∨

(Mod
Cpl(I)~
R ,Endσ(Mod

Cpl(I)
R )~)

restrictive

∨
(Pσ(Mod

Cpl(I)
R∗,f

)~,Endσ(Pσ(Mod
Cpl(I)
R∗,f

))~)

restrictive

∨

The lower three vertical arrows exhibit the upper tensored ∞-categories as obtained by restriction from the

lower ones by Lemma 5.2.15 in Appendix B.

Proposition 3.2.15. The top middle functor E~ → (Pσ(Mod
Cpl(I)
R,f ))~ in the above diagram is an equivalence

of Endc,σS (B)-tensored ∞-categories.

Proof. By Corollay 4.2.3.2 in [Lur14], it suffices to check that the induced map of underlying ∞-categories

is an equivalence, which holds true by Proposition 3.2.13 above
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Lemma 3.2.16. Given an algebra object T ∈ Alg(Endc,σS (B)), we obtain a diagram

AlgT (E)

AlgT

(
Mod

Cpl(I)
R

)<
AlgT

(
Pσ(Mod

Cpl(I)
R,f )

)∼=∨

AlgT

(
Pσ(Mod

Cpl(I)
R∗,f

)

)>

Algp1(T )

(
Mod

Cpl(I)
R

)∼=∨

Algp2(T )

(
Pσ(Mod

Cpl(I)
R,f )

)∼=∨

Algp3(T )

(
Pσ(Mod

Cpl(I)
R∗,f

)

)∼=∨

By construction, this diagram lies over diagram (3.1) on p.61.

Proof. The top middle arrow is an equivalence by Proposition 3.2.15. The lower three vertical arrows are

equivalences by Lemma 5.2.16 in Appendix B.

We have therefore defined functors

Algp1(T )

(
Mod

Cpl(I)
R

)
< Algp2(T )

(
Pσ(Mod

Cpl(I)
R,f )

)
> Algp3(T )

(
Pσ(Mod

Cpl(I)
R∗,f

)

)

We can set up similar functors for comonads. Indeed, we apply (−)op : ̂CatMod → ̂CatMod to the second

diagram of the last paragraph to obtain a diagram of tensored ∞-categories (again, we indicate arrows by

commata):

(Eop~,Endc,σS (B)op~)

< >

(Mod
Cpl(I)op~
R ,Endc,σS (B)op~) (Pσ(Mod

Cpl(I)
R,f )op~,Endc,σS (B)op~)

∼=∨
(Pσ(Mod

Cpl(I)
R∗,f

)op~,Endc,σS (B)op~)

restrictive

∨

(Mod
Cpl(I)op~
R ,Endσ(Mod

Cpl(I)
R )op~)

restrictive

∨
(Pσ(Mod

Cpl(I)
R∗,f

)op~,Endσ(Pσ(Mod
Cpl(I)
R∗,f

))op~)

restrictive

∨

(Pσ(Mod
Cpl(I)
R,f )op~,Endσ(Pσ(Mod

Cpl(I)
R,f ))op~)

The lower three vertical arrows are again restrictive by Proposition 5.2.14 in Appendix B.

Proposition 3.2.17. The top middle functor (Eop)~ → (Pσ(Mod
Cpl(I)
R,f )op)~ in the above diagram is an

equivalence of (Endc,σ,fS (B))op-tensored ∞-categories.
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Proof. Identical to proof of Proposition 3.2.15.

Lemma 3.2.18. Given C ∈ coAlg(Endc,σS (B)) = (Alg(Endc,σS (B)op))op, we obtain a natural diagram

coAlgC(E)

coAlgC

(
Mod

Cpl(I)
R

)<
coAlgC

(
Pσ(Mod

Cpl(I)
R,f )

)∼=∨

coAlgC

(
Pσ(Mod

Cpl(I)
R∗,f

)

)>

coAlgp1(C)

(
Mod

Cpl(I)
R

)∼=∨

coAlgp2(C)

(
Pσ(Mod

Cpl(I)
R,f )

)∼=∨

coAlgp3(C)

(
Pσ(Mod

Cpl(I)
R∗,f

)

)∼=∨

This diagram lies over diagram (3.1) from p.61.

We have therefore defined the following useful functors:

coAlgp1(C)

(
Mod

Cpl(I)
R

)
< coAlgp2(C)

(
Pσ(Mod

Cpl(I)
R,f )

)
> coAlgp3(C)

(
Pσ(Mod

Cpl(I)
R∗,f

)

)

Completed-Free (co)Monads. We shall now focus on a particularly convenient class of endofunctors:

Definition 3.2.19. An endofunctor T ∈ End(Mod
Cpl(I)
R ) is said to be completed-free if it preserves the full

subcategory Mod
Cpl(I)
R,f of completed-free I-complete R-module spectra in the sense of Definition 5.1.13.

We write Endf (Mod
Cpl(I)
R,f ) for the full monoidal subcategory spanned by all such functors.

Definition 3.2.20. The ∞-category Endc,σ,fS (B) of completed-free bridged endofunctors is given by the full

subcategory of Endc,σS (B) spanned by all functors whose restriction to Pσ(Mod
Cpl(I)
R,f ) preserves Mod

Cpl(I)
R,f .

Every realisation-preserving completed-free T ∈ Endσ,f (Mod
Cpl(I)
R ) determines a TB ∈ Endσ,c,f (B) given by

Mod
Cpl(I)
R <

Lι
Pσ(Mod

Cpl(I)
R,f )

Lh
> Pσ(Mod

Cpl(I)
R∗,f

)

Mod
Cpl(I)
R

T∨
<

Lι
Pσ(Mod

Cpl(I)
R,f )

T :=LT |
Mod

Cpl(I)
R,f∨

Lh
> Pσ(Mod

Cpl(I)
R∗,f

)

T̂ :=LhT |
Mod

Cpl(I)
R,f∨

This observation implies that the restriction functor Endc,σ,fS (B) → Endσ,f (Mod
Cpl(I)
R ) is an equivalence of

monoidal ∞-categories. We write (−)B for the inverse functor.

Definition 3.2.21. The analytic approximation T̂ to a completed-free monad T ∈ Alg(Endσ,f (Mod
Cpl(I)
R ))

is given by T̂ = LhT |
Mod

Cpl(I)
R,f

, i.e. by the image of T under the composition of the strictly monoidal functors:

Endσ,f (Mod
Cpl(I)
R )

'−→ Endc,σ,fS (B)→ End(Pσ(Mod
Cpl(I)
R∗,f

))
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The∞-category Pσ(ModR∗,f ) is in fact prestable, and we therefore have an embedding into the stabilisation

Sp(Pσ(ModR∗,f )). The heart of the natural t-structure turns out to be Pσ(Mod
Cpl(I)
R∗,f

)♥ ∼= Mod
Cpl(I)
R∗

(see

Proposition 4.2.4), but we will not need this for our considerations.

Operations on algebras over completed-free monads can be understood well in terms of graded R∗-modules

since there is an evident equivalence of Z-graded algebraic theories PT ∼= PhT̂.

Dually, we can define the analytic approximation Ĉ to a completed-free comonad C ∈ coAlg(Endσ,f (Mod
Cpl(I)
R )),

and the Z-graded algebraic theory associated with C agrees with the algebraic theory for Ĉ.

Bridged Koszul Duality. Given an∞-category C containing geometric realisations, we can apply Theorem

4.3.1 of [Lur11b] to the monoidal ∞-category Endaug(C)id /−/ id and obtain the Koszul duality functor2

Algaug(End(C)) KD−−→ coAlgaug(End(C)) from monads to comonads. The underlying functor of the Koszul

dual of T is given by |Bar•(T )|. By Example 4.4.19 in [Lur11b], the restrictions define commutative squares

Algaug(Endc,σS (B))
KD

> coAlgaug(Endc,σS (B))

Algaug(Endσ(Mod
Cpl(I)
R ))

p1∨
KD
> coAlgaug(Endσ(Mod

Cpl(I)
R ))

p1∨

Algaug(Endc,σS (B))
KD

> coAlgaug(Endc,σS (B))

Algaug(Endσ(Pσ(Mod
Cpl(I)
R,f )))

p2∨
KD
> coAlgaug(Endσ(Pσ(Mod

Cpl(I)
R,f )))

p2∨

Algaug(Endc,σS (B))
KD

> coAlgaug(Endc,σS (B))

Algaug(Endσ(Pσ(Mod
Cpl(I)
R∗,f

)))

p3∨
KD
> coAlgaug(Endσ(Pσ(Mod

Cpl(I)
R∗,f

)))

p3∨

We fix an augmented realisation-preserving completed-free monad T ∈ Algaug(Endσ,f (Mod
Cpl(I)
R )) with asso-

ciated bridged monad TB ∈ Algaug(Endc,σ,f (Mod
Cpl(I)
R )) and write T = LT |

Mod
Cpl(I)
R,f

and T̂ = LhT |
Mod

Cpl(I)
R∗,f

.

We introduce notation for the comonads obtained by restricting the Koszul dual of TB:

C := p1(KD(TB)) = KD(T ) ∈ coAlgaug(End(Mod
Cpl(I)
R ))

C := p2(KD(TB)) = KD(T) ∈ coAlgaug(End(Pσ(Mod
Cpl(I)
R,f )))

Ĉ := p3(KD(TB)) = KD(T̂) ∈ coAlgaug(End(Pσ(Mod
Cpl(I)
R∗,f

)))

2We will differ in notation and write KD instead of Dλ.
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Observe that our definitions are set up to make the following diagram commute:

Mod
Cpl(I)
R <

Li
Pσ(Mod

Cpl(I)
R )

Lh
> Pσ(Mod

Cpl(I)
R∗

)

Mod
Cpl(I)
R

C∨
<
Li

Pσ(Mod
Cpl(I)
R )

C∨
Lh
> Pσ(Mod

Cpl(I)
R∗

)

Ĉ∨

Lemma 3.2.18 from the last section gives natural functors

coAlgC(Mod
Cpl(I)
R ) < coAlgC(Pσ(Mod

Cpl(I)
R,f )) > coAlgĈ(Pσ(Mod

Cpl(I)
R∗,f

))

Our principal aim is to study unary operations on the cohomotopy groups of C-coalgebras, i.e. to understand

the full subcategory of coAlgC(Mod
Cpl(I)
R ) spanned by free coalgebras C(ΣiR) on some suspension of the

unit R. For this, it is convenient to have a large family of preimages of ΣiR under the geometric realisation

functor Pσ(Mod
Cpl(I)
R,f )→ ModR at our disposal.

Notation 3.2.22. Given a socle C, the ath suspension of an object X computed in the pointed ∞-category

Pσ(C) is denoted by Sa ∧X and called the ath simplicial suspension of X.

Warning. If X is an object of the full subcategory Mod
Cpl(I)
R,f ↪→ Pσ(Mod

Cpl(I)
R,f ), then the ath simplicial

suspension Sa ∧ X is different from ΣaX, which denotes the ∞-categorical suspension of X computed in

Mod
Cpl(I)
R .

However, the natural functors Mod
Cpl(I)
R ← Pσ(Mod

Cpl(I)
R,f )→ Pσ(Mod

Cpl(I)
R∗,f

) preserve small colimits and we

therefore see that simplicial suspension in the middle goes to ordinary suspension on the left and simplicial

suspension on the right. Given a completed-free R-module spectrum X ∈ Mod
Cpl(I)
R,f and some nonnegative

integer a, we can define a bridged module which we can informally write as (ΣaX,Sa ∧X,Sa ∧ π∗(X)).

We introduce the following notation for certain groups of operations:

Definition 3.2.23. Given integers i, j and nonnegative integers a, b, we write

Qji = Qji (T ) := π0 MapcoAlg(C)(C(ΣiR), C(ΣjR))

Q
Sb(j)
Sa(i) = Q

Sb(j)
Sa(i)(T ) := π0 MapcoAlg(C)(C(Sa ∧ ΣiR),C(Sb ∧ ΣjR))

QS
b(j)

Sa(i) = QS
b(j)

Sa(i)(T ) := π0 MapcoAlg(Ĉ)(Ĉ(Sa ∧ ΣiR∗), Ĉ(Sb ∧ ΣjR∗))
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Using functoriality of the construction in Lemma 3.2.18, we obtain a diagram for all i, j, k ∈ Z and a, b ∈ Z≥0:

Qj+ai ×Qk+a+b
j+a > Qk+a+b

i

Q
Sa(j)
S0(i)

∧

×QSa+b(k)
Sa(j)

∧

> Q
Sa+b(k)
S0(i)

∧

QS
a(j)

S0(i)

∨
×QS

a+b(k)
Sa(j)

∨
> QS

a+b(k)
S0(i)

∨

The bottom row is determined algebraically in terms of the functor T̂ and therefore should be thought of as

the computable part of this diagram.

Our rough strategy in the next sections is to first lift elements along the lower vertical maps and then

compose them. Unfortunately, none of the bottom arrows is an isomorphism in examples of interest and we

therefore have many possible lifts. In the next sections, we shall address this difficulty.
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3.3 Weighted Structures

Fix a completed-free realisation-preserving augmented monad T ∈ Algaug(Endσ,f (Mod
Cpl(I)
R )) and write

C = KD(T ) = |Bar•(T )| for its Koszul dual comonad.

Definition 3.3.1. A weighted structure on T consists of a collection {B[w]
• → Bar•(T )}w∈Z≥1

of simplicial

completed-free realisation-preserving endofunctors over Bar•(T ) such that

1. The induced map
⊕

w B
[w]
• → Bar•(T ) is an equivalence.

2. For all r, s, and t in Z≥1 with t 6= r · s, the maps

C[t]→ C → C ◦ C → C[r] ◦ C[s], T [r] ◦ T [s]→ T ◦ T → T → T [t]

are null for C[w] = |B[w]
• | and T [w] = B

[w]
1 .

Given a weighted structure on T , we obtain a decomposition of KD(TB) = |Bar•(TB)| = |Bar•(T )B|.

Applying p1, p2, and p3, this gives rise to corresponding decompositions

C = KD(T ) ∼=
⊕
w

C[w], C = KD(T) ∼=
⊕
w

C[w], Ĉ = KD(T̂) ∼=
⊕
w

Ĉ[w]

The weighted structure on T hence allows us to define weighted operations:

Definition 3.3.2. Given integers i, j, nonnegative integers a, b, and w, we define

Qji [w] := π0 Map
Mod

Cpl(I)
R

(C[w](ΣiR),ΣjR)

Q
Sb(j)
Sa(i)[w] := π0 Map

Pσ(Mod
Cpl(I)
R,f )

(C[w](Sa ∧ ΣiR), (Sb ∧ ΣjR))

QS
b(j)

Sa(i)[w] := π0 Map
Pσ(Mod

Cpl(I)
R∗,f

)
(Ĉ[w](Sa ∧ ΣiR∗), S

b ∧ ΣjR∗)

The direct sum decompositions of C,C, and Ĉ give natural product decompositions

Qji
∼=
∏
w≥1

Qji [w], Q
Sb(j)
Sa(i)

∼=
∏
w≥1

Q
Sb(j)
Sa(i)[w], QS

b(j)
Sa(i)

∼=
∏
w≥1

QS
b(j)

Sa(i)[w]

Zero elements give inclusions from the individual factors into these products.

The maps Qj+bi+a ← Q
Sb(j)
Sa(i) → QS

b(j)
Sa(i) are induced by products of evident maps on the factors.
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The Canonical Lifting. We fix an augmented completed-free monad T ∈ Algaug(Endσ,f (Mod
Cpl(I)
R ))

endowed with a weighted structure Bar•(T ) =
⊕

w B
[w]
• . On p.64, we have constructed functors

coAlgC

(
Mod

Cpl(I)
R

)
< coAlgC

(
Pσ(Mod

Cpl(I)
R,f )

)
> coAlgĈ

(
Pσ(Mod

Cpl(I)
R∗,f

)

)

In order to study lifting properties of maps under the right functor, we introduce a technical definition.

Given a completed-free R∗-module M and a weight w, we can consider the chain complex of completed-free

R∗-modules hB
[w]
∗ (M) corresponding to the simplicial object hB

[w]
• (M) ∈ sMod

Cpl(I)
R∗,f

.

Definition 3.3.3. The completed-free R∗-module M is said to be p-Koszul for T if the cohomology of the

complex Hs(hB
[w]
∗ (M)) vanishes whenever s 6= logp(w) and is completed-free if s = logp(w).

Remark 3.3.4. Observe that ifM is p-Koszul, thenHs(hB
[w]
∗ (M)) = 0 for all s whenever w is not a power of p.

Lemma 3.3.5. Assume K ∈ Mod
Cpl(I)
R,f is such that π∗(K) is p-Koszul. Let j ∈ Z. Then:

1. π0 MapPσ(Mod
Cpl(I)
R,f )

(C[w](K), Sa ∧ ΣjR)→ π0 MapPσ(Mod
Cpl(I)
R∗,f

)
(Ĉ[w](π∗K), Sa ∧ ΣjR∗) is an isomor-

phism if a = logp(w). If a 6= logp(w), the right hand side vanishes.

2. π0 MapPσ(Mod
Cpl(I)
R,f )

(C[w](K), Sa ∧ ΣjR)→ π0 Map
Mod

Cpl(I)
R

(C[w](K),Σj+aR) is an isomorphism when-

ever a ≤ logp(w). If a > logp(w), the left hand side vanishes.

3. If w is not a power of p, then all of the above groups vanish. If w = pa, all three groups are isomorphic

to Map
Mod

Cpl(I)
R∗,f

(Ha(hB
[w]
• (π∗K)),ΣjR∗).

We spell out Lemma 3.3.5 in the specific case of interest to us (using Definition 3.3.2):

Corollary 3.3.6. If ΣiR∗ is p-Koszul for T at weight w, then:

1. Q
Sa(j)
S0(i) [w]→ QS

a(j)
S0(i) [w] is an isomorphism if a = logp(w). If a 6= logp(w), the right hand side vanishes.

2. Q
Sa(j)
S0(i) [w]→ Qj+ai [w] is an isomorphism if a ≤ logp(w). If a > logp(w), the left hand side vanishes.

3. If w is not a power of p, then Q
Sa(j)
S0(i) [w], QS

a(j)
S0(i) [w], Qa+j

i [w] vanish. If w = pa, then all three groups

are isomorphic.

We first deduce a useful statement:

Corollary 3.3.7. If ΣiR∗ is p-Koszul for T , then there are natural factorisations

Q
Sa(j)
S0(i) [v]×Q

Sb(k)
Sa(j)[w] > Q

Sb(k)
S0(i) [vw]

Q
Sa(j)
S0(i) ×Q

Sb(k)
Sa(j)

∨
∩

> Q
Sb(k)
S0(i)

∨
∩
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Proof of 3.3.7. Given some weight t 6= v · w, we consider the diagram

Q
Sa(j)
S0(i) [v]×Q

Sb(k)
Sa(j)[w] > Qa+j

i [v]×Qb+ka+j [w]

Q
Sb(k)
S0(i)

∨
> Qb+ki

∨

Q
Sb(k)
S0(i) [t]

∨
> Qb+ki [t]

∨

The long arrow on the right is null by condition (2) of the definition of weighted structures. The lowest

horizontal map is an injection by Corollary 3.3.6 (2).

Proof of 3.3.5. The map in part (1) can be obtained by applying π0 to the totalisation of the following map

X• → Y • of (pointed) cosimplicial spaces:

MapPσ(Mod
Cpl(I)
R,f )

(B
[w]
• (K), Sa ∧ ΣjR)→ MapPσ(Mod

Cpl(I)
R∗,f

)
(hB

[w]
• (K), Sa ∧ ΣjR∗)

Let Ba denote the a-fold (connected) delooping of topological monoids (this is of course not related to B
[w]
• )

and write N∗G• for the normalised cochain complex of a cosimplicial abelian group G•.

The E1-page of the Bousfield-Kan spectral sequence for X• has for t ≥ s ≥ 0:

Es,t1 = Nsπt(MapPσ(Mod
Cpl(I)
R,f )

(B
[w]
• (K), Sa ∧ ΣjR)) = Nsπt(B

a Map
Mod

Cpl(I)
R,f

(B
[w]
• (K),ΣjR))

=


Nsπt−a(Map

Mod
Cpl(I)
R,f

(B
[w]
• (K),ΣjR)) if t ≥ a

0 else

=


Nsπ0(Map

Mod
Cpl(I)
R,f

(B
[w]
• (K),Σj+a−tR)) if t ≥ a

0 else

∼=


Ns Map

Mod
Cpl(I)
R∗,f

(hB
[w]
• (π∗K),Σj+a−tR∗)) if t ≥ a

0 else

Hence for t ≥ s ≥ 0, we have

Es,t2
∼=


πs Map

Mod
Cpl(I)
R∗,f

(hB
[w]
• (π∗K),Σj+a−tR∗)) if t ≥ a

0 else
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Since the homology of the complex hB
[w]
• (π∗K) is projective in the abelian category Mod

Cpl(I)
R∗

, the universal

coefficient spectral sequence implies that

Es,t2
∼=


Map

Mod
Cpl(I)
R∗,f

(Hs(hB
[w]
• (π∗K)),Σj+a−tR∗) if s = logp(w), t ≥ a

0 else

The spectral sequence evidently degenerates at E2.

The Bousfield-Kan spectral sequence for Y • has for t ≥ s ≥ 0:

Ẽs,t1 = Nsπt(MapPσ(Mod
Cpl(I)
R∗,f

)
(hB

[w]
• (π∗K), Sa ∧ ΣjR∗)) = Nsπt(B

a Map
Mod

Cpl(I)
R∗,f

(hB
[w]
• (π∗K),ΣjR∗))

=


Nsπt−a(Map

Mod
Cpl(I)
R∗,f

(hB
[w]
• (π∗K),ΣjR∗) if t ≥ a

0 else

=


Ns Map

Mod
Cpl(I)
R∗,f

(hB
[w]
• (π∗K),ΣjR∗) if t = a

0 else

The last step follows since the mapping spaces in the category Mod
Cpl(I)
R∗,f

are discrete.

As before, we conclude Ẽs,t2 =


Map

Mod
Cpl(I)
R∗,f

(Hs(hB
[w]
• (π∗K)),ΣjR∗) if s = logp(w), t = a

0 else

.

This spectral sequence therefore also degenerates for obvious reasons.

We can depict the map of spectral sequences induced by X• → Y • as follows:

Figure 9: The map of spectral sequences for X• and Y • on the respective E2-pages.

The natural map E∞s,t → Ẽ∞s,t is therefore the identity if t = a and s = logp(w) and projection to zero

otherwise. Both spectral sequences vanish outside the vertical line s = logp(w) and converge.
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If w is not a power of p, this means that both groups are zero.

If w = ps, then there are no extension problems and we obtain a commutative square:

π0 MapPσ(Mod
Cpl(I)
R,f )

(C[w](K), Sa ∧ ΣjR) > π0 MapPσ(Mod
Cpl(I)
R∗,f

)
(Ĉ[w](π∗K), Sa ∧ ΣjR∗)

E∞s,s

∼=
∨

> Ẽ∞s,s

∼=∨

If a 6= s, the right hand side is zero. If a = s, then the lower map is an isomorphism.

Let us now proceed to statement (2). We can obtain the map in question by applying π0 to the totali-

sation of the following map X• → Z• of (pointed) cosimplicial spaces:

MapPσ(Mod
Cpl(I)
R,f )

(B
[w]
• (K), Sa ∧ ΣjR)→ Map

Mod
Cpl(I)
R

(B
[w]
• (K),Σj+aR)

The Bousfield-Kan spectral sequence for Z• has for t ≥ s ≥ 0:

˜̃Es,t1 = Nsπt(Map
Mod

Cpl(I)
R

(B
[w]
• (K),Σj+aR)) = Nsπ0(Map

Mod
Cpl(I)
R

(B
[w]
• (K),Σj+a−tR))

= Nsπ0(Map
Mod

Cpl(I)
R∗

(hB
[w]
• (π∗K),Σj+a−tR∗)

Once again, we conclude ˜̃Es,t2 =


Map

Mod
Cpl(I)
R∗,f

(Hs(hB
[w]
• (π∗K)),Σj+a−tR∗) if s = logp(w)

0 else

.

This spectral sequence degenerates along a line and we obtain a square

π0 MapPσ(Mod
Cpl(I)
R,f )

(C[w](K), Sa ∧ ΣjR) > π0 Map
Mod

Cpl(I)
R,f

(C[w](K),Σj+aR)

E∞s,s

∼=
∨

> ˜̃E∞s,s

∼=∨

if s = logp(w). We can read off the second claim.

3.4 Shearing and Suspending

In the situation of interest to us, the module ΣiR∗ will be p-Koszul whenever i is odd. This means that we can

lift along the map Q
Sa(j)
S0(i) [pa]

∼=−→ QS
a(j)

S0(i) [pa] and thereby produce certain operations in Qj+ai [pa] “from algebra”.

Our aim is to understand the composition of these lifted operations in topology in terms of algebra. At
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first, this seems problematic as we cannot directly postcompose in algebra since our representing classes

all lie in groups QS
a(j)

S0(i) [pa].

Shearing Operations. Fix i, j, k ∈ Z and a, b ∈ Z≥0. We shall first produce a commutative diagram

Qk+a+b
j+a [pb] < Q

Sb(k+a)
S0(j+a) [pb] > QS

b(k+a)
S0(j+a) [pb]

Qk+a+b
j+a [pb]

wwww
< Q

Sa+b(k)
Sa(j) [pb]

∨
> QS

a+b(k)
Sa(j) [pb]

∨

This will allow us to represent operations in topology by classes in algebra by which we can postcompose.

We shall call our technique shearing and denote all corresponding maps by Sha.

Fix X ∈ Mod
Cpl(I)
R,f . Let Sa• = ∆a/∂∆a be the standard simplicial a-sphere, pointed by ∗• → Sa• . We

obtain a simplicial object Sa• ∧X whose n-simplices are given by (Sa• ∧X)n = cofib

(⊕
∗n X →

⊕
San
X

)
.

The colimit of this simplicial diagram in Mod
Cpl(I)
R is given by ΣaX, and we therefore obtain an augmented

simplicial object ∆op
+ → Mod

Cpl(I)
R which we shall denote by (Sa• ∧ X → ΣaX).

Let B• : ∆op → Endf,σ(Mod
Cpl(I)
R ) be a simplicial object in completed-free functors which preserve realisa-

tions. Applying B• to the above augmented simplicial object gives rise to a functor ∆op×∆op
+ → Mod

Cpl(I)
R

which we write as (B•(S
a
• ∧ X) → B•(Σ

aX)). This in turn can be thought of as an augmented simplicial

object F• : ∆op
+ → C in the stable ∞-category C := Fun(∆op,Mod

Cpl(I)
R ).

We observe that the diagram G• : ∆op
+ → C given by (Sa• ∧Σ−aB•(Σ

aX)→ B•(Σ
aX)) is a left Kan extension

of its restriction to ∆op
≤a. By Lemma 1.2.4.19 in [Lur14], this implies that G• is also the right Kan extension

of its restriction to ∆op
+,≤a−1. Since the restriction of G• to ∆op

+,≤a−1 agrees with (F•)|∆op
+,≤a−1

(all non-

degenerate simplices of Sa lie above dimension a), we deduce the identification Ran
∆op

+

∆op
+,≤a−1

(F•)|∆op
+,≤a−1

∼= G•.

Restricting the tautological map F• → Ran∆op

∆op
+,≤a−1

(F•)|∆op
+,≤a−1

∼= G• back to ∆op, we obtain a map of

bisimplicial objects B•(S
a
• ∧X) → Sa• ∧ Σ−aB•(Σ

aX). Its value on objects is obtained by projecting onto

summands and using the canonical map B• → Σ−aB•Σ
a.

The colimit of this diagram in Pσ(Mod
Cpl(I)
R,f ) gives rise to an arrow |B•|(Sa∧X)→ Sa∧(LΣ−a)|B•|(ΣaX). If

B• = B
[w]
• for a weighted structure on a monad T , we obtain maps Sha : Q

Sb(k+a)
S0(j+a) [w]→ Q

Sa+b(k)
Sa(j) [w] given by:

Map
Pσ(Mod

Cpl(I)
R,f )

(C[w](Σj+aR), Sb ∧ Σk+aR)→ Map
Pσ(Mod

Cpl(I)
R,f )

(Sa ∧ (LΣ−a)C[w](Σj+aR), Sa+b ∧ ΣkR)

→ Map
Pσ(Mod

Cpl(I)
R,f )

(C[w](Sa ∧ ΣjR), Sa+b ∧ ΣkR)
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Applying the functors Lι : Pσ(Mod
Cpl(I)
R,f ) → Mod

Cpl(I)
R , Lh : Pσ(Mod

Cpl(I)
R,f ) → Pσ(Mod

Cpl(I)
R∗,f

) gives corre-

sponding maps of mapping spaces which fit into the following diagram:

Qk+a+b
j+a [pb] < Q

Sb(k+a)
S0(j+a) [pb] > QS

b(k+a)
S0(j+a) [pb]

Qk+a+b
j+a [pb]

wwww
< Q

Sa+b(k)
Sa(j) [pb]

Sha∨
> QS

a+b(k)
Sa(j) [pb]

Sha∨

For each i, j, k ∈ Z and a, b ∈ N, we therefore obtain a diagram

Qj+ai [pa] × Qk+a+b
j+a [pb] > Qk+a+b

i > Qk+a+b
i [pa+b]

Q
Sa(j)
S0(i) [pa]

'
∧

× Q
Sa+b(k)
Sa(j) [pb]

∧

> Q
Sa+b(k)
S0(i)

∧

> Q
Sa+b(k)
S0(i) [pa+b]

'
∧

Q
Sb(k+a)
S0(j+a) [pa]

'

<

Sha

<

QS
a(j)

S0(i) [pa]

∨
× QS

a+b(k)
Sa(j) [pb]

∨
> QS

a+b(k)
S0(i)

∨
> QS

a+b(k)
S0(i) [pa+b]

'

∨

QS
b(k+a)

S0(j+a) [pa]

∨
Sha

<

This diagram allows us to understand composition in topology in terms of (nonadditive) derived functors in

algebra whenever ΣiR,Σj+aR are both p-Koszul. We will elaborate on this below.

Suspending Operations. We can also suspend operations. Given a map S → T of completed-free

realisation-preserving monads, we obtain:

Qj+bi+a(T ) < Q
Sb(j)
Sa(i)(T ) > QS

b(j)
Sa(i)(T )

Qj+bi+a(S)

∨
< Q

Sb(j)
Sa(i)(S)

∨
> QS

b(j)
Sa(i)(S)

∨

Let T be a completed-free monad. The endofunctor TΣs = ΣsTΣ−s inherits the structure of a completed-free

monad, and there is an evident morphism of monads TΣs → T . We observe equivalences

Qj+bi+a(TΣs) < Q
Sb(j)
Sa(i)(T

Σs) > QS
b(j)

Sa(i)(T
Σs)

Qj+b−si+a−s(T )

∼=∨
< Q

Sb(j−s)
Sa(i−s)(T )

∼=∨
> QS

b(j−s)
Sa(i−s)(T )

∼=∨
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Combining this with the previous diagram (for S = TΣ), we obtain the diagram

Qj+bi+a(T ) < Q
Sb(j)
Sa(i)(T ) > QS

b(j)
Sa(i)(T )

Qj+b−si+a−s(T )

Susps∨
< Q

Sb(j−s)
Sa(i−s)(T )

Susps∨
> QS

b(j−s)
Sa(i−s)(T )

Susps∨

A corresponding diagram is induced on the weighted pieces.

3.5 Composing Operations in Algebra and Topology

We can now combine our results and constructions from the preceding sections, define certain operations in

topology from operations in algebra (via the canonical lifts described in Section 3.3 ), and prove that their

compositions are compatible:

Theorem 3.5.1. Let T ∈ Algaug(Endσ,f (Mod
Cpl(I)
R )) be an augmented completed-free realisation-preserving

monad endowed with a weighted structure Bar•(T ) =
⊕

w B
[w]
• . Fix integers i, j, k and nonnegative integers

a, b, and s. Assume that ΣiR∗ and Σj+a+sR∗ are p-Koszul. Then the following diagram commutes:

Qj+ai [pa] × Qk+a+b
j+a [pb] > Qk+a+b

i > Qk+a+b
i [pa+b]

Q
Sa(j)
S0(i) [pa]

'
∧

× Q
Sa+b(k)
Sa(j) [pb]

∧

> Q
Sa+b(k)
S0(i)

∧

> Q
Sa+b(k)
S0(i) [pa+b]

'
∧

Q
Sb(k+a+s)
S0(j+a+s) [pa]

<

Sha ◦ Susps

<

QS
a(j)

S0(i) [pa]

'

∨
× QS

a+b(k)
Sa(j) [pb]

∨
> QS

a+b(k)
S0(i)

∨
> QS

a+b(k)
S0(i) [pa+b]

'

∨

QS
b(k+a+s)

S0(j+a+s) [pa]

'

∨
Sha ◦ Susps

<

We have therefore produced a commutative diagram

QS
a(j)

S0(i) [pa]×QS
b(k+a+s)

S0(j+a+s) [pb]
id×(Sha ◦ Susps)

> QS
a(j)

S0(i) [pa]×QS
a+b(k)

Sa(j) [pb] > QS
a+b(k)

S0(i) [pa+b]

Qj+ai [pa]×Qk+a+b+s
j+a+s [pb]

∨
id× Susps

> Qj+ai [pa]×Qk+a+b
j+a [pb] > Qk+a+b

i [pa+b]

∼=∨
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Chapter 4

Operations on the E-theory of Spectral Lie Algebras

In this chapter, we compute the operations which act naturally on the homotopy groups of Lie algebras in

K(h)-local E-module spectra.

After introducing background and preliminary results in Section 4.1, we will construct three kinds of opera-

tions in Section 4.2: additive unary operations labelled by elements in the power ring HLie, the nonadditive

unary operation θ, and the binary Lie bracket [−,−]. We then proceed to establish the various relations

between these operations in Section 4.3. In Section 4.4, we axiomatise the resulting structure and define the

notion of a Hecke Lie algebra. We then establish that, up to completion, we have indeed found all operations

and all relations between them.

4.1 Preliminary Considerations

In this section, we will set the stage for our later computations. After briefly reviewing the basics of Morava

E-theory in Section 4.1.1, we discuss symmetric sequences in Section 4.1.2 and use them to give a formal

definition of spectral Lie algebras. We then collect several basic facts about Goodwillie’s calculus of functors

in Section 4.1.3 and discuss applications to the theory of spectral Lie algebras.

4.1.1 Lubin-Tate Theory

We fix a prime p, a natural number h, and a (1-dimensional, commutative) formal group G0 of height h

over the field Fp. By the theorem of Goerss–Hopkins–Miller, there is an essentially unique even periodic

E∞-ring spectrum E for which E0 = π0(E) is complete local Noetherian with residue field Fp and for which

the formal group G = Spf π0(ECP
∞

) is a universal deformation of G0. This spectrum E is usually called

Morava E-theory. In order to make the nature of this object more readily accessible to a wider audience, we
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also use the name Lubin-Tate theory for E.

We also fix a coordinate for G, i.e. a formal group law f ∈ π0(E)[[x, y]] whose associated formal group is G.

Such a complex orientation in particular determines a Thom isomorphism and an equivalence of näıve Σ2-

spectra E ⊗ (S2 ⊗ S2) ∼= E ⊗ S4, where Σ2 acts trivially on the right hand side and by swapping on the left

hand side (cf. [MNN15]).

We recall that there is a (noncanonical) isomorphism E∗ = π∗(E) ∼= W (Fp)[[u1, . . . , uh−1]][β±1] with β in

degree 2 and write I ⊂ E0 for the unique maximal ideal. Work by Hovey-Strickland [HS99] implies that

the ∞-category Mod
Cpl(I)
E of I-complete E-module spectra (in the sense of Definition 5.1.2 in Appendix A)

is naturally equivalent to the ∞-category of K(h)-local E-module spectra and that the completion functor

(−)∧I is given by K(h)-localisation.

The ∞-category Mod
Cpl(I)
E comes endowed with a symmetric monoidal structure ⊗ obtained by postcom-

posing the usual (relative) smash product of E-module spectra (over E) with K(h)-localisation. We shall

write ⊕ for the coproduct in Mod
Cpl(I)
E , which can be computed by first taking the coproduct in E-module

spectra and then K(h)-localising.

The ∞-category Mod
Cpl(I)
E is naturally tensored over spaces and spectra, and we shall denote the product

of a space or spectrum X with an object M ∈ Mod
Cpl(I)
E simply by X ⊗M .

There is a natural “forgetful-free”-adjunction SpK(h) � Mod
Cpl(I)
E . Write G for the Morava stabiliser group.

Definition 4.1.1. The ∞-category Mod
Cpl(I)
E,G of G-equivariant K(h)-local module spectra over Lubin-Tate

space is the ∞-category of coalgebras for the comonad on Mod
Cpl(I)
E attached to the above adjunction.

One can combine Lurie’s∞-categorical Barr-Beck theorem (see [Lur14]) with the smash product theorem of

Hopkins–Ravenel (see [Rav92]) to prove that the canonical map SpK(h) → Mod
Cpl(I)
E,G is an equivalence (see

[Mat17]).

We will also consider the abelian category Mod
Cpl(I)
E∗

of L-complete modules in the category ModE∗ as

formalised in Definition 5.1.1 in Appendix A. As before, we write Mod
Cpl(I)
E∗,f

for the full subcategory spanned

by all completed-free (also sometimes called pro-free) modules in the sense of Definition 5.1.14 in Appendix A.

Using the fact that E∗ is a regular local ring, Hovey and Strickland prove in Theorem A.9 of [HS99] that an

E∗-module M is completed-free if and only if it is projective in the abelian category Mod
Cpl(I)
E∗

.

The category Mod
Cpl(I)
E∗

has enough projectives and we may therefore consider its nonnegative derived

category D−≥0(Mod
Cpl(I)
E∗

) (see section 1.3.2 in [Lur14] for a careful higher-categorical treatment). This

classical object gives a concrete model for the ∞-category Pσ(Mod
Cpl(I)
E∗

) from Definition 3.2.2:
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Proposition 4.1.2. The derived functor ι of the canonical inclusion ι : Mod
Cpl(I)
E∗,f

→ D−≥0(Mod
Cpl(I)
E∗

) into

the heart gives rise to an equivalence of ∞-categories Lι : Pσ(Mod
Cpl(I)
E∗,f

)→ D−≥0(Mod
Cpl(I)
E∗

).

Proof. By Proposition 4.2.15 in [Lur11a], it suffices to check that ι is fully faithful and preserves small

coproducts (which is evident), that every element in its image is projective (which is true by Proposition

7.2.2.6. in [Lur14]), and that we can detect equivalences D → D′ in the derived category by considering

mapping spaces out of elements in the image of ι (which holds because equivalences are detected in homology).

4.1.2 ∞-Operads as Symmetric Sequences

We define a monoidal ∞-category of symmetric sequences and construct specific algebra objects of interest

inside it, namely the E∞-operad and the spectral Lie operad. The definition of the composition product on

symmetric sequences is an ∞-categorical version of a 1-categorical construction due to Trimble [Tri]. We

thank our advisor for a particularly helpful discussion related to the material of this section.

Let PrL denote the∞-category of presentable∞-categories and functors between them which preserve small

colimits. This category can be endowed with the structure of a symmetric monoidal ∞-category: Given two

∞-categories C,D in PrL, the ∞-category C ⊗ D is the universal presentable ∞-category which receives a

functor C × D → C ⊗ D preserving small colimits in each variable. We refer to Section 4.8 in [Lur14] for a

careful treatment.

Assume now that we are given a commutative algebra object A ∈ CAlg(PrL), i.e. a specific presentable

symmetric monoidal ∞-category for which the symmetric monoidal product preserves small colimits in each

variable. The forgetful functor CAlg(PrL)A/ → CAlg(PrL) admits a left adjoint A⊗(−) by Theorem 4.5.3.1.

and Remark 4.8.1.23 in [Lur14].

Write Fin
∼= for the category of finite sets and bijections. Disjoint union endows this category with a symmetric

monoidal structure, and the corresponding symmetric monoidal ∞-category N(Fin
∼=) is in fact the free

symmetric monoidal ∞-category on a point. The presheaf category P(N(Fin
∼=)) = Fun(N(Fin

∼=)op,S)

inherits a canonical symmetric monoidal structure via Day convolution by 4.8.1.12 in [Lur14]. Since the Day

convolution product commutes with small colimits separately in each variable, we can think of P(N(Fin
∼=))

as an object in CAlgPrL . Given any other C ∈ CAlg(PrL), Remark 4.8.1.9. in [Lur14] implies that restrictions

define an equivalence

FunCAlg(PrL)(P(N(Fin
∼=)), C) '−→ FunCAlg(Cat∞)(N(Fin

∼=), C) '−→ C
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Definition 4.1.3. Given A ∈ CAlg(PrL) a presentable symmetric monoidal ∞-category for which the

symmetric monoidal product distributes over small colimits, the∞-category SSeq(A) of A-valued symmetric

sequences is defined as SSeq(A) := Fun(N(Fin
∼=),A).

Using Proposition 4.8.1.16 of [Lur14], there are canonical equivalences

Fun(N(Fin
∼=),A) ∼= FunL(P(N(Fin

∼=)op),A) ∼= FunR(P(N(Fin
∼=)),Aop)op ∼= P(N(Fin

∼=))⊗A

Given any D ∈ CAlg(PrL)A/, the following restrictions therefore define equivalences:

FunCAlg(PrL)A/
(SSeq(A),D)

'−→ FunCAlg(PrL)(P(N(Fin
∼=)),D)

'−→ FunCAlg(Cat∞)(N(Fin
∼=),D)

'−→ D

Taking D = SSeq(A), the reverse of the evident composition product on the left endows SSeq(A) with the

structure of a monoidal∞-category. We call this product ◦ the composition product of symmetric sequences.

Definition 4.1.4. The ∞-category Op(A) of ∞-operads in A is given by Alg(SSeq(A)).

We can identify A with the full subcategory of SSeq(A) spanned by all functors N(Fin
∼=)→ A for which all

values on nonempty sets are initial in A. In FunCAlg(PrL)A/
(SSeq(A),SSeq(A)), this corresponds to functors

whose essential image is contained in A. The subcategory of all such functors is evidently closed under

precomposition, and this implies that the natural (left) SSeq(A)-tensored structure on SSeq(A) restricts

and makes A into a (left) SSeq(A)-tensored ∞-category. We obtain a functor of monoidal ∞-categories

m : SSeq(A)→ End(A). On algebra objects, this gives rise to a functor m : Op(A)→ Alg(End(A)) assigning

a monad to every operad. We abuse notation here by denoting these two functors by the same symbol.

Given a nonnegative integer n, we write Fin
∼=
n for the full subcategory of Fin

∼= spanned by all sets of

cardinality exactly n. Assuming that A is pointed, there is a functor which is both left and right adjoint to

the restriction functor SSeq(A)→ Fun(N(Fin
∼=
n ),A). We write pn for the resulting endofunctor of SSeq(A)

and obtain natural transformations pn → id and id → pn. Informally speaking, pn takes a symmetric

sequence and changes all components other than the nth one into the zero object.

If L : A � B : R is an adjunction between objects in CAlg(PrL), one can consider the naturally induced

adjunction L : SSeq(A) � SSeq(B) : R. We observe that the functor L is monoidal for the composition

product, which implies that its right adjoint R is lax monoidal.
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Concrete Symmetric Sequences

We shall now construct specific elements of interest in SSeq(Sp). For this, we start with the cofibrantly

generated model category Sp of S-modules in the sense of [EKMM97], Chapter VII.

We set SSeq(Sp) := Fun(Fin
∼=,Sp). Ordinary Day convolution can be used to endow this functor category

with the structure of a symmetric monoidal model category. Here weak equivalences and fibrations are

defined pointwise. We write SSeq(Sp)c for the category of cofibrant symmetric sequences in this model

structure. We say that a symmetric sequence is reduced if M(0) = 0 and M(1) = S0 is the (non-cofibrant)

sphere spectrum. A symmetric sequence M is said to be Σ-cofibrant1 if M(n) is projectively cofibrant in the

functor category Fun(Fin
∼=
n ,Sp) for every n 6= 1 and the spectrum M(1) is either cofibrant or equal to S0. Let

SSeq(Sp)c denote the category of Σ-cofibrant symmetric sequences. As before, Fin
∼=
n denotes the category

of sets of cardinality n.

We can define the strict composition product of two elements M,N ∈ SSeq(Sp) by the rule

(M ◦N)J =

∞∐
r=0

( ∐
J=J1

∐
...

∐
Jr

Mr ⊗NJ1
⊗ . . .⊗NJr

)
Σr

We refer to Rezk’s thesis [Rez96] for a nice treatment.

Warning. The projective model structures on symmetric sequences is not left closed for the composition

product and hence SSeq(Sp) does not satisfy the axioms of a monoidal model category for this product.

The underlying ∞-category of SSeq(Sp) is given by the functor category SSeq(Sp) = Fun(N(Fin
∼=), Sp).

Definition 4.1.5. A strict operad in spectra is an algebra object in SSeq(Sp). Write Op(Sp) for the result-

ing category. Let Opred(Sp) be the subcategory of operads whose underlying symmetric sequence is reduced.

The following is essentially contained in Lemma 9.20 in [AC11] :

Lemma 4.1.6. If M is a Σ-cofibrant symmetric sequence, then the two functors FM := (−) ◦ M and

SM := M ◦ (−) both preserve cofibrant symmetric sequences and weak equivalences between them.

Proof. Fix a finite set J and an integer r ≥ 0. The proof of Lemma 9.20 in [AC11] implies that the two

functors which attach to a symmetric sequence N the ΣJ × Σr-spectra

∐
J=J1

∐
...

∐
Jr

Mr ⊗NJ1 ⊗ . . .⊗NJr ,
∐

J=J1
∐
...

∐
Jr

Nr ⊗MJ1 ⊗ . . .⊗MJr

1We deviate very slightly from the terminology used in [AC11].

80



both send (weak equivalences between) cofibrant symmetric sequences to (weak equivalences between) pro-

jectively cofibrant ΣJ × Σr-spectra. The result follows from the definition of the composition product by

observing that taking coinvariants for a group action is a left Quillen functor.

We can identify Sp with the full subcategory of SSeq(Sp) spanned by all symmetric sequences which vanish

on all nonempty finite sets. The functor S(−) from Lemma 4.1.6 restricts and thus gives rise to a monoidal

functor S(−) : SSeq(Sp)→ End(Sp) which sends M to SM (X) =
∐
n≥1(M(n)⊗X⊗n)Σn .

Corollary 4.1.7. If M is a Σ-cofibrant symmetric sequence, then the functor SM : Sp → Sp preserves

cofibrant S-modules and weak equivalences between them.

Lemma 4.1.8. If C is a Σ-cofibrant symmetric sequence, then then functor (−)◦C : SSeq(Sp)→ SSeq(Sp)

preserves Day convolution and small homotopy colimits.

Proof. The first claim appears as Lemma 2.2.5 in Rezk’s thesis [Rez96]. The second part is a standard.

By the universal property of the “underlying ∞-category”-construction (see section 1.3.4. in [Lur14]), we

obtain functor of monoidal ∞-categories:

Φ : N(SSeqc(Sp))
C 7→(−)◦C−−−−−−−→ FunCAlg(PrL)Sp/

(SSeq(Sp),SSeq(Sp))rev = SSeq(Sp)

where the superscript (−)rev denotes the reverse monoidal structure F ◦rev G := G ◦ F .

By Theorem 9.8 in [AC11] (an elaboration on work by Basterra-Mandell [BM05]), the category Opred(Sp)

of reduced operads in Sp carries a cofibrantly-generated simplicial model category structure with weak

equivalences and fibrations defined termwise. By Proposition 9.14 in [AC11], the underlying symmetric

sequence of any cofibrant reduced operad is Σ-cofibrant (as defined in the preceding section). Together with

the above construction, we obtain a functor

Φ : N(Opred(Sp))→ N(Alg(SSeqc(Sp)))→ Alg(SSeq(Sp))

We abuse notation and assign two meanings to the letter Φ – which one applies is clear from the context.

A slightly more general version of Theorem 9.8. in [AC11] shows that the category of left modules over a

cofibrant reduced operad carries a cofibrantly generated simplicial model structure with termwise defined

weak equivalences and fibrations. Cofibrant replacement in modules then gives rise to a functor

N(ModO(SSeq(Sp)))→ ModΦ(O)(SSeq(Sp))
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4.1.3 Goodwillie Derivatives

Write sSet∗ for the model category of pointed simplicial sets and [sSet∗, sSet∗] for the category of pointed

simplicial homotopy functors sSet∗ → sSet∗. Attaching Goodwillie derivatives to symmetric sequences gives

rise to a functor ∂∗ : [sSet∗, sSet∗]→ SSeq(Sp) (see [AC11]).

Applying this to the identity functor F = id, we obtain a symmetric sequence ∂∗(id) of spectra. Its values

have been computed in work by Johnson [Joh95] and Arone-Mahowald [AM99]: There is an equivalence

of Σn-spectra ∂n(id) ∼= D(Σ|Πn|�) between the nth Goodwillie derivative of the identity functor and the

Spanier-Whitehead dual of the (suspended) partition complex. Ching’s work [Chi05] on tree grafting endows

the symmetric sequence D(Σ|Πn|�) with the structure of a strict reduced operad in spectra (cf. also [Sal98]).

Definition 4.1.9. The (shifted) spectral Lie operad OΣ Lie is given by Φ(D(Σ|Π∗|�)) ∈ Alg(SSeq(Sp)).

We can also define a strict reduced operad Onu
Comm ∈ Opred(Sp) whose value is the sphere spectrum S0 for

every nonempty set, the zero spectrum on the empty set, and all of whose structure maps are the identity.

Definition 4.1.10. The nonunital E∞-operad OnuComm is given by Φ(Onu
Comm) ∈ Alg(SSeq(Sp)).

Algebras over the monad associated with OnuComm are just nonunital commutative algebra objects in the

symmetric monoidal ∞-category of spectra.

Assume that we are given A ∈ CAlg(PrL)Sp/. We write Onu AComm, OAΣ Lie ∈ Op(A) for the operads obtained

by applying the monoidal functor (A⊗−) : SSeq(Sp)→ SSeq(A) coming from the unique colimit-preserving

symmetric monoidal functor Sp −→ A sending the sphere spectrum to the unit (see Corollary 4.8.2.19 in

[Lur14]). We let TA = m(Onu AComm) and LA = m(OAΣ Lie) denote the corresponding monads on A.

Definition 4.1.11. A (shifted) Lie algebra or a (nonunital) E∞-ring in A is an algebra for the monad

LA or TA respectively. We write AlgΣ Lie(A) or AlgCommnu(A) for the resulting ∞-categories. A homotopy

(shifted) Lie algebra or a nonunital H∞-ring in hA is an algebra for hLA =
⊕

n D(Σ|Πn|�) ⊗hΣn
(−)⊗n or

hTA =
⊕

n(−)⊗nhΣn
. Write AlgΣ Lie(hA) or AlgCommnu(hA) for the resulting categories.

We restrict attention to the case A = Mod
Cpl(I)
E the ∞-category of K(h)-local E-module spectra. Theorem

4.3.1. in [Lur11b] gives a Koszul duality functor KD : Algaug(SSeq(Mod
Cpl(I)
E ))→ coAlgaug(SSeq(Mod

Cpl(I)
E )).

We can apply this functor to the nonunital E∞-operad Onu Mod
Cpl(I)
E

Comm to obtain the Koszul dual coalgebra in

symmetric sequences KD(Onu Mod
Cpl(I)
E

Comm ) ∈ coAlgaug(SSeq(Mod
Cpl(I)
E )).

The following lemma holds in greater generality, but we will only present what we need in our computation:
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Lemma 4.1.12. Let X be a dualisable spectrum. There is a natural homotopy commutative diagram

OMod
Cpl(I)
E

Σ Lie ◦ OMod
Cpl(I)
E

Σ Lie ◦ D(E⊗X) > OMod
Cpl(I)
E

Σ Lie ◦ D(E⊗X)

D
(

KD(Onu Mod
Cpl(I)
E

Comm ) ◦KD(Onu Mod
Cpl(I)
E

Comm ) ◦ (E⊗X)

)ν◦ν∨

> D
(

KD(Onu Mod
Cpl(I)
E

Comm ) ◦ (E⊗X)

)ν∨

Here D(X) = Map
Mod

Cpl(I)
E

(X,E) and (E⊗−) : Sp → Mod
Cpl(I)
E is the unique functor preserving small

colimits and sending S to E.

Proof. Corollary 5.4.20 in Appendix D can be used to produce a homotopy commutative square:

OSpΣ Lie ◦ O
Sp
Σ Lie ◦ DX > OSpΣ Lie ◦ DX

D(KD(Onu Sp
Comm) ◦KD(Onu Sp

Comm) ◦X)

∨
> D(KD(Onu Sp

Comm) ◦X)

∨

The vertical maps are given by norm maps and the canonical maps from coproducts to products. We apply

the functor (E⊗−) and obtain:

OMod
Cpl(I)
E

Σ Lie ◦ OMod
Cpl(I)
E

Σ Lie ◦ (E⊗DX) > OMod
Cpl(I)
E

Σ Lie ◦ (E⊗DX)

E⊗(OSpΣ Lie ◦ O
Sp
Σ Lie ◦ DX)

∼=∨
> E⊗(OSpΣ Lie ◦ DX)

∼=∨

E⊗D
(

KD(Onu Sp
Comm) ◦KD(Onu Sp

Comm) ◦X
)∨

> E⊗(D
(

KD(Onu Sp
Comm) ◦X)

)∨

D
(

KD(Onu Mod
Cpl(I)
E

Comm ) ◦KD(Onu Mod
Cpl(I)
E

Comm ) ◦ (E⊗X)

)∨

> D
(

KD(Onu Mod
Cpl(I)
E

Comm ) ◦ (E⊗X)

)∨

Here we use that there is an equivalence E⊗KD(Onu Sp
Comm) ∼= KD(E⊗Onu Sp

Comm).

We write ν : OMod
Cpl(I)
E

Σ Lie ◦ D(E⊗X) → D(KD(Onu Mod
Cpl(I)
E

Comm ) ◦ (E⊗X)) for the above transformation. We

recall the functors pj defined on p.79 and observe that the transformation ν has components given by

νj : pjO
Mod

Cpl(I)
E

Σ Lie ◦ D(E⊗X)
'−→ D(pj KD(Onu Mod

Cpl(I)
E

Comm ) ◦ (E⊗X)) (which are equivalences since K(h)-local

Tate spectra vanish) in the sense that the following two squares commute up to homotopy:

OMod
Cpl(I)
E

Σ Lie ◦ D(E⊗X) > D(KD(Onu Mod
Cpl(I)
E

Comm ) ◦ (E⊗X))

pjO
Mod

Cpl(I)
E

Σ Lie ◦ D(E⊗X)

∨
∧

> D(pj KD(Onu Mod
Cpl(I)
E

Comm ) ◦ (E⊗X))

∨
∧
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Arone-Ching [AC11] upgrade the above assignment to a functor [sSet∗, sSet∗] → Mod∂∗(id)(SSeq(Sp))

landing in left modules over the symmetric sequence ∂∗(id) (they in fact produce bimodules, but we will not

need this additional structure).

We compose with our previous assignments to obtain a functor N([sSet∗, sSet∗])→ AlgL(End(Mod
Cpl(I)
E )).

Given X ∈ Mod
Cpl(I)
E , we furthermore have an evaluation functor evX : End(Mod

Cpl(I)
E )→ Mod

Cpl(I)
E . This

is a functor of End(Mod
Cpl(I)
E )-tensored ∞-categories, and we deduce the existence of a natural map

N([sSet∗, sSet∗])→ Modm(∂∗(id))(End(Mod
Cpl(I)
E ))

evX−−→ AlgΣ Lie(Mod
Cpl(I)
E )

Write the Lie algebra corresponding to a module spectrum X and a functor F as LF (X). We observe

that Lid(X) = L(X). Note that the underlying homotopy Lie algebra of LF (X) is simply given by

LF (X) =
⊕

n ∂n(F )⊗hΣn
X⊗n where ∂n(F ) denotes the usual Goodwillie derivatives.

Example 4.1.13 (Precomposing with Suspension). Given a functor F in [sSet∗, sSet∗], we can precompose

with the suspension functor Σi to obtain a new functor FΣi. By Example 19.4 in [AC11] (cf. Section

2.2 of [Beh12]), the Goodwillie derivatives of FΣi are given by ∂∗(FΣi) = ∂∗(F ) ⊗ (Si)∗ where the left

∂∗(id)-module structure is obtained from the obvious structure maps

∂k(id)⊗(∂n1
(F )⊗(Si)n1)⊗ . . .⊗(∂nk(F )⊗(Si)nk) ∼= (∂k(id)⊗∂n1

(F )⊗ . . .⊗∂nk(F ))⊗(Si)n1⊗ . . .⊗(Si)nk)

−→ ∂n1+...+nk(F )⊗ (Si)n1+...+nk

We have an equivalence of Lie algebras LF◦Σi(X) ∼= LF (ΣiX).

Example 4.1.14 (Precomposing with a Power). We can also precompose a functor F with the “nth power

functor” Pn(−) = (−)∧n. Writing n∗ for the symmetric sequence (∗, . . . , ∗,Σn+, ∗, ∗, . . .), an evident gener-

alisation of the argument of Behrens for n = 2 in Lemma 2.2.5 of [Beh12] establishes an equivalence of left

∂∗(id)-modules ∂∗(FP
n) = ∂∗(F )◦n∗. There is a natural equivalence of Lie algebras LF◦Pn(X) ∼= LF (X⊗n).

Example 4.1.15 (Postcomposing with Ω). We can also postcompose a functor F with the loops functor Ω to

define a new functor ΩF . The Goodwillie derivatives are given by function spectra ∂∗(ΩF ) = Map(S1, ∂∗(F )).

84



Again by Example 19.4 [AC11], the ∂∗(id)-module structure is given by

∂k(id)⊗Map(S1, ∂n1(F ))⊗ . . .⊗Map(S1, ∂nk(F ))→ Map(S1, ∂k(id)⊗ ∂n1(F )⊗ . . .⊗ ∂nk(F ))

−→ Map(S1, ∂n1+...+nk(F ))

where the first map uses the diagonal of S1.

We observe that there is a natural equivalence e of underlying spectra LΩF (X) ∼= Σ−1LF (X).

Differentiating the EHP Sequence

In this section, we shall recall the interaction of the EHP sequence with Goodwillie calculus as worked out

by Arone-Mahowald [AM99] and Behrens [Beh10].

The EHP sequence of functors id→ ΩΣ→ ΩΣSq gives rise to a sequence of left ∂∗(id)-modules

∂∗(id)→ ∂∗(ΩΣ)→ ∂∗(ΩΣSq)

Given X ∈ Mod
Cpl(I)
E , we obtain a sequence of spectral Lie algebras Lid(X)→ LΩ(ΣX)→ LΩ(ΣX ⊗X).

For X = Σ2n−1E an odd suspension, we therefore have the following diagram of module spectra

Lid(Σ2n−1E) > LΩ(Σ2nE) > LΩ(Σ4n−1E)

L(Σ2n−1E)

'
∨

Σ−1L(Σ2nE)

'
∨

Σ−1L(Σ4n−1E)

'
∨

The top sequence is a sequence of Lie algebras. This sequence is in fact a fibre sequence of underlying spectra

by Section 4 of [AM99], and it splits into a direct sum of fibre sequences

∂w(id) ⊗
hΣw

(Σ2n−1E)⊗w > ∂w(Ω) ⊗
hΣw

(Σ2nE)⊗w > ∂w
2

(Ω) ⊗
hΣw

2

(Σ4n−1E)⊗
w
2

D(Σ|Πw|�) ⊗
hΣw

(Σ2n−1E)⊗w

'
∨

Σ−1D(Σ|Πw|�) ⊗
hΣw

(Σ2nE)⊗w

'
∨

Σ−1D(Σ|Πw
2
|�) ⊗

hΣw
2

(Σ4n−1E)⊗
w
2

'
∨

where we again use the convention that the right hand spectrum vanishes for w odd.
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Free Lie algebras on nonconnective spectra

Let R be any complex oriented ring spectrum and V a complex representation of a finite group G. The

orientation of E provides an equivalence of näıve G-spectra E ⊗ SV '−→ E ⊗ S|V |. Applying this to the

standard action of Σn on Cn, we obtain an equivalence of näıve Σn-spectra E ⊗ (S2)⊗n
'−→ E ⊗ (S2n).

Given any spectrum X, we can apply this to deduce an equivalences of Σn-spectra

R⊗ D(Σ|Πn|�)⊗X⊗n ∼= R⊗ Σ−2nD(Σ|Πn|�)⊗ (Σ2X)⊗n ∼= R⊗ Σ−4nD(Σ|Πn|�)⊗ (Σ4X)⊗n = . . .

We deduce that for any integer k, there is an equivalence

(R⊗ D(Σ|Πn|�)⊗X⊗n)hΣn
∼= (R⊗ Σ−2knD(Σ|Πn|�)⊗ (Σ2kX)⊗n)hΣn

Applying this to the case R = Fp, this makes it possible to compute the Fp-homology of any free spectral

Lie algebra and hence solve a case which was left unsolved in [AC15] and [Kja16] (cf. Conjecture 2.14 in

[Kja16]). In particular, we obtain a fibre sequence

(R⊗ D(Σ|Πw|�)⊗ (S2n−1)⊗w)hΣw > (Σ−1R⊗ D(Σ|Πw|�)⊗ (S2n)⊗w)hΣw > (Σ−1R⊗ D(Σ|Πw
2
|�)⊗ (S4n−1)⊗

w
2 )hΣw

2

for all values of n.

Differentiating the Hilton-Milnor Theorem

Let w be a word in the free spectral Lie algebra on generators x1, . . . , xk involving the ith generator

ni times. Given pointed spaces X1, . . . , Xk, we write w(X1, . . . , Xk) for the space obtained by letting

the bracket act as smash product. The iterated Samelson product gives rise to a natural transformation

φw : ΩΣw(X1, . . . , Xk)→ ΩΣ(X1 ∨ . . . ∨Xk). Given integers i1, . . . , ik, we write Nw =
∑
njij . We obtain a

transformation of functors from spaces to spaces by considering

ΩΣ1+NwPNw(−) = ΩΣw(Σi1−, . . . ,Σik−) ◦∆(−)→ ΩΣ(Σi1 − ∨ . . . ∨ Σik−) ◦∆(−)

Taking Goodwillie derivatives gives a map of left ∂∗(id)-modules

Map(S1, ∂∗(id)⊗ (S1+Nw)∗) ◦ (Nw)∗ = ∂∗(ΩΣ1+N ) ◦ (Nw)∗ −→ Map(S1, ∂∗(id)⊗ (Si1+1 ∨ . . . ∨ Sik+1)∗)
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Here we again used Example 19.4 in [AC11].

We obtain a map of shifted Lie algebras FΩ(S1+Nw)→ FΩ(Si1+1 ∨ . . .∨Sik+1). The Hilton-Milnor theorem

can be used to prove that the map of spectra
⊕

w∈Bk FΩ(S1+Nw) → FΩ(Si1+1 ∨ . . . ∨ Sik+1) defines an

equivalence, hence recovering a special case of Corollary 2.3.14. This observation on the Goodwillie layers is

originally due to [AK98], and we have refined it to a statement about Goodwillie towers in [BH17]. We will

not make explicit use of this map since it is not a priori clear how the Samelson products interact with the

Lie product on FΩ(X) (cf. Question 8.11 in [BR17]).
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4.2 Operations

In this section, we will construct operations acting on the homotopy groups Lie algebras in AlgΣ Lie(Mod
Cpl(I)
E ),

i.e. give names to specific elements in homotopy groups πj(L(Σi1 ⊕ . . .⊕ Σik)) for integers j, i1, . . . , ik. We

will then compute the various relations between these operations in the following section.

4.2.1 Hecke Operations

We will first construct various additive and unary operations starting from Rezk’s operations acting on K(h)-

local E∞-rings under E. Since Rezk’s operations are closely connected to the Hecke algebra for GLn(Zp)

(see Section 14 in [Rez06]), we have decided to call the operations constructed in this section the Hecke

operations on Lie algebras in Mod
Cpl(I)
E .

The construction of Hecke operations “starting in odd degrees” relies crucially on Rezk’s Koszulness result

in [Rez12b] and its reformulation in Lemma 5.6. in [BR15]. We then make use of the EHP sequence to

construct Hecke operations “starting in even degrees”. A more challenging component of this work is to

compute how these operations compose. We will address this question in the following Section 4.3.1– this

is where our work from Chapter 3 on the relationship between algebraic and topological Koszul duality is

truly needed.

The Monad T

Let T = T
Mod

Cpl(I)
E

be the augmented monad on Mod
Cpl(I)
E building the free nonunital E∞-ring (see Definition

4.1.11). It can be constructed as monad corresponding to the∞-operad Onu Mod
Cpl(I)
E

Comm constructed in Section

4.1.10. Alternatively, we could build T as the monad for the forgetful-free adjunction between modules in

Mod
Cpl(I)
E and nonunital commutative algebra objects in Mod

Cpl(I)
E .

Remark 4.2.1. The monad T and its later variants T̂ and LT̂ correspond to nonunital E∞-rings. Our notation

differs slightly from Rezk’s notation – he decorates the nonunital functors with a tilde.

The underlying functor of T is given by T (X) =
⊕

m>0X
⊗m
hΣm

where, as always in this section, sum and

homotopy coinvariants are computed in the K(h)-local setting. We can therefore write T [m] = X⊗mhΣm
and

obtain a direct sum decomposition T =
⊕

m>0 T [m].

Proposition 4.2.2. The functor T is completed-free in the sense of Definition 3.2.19.

Proof. Since (completed) coproducts of completed-free modules are evidently completed-free, it suffices to
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show that T [m](M) = M⊗mhΣm
is completed-free for any completed-free E-module spectrum M =

⊕
s∈S ΣisE.

We expand “binomially” and write (
⊕

s∈S ΣisE)⊗mhΣm
∼=
⊕
{{ms}s∈S |

∑
ms=m}(

⊗
s∈S(ΣisE)⊗mshΣms

). Using

that ms vanishes for all but finitely many values of s, we see that T [m](M) is the (completed) coproduct of

module spectra of the form T [m1](Σj1E)⊗ . . .⊗T [mk](ΣjkE). Proposition 3.17 in [Rez09] and Proposition

5.1.18 in Appendix A imply that all T [mi](Σ
jiE) are finite and free E-module spectra.

Remark 4.2.3. A similar strategy is used in the proof of Corollary 3.10 in [BF15].

The Analytic Approximation T̂

The functor T gives rise to an analytic approximation monad T̂ on Pσ(Mod
Cpl(I)
E∗,f

) by Definition 3.2.21.

Write Pσ(Mod
Cpl(I)
E∗,f

)♥ for the full subcategory of Pσ(Mod
Cpl(I)
E∗,f

) consisting of all functors which land in

discrete spaces, i.e. sets. There is an evident functor ι : Mod
Cpl(I)
E∗

↪→ Pσ(Mod
Cpl(I)
E∗,f

)♥ sending M to

Map
Mod

Cpl(I)
E∗

(−,M). We obtain a functor π0 : Pσ(Mod
Cpl(I)
E∗,f

)♥ ↪→ Pσ(Mod
Cpl(I)
E∗,f

)→ Mod
Cpl(I)
E∗

in the other

direction by postcomposing with the derived functor of the natural inclusion Mod
Cpl(I)
E∗,f

↪→ Mod
Cpl(I)
E∗

.

Proposition 4.2.4. The functors (π0, ι) form an equivalence of categories.

Proof. Given an object X ∈ Pσ(Mod
Cpl(I)
E∗,f

)♥, we use Proposition 4.2.11. in [Lur11a] to pick a simplicial

object X• of completed-free modules whose realisation is X. Then π0(X) is given by the colimit of this

diagram in the discrete category Mod
Cpl(I)
E∗

, i.e. there is a reflexive coequaliser (X1

d0 //

d1

// X0
oo // // π0(X)) .

Given any test module S ∈ Mod
Cpl(I)
E∗,f

, we use that completed-free modules are projective to compute that

ι(π0(M))(S) = Map
Mod

Cpl(I)
E∗

(S, π0(X)) is given by the reflexive coequaliser

Map
Mod

Cpl(I)
E∗

(S,X1)
d0 //

d1

// Map
Mod

Cpl(I)
E∗

(S,X0)oo // // ι(π0(X))(S)

This coequaliser is equivalent to π0(|Map
Mod

Cpl(I)
E∗

(S,X•)|). If X lies in the heart, this establishes that the

canonical map X → ιπ0X is an equivalence.

Assume conversely that we are given a module M ∈ Mod
Cpl(I)
E∗

. We pick a simplicial completed-free module

M• over M such that the associated chain complex gives a projective resolution of M . We obtain an

associated augmented simplicial diagram ι(M•)→ ι(M) in Pσ(Mod
Cpl(I)
E∗,f

). This is in fact a colimit diagram

in Pσ(Mod
Cpl(I)
E∗,f

) since for any test module S ∈ Mod
Cpl(I)
E∗,f

, evaluation gives a homotopy colimit in spaces.

We can therefore compute π0(ιM) as colimit of the simplicial module M• and conclude that the canonical

arrow π0ιM →M is an equivalence as well.
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Proposition 4.2.5. The natural arrow π0T̂(X)→ π0T̂(ιπ0X) is an isomorphism for any X ∈ Pσ(Mod
Cpl(I)
E∗,f

).

Proof. We pick a simplicial diagram X• in Mod
Cpl(I)
E∗,f

whose geometric realisation is X. We pick another

diagram Y• in Mod
Cpl(I)
E∗,f

with an injection X• → Y• which is an isomorphism at level 0 and 1 and such that

the simplicial set Y• has vanishing homotopy groups above dimension 0.

The map in the above statement is then given by π0(|T̂(X•)|)→ π0(|T̂(Y•)|) and therefore an equivalence.

We therefore obtain an analytic approximation monad on Mod
Cpl(I)
E∗

by considering π0 ◦ T̂ ◦ ι. This monad

has been constructed by Barthel-Frankland [BF15] using completely different methods.

Rezk’s Rings ∆−i

Rezk uses the monad T̂ (or rather its uncompleted version) to study the operations on the homotopy of

(nonunital) E∞-rings A under E. In order to recall some of Rezk’s results concerning operations on the

tangent space π∗(A)/π∗(A)2, we follow [Rez12b] in a slightly more completed setting and introduce the

following definition:

Definition 4.2.6. The linearisation of an arbitrary functor F : Mod
Cpl(I)
E∗,f

→ Mod
Cpl(I)
E∗

is defined as the

cokernel LF (X) := cok(F (X ⊕X)
F (p1+p2)−F (p1)−F (p2)−−−−−−−−−−−−−−−−→ F (X)). Here pi denote the evident projections.

The functor LF is additive and in fact the initial such functor receiving a map from F .

We now apply this construction to the analytic approximation monad T̂ (considered as a functor of ordinary

categories Mod
Cpl(I)
E∗,f

→ Mod
Cpl(I)
E∗

) to obtain the linearisation T̂→ LT̂ .

Writing T̂[n] = h(T [n]|
Mod

Cpl(I)
E,f

) for T [n](M) = M⊗nhΣn
, we obtain another completed-free functor and a direct

sum decomposition
⊕

n≥1 T̂[n] ∼= T̂ (where the (completed) sum is computed in the category Mod
Cpl(I)
E∗

of

L-complete E∗-modules).

Applying linearisation, we obtain a corresponding decomposition
⊕

n≥1 LT̂[n]
∼= LT̂, and the map T̂→ LT̂ is

induced by taking the (completed) sum of the maps T̂[n]→ LT̂[n].

Proposition 4.2.7. The functors LT̂[n] and LT̂ preserve completed-free E∗-modules.

Proof. Since completed sums of completed-free functors are completed-free, it suffices to check this for each

LT̂[n]. Since this functor is additive, it suffices to check that LT̂[n](Σ
iE∗) is completed-free for each i. This

(and more) is established in Proposition 5.7 in [Rez12b].

By Corollary 5.5 in [Rez12b], this implies that the functor LT̂ has the structure of a monad such that the

natural map of endofunctors of Mod
Cpl(I)
E∗,f

given by T̂→ LT̂ preserves this structure. We can in fact extend LT̂
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to a realisation-preserving monad of Pσ(Mod
Cpl(I)
E∗,f

) with a transformation of extended endofunctors T̂→ LT̂.

These functors come with an extra piece of additional structure: the topological suspension can be used to

define natural transformations Susp : ΣLT̂(M)→ LT̂(ΣM) and Susp : ΣLT̂[m](M)→ LT̂[m](ΣM).

Definition 4.2.8. The ith ring of additive cotangent operations for (nonunital)K(h)-local E∞-rings under E

is given by the ring ∆−i = Map
AlgLT̂

(Mod
Cpl(I)
E∗,f

)
(LT̂(ΣiE∗),LT̂(ΣiE∗)) = [LT̂(ΣiE∗)]i.

Here multiplication is defined by composition and addition is defined by using codiagonal maps.

We turn ∆−i into a weight-graded ring by setting ∆−i[w] = [LT̂[w](ΣiE∗)]i.

Remark 4.2.9. The slightly confusing degree convention for the superscript of ∆i is in agreement with Rezk’s

work. Our weight-grading differs slightly from Rezk’s “logarithmic” choice.

Every scalar λ ∈ Ej gives rise to a map of LT̂-algebras LT̂(Σi+jE∗)
λ−→ LT̂(ΣiE∗). We can use this to define

a morphism Ej ⊗∆−i ⊗ E−j → ∆−i−j . This in particular gives each of the above rings the structre of an

(E0, E0)-bimodule. The resulting morphisms Ej ⊗E0
∆−i⊗E0

E−j → ∆−i−j are in fact isomorphisms for all

j even since E is even periodic.

The following is a completed version of Lemma 3.2 in [BR15]:

Proposition 4.2.10. If M is a completed-free E∗-module, then there is a weight-grading preserving equiv-

alence [LT̂(M)]j ∼= ∆−j ⊗E0
Mj.

In particular, we can write [LT̂(ΣiE∗)]j = Ej−i ⊗E0
[LT̂(ΣiE∗)]i = Ej−i ⊗E0

∆−i ∼= ∆−j ⊗E0
Ej−i.

It is shown in 3.10 of [Rez12b] that ∆−i indeed acts on the degree i component of the cotangent space of any

T̂-algebra. By Remark 7.5 in [Rez09], the suspensions maps Susp give rise to a diagram of weight-graded

rings

. . .∆2 '−→ ∆1 ↪→ ∆0 '−→ ∆−1 ↪→ ∆−2 '−→ . . .

where the maps alternate between monomorphisms and isomorphisms and all become isomorphisms after ten-

soring withQ. We can in fact use the rings ∆i to compute some non-additive derived functors of T̂. The trans-

formation T̂→ LT̂ gives rise to a morphism of simplicial functors Bar•(id, T̂, id)→ Bar•(id,LT̂, id). Evaluat-

ing on a module M ∈ Mod
Cpl(I)
E∗,f

gives a morphism of simplicial modules Bar•(id, T̂,M)→ Bar•(id,LT̂,M).

Here an overline denotes the module M endowed with the trivial T̂- or LT̂-algebra structure, defined using

the augmentation.

If M = ΣiE∗ for i an odd integer, then ΣiE∗ is a T̂-algebra whose underlying strictly commutative nonunital

E∗-algebra is free. Lemma 3.8 in [BR15] therefore shows:
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Proposition 4.2.11. For i odd, the canonical arrow Bar•(id, T̂,ΣiE∗) → Bar•(id,LT̂,ΣiE∗) gives a weak

equivalence in the nonnegative derived category Pσ(Mod
Cpl(I)
E∗,f

) ∼= D−≥0(Mod
Cpl(I)
E∗

) (see Proposition 4.1.2).

Using Behrens-Rezk’s Proposition 4.2.10, we observe:

Proposition 4.2.12. For i odd, there is a weak equivalence of simplicial E∗-modules

Bar•(id,LT̂,ΣiE∗) = ΣiE∗ ⊗
E0

[Bar•(id,LT̂,ΣiE∗)]i = ΣiE∗ ⊗
E0

Bar•(id,∆
i, E0)

Constructing Hecke Operations

We will now use the various rings ∆i to define abelian groups as follows:

Definition 4.2.13. The group (HLie)ji [w] of Hecke operations on Lie algebras from degree i to degree j of

weight w is defined as

(HLie)ji [w] =


Exta∆i(E0, E−i+j+a) if w = pa

0 if w is not a power of p

Here E0 and E−i+j+a denote the modules E0 and E−i+j+a endowed with the trivial ∆i-action.

In the remainder of this section, we will attach a unique additive unary operation to any element in the

above groups. In Section 4.3.1, we will then use the techniques from Chapter 3 to endow the collection

(HLie)ji with additional multiplicative structure which encodes how the corresponding operations compose.

In order to access the techniques and notation used in Chapter 3, we shall now define a weighted structure

on T on the sense of Definition 3.3.1. We use the notation of [BR15] and define a model for the doubly

suspended partition complex Σ|Πn|� as the realisation of the simplicial set

(Pn)s = {x0 ≤ · · · ≤ xs | xi a partition of n, x0 discrete, xs indiscrete}
∐
{∗}

with face and degeneracy map defined in an evident manner.

By a straightforward combinatorial argument explained in [Chi05] and [BR15], we can use this simplicial set

to express the simplicial symmetric sequences in S-modules (Onu
Comm)◦s• = (P•)s. Applying the functors m,

Φ and (−)c from Section 4.1.2, we obtain an equivalence of simplicial endofunctors of Mod
Cpl(I)
E :

T ◦s = m(E ⊗ Φ(Onu
Comm)◦s) '

⊕
w≥1

(Pw)s ⊗
hΣw

(−)⊗w
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The bar construction Bar•(T ) is thus endowed with a natural direct sum decomposition with components

B[w]
s (X) = m(pw(Onu Mod

Cpl(I)
E

Comm )◦s) = (Pw)s ⊗
hΣw

(−)⊗w

Let C = KD(T ) = m(KD(Onu Mod
Cpl(I)
E

Comm )) ∼=
⊕

w≥1 C[w] for C[w] = |B[w]
• (X)| ∼= m(pw KD(Onu Mod

Cpl(I)
E

Comm )) ∼=

Σ|Πw|� ⊗hΣw
X⊗w. The comonadic structure map C → C ◦ C is obtained by applying m to a map of sym-

metric sequences.

Proposition 4.2.14. This decomposition B
[w]
• → Bar(T ) defines a weighted structure in the sense of Defi-

nition 3.3.1.

Proof. The functors B
[w]
s clearly preserve geometric realisations.

To check that B
[w]
s is completed-free, it suffices by Proposition 5.1.18 in Appendix A to check that π∗B

[w]
s

sends completed-free E-modules to completed-free E∗-modules. By construction, π∗B
[w]
s (M) is a summand

of the module π∗T
s(M) which we know to be completed-free by Proposition 4.2.2. Since completed-free

E∗-modules are the projective objects in the abelian category of L-complete E∗-modules, they are closed

under retracts. This establishes that B
[w]
s is completed-free.

Condition 2) of Definition 3.3.1 holds true since the structure maps T ◦ T → T and C → C ◦C are induced

by corresponding maps of symmetric sequences.

The following results are crucial since they in particular establishes that the universal cases are torsion-free:

Theorem 4.2.15. The functors C[w] and C =
⊕

w≥1 C[w] are completed-free (see Definition 3.2.19).

Proof. It suffices to check the first statement. Fix a completed-free E-module spectrum M =
⊕

s∈S ΣisE

(where the sum is completed). We can write C[w](M) = E ⊗ (Σ|Πw|� ⊗ (
⊕

s∈S S
is)⊗w)hΣw (where we

implicitly work K(h)-locally and abuse notation inside the bracket by writing ⊗ and ⊕ for the smash and

wedge product of spectra). Expanding binomially and using Proposition 5.1.18 in Appendix A, it suffices to

check that every module of the form E∧∗ ((Σ|Πw|�⊗(Sj1)⊗w1⊗· · ·⊗(Sjk)⊗wk)hΣw1×···×Σwk
) is completed-free.

By the splitting of Young restrictions of the partition complex established in Theorem 2.3.11, it is therefore

enough to check that the E∗-modules E∧∗ (Σ|Πn|� ⊗Σn
(Sj)⊗n) are completed-free.

If j is odd, then Lemma 5.6 of [BR15] implies that this module is null unless n = pk. If n = pk, then it is

completed-free in odd degrees if k is odd and it is completed-free in even degrees if k is even by the same

Lemma 5.6 and Theorem 2.13 in [BR15].
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For j even, we may assume by periodicity that j = 0. Theorem 3.2 in [Aro06] gives a cofibre sequence

Σ|Πn
2
|� ⊗
hΣn

2

(S1)⊗
n
2 → Σ|Πn|�hΣn → |Πn|� ⊗

hΣn
(S1)⊗n

where we use the convention that the left term is contractible if n is odd.

If p is an odd prime, then one of the outer terms has vanishing completed E-homology and the claim follows.

If p = 2 and n = 2k, then both of the outer modules must have completed E-homology concentrated in the

same parity by Lemma 5.6 and Theorem 2.13 in [BR15]. We therefore obtain a short exact sequence

0→ E∧∗ (Σ|Πn
2
|� ⊗
hΣn

2

(S1)⊗
n
2 )→ E∧∗ (Σ|Πn|�hΣn)→ E∧∗ (|Πn|� ⊗

hΣn
(S1)⊗n)→ 0

The middle module is therefore an extension of projective objects of Mod
Cpl(I)
E∗

and hence projective itself.

Essentially the same argument as in the proof of Theorem 4.2.15 (this time making use of the Goodwillie

derivatives of the actual EHP-sequence as explained in [AM99] and [Beh12]) implies:

Theorem 4.2.16. The functors L[w] = (D(ΣΠ�w)⊗hΣw
(−)⊗w) and L =

⊕
w L[w] preserve Mod

Cpl(I)
E,f .

We now come to the problem of lifting operations. Rezk’s Koszulness proof implies:

Theorem 4.2.17. The module ΣiE∗ is p-Koszul for T in the sense of Definition 3.3.3 whenever i is odd.

Proof. This result is contained in Theorem 2.13 and the proof of Lemma 5.6 in [BR15].

We encourage the reader to recall the meaning of the symbols Q,Q, and Q from Section 3.3. We introduce

a linearised version Q of Q by defining QS
b(j)

Sa(i) as

Map
Pσ(Mod

Cpl(I)
E∗,f

)
(KD(LT̂)(Sa(ΣiE)), Sb(ΣjE)) = Map

Pσ(Mod
Cpl(I)
E∗,f

)
(|Bar•(id,LT̂, Sa(ΣiE))|, Sb(ΣjE))

The decomposition of LT̂ into weighted pieces induces a decomposition on the bar construction which we use

to define a product decomposition ofQS
b(j)

Sa(i) into piecesQS
b(j)

Sa(i)[w]. Write P ji [w] = Map
Mod

Cpl(I)
E

(ΣjE,L[w](ΣiE)).

Definition 4.2.18. The duality transformation D : Qji [w]→ P−j−i [w] is defined as the following composite:

Qji [w] = Map
Mod

Cpl(I)
E

(C[w](ΣiE),ΣjE)
D−→ Map

Mod
Cpl(I)
E

(Σ−jE,DC[w](ΣiE))
ν−1
w ◦−−−→ P−j−i [w]

Here we first use K(h)-local Spanier-Whitehead duality and then the transformation νw from Section 4.1.3

(which is an equivalence since K(h)-local Tate spectra vanish).
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For i odd, j any integer, and a ≥ 0, Lemma 3.3.6 then implies the existence of natural maps:

QS
a(j−a)

S0(i) [w] −→ QS
a(j−a)

S0(i) [w] −→ Q
Sa(j−a)
S0(i) [w] −→ Qji [w]→ P−j−i [w]

If w 6= pa, then the second map is defined to be zero. If w = pa, then we define it to be the inverse of the

isomorphism supplied by Lemma 3.3.6. The same Lemma and Proposition 4.2.11 in fact imply that all maps

are isomorphisms in this case. Moreover, we can use Lemma 4.2.12 to deduce a natural identification

(HLie)−j−i [p
a] = Exta∆−i(E0, Ei−j+a) ∼= MapD−≥0

(Mod
Cpl(I)
E0

)

(
Bar•(E0,∆

−i, E0)[pa], Sa(Ei−j+a)

)

'−→ MapD−≥0
(Mod

Cpl(I)
E∗ )

(
Bar•(1,LT̂,ΣiE∗)[p

a], Sa(Σj−aE∗)

)
= QS

a(j−a)

S0(i) [pa]

Since the suspension morphism ∆i+1 → ∆i is an isomorphism of rings whenever i is odd (see [Rez09]), we

deduce that the canonical suspension morphism (HLie)ji [p
a]
'−→ (HLie)j+1

i+1 [pa] is an isomorphism for i odd.

This allows us to fill in the dotted arrows in the following infinitely long commutative diagram (for i odd):

. . . > P−j−i [pa] > P
−(j−1)
−(i−1) [pa] > P

−(j−2)
−(i−2) [pa] > . . .

. . . > Qji [p
a]

'
∧

> Qj−1
i−1 [pa]

∧

> Qj−2
i−2 [pa]

'
∧

> . . .

. . . > Q
Sa(j−a)
S0(i) [pa]

'
∧

> Q
Sa(j−a−1)
S0(i−1) [pa]

∧

> Q
Sa(j−a−2)
S0(i−2) [pa]

'
∧

> . . .

. . . > QS
a(j−a)

S0(i) [pa]

∼=

∨
> QS

a(j−a−1)
S0(i−1) [pa]

∨
> QS

a(j−a−2)
S0(i−2) [pa]

∼=

∨
> . . .

. . . > QS
a(j−a)

S0(i) [pa]
∼=

>

∼=

<

∼=
<

QS
a(j−a−1)

S0(i−1) [pa] >

<

<

QS
a(j−a−2)

S0(i−2) [pa] >

∼=

<

∼=
<

. . .

. . . > (HLie)−j−i [p
a]

∼=
∧

∼=
> (HLie)

−(j−1)
−(i−1) [pa]

∼=
∧

> (HLie)
−(j−2)
−(i−2) [pa]

∼=
∧

> . . .

Theorem 4.2.19. There are natural maps (HLie)ji [w] → P ji [w] for all values of i, j ∈ Z and w ∈ N which

are compatible with suspensions and isomorphisms whenever i is odd.

This concludes our construction of Hecke operations. Their compositions will be the subject of a later section.
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Additivity

We will now establish the additivity of the Hecke operations which we have just constructed. For this and

later multiplicative considerations, the following Lemma is crucial:

Proposition 4.2.20. The map ι : (HLie)ji → P ji is an equivalence for i odd and an injection for i even.

Moreover, (HLie)ji ↪→ P ji is a pure subgroup, which means (since P ji is torsion-free) that if α ∈ P ji and n ∈ N

are such that n · α lies in the image of ι, then α lies in the image of ι.

Proof. By constriction of the map (HLie)ji → P ji in the preceding section, it suffices to check that whenever

i = 2n− 1 is odd, the suspension map P j−1
2n−1[w]→ P j2n[w] is injective and the image is a pure subgroup.

The diagonal map S1 → Sw of Σw-spaces gives rise to a map ΣE → (ΣE)⊗w of Σw-objects in Mod
Cpl(I)
E .

We smash this map with D(Σ|Πw|�) ⊗ (Σ2n−1E)⊗w to obtain the following map of K(h)-local E-module

spectra with Σw-action:

D(Σ|Πw|�)⊗ (Σ2n−1E)⊗w ⊗ ΣE −→ D(Σ|Πw|�)⊗ (Σ2n−1E)⊗w ⊗ (ΣE)⊗w

Using the chosen complex orientation on E-theory, we obtain an equivalence of Σw-spectra (Σ2E)⊗w ∼= Σ2wE.

We obtain a square of Σw-objects

D(Σ|Πw|�)⊗ (Σ2n−1E)⊗w ⊗ ΣE > D(Σ|Πw|�)⊗ (Σ2n−1E)⊗w ⊗ (ΣE)⊗w

D(Σ|Πw|�)⊗ (ΣE)⊗w ⊗ Σ(2n−2)wE ⊗ ΣE

'∨
> D(Σ|Πw|�)⊗ (ΣE)⊗w ⊗ Σ(2n−2)wE ⊗ (ΣE)⊗w

∨'

We apply the functor πj(−)hΣw to this diagram and observe a square

P j−1
2n−1 > P j2n

P
j−(2n−2)w−1
1 [w]

'∨
> P

j−(2n−2)w
2 [w]

'∨

It therefore suffices to check that P k−1
1 [w]→ P k2 [w] is injective with pure image.

Applying πk−1 to the weight w component of the EHP sequence explained in Section 4.1.3 gives rise to a

short exact sequence sequence 0→ P k−1
1 [w]→ P k2 [w]→ P k3

[
w
2

]
→ 0. We see that the left map is injective.

The image is pure since P k3
[
w
2

]
is torsion-free (and in fact free) as an E0-module by Theorem 4.2.16.
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We will now establish that all Hecke operations in Qji [w] which we have produced from HLie in fact act

additively on the cohomotopy of C-coalgebras. Here, as before, we define the jth cohomotopy group of some

module spectrum M ∈ Mod
Cpl(I)
E by πj(M) := π0 Map

Mod
Cpl(I)
E

(M,ΣjE).

We first use that the comonad C =
⊕

w Σ|Πw|� ⊗hΣw
(−)⊗w comes from a symmetric sequence to establish

two useful properties of the suspension:

Lemma 4.2.21. The suspension Susp(α) ∈ Qj−1
i−1 [w] of any operation α ∈ Qji [w] is additive.

Proof. By decomposing Lemma 3.1.5 into the weighted pieces of C, we observe that it suffices to check that

for each functor C[w](X) = Σ|Πw|� ⊗hΣw
X⊗w, the two ways of passing from left to right in the following

diagram of K(h)-local E-module spectra agree:

C[w](ΣiE)⊕ C[w](ΣiE)

ΣC[w](Σi−1E ⊕ Σi−1E) > C[w](ΣiE ⊕ ΣiE)

∧

> C[w](ΣiE)
>

By the binomial formula, we have C[w](ΣiE ⊕ ΣiE) ∼=
⊕w

k=0(Σ|Πw|� ⊗ (ΣiE)⊗k ⊗ (ΣiE)⊗w−k)hΣk×Σw−k .

For k 6= 0, w, the map fk : ΣC[w](Σi−1E ⊕ Σi−1E) −→ Σ|Πw|� ⊗hΣk×Σw−k
((ΣiE)⊗k ⊗ (ΣiE)⊗w−k) factors

through:

(S1⊗Σ|Πw|�⊗(Σi−1E)⊗k⊗(Σi−1E)⊗w−k)hΣk×Σw−k → (S1⊗S1⊗Σ|Πw|�⊗(Σi−1E)⊗k⊗(Σi−1E)⊗w−k)hΣk×Σw−k

Since the diagonal S1 → S1 ⊗ S1 is null, we conclude that the original map fk is in fact null for k 6= 0. This

implies the claim.

We remark that a similar strategy is used in the proof of Proposition 3.3 in [Rez12b].

We now use the absence of torsion in universal examples to prove:

Lemma 4.2.22. If α ∈ Qji [w] is an operation and there exists some positive integer N for which N · α is

additive, then α must also be additive.

Proof. We again consider the “weight w”-component of the triangle from Lemma 3.1.5

πjC[w](ΣiR)
πjC[w](co∆)

> πjC[w](ΣiR⊕ ΣiR)

πjT (ΣiR)⊕ πjC[w](ΣiR)

πjC[w](p1)⊕πjC[w](p2)
∧

πjco∆C[w](ΣiR) >
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We denote the two possible composites in the triangle by f and g, respectively. Our assumption implies that

N · (f(α)−g(α)) = f(Nα)−g(Nα) = 0 by Lemma 3.1.5. By Theorem 4.2.15, the group πjC[w](ΣiR⊕ΣiR)

is torsion-free. This implies f(α) = g(α) and hence α is additive by Lemma 3.1.5.

Lemma 4.2.23. Every α in the image of the maps (HLie)ji [w] → Q−j−i [w] constructed in the last section is

an additive operation.

Proof. Let α be attached to λ ∈ (HLie)ji [w]. Since the suspension map ∆−(i−1) → ∆−i becomes an iso-

morphism after tensoring with Q, we can chose a positive integer N such that Nλ lies in the image of

the suspension map (HLie)j−1
i−1 [w] −→ (HLie)ji [w]. Since our family of maps (HLie)ji [w] → Q−j−i [w] respects

suspension by construction, this implies that Nα lies in the image of the suspension map as well and hence

is additive by Lemma 4.2.21. This in turn implies by Lemma 4.2.22 that α is itself additive.

Corollary 4.2.24. Every α in the image of the maps (HLie)ji [w]→ P ji [w] constructed in the last section is

an additive operation.

Proof. This follows from the previous Lemma by applying Spanier-Whitehead duality to the weight w com-

ponent of the diagram appearing in the criterion in Lemma 3.1.5 and then appealing to Lemma 3.1.3.

4.2.2 The θ-Operations

In this section, we will construct operations Ψ2n, θ2n, s2n ∈ P 4n−1
2n [2] = E∧4n−1(Σ−1(S2n)⊗2

hΣ2
) for every n ∈ Z.

We begin with a decomposition of the identity map on the sphere spectrum: S0 ∼= Be+
res−−→ BΣ2 + → S0.

Here the first map is given by restriction and the second map is given by collapsing BΣ2 to a point. We apply

LK(h)D(−) and use K(h)-local vanishing of Tate spectra and duality between restrictions and transfers to

obtain a diagram of K(h)-local spectra

S0 < (S0)hΣ2 < S0

S0

'
∧

<
tr

BΣ2 +

'
∧

<
−θ

S0

'
∧

This defines a canonical element θ ∈ πs0(BΣ2+) (cf. [Sta16] for a different perspective). Write s ∈ πs0(BΣ2+)

for the class given by the restriction S0 → BΣ2+. The double coset formula yields tr(s) = 2.

Finally, we set Ψ := s+ 2θ and observe immediately that tr(Ψ) = 2 + 2 · (−1) = 0.
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We apply the (implicitly K(h)-localised) functor Σ−1(E ⊗−) to obtain three classes

Ψ0, θ0, s0 ∈ P−1
0 [2] = E∧−1(Σ−1BΣ2 +)

For each integer n, we define the operations

Ψ2n, θ2n, s2n ∈ P 4n−1
2n [2] = E∧4n−1(Σ−1(S2n)⊗2

hΣ2
)

as the various classes corresponding to Ψ0, θ0, s0 under the isomorphisms

. . .
∼=
> E∧3 (Σ−1(S2)⊗2

hΣ2
)
∼=
> E∧−1(Σ−1BΣ2+)

∼=
> E∧−5(Σ−1(S−2)⊗2

hΣ2
)
∼=
> . . .

coming from the equivalence of näıve Σ2-spectra E ⊗ (S2)⊗2 ∼= E ⊗ S4 provided by the Thom isomorphism

induced by our chosen orientation on E. Here Σ2 acts by swapping on the left and trivially on the right.

It is clear that Ψ2n = s2n + 2θ2n for all n. Moreover, we observe that s2n is given by the image of the

fundamental class under the desuspended restriction.

Proposition 4.2.25. The image of Ψ2n under the transfer E∧4n−1(Σ−1(S2n)⊗2
hΣ2

) → E∧4n−1(Σ−1(S2n)⊗2)

vanishes.

Proof. We smash the equivalence E ⊗ (S2n)⊗2 ∼= E ⊗ S4n coming from the Thom isomorphism with the

transfer map S0 → Σ2+ and then desuspend to obtain the following square of näıve Σ2-spectra:

Σ−1E ⊗ (S2n)⊗2 > Σ−1E ⊗ (S2n)⊗2 ⊗ Σ2 +

Σ−1E ⊗ (S4n)

∨
> Σ−1E ⊗ (S4n)⊗ Σ2 +

∨

Taking homotopy coinvariants and applying homotopy groups implies the claim as tr(Ψ) = 0.

Proposition 4.2.26. The element Ψ2n lies in the image under the injection (HLie)4n−1
2n [2] ↪→ P 4n−1

2n [2].

Proof. For every even integer 2n, there is a cofibre sequence of spectra (coming from the EHP sequence)

(S2n−1)⊗2
hΣ2

> Σ−1(S2n)⊗2
hΣ2

Σ−1tr
> S4n−1

Σ2n−1RP∞2n−1

wwww
Σ2n−1RP∞2n

wwww

All three spectra have completed E-homology E∧∗ (−) concentrated in odd degree (this is established in
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Remark 3.20 and Corollary 3.21 in [Rez09].) Applying E∧∗ (−) therefore gives a short exact sequence. Since

tr(Ψ2n) = 0, we see that Ψ2n lies in the image of the suspension map P 4n−2
2n−1 [2] → P 4n−1

2n [2]. The claim

follows from the construction of the map HLie → P in Theorem 4.2.19.

4.2.3 The Lie Bracket

We define [−,−]i,j ∈ P i+j−1
i,j = πi+j−1(

⊕
k D(Σ|Πk|�)⊗hΣk

(ΣiE ⊕ ΣjE)⊗k) by the canonical map

Σi+j−1E −→ Σ−1E ⊗ (ΣiE ⊗ ΣjE) −→ D(Σ|Π2|�) ⊗
hΣ2

(ΣiE ⊕ ΣjE)⊗2 −→ L(ΣiE ⊕ ΣjE)

This means that if M is a shifted Lie algebra in Mod
Cpl(I)
E and x ∈ πi(M), y ∈ πj(M) are two given classes

represented by maps ΣiE
x−→M and ΣjE

y−→M , then the class [x, y] = [x, y]i,j ∈ πi+j−1(M) is represented by

[x, y] : Σi+j−1E −→ L(ΣiE ⊕ ΣjE)
L(x⊕y)−−−−−→ L(M) −→M

The final map is given by the structure map of M .

We will from now on drop the subscripts from the Lie bracket.
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4.3 Relations

In the preceding Section 4.2, we have constructed three families of operations: the additive unary Hecke

operations, the non-additive unary θ-operations, and the binary Lie bracket. We can now enquire what

happens when we plug these operations into one another, i.e. compose them. The principal aim of this

section is to compute the various relations between the compositions of the above operations.

4.3.1 The Action of HLie

We first examine how Hecke operations compose. Given an E0-module M , we again write M for the “trivial”

∆j-module with underlying abelian group M and structure map ∆j ⊗M → ∆j [1] ⊗M = E0 ⊗M → M

defined using the augmentation. We upgrade Definition 4.2.13 multiplicatively, hence producing a power

ring in the sense of Definition 3.1.7:

Definition 4.3.1. The power ring HLie of Hecke operations on Lie algebras is given by

(HLie)ji [w] =


Exta∆i(E0, E−i+j+a) if w = pa

0 if w is not a power of p

The multiplication map (HLie)ji [p
a]⊗ (HLie)kj [pb]→ (HLie)ki [pa+b] is given by the composite:

(Exta∆i(E0, E−i+j+a))⊗ (Extb∆j (E0, E−j+k+b))→ (Exta∆i(E0, E−i+j+a))⊗ (Extb∆j+a(E0, E−j+k+b))

→ (Exta∆i(E0, E−i+j+a))⊗ (Extb∆i(E−i+j+a, E−i+k+a+b))→ (Exta+b
∆i (E0, E−i+k+a+b))

The first map uses the suspension ∆j+a → ∆j , the second map uses the morphism Ext∗∆`(E0, Er) →

Ext∗∆`−s(Es, Er+s) coming from the twisting morphism, and the final map uses the Yoneda product.

The following main result of this section establishes that compositions in algebra and topology are compatible.

We therefore obtain an action of the power ring HLie on the homotopy of any Lie algebra in Mod
Cpl(I)
E :

Theorem 4.3.2. For all i, j, k ∈ Z and all v, w ∈ N, the following diagram commutes:

(HLie)ji [v]×(HLie)kj [w] > (HLie)ki [vw]

P ji [v] ×
∨

P kj [w] > P ki [vw]

∨
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We prove this result in several smaller steps which we shall assemble to a proof in the end of this section.

Lemma 4.3.3. For all i, j, k ∈ Z and all a, b ∈ N, the following diagram commutes:

(HLie)ji [p
a] × (HLie)kj [pb] > (HLie)ki [pa+b]

QS
a(−j−a)

S0(−i) [pa]×
∨
QS

b(−k−b)
S0(−j) [pb]

id×Sha
> QS

a(−j−a)

S0(−i) [pa] × QS
a+b(−k−a−b)

Sa(−j−a) [pb] > QS
a+b(−k−a−b)

S0(−i) [pa+b]

∨

Proof. We consider the following diagram:

Exta∆i(E0, E−i+j+a)× Extb∆j (E0, E−j+k+b) > . . .

QS
a(−j−a)

S0(−i) [pa]×QS
b(−k−b)

S0(−j) [pb]

∨
id×Sha

> . . .

. . . > Exta∆i(E0, E−i+j+a)× Extb∆j+a(E0, E−j+k+b) > Exta+b
∆i (E0, E−i+k+a+b)

. . . > QS
a(−j−a)

S0(−i) [pa]×QS
a+b(−k−a−b)

Sa(−j−a) [pb]

∨
> QS

a+b(−k−a−b)
S0(−i) [pa+b]

∨

Here the top left map on the right factor is obtained from the suspension morphisms ∆j+a → ∆j , the top

right map on the right factor first uses the twisting isomorphism Ext∗∆`(E0, Er) → Ext∗∆`−s(Es, Er+s) for

any `, r, s, and then the usual Yoneda product in Ext groups.

The left square commutes by the definition of the suspension maps.

For the right square, we unravel how the lower composition map works. We note that we are in the situation

of Section 5.4.1 in Appendix D since the additive monad LT̂ acts additively on the derived category of

complexes of completed-free E∗-modules. Its Koszul dual comonad KD(LT̂) = |Bar•(1,LT̂, triv)| therefore

has structure map given explicitly by

|Bar•(1,LT̂, triv)| '←− |Bar•(1,LT̂, |Bar•(LT̂,LT̂, triv)|)| → |Bar•(1,LT̂, |Bar•(1,LT̂, triv)|)|

Elements (σ, τ) ∈ QS
a(−j−a)

S0(−i) × QS
a+b(−k−a−b)

Sa(−j−a) = MapD−≥0
(Mod

Cpl(I)
E∗ )

(|Bar•(1,LT̂,Σ−iE∗)|, S
a(Σ−j−aE∗)) ×

MapD−≥0
(Mod

Cpl(I)
E∗ )

(|Bar•(1,LT̂, Sa(Σ−j−aE∗))|, Sa+b(Σ−k−a−bE∗)) can be represented by pairs of maps

s : LaT̂(Σ−iE∗) −→ Σ−j−aE∗, t : LbT̂(Σ−j−aE∗) −→ Σ−k−a−bE∗

The map (hKD(LT̂))(hKD(LT̂))(Σ−iE∗)
hKD(LT̂)(σ)
−−−−−−−−→ (hKD(LT̂))(Sa(Σ−j−aE∗))

τ−→ Sa+b(Σ−k−a−bE∗) is
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obtained by applying the “total complex” construction to the map of double complexes

Bar∗(1,LT̂,Bar∗(1,LT̂,Σ−iE∗))→ Sa,b∗,∗(Σ
−k−a−bE∗)

obtained by combining s and t in the evident manner. Here Sa,b∗,∗(Σ
−k−a−bE∗) denotes the double complex

where Σ−k−a−bE∗ is placed in bidegree (a, b).

The composition τ ◦ σ of the two operations is thus given by the composite

|Bar∗(1,LT̂,Σ−iE∗|
'←− |Bar∗(1,LT̂, |Bar∗(LT̂,LT̂,Σ−iE∗)|)|

→ |Bar∗(1,LT̂, |Bar∗(1,LT̂,Σ−iE∗)|)| → Sa+b(Σk−a−bE∗)

Our explicit description of how to lift cycles across the first quasi-isomorphism in Lemma 5.4.1 in Appendix D

lets us conclude that this composition is given by the class in QS
a+b(−k−a−b)

S0(−i) represented by the map

La+b

T̂
(Σ−iE∗)

LbT̂(s)
−−−→ LbT̂(Σ−j−aE∗)

t−→ Σ−k−a−bE∗

We therefore recover the expected product structure (cf. [Fox88]) and conclude that the right square above

commutes (since this is precisely how the usual Yoneda product on the corresponding Ext-groups is defined).

The following result establishes the desired link between algebra and topology:

Theorem 4.3.4. The following diagram commutes for all i, j ∈ Z and a, b ∈ Z≥0:

QS
a(−j−a)

S0(−i) [pa]×QS
b(−k−b)

S0(−j) [pb]
id×Sha

> QS
a−j−a

S0(−i) [pa]×QS
a+b−k−b−b

Sa(−j−a) [pb] > QS
a+b(−k−a−b)

S0(i) [pa+b]

Q−j−i [p
a] ×

∨
Q−k−j [pb] > Q−k−i [pa+b]

∨

Proof. We denote all maps from the components of Q to the components of Q by Φ.

If −i is odd, then the claim follows from Theorem 3.5.1 since Σ−iE∗ is p−Koszul.

If −i is even, we fix nonzero classes α ∈ QS
a(−j)

S0(−i) [pa] and β ∈ QS
b(−k)

S0(−j) [pb]. We can write Mα = Susp(λ) and

Nβ = Susp(µ) as nonzero integral multiples of suspensions. By additivity of α, β (since LT̂n is additive) and

Φ(α),Φ(β) (established in Lemma 4.2.23), we then have:

NM(Φ(α ◦ β)− Φ(α) ◦ Φ(β)) = Φ(Mα ◦Nβ)− Φ(Mα) ◦ Φ(Nβ)
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Since suspension of operations respects composition and Φ, we observe

(Φ(Susp(λ) ◦ Susp(µ))− Φ(Susp(λ)) ◦ Φ(Susp(µ))) = Susp(Φ(λ ◦ µ)− Φ(λ) ◦ Φ(µ)) = 0

The last vanishing follows from the odd case. By Theorem 4.2.15, the group Q−k−i [pa+b] is torsion-free. The

result follows.

In a final step, we go from operations on the E-theory of (restricted and nilpotent) Lie coalgebras in K(h)-

local E-modules, i.e. coalgebras over the comonad C from above, to the desired Lie algebras in Mod
Cpl(I)
E :

Lemma 4.3.5. For all degrees i, j, k ∈ Z and all weights v, w ∈ Z≥0, the following square commutes:

Q−j−i [v]×Q−k−j [w] > Q−k−i [vw]

P ji [v]× P kj [w]

D×D∨
> P ki [vw]

D
∨

Here D denotes the duality transformation from Definition 4.2.18.

Proof. Assume we are given (α, β) ∈ Q−j−i [v] × Q−k−j [w] represented by maps a : C[v](Σ−iE) → Σ−jE and

b : C[w](Σ−jE)→ Σ−kE. The composite β ◦ α is then computed as

C[vw](Σ−iE)→ (C ◦ C)(Σ−iE)
pw◦pv−−−−→ (C[w] ◦ C[v])(Σ−iE)

C[w](a)−−−−−→ C[w](Σ−jE)
b−→ Σ−kE

We now use the natural transformations ν and its components νj from Section 4.1.3 to write down the

following diagram:

DC[vw](Σ−iE) < D(C[w] ◦ C[v])(Σ−iE) < DC[w](Σ−jE) < ΣkE

L[vw](ΣiE)

νvw

∧

< (L[w] ◦ L[v])(ΣiE))

νw◦νv
∧

<
L[w](D(a))

L[w](ΣjE)

νw

∧

<
D(b)

ΣkE

wwwww
The two right squares commute by definition of the duality transformation D.

For the left square, we abuse notation and identify Σ−iE with the symmetric sequence with Σ−iE placed in

degree 0. By Lemma 4.1.12 and the properties of the transformations νj , (for top and bottom square), the
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following diagram of symmetric sequences commutes up to homotopy:

pvO
Mod

Cpl(I)
E

Σ Lie ◦ pwO
Mod

Cpl(I)
E

Σ Lie ◦ D(Σ−iE) > D
(
pv KD(Onu Mod

Cpl(I)
E

Comm ) ◦ pw KD(Onu Mod
Cpl(I)
E

Comm ) ◦ (Σ−iE)

)

OMod
Cpl(I)
E

Σ Lie ◦ OMod
Cpl(I)
E

Σ Lie ◦ D(Σ−iE)

∨

> D
(

KD(Onu Mod
Cpl(I)
E

Comm ) ◦KD(Onu Mod
Cpl(I)
E

Comm ) ◦ (Σ−iE)

)∨

Lemma 4.1.12

OMod
Cpl(I)
E

Σ Lie ◦ D(Σ−iE)

∨

> D
(

KD(Onu Mod
Cpl(I)
E

Comm ) ◦ (Σ−iE)

)∨

pvwO
Mod

Cpl(I)
E

Σ Lie ◦ D(Σ−iE)

∨

> D
(
pvw KD(Onu Mod

Cpl(I)
E

Comm ) ◦ (Σ−iE)

)∨

The commutativity of the left square now follows by taking the “zeroth component” of this diagram.

Proof of Theorem 4.3.2. We combine Lemma 4.3.3, Theorem 4.3.4, and Lemma 4.3.5 to obtain the following

commutative diagram:

(HLie)ji [p
a]× (HLie)kj [pb] > (HLie)ki [pa+b]

Exta∆i(E0, E−i+j+a)× Extb∆j (E0, E−j+k+b)

wwww
> Exta+b

∆i (E0, E−i+k+a+b)

wwww

QS
a(−j−a)

S0(−i) [pa]×QS
b(−k−b)

S0(−j) [pb]

∨
> QS

a+b(−k−a−b)
S0(−i) [pa+b]

∨

Q−j−i [p
a]×Q−k−j [pb]

Φ×Φ∨
> Q−k−i [pa+b]

Φ
∨

P ji [pa]× P kj [pb]

D×D ∼=∨
> P ki [pa+b]

D ∼=∨

We have thus defined the structure of an HLie-module on the homotopy of any Lie algebra in Mod
Cpl(I)
E .

4.3.2 Lie Algebra Relations

Now let L be a shifted Lie algebra in Mod
Cpl(I)
E .

Proposition 4.3.6. The bracket [−,−] satisfies the shifted Jacobi identity:

For x ∈ πi(L), y ∈ πj(L), and z ∈ πk(L), we have (−1)ik[x, [y, z]] + (−1)ji[y, [z, x]] + (−1)kj [z, [x, y]] = 0.

Proof. This has been established in joint work with Antoĺın-Camarena and can be found in his thesis.

105



Proposition 4.3.7. If x ∈ πi(L), y ∈ πj(L) , then [x, y] = (−1)ij [y, x].

Proof. This follows since the second term of the shifted Lie operad is S−1 with the trivial Σ2-action.

Proposition 4.3.8. If x ∈ πi(L) is an element of odd degree i, then [x, x] = 0.

Proof. By antisymmetry, we have [x, x] = (−1)[x, x] which implies 2 · [x, x] = 0. The claim follows since

[x, x] ∈ P 2i−1
i as a unary operation and the group P 2i−1

i is torsion-free by Theorem 4.2.16.

Proposition 4.3.9. If x ∈ πi(L) is any element, then [x, [x, x]] = 0.

Proof. Assume x has degree i. The Jacobi identity (−1)i
2

[x, [x, x]] + (−1)i
2

[x, [x, x]] + (−1)i
2

[x, [x, x]] = 0

implies that 3 · [x, [x, x]] = 0. The claim follows since the unary operation [x, [x, x]] is an element of P 3i−2
i ,

which is a torsion-free group by Theorem 4.2.16.

Remark 4.3.10. Over F3, the vanishing of [x, [x, x]] has been observed independently by Kjaer [Kja16] relying

on different methods.

4.3.3 Mixed Relations

We will now compute the mixed relations between the Hecke operations, the θ-operation, and Lie bracket.

We start by recalling some general background. If we are given operations

α = (α1, . . . , αt) ∈ P k1,...,kt
j1,...,js

=

t∏
b=1

πkb(L(Σj1E ⊕ . . .⊕ ΣjsE))

β = (β1, . . . , βs) ∈ P j1,...,jsi1,...,ir
=

s∏
a=1

πja(L(Σi1E ⊕ . . .⊕ ΣirE))

then the composite α(β1(−), . . . , βs(−)) corresponds to the map of E-modules

Σk1E ⊕ . . .⊕ ΣktE
α1⊕...⊕αt

> L(Σj1E ⊕ . . .⊕ ΣjsE)

L(β1⊕...⊕βs)
> LL(Σi1E ⊕ . . .⊕ ΣirE) > L(Σi1E ⊕ . . .⊕ ΣirE)

Moreover, if γ ∈ P j1,...,jti1,...,is
and δ ∈ P jt+1,...,ju

is+1,...,ir
are represented by

(Σj1E ⊕ . . .⊕ ΣjtE)→ L(Σi1E ⊕ . . .⊕ ΣisE) (Σjt+1E ⊕ . . .⊕ ΣjuE)→ L(Σis+1E ⊕ . . .⊕ ΣirE)
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then we can form a new element (γ, δ) ∈ P j1,...,jui1,...,ir
corresponding to

(Σj1E ⊕ . . .⊕ ΣjrE)→ L(Σi1E ⊕ . . .⊕ ΣisE)⊕ L(Σis+1E ⊕ . . .⊕ ΣirE)→ L(Σi1E ⊕ . . .⊕ ΣirE)

We now fix a (shifted) Lie algebra M ∈ AlgΣ Lie(Mod
Cpl(I)
E ).

Proposition 4.3.11. We have s2n(x) = [x, x] for any x ∈ π2n(M).

Proof. We have to check that the image of the operation [−,−] in the group π4n−1(L(Σ2nE⊕Σ2nE)) = P 4n−1
2n,2n

under the map induced by applying L to the codiagonal gives s2n.

The claim follows by observing the commutative diagram

S4n−1 > Σ−1E ⊗ (Σ2nE ⊗ Σ2nE) > Σ−1E ⊗
hΣ2

(Σ2nE ⊕ Σ2nE)⊗2 > L(Σ2nE ⊕ Σ2nE)

Σ4n−1E

∨
>

>
Σ−1E ⊗

hΣ2

(Σ2nE)⊗2
∨

> L(Σ2nE)

∨

where the upper path gives [x, x] and the lower path gives s2n(x).

By construction of the operations Ψ2n, s2n, and θ2n, this proposition immediately implies:

Corollary 4.3.12. Given any x ∈ π2n(M), there is an equality Ψ2n(x) = [x, x] + 2 · θ2n(x).

We now study the interaction between Lie bracket and Hecke operations:

Proposition 4.3.13. If λ ∈ E2m, x ∈ πi(M), and y ∈ πj(M), then [x, λ · y] = λ · [x, y].

Proof. We denote the unit and multiplication of the monad L by η and µ. The scalar λ gives elements

(Σj+2mE → ΣjE
ηΣjE−−−→ L(ΣjE)) ∈ P j+2m

j , (Σi+j+2m−1E → Σi+j−1E
ηΣi+j−1E−−−−−−→ L(Σi+j−1E)) ∈ P i+j+2m−1

i+j−1

We consider the following commutative diagram

Σi+j+2m−1E
'
> Σ−1E ⊗ (ΣiE ⊗ Σj+2mE) > Σ−1E ⊗ (ΣiE ⊕ Σj+2mE)⊗2 > L(ΣiE ⊕ Σj+2mE)

Σi+j−1E

λ
∨

> Σ−1E ⊗ (ΣiE ⊗ ΣjE)

∨
> Σ−1E ⊗ (ΣiE ⊕ ΣjE)⊗2

∨
> L(ΣiE ⊕ ΣjE)

L(id⊕λ)
∨

L(Σi+j−1E)

ηΣi+j−1E∨
> L(Σ−1E ⊗ (ΣiE ⊗ ΣjE))

∨
> L(Σ−1E ⊗ (ΣiE ⊕ ΣjE)⊗2)

ηL2(ΣiE⊕ΣjE)∨
> LL(ΣiE ⊕ ΣjE)

ηL(ΣiE⊕ΣjE)∨

L(ΣiE ⊕ ΣjE)

µΣiE⊕ΣjE∨
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The operation [−, λ · −]i,j+2m is given by the lower path whereas the operation λ · [−,−]i,j can be defined

by following the upper path.

Corollary 4.3.14. If λ ∈ E2m is a scalar, then we have the identity s2n · λ = λ2 · s2(n−m) in P 4n−1
2(n−m)[2].

Proof. This follows immediately by combining Proposition 4.3.11, Proposition 4.3.13, and Proposition 4.3.7.

Proposition 4.3.15. If α ∈ (HLie)kj [w] with w > 1, x ∈ πi(M), and y ∈ πj(M), then [x, α(y)] = 0.

Proof. If we represent α ∈ P kj [w] by ΣkE → L[w](ΣjE) ∼= D(Σ|Πw|�) ⊗hΣw
(ΣjE)⊗w, then the operation

[−, α(−)]i,k ∈ πi+k−1(L(ΣiE ⊕ ΣjE)) is represented by the composite

Si+k−1

D(Σ|Π2|�)⊗ (ΣiE ⊗ ΣkE)

∨

D(Σ|Π2|�)⊗
(

(D(Σ|Π1|�) ⊗
hΣ1

(ΣiE)⊗1)⊗ (D(Σ|Πw|�) ⊗
hΣw

(ΣjE)⊗w)

)∨

D(Σ|Π1+w|�) ⊗
hΣ1×Σw

(ΣiE ⊗ (ΣjE)⊗w)

∨

L(ΣiE ⊕ ΣjE)

∨

The restriction of D(Σ|Π1+w|�) to Σ1×Σw is freely induced from the trivial subgroup acting on the sphere S−w.

This implies that D(Σ|Π1+w|�)⊗hΣ1×Σw
(ΣiE ⊗ (ΣjE)⊗w) ∼= Σi+w(j−1)E.

The operation (x, y) 7→ [y, [y, [. . . , [y, x] . . .]]] (where we repeat y precisely w times) corresponds to a

nonzero element Q living in πi+w(j−1)

(
D(Σ|Π1+w|�) ⊗hΣ1×Σw

(ΣiE) ⊗ (ΣjE)⊗w
)
⊂ πi+w(j−1)(L(ΣiE ⊕

ΣjE)).

Since Q is nonzero and both Q and [−, α(−)] are elements of π∗(D(Σ|Πw+1|�)⊗hΣ1×Σw
(ΣiE⊗ (ΣjE)⊗w)) ∼=

π∗(Σ
i+w(j−1)E), we can find scalars λ, µ ∈ E∗ with λ ·Q = µ · [−, α(−)] and µ 6= 0.

We now use that α is additive to compute

2w ·µ · [x, α(y)] = 2w ·λQ(x, y) = λ · [2y, [2y, [. . . , [2y, x] . . .]] = λ ·Q · (x, 2y) = µ · [x, α(y+y)] = 2 ·µ · [x, α(y)]

This implies that (2w−2) ·µ · [−, α(−)] = 0. Since E∗ is an integral domain and (2w−2) ·µ 6= 0, this implies

that [−, α(−)] = 0. Observe that, as expected, this proof requires that w > 1.
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The operation θ interacts nontrivially with Lie bracket and sums:

Proposition 4.3.16. If x ∈ πi(M), y ∈ π2n(M), then [x, θ2n(y)] = [[x, y], y].

Proof. We compute 2 · [x, θ2n(y)] = [x, 2 · θ2n(y)] = [x,Ψ2n(y)]]− [x, [y, y]]. By the Jacobi identity, we have

[x, [y, y]] + [y, [x, y]] + [y, [y, x]] = 0.

Combining this with antisymmetry and Proposition 4.3.15, we obtain 2 · [x, θ2n(y)] = 2 · [[x, y], y]. The claim

now follows since πi+4n−2(L(ΣiE ⊕ Σ2nE) is torsion-free by Theorem 4.2.16.

Proposition 4.3.17. If x, y ∈ π2n(M), then θ2n(x+ y) = θ2n(x) + θ2n(y)− [x, y].

Proof. We compute

2·θ2n(x+y) = Ψ2n(x+y)−[x+y, x+y] = (Ψ2n(x)−[x, x])+(Ψ2n(y)−[y, y])−2[x, y] = 2·(θ2n(x)+θ2n(y)−[x, y])

The claim follows since π4n−1(L(Σ2nE ⊕ Σ2nE)) is torsion-free by Theorem 4.2.16.

Divisibility Witnesses

In order to descibe the interaction of θ with the Hecke operations, we will first produce various Hecke

operations which witness the divisibility of certain operations:

Proposition 4.3.18. If λ ∈ E2m
∼= (HLie)2n

2(n−m)[1] is a scalar, there there exists a unique operation

δλ2(n−m) ∈ (HLie)4n−1
2(n−m)[2] satisfying Ψ2n · λ− λ2 ·Ψ2(n−m) = 2 · δλ2(n−m).

Proof. We have Ψ2n ·λ−λ2 ·Ψ2(n−m) = (s2n ·λ+ 2 · θ2n ·λ)− (λ2 · s2(n−m) + 2 ·λ2 · θ2(n−m)). By Proposition

4.3.13, the operation s2n · λ− λ2 · s2(n−m) vanishes.

We set δλ2(n−m) := θ2n · λ− λ2 · θ2(n−m) ∈ P 4n−1
2(n−m)[2] and conclude that Ψ2n · λ− λ2 ·Ψ2(n−m) = 2 · δλ2(n−m).

Since 2 · δλ2(n−m) lies in (HLie)4n−1
2(n−m)[2], we conclude from Proposition 4.2.20 that δλ2(n−m) in fact lies in

(HLie)4n−1
2(n−m)[2]. The class δλ2(n−m) is unique by torsion-freeness.

Proposition 4.3.19. If α ∈ (HLie)2n
m [pk] is an operation with k > 0, then there is a unique operation

εαm ∈ (HLie)4n−1
m [2pa] satisfying Ψ2n · α = 2 · εαm

Proof. We write Ψ2n · α = s2n · α+ 2 · θ2n · α.

Since (s2n · α)(x) = [α(x), α(x)] = 0 by Proposition 4.3.15 , we conclude that Ψ2n · α = 2 · θ2n · α. We set

εαm := θ2n · α. Since 2 · θ2n · α lies in (HLie)4n−1
m [2pa], we conclude once more from Proposition 4.2.20 that

εαm in fact lies in (HLie)4n−1
m [2pa]. The class εαm is again unique by torsion-freeness.
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There is an interesting relation between the δ- and the ε-operations:

Proposition 4.3.20. Given λ ∈ E2(n−j) ∼= (HLie)2n
2j [1] and α ∈ (HLie)2j

m , then ελ·αm = λ2 · εαm + δλ2j · α.

Proof. We have 2 · ελ·αm = Ψ2n ·λ ·α = (λ2 ·Ψ2j ·α+ 2 · δλ2j ·α) = (λ2 · 2 · εαm + 2 · δλ2j ·α) = 2 · (λ2 · εαm + δλ2j ·α).

The claim follows from the fact that (HLie)4n−1
m is torsion-free.

We can now express how θ interacts with Hecke operations:

Proposition 4.3.21. If λ ∈ E2m and x ∈ π2(n−m)(M), then θ2n(λ · x) = λ2 · θ2(n−m)(x) + δλ2(n−m)(x).

Proof. This is true by definition of δλ2(n−m) in Proposition 4.3.18.

Proposition 4.3.22. If α ∈ (HLie)2n
m [w] with w > 1 and x ∈ πm(L), then θ2n(α(x)) = εαm(x).

Proof. This holds true by definition of εαm in Proposition 4.3.19.
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4.4 Generation

We will now prove our main result describing the operations on the E-homology of K(h)-local Lie algebras.

4.4.1 Hecke Lie Algebras

We start with the following notion:

Definition 4.4.1. A (shifted) Lie algebra over E∗ consists of a graded E∗-module M∗ together with E∗-

bilinear maps [−,−] : M∗ ⊗E∗ M∗
[−1]−−−→M∗ satisfying

1. strict (shifted) antisymmetry:

[a, b] = (−1)ij [b, a] for all a, b.

[a, a] = 0 for all for all a of odd degree.

[a, [a, a]] = 0 for all a.

2. the Jacobi identity: For all a, b, c ∈M∗, we have:

(−1)deg(a) deg(c) · [a, [b, c]] + (−1)deg(b) deg(a) · [b, [c, a]] + (−1)deg(c) deg(b) · [c, [a, b]] = 0

Definition 4.4.2. A Hecke Lie Algebra consists of a HLie-module M together with the structure of a shifted

Lie algebra on the underlying E∗-module M∗ and maps of sets θ2n : M2n → M4n−1 such that the following

properties hold true:

1. [x, α(y)] = 0 for all α ∈ (HLie)ji [w] with w > 1 and all x ∈Mk , y ∈Mi.

2. Ψ2n(x) = [x, x] + 2 · θ2n(x) for all x ∈M2n.

Additionally, we impose several additional identities which would all be forced in the torsion-free case:

3. [x, θ2n(y)] = [[x, y], y] for all x ∈Mm, y ∈M2n.

4. θ2n(x+ y) = θ2n(x) + θ2n(y)− [x, y] for all x, y ∈M2n.

5. θ2n(λ · x) = λ2 · θ2(n−m)(x) + δλ2(n−m)(x) for all λ ∈ E2m, x ∈M2(n−m).

6. θ2n(α(x)) = εαm(x) for all α ∈ (HLie)2n
m [w] with w > 1, x ∈Mm.

This definition simplifies substantially for p an odd prime as Ψ2n vanishes in this case (cf. Remark 1.4.2).
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A morphism L→ L′ of Hecke Lie algebras is a map f of underlying sets which simultaneously is a morphism

of Lie algebras, of HLie-modules, and intertwines the θ∗-maps on L and L′.

We write LieHE∗ for the resulting category of Hecke Lie algebras.

The notion of a Hecke Lie algebra can be axiomatised as a Z-graded algebraic theory. In Appendix C, we

have included an overview of the components of [ARV11] on Z-graded theories which are relevant to us.

We start with the set Σ of symbols

{0i,−i(−) | i ∈ Z} ∪ {(−) +i (−) | i ∈ Z}

∪ {[−,−]i,j | i, j ∈ Z} ∪ {θ2n | n ∈ Z} ∪ {α ∈ (HLie)ji | i, j ∈ Z}

Writing Z∗ for the collection of all finite words in Z, we define a signature function σ : Σ→ Z∗ × Z by:

σ(0i) = ( , i), σ(−i) = (i, i), σ(+i) = (ii, i)

σ([−,−]i,j) = (ij, i+ j − 1), σ(θ2n) = (2n, 4n− 1), σ(α ∈ (HLie)ji ) = (i, j)

Let AlgΣ be the category of Σ-algebras in the sense of Definition 5.3.5 in Appendix C – informally speaking,

these are Z-graded sets which are acted upon by an operation corresponding to each element of Σ.

Let E be the set of equations which encodes the structure of a Hecke Lie algebra (i.e. the “abelian group

axioms” for +i, 0i,−i, the shifted Lie algebra axioms for the Lie brackets [−,−]i,j with inputs in degree i

and j, the HLie
E∗

-module axioms for the various α, and axioms (1)− (6) in Definition 4.4.2).

Then the category LieHE∗ of Hecke Lie algebras is equivalent to the full subcategory AlgΣ(E) of AlgΣ consisting

of all Σ-algebras on which the operations satisfy the equations in E (see Definition 5.3.6 in Appendix C).

A similar argument can be used to show that the category ModE∗ of graded E∗-modules and grading-

preserving maps occurs as AlgΣ′(E
′) for suitably chosen Σ′ and E′.

We obtain natural forgetful functors LieHE∗ → ModE∗ → SetZ to Z-graded sets.

By Proposition 9.3 in [ARV11], both functors preserves limits, sifted colimits and admit left adjoints.

SetZ
FreeModE∗−−−−−−−→ ModE∗

FreeLieH−−−−−→ LieHE∗

We shall abuse notation and also write FreeLieH for the composite of these two functors.
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4.4.2 Free Hecke Lie Algebras

We will now construct explicit models for free Hecke Lie algebras on finitely many generators x1, . . . , xk in

degrees i1, . . . , ir.

Write Br for the lexicographically ordered set of Lyndon words in letters x1, . . . , xr in the sense of Definition

2.3.1 (with respect to the ordering x1 < . . . < xr). Define a degree function | − | : Br → Z inductively by

setting |xj | = ij and |w1w2| = |w1|+ |w2| − 1 if w1w2 is a standard factorisation into Lyndon words. The

length `(w) of a Lyndon word w is defined as the number of letters which occur in w.

We start with the Z-graded abelian group Fr := Fr(x1, . . . , xr) with F gr =
⊕

w∈Br Fr(w)g where

Fr(w)g :=


(HLie)g|w| if |w| is odd

(HLie)g|w| ⊕ (HLie)g2|w|−1 if |w| is even

Given w and g, we shall denote the element corresponding to α ∈ (HLie)g|w| by αθ0w. If |w| is even, the

element corresponding to α ∈ (HLie)g2|w|−1 will be written as αθ1w. We declare that these elements lie in

degree g and call them standard words. We will often omit α = 1 or θ0 from the notation and write θ1 = θ.

Observe that if the basic word w lives in degree |w|, then the product θw (which is defined whenever |w| is

even) lies in degree 2|w| − 1.

We will now define the structure of a Hecke Lie algebra on Fr.

We first construct the structure of an HLie-module on Fr by setting λ · (αθew) = (λ · α)θew.

In order to define the structure of a (shifted) Lie algebra on Fr, we first define the length of a term αθew to

be the integer `(αθew) := wt(α) · (2e) · `(w) where the weight wt(α) of the operation α ∈ (HLie)ji [p
a] is pa

and `(w) is the length of the Lyndon word w.

Every pair (
∑
i αiθ

eiui,
∑
j βjθ

fjvj) gives an element

κ

(∑
i

αiθ
eiui,

∑
j

βjθ
fjvj

)
:=

(∑
i

`(λiθ
eiui) +

∑
j

`(µjθ
fjvj) , max({ui}i ∪ {vj}j)

)
∈ N×Bk

We order N×Bk by setting (`1,m1) < (`2,m2) iff (`1 < `2) or (`1 = `2 and m1 < m2).
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We will now define the product

[∑
i

αiθ
eiui,

∑
j

βjθ
fjvj

]
=
∑
k

γkθ
gkwk

for any two elements in Fr by recursion on κ.

Our product will have the following crucial property (F):

Every Lyndon word wk occuring in the above decomposition satisfies wk ≤ max({ui}i ∪ {vj}j).

If all ui, vj are pairwise distinct, then this inequality is strict.

Assume we are given a pair (
∑
i αiθ

eiui,
∑
j βjθ

fjvj) of Lyndon words.

1. If either of the components of our pair contains more than one summand, we define

[∑
i

αiθ
eiui,

∑
j

βjθ
fjvj

]
:=
∑
i,j

[
αiθ

eiui, βjθ
fjvj

]

Each term on the right has shorter length and is therefore already defined by recursion. Moreover,

each term on the right satisfies property (F), which implies that our term on the left satisfies (F) as

well.

2. If both components only contain a single summand (αθeu, βθfv) and wt(α) > 1 or wt(β) > 1, we

define [αθeu, βθfv] = 0

3. If both components only contain a single summand (αθeu, βθfv) and wt(α) = wt(β) = 1, i.e. α, β ∈ E∗,

we proceed as follows:

a) If u < v and u is a letter or it has standard factorisation u = u′ · u′′ with u′′ ≥ v:

• [αu, βv] := αβuv

• [αu, βθv] := αβuvv

• [αθu, βv] := (−1)|v|αβuuv

• [αθu, βθv] := (−1)|v|αβuuvv

All the above words are indeed Lyndon words:

This is clear for uv and uvv = (uv)(v). For uuv = (u′u′′)(uv), we use that u < u′′ (since u is a

Lyndon word and hence smaller than its proper right factors) and and hence u′′ > uv. We see that

uuvv = (u, ((uv), v)) is a Lyndon word since u′′ > uvv.

All four words are evidently strictly smaller than max(u, v) = v.
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b) If u < v and u has standard factorisation u = u′ · u′′ with u′′ < v and a = |u′|, b = |u′′|, c = |v|:

• [αu, βv] := (−1)1+cαβ[u′, [u′′, v]] + (−1)ab+ac+c+1αβ[u′′, [v, u′]]

• [αu, βθv] := αβ[u′, [u′′, θv]] + (−1)a(b+1)αβ[u′′, [θv, u′]]

• [αθu, βv] := (−1)|v|αβ[u, [u, v]]

• [αθu, βθv] := (−1)|v|αβ[u, [u, θv]]

We check that this is indeed well defined.

For the first clause of the b), we notice that (u′′, v) and (v, u′) have shorter length than (u, v)

and hence their Lie bracket has already been defined. Write [u′′, v] =
∑
i δiθ

airi and [v, u′] =∑
j εjθ

bjsj and recall that ri, sj < max(u, v) = v by induction hypothesis since (u′′, v) and (v, u′) are

pairwise distinct. This implies that the expressions [[u′′, v], u′] =
∑
i δi[θ

airi, u
′] and [[v, u′], u′′] =∑

j εjθ
bj [sj , u

′′] are already defined since max(ri, u
′) < max(u, v) and max(sj , u

′′) < max(u, v). We

note that the Lyndon words occuring in the final result all are at most as big as max(max(ri, u
′), u′′)

and max(max(sj , u
′′), u′) respectively and hence strictly less than max(u, v) = v.

Similarly, our definition of [u, θ(v)] makes sense since [θv, u′] and [u′′, θv] have already been defined

(since they have shorter length) and can be written as sums containing Lyndon words strictly less

than v. As before, this implies that the Lie brackets [u′′, [θv, u′]] and [u′, [u′′, θv]] are well-defined

and only involve Lyndon words strictly smaller than v.

A similar argument shows that the remaining two cases are well-defined and only involve Lyndon

words strictly smaller than v = max(u, v).

c) If u = v = w, we set

• [αw, βw] :=


αβ(Ψw − 2θw) if |w| even

0 if |w| odd

• [w, θ(w)] := 0

• [θw,w] := 0

• [θw, θw] := 0

4. If u > v, set [αθeu, βθfv] = (−1)ij [βθfv, αθeu] where αθeu ∈ F ir and βθfv ∈ F jr .

We have defined a product [−,−] : Fr × Fr → Fr. The map θ2∗ : L2∗ → L2∗−1 is given by

11. θ2n · (αθew) = εαmθ
ew if α ∈ ((H)Lie)2n

m [w] for w > 1.

12. θ2n · (λw) = λ2θ2(n−m)w + δλ2(n−m)w if λ ∈ E2m and |w| = 2(n−m).
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Using induction, we can verify that the operations specified above indeed make Fr into a Hecke Lie algebra.

Proposition 4.4.3. The Hecke Lie algebra Fr = Fr(x1, . . . , xr) is isomorphic to the free Hecke Lie algebra

FreeLieH(x1, . . . , xr) on the graded set {x1, . . . , xr} where |xj | = ij.

Proof. Let L be a Hecke Lie algebra containing elements yj ∈ Lij for j = 1, . . . , r. Using obvious notation,

we define a map Fr → L by sending αθew to α · θe|w|w(y1, . . . , yr) and extending additively. We check by

recursion that this indeed gives a well-defined map of Hecke Lie algebras, and it is clear that there is at most

one such extension. Hence Fr satisfies the desired universal property.

4.4.3 The Main Theorem

In this section, we will prove the main theorem of this thesis:

Theorem 4.4.4.

1. The homotopy groups of any Lie algebra in K(h)-local E-module spectra naturally carry the structure

of a Hecke Lie algebra.

2. Given a flat E-module spectrum M , the canonical map FreeLieH(π∗(M)) → π∗
(
FreeΣ Lie(LK(h)(M))

)
induces an isomorphism after completion.

Here we call an E-module spectrum M flat if it can be written as a filtered colimit of finitely generated free

E-module spectra (i.e. finite coproducts of shifts of E)

Proof. Let L be a Lie algebra in Mod
Cpl(I)
E . The homotopy groups π∗(L) form a shifted Lie algebra in the

sense of Definition 4.4.1 by Section 4.2.3 and Section 4.3.2. We have constructed a canonical action of the

power ring HLie on π∗(L) in Section 4.2.1 and Section 4.3.1. The construction of the operation θ is carried

out in Chapter 4.2.2. These operations satisfy the axioms of a Hecke Lie algebra by Section 4.3.3.

In order to prove the second claim, we proceed step by step.

One generator in odd degree:

Let M = ΣjE with j an odd integer. By Proposition 4.4.3 and Theorem 4.2.19, we have in degree g:

[FreeLieH(ΣjE∗)]g = (HLie)gj =
⊕
w∈N

(HLie)gj [w]
∼=−→
⊕
w∈N

P gj [w] =
⊕
w∈N

L[w](ΣjE)g → [L(ΣiE)]g

Since we can check isomorphisms of E∗-modules degreewise, this implies that the first of the following two
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maps is an isomorphism of (uncompleted) E∗-modules:

FreeLieH(ΣjE∗)
∼=−→
⊕
w∈N

L[w](ΣjE)→ L(ΣiE)

We apply completion to obtain the desired result for j odd.

One generator in even degree:

Now assume that M = ΣjE with j ≥ 2 an even integer. We invite the reader to recall our recollections on

Goodwillie calculus and the EHP sequence in Section 4.1.3 . We can relate operations on the homotopy of

LΩF (X) to operations on the homotopy of LF (X) for F ∈ [sSet∗, sSet∗] any pointed simplicial homotopy

functor via the following commutative square:

P ji × πi(LΩF (X)) > πj(LΩF (X))

P j+1
i+1 × πi+1(LF (X))

Susp×e∨
> πj+1(LF (X))

e
∨

Here Susp denotes the suspension of operations and e uses the equivalence of spectra LΩF (X) = Σ−1LF (X).

We define a commutative diagram:

0 > π∗Lid(Σ2n−1E)
E

> π∗LΩ(Σ2nE)
H

> π∗LΩ(Σ4n−1E) > 0

π∗L(Σ2n−1E)

∼= id
∧

Σ−1π∗L(Σ2nE)

∼= e−1
∧

Σ−1π∗L(Σ4n−1E)

∼= e−1
∧

0 > FreeLieH(x2n−1)

∧

EL
> Σ−1 FreeLieH(x2n)

∧

HL
> Σ−1 FreeLieH(x4n−1)

∧

> 0

Here xk denotes a variable in degree k. The lower vertical maps are all defined by sending some xk to a funda-

mental class ιk, extending to a map of Hecke Lie algebras, and possibly shifting degrees in the end. We abuse

notation and denote all vertical maps from bottom to top by τ and the two right upper vertical maps by e−1.

The map EL is obtained by applying the rule αx2n−1 7→ Susp(α)x2n. The map HL is defined by the rules

αx2n 7→ 0 and αθx2n 7→ αx4n−1. The lower sequence is short exact by explicit inspection using our

concrete description of free Hecke Lie algebras in Proposition 4.4.3.

The left square commutes: it is clear that the fundamental classes match up. We deduce from the previous

commutative square that both ways of sending round αx2n−1 agree since the top row consists of maps of Hecke

Lie algebras and hence E(τ(αx2n−1)) = E(α · ι2n−1) = α · τ(x2n) = e−1(Susp(α) · ι2n) = τ(EL(αx2n−1)).
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In order to check that the right square commutes, we first use the EHP sequence at the end of Section 4.1.3

for weight w = 1 to observe that the (desuspended) fundamental class τ(x2n) in the top middle indeed goes

to 0 along the top right map H. Since H is a map of Hecke Lie algebras, it follows from the naturality of the

operations that for α = Susp(β) a suspension, we have H(τ(αx2n)) = H(β · e−1(ι2n)) = β ·H(τ(x2n))) = 0.

Since some nonzero multiple of any additive Hecke operation is a suspension and the top right group is

torsion-free, this implies H(τ(αx2n)) = 0 for all α. The right square therefore commutes on these operations.

The (w = 2)-component of the EHP sequence is given by the Takayasu cofibre sequence

Σ−1(S2n−1)⊗2
hΣ2
→ Σ−2(S2n)⊗2

hΣ2
→ S4n−2

where the right map is a desuspended transfer (cf. [Beh12]). The operation τ(θx2n) goes to the fundamental

class τ(x4n−1) on the top right since θ2n is defined as a lift of the unit under the desuspended transfer

Σ−1D(Σ|Π2|�) ⊗
hΣ2

(S2n)2 → Σ−1D(Σ|Π1|�) ⊗
hΣ2

(S4n−1)

This shows that the right square commutes on the element θx2n. Given an operation α which can be written

as Susp(β), the naturality of Hecke operations shows the right square commutes on all elements αθx2n:

H(τ(αθx2n)) = H(β · τ(θx2n)) = β · e−1(ι4n) = e−1(α · ι4n) = τ(αx4n) = τ(HL(αθx2n))

For a general operation α, we pick a positive integer N with N · α = Susp(β) a suspension and compute:

N ·H(τ(αθx2n)) = H(τ((N · α)θx2n)) = τ(HL((N · α)θx2n)) = N · τ(HL(αθx2n))

The torsion-freeness of the top right group thus implies that the right square commutes on all αθx2n.

We have therefore produced a map of short exact sequences in E∗-modules. We now apply L0-completion.

The left and the right vertical map then become isomorphisms by the first step of this proof. The lower

sequence remains exact after (derived) completion since the functor L0 is right exact and the higher derived

functors of ordinary completion vanish on free modules. The top sequence remains exact since it already

consists of L0-complete modules. This implies the theorem for j ≥ 2.

For j a general even number, we pick an isomorphism of E-module spectra α : Σ2E −→ ΣjE and notice
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that the following diagram implies the result for general even j.

π∗L(Σ2E)
∼=
> π∗L(ΣjE)

FreeLieH(x2)

∧

∼=
> FreeLieH(xj)

∧

Finitely many generators: Given generators xi1 , . . . , xik in degrees i1, . . . , ik, there is a commutative square:

⊕
w∈Bk

FreeLieH(x∑
t it|w|t−|w|+1) > FreeLieH(xi1 , . . . , xik)

⊕
w∈Bk

π∗(FreeΣ Lie(Σ
∑
t it|w|t−|w|+1E))

∨
> π∗(FreeΣ Lie(Σi1E ⊕ . . .⊕ ΣikE))

∨

where the generator in the summand corresponding to a Lie word w is sent to the class on the right which

corresponds to said Lie word. Here |w| denotes the length of a word and |w|i stands for the number of

occurrences of the ith letter.

The top map is an equivalence by inspection using our explicit models for free Hecke Lie algebras in Propo-

sition 4.4.3. The lower map is an equivalence after completion by Corollary 2.3.14. The left map is an

equivalence after completion by our previous considerations in this proof. It therefore follows that the right

map induces an isomorphism after completion.

Flat E-modules: Now assume M is a flat E-module spectrum. Write M as a filtered (homotopy) colimit

colimd∈D Md
'−→ M with all Md finite and free E-module spectra. Here the colimit is computed in

uncompleted E-module spectra. For the length of this proof, we indicate localised colimits by ĉolim.

We have a natural map π∗(M) → π∗(LK(h)(M)) → π∗(FreeΣ Lie(LK(h)(M))), and this map fits into a

commutative diagram:

colim
d∈D

FreeLieH(π∗(Md)) > FreeLieH(π∗(M))

colim
d∈D

π∗(FreeΣ Lie(Md))

∨

π∗(colim
d∈D

FreeΣ Lie(Md))

∨
> π∗(ĉolim

d∈D
FreeΣ Lie(Md)) > π∗(FreeΣ Lie(LK(h)(M)))

∨

The right lower horizontal arrow is an equivalence since the functor FreeΣ Lie preserves sifted colimits com-

puted in K(h)-local E-module spectra. Each component LK(h)(D(Σ|Πw|�) ⊗hΣw
M⊗wd ) is both finite and
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free as in Theorem 4.2.16, and we can therefore write ĉolim
d∈D

FreeΣ Lie(Md) as the K(h)-localisation of a flat

E-module spectrum. This implies that the bottom left map is an equivalence after L0-completion (cf.

Corollary 3.8 in [Rez09]).

The top horizontal arrow is an equivalence since the monad FreeLieH on the category of E∗-modules is

defined in terms of the Z-graded algebraic theory of Hecke Lie algebras. The left top vertical arrow becomes

an isomorphism after completion by our work in the last step of this proof. The bottom left arrow is an

equivalence since E is compact in ModE . It follows that the right vertical map gives an isomorphism after

(derived) completion.

Remark 4.4.5. The general strategy of this proof goes back at least to [Goe90].
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Chapter 5

Appendix

Our Appendix contains four parts. In part A, we review completion in algebra and topology (following

[GM95] and [Lur16]) and develop the theory of completed-free modules. This is a key ingredient to the main

computation of this thesis and to our simplification and generalisation of algebraic approximation monads. In

Appendix B, we recall the basics for the theory of tensored∞-categories (following [Lura]). In Appendix C,

we review the theory of Z-graded algebraic theories as treated in [ARV11].

The final Appendix D contains more original work. Here, we discuss the relation between Lurie’s Koszul

duality in monoidal ∞-categories (see [Lur11b]) and more classical instances of Koszul duality, namely the

Yoneda product on Ext-groups and Ching’s operadic Bar construction via tree grafting [Chi05] (cf. [Sal98]).

5.1 Appendix A: Completeness

We first review the theory of complete modules in Section 5.1.1 and module spectra in Section 5.1.2 and

then develop the theory of completed-free modules in Section 5.1.3.

5.1.1 Completion of Graded Modules

We fix a graded commutative ring R∗ with ideal I ⊂ R0 and write Mod∗R∗ for the category of graded

R∗-modules and homogeneous maps (of arbitrary degree) between them. Given an ideal I ⊂ R0, we consider

the endofunctor on Mod∗R∗ given by ordinary I-adic completion:

M∗ 7→ CplI(M∗) := lim←−
n

M∗/I
n

The functor CplI is additive. We follow Greenlees-May and use (graded) homological algebra to define its
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left derived functors LI∗. Ordinary completion is neither right nor left exact in general, and the canonical

map LI0(M∗)→ CplI(M∗) is therefore usually not an equivalence.

If R∗ is Noetherian, we can compute these derived functors more explicitly. For this, we recall terminology:

If I = (x) is principal, we define a (cohomologically graded) complex K•(x) of graded R∗-modules with R∗

in degree 0, R∗[
1
x ] in degree 1, and the evident map between them as differential.

More generally, if we are given generators x1, . . . , xk ∈ I, we define

K•(x1, . . . , xk) = K•(x1)⊗ · · · ⊗K•(xk)

By Corollary 1.2 in [GM95], the complex K•(x1, . . . , xk) only depends on I up to quasi-isomorphisms.

Writing PK•I for a projective replacement of the complex K•I , we can now define the local homology of an

R∗-module M∗ as HI
∗ (R∗,M∗) := H∗(Map(PK•(I),M∗)).

Greenlees and May prove that for R∗ Noetherian, there is a canonical isomorphism HI
∗ (R∗,M∗)

∼= LI∗(M∗).

Using this identification, the canonical map of complexes PK•(I)→ R∗ gives rise to a factorisation

M∗ → LI0(M∗)→ CplI(M∗)

Definition 5.1.1. An R∗-module M∗ is said to be L-complete (with respect to I) if the first of these

arrows is an equivalence. Write Mod
∗Cpl(I)
R∗

ι−→ Mod∗R∗ for the full subcategory spanned by all such modules.

The inclusion ι admits a left adjoint L0. We write Mod
Cpl(I)
R∗

⊂ Mod
∗Cpl(I)
R∗

and ModR∗ ⊂ Mod∗R∗ for the

subcategories where maps are required to preserve degree.

5.1.2 Completion of Module Spectra

We will now recall the topological version of these constructions. We follow Lurie’s modern formulation

of the old theory by Greenlees and May [GM95]. Assume R is an E2-ring containing a finitely generated

ideal I ⊂ π0(R). We write ModR for the stable ∞-category of left R-module spectra. It is endowed with a

monoidal structure given by the relative smash product which we shall simply write as ⊗.

Given two modules C,D ∈ ModR, the construction M 7→ Map(M⊗C,D) is representable by a left R-module

spectrum Map(C,D) (see Example D.7.1.2. in [Lur16]). Recall the following terminology (Chapter 6 in [Lur16]):

Definition 5.1.2. A module spectrum M ∈ ModR is said to be

• I-nilpotent if for any m ∈ π∗(M) and any λ ∈ I, we have λnm = 0 for n large.
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• I-local if Map(N,M) ∼= ∗ for any I-nilpotent module spectrum N .

• I-complete if Map(N,M) ∼= ∗ for any I-local module spectrum N .

We write Mod
Cpl(I)
R and Mod

Loc(I)
R for the full subcategories of ModR spanned by I-complete and I-local

(left) R-module spectra.

By Proposition 2.3.3.11. in [Lur16], the pair
(

Mod
Loc(I)
R ,Mod

Cpl(I)
R

)
forms a semiorthogonal decomposition

of the∞-category ModR. The inclusion of the full subcategory Mod
Cpl(I)
R ↪→ ModR of I-complete R-module

spectra admits an (accessible) left adjoint (−)∧I : ModR → Mod∧R, namely (derived) completion.

Work by Hovey and Strickland [HS99] implies that these ingredients describe a situation of interest in the

chromatic context:

Lemma 5.1.3. For R = E Morava E-theory at height h and I ⊂ E0 the unique maximal ideal, a module

spectrum M ∈ ModE is I-complete if and only if it is K(h)-local. Moreover, I-completion is given by

K(h)-localisation.

If our ideal I ⊂ π0(R) is finitely generated, then we can follow give an explicit definition of completion:

Definition 5.1.4. (Greenlees-May)

If I = (x) is principal, we define K(x) = fib(R→ colim(R
x−→ R

x−→ . . . )) ∈ ModR.

If I is generated by x1, . . . , xn, we define K(x1, . . . , xn) := K(x1)⊗ · · · ⊗K(xn) ∈ ModR.

We can use these modules to give an explicit description of completion:

Proposition 5.1.5. If M ∈ ModR is a module spectrum, then the natural map

M ∼= Map(R,M) −→ Map(K(x1, . . . , xn),M)

exhibits the mapping spectrum Map(K(x1, . . . , xn),M) as the I-adic completion of the module spectrum M .

Proof. We define C ∈ ModR to be the cofibre of the map K(x1, . . . , xn) → R. Assume N is an I-nilpotent

module. We have a cofibre sequence

Map(N,Map(C,M)) > Map(N,Map(R,M)) > Map(N,Map(K(x1, . . . , xn),M))
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The first term is equivalent to Map(N ⊗C,M). By 4.1.12. in DAG XII, there is a map of cofibre sequences

N ⊗K(x1, . . . , xn) > N ⊗R > N ⊗ C

ΓI(N)

'
∨

> N
∨
'

> LI(N)
∨
'

where ΓI and LI denote the right and left adjoint to the inclusion of I-nilpotent and I-local modules into

all modules respectively (Note that LI is not related to the functor L0 from the previous section).

Since N is nilpotent, LI(N) ∼= N ⊗C is null and hence Map(N,Map(C,M)) must vanish. Since this is true

for all nilpotent N , the module spectrum Map(C,M) is in fact I-local. The fibre sequence

Map(C,M)→ Map(R,M)→ Map(K(x1, . . . , xn),M)

then establishes the Proposition.

Remark 5.1.6. This proof is very close to the techniques used in Section 4 of [Lurb].

Definition 5.1.7. An E2-ring R is said to be Noetherian if π∗(R) is Noetherian.

One can filter the spectra K(x1, . . . , xk) and use this to set up a spectral sequence (cf. [GM95]):

Theorem 5.1.8. Let R be a Noetherian E2-ring with ideal I ⊂ π0(R). Given a left R-module spectrum

M ∈ ModR, there is a spectral sequence of graded R∗-modules

E2
s,t = HI

s (R∗, π∗(M))t ⇒ πs+t(M
∧
I ) dr : Es,tr → Es−r,t+r−1

r

5.1.3 Completed Free Modules

We introduce the following terminology:

Definition 5.1.9. A module spectrumM over an E2-ringR is said to be free if it is of the formM =
⊕

s∈S ΣisR

for some set S and some family of integers {is}s∈S .

We write ModR,f for the full subcategory of ModR spanned by all such modules.

Definition 5.1.10. A graded module M∗ over a graded ring R∗ is said to be free if it is of the form

M =
⊕

s∈S ΣisR∗ for some set S and some family of integers {is}s∈S .

We write Mod∗R∗,f for the full subcategory of Mod∗R∗ spanned by all such modules.

Here ΣiR∗ denotes the ith shift of R∗ satisfying (ΣiR∗)s = Rs−i.
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Remark 5.1.11. These free modules are also sometimes called quasi-free in the literature (cf. [Lur14]).

Proposition 5.1.12. Let R be an E2-ring. The functor π∗ sends free R-modules to free R∗-modules.

Proof. This holds since R is compact in ∞-category ModR by Example D.7.3.2. in [Lur16].

We will now introduce a completed variant of freeness:

Definition 5.1.13. A left module spectrum over an E2-ring R with ideal I ⊂ π0(R) is said to be completed-

free if it is the completion M∧I of a free R-module spectrum M .

We write Mod
Cpl(I)
R,f for the full subcategory spanned by all such modules.

Definition 5.1.14. A graded module over a graded commutative ring R∗ with ideal I ⊂ R0 is said to be

completed-free if it is the completion L0(M∗) ∼= CplI(M∗) of a free R∗-module M∗.

We write Mod
∗Cpl(I)
R∗,f

⊂ Mod
∗Cpl(I)
R∗

for the full subcategory of all such modules.

Remark 5.1.15. Completed-free R∗-modules are often called pro-free in the literature (cf. [HS99]).

Proposition 5.1.16. If M ∈ ModR,f is a free module spectrum over a Noetherian E2-ring R with ideal

I ⊂ π0(R), then there is an isomorphism π∗(M
∧
I ) ∼= L0(π∗(M)) ∼= CplI(π∗(M)) = lim←−π∗(M)/In.

In particular, the functor π∗ sends completed-free module spectra to completed-free modules.

Remark 5.1.17. This was observed for the case where R is Morava E-theory with its unique maximal ideal

by Hovey as Corollary 2.4 in [Hov04].

Proof of 5.1.16. Since R is Noetherian, the local homology group HI
s (R∗, π∗(M)) is given by the derived

functor Ls(π∗(M)). Since π∗(M) is free (in the graded sense), these functors vanish for s > 0 and we have

L0(π∗(M)) ∼= CplI(π∗(M)). The Greenlees-May spectral sequence hence implies the desired result.

For the rest of this section, we fix a Noetherian E2-ring R. We can detect whether or not a given module

spectrum is completed-free on the level of homotopy groups:

Proposition 5.1.18. If M ∈ ModR is a module spectrum with π∗(M) completed-free, then M ∈ Mod
Cpl(I)
R,f

is a completed-free R-module spectrum.

Proof. Assume that we are given a isomorphism CplI(
⊕

s∈S ΣisR∗)
∼=−→ π∗(M). We can lift the various

grading-preserving maps ΣisR∗ → π∗(M) to maps ΣisR → M . The resulting map (
⊕

s∈S ΣisR)∧I → M

induces an equivalence on homotopy groups and is therefore itself an equivalence.

We introduce the following notation:
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Notation 5.1.19. Let ModR∗,f ⊂ Mod∗R∗,f and Mod
Cpl(I)
R∗,f

⊂ Mod
∗Cpl(I)
R∗,f

be the respective (non-full) sub-

categories containing only those homogeneous maps which preserve the grading.

The Nerve functor N : Cat → sSet has a right adjoint which we shall denote by h. It assigns to an

∞-category its homotopy category. Homotopy classes of maps out of completed-free module spectra are

determined by their effect on homotopy:

Lemma 5.1.20. If M ∈ Mod
Cpl(I)
R,f and N ∈ Mod

Cpl(I)
R , then the following map is bijective:

π∗ : Map
hMod

Cpl(I)
R

(M,N)→ Map
Mod

Cpl(I)
R∗

(π∗M,π∗N)

Proof. Let M =
(⊕

i∈I ΣkiR
)∧
I

be a completed-free module spectrum. We use Proposition 5.1.16 to see that

π∗(M
∧
I ) = CplI(π∗(M)) and thus obtain the following commutative diagram:

Map
hMod

Cpl(I)
R

(M,N) > Map
Mod

Cpl(I)
R∗

(
π∗(M), π∗(N)

)

MaphModR

(⊕
i∈I

ΣkiR,N

)∨

> MapModR∗

(⊕
i∈I

ΣkiR∗, π∗(N)

)∨

∏
i∈I

MaphModR

(
ΣkiR,N

)∨
∼=
>
∏
i∈I

MapModR∗

(
ΣkiR∗, π∗(N)

)∨

The vertical maps are evidently bijective. The lowest map is a bijection since both sides are readily identified

with the set
∏
i∈I πki(N).

The following result is crucial in our definition of approximation functors in Chapter 3:

Corollary 5.1.21. Taking homotopy groups induces an equivalence π∗ : hMod
Cpl(I)
R,f

∼=−→ Mod
Cpl(I)
R∗,f

.

Proof. The functor lands in the subcategory on the right by Proposition 5.1.16. The same proposition

straightforwardly implies essential surjectivity. The functor is fully faithful by Lemma 5.1.20.
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5.2 Appendix B: Monoidal ∞-categories

5.2.1 Algebras and Modules

We follow [Lura] and recall some of the basic notions in the theory of monoidal and tensored ∞-categories.

Only the final section on restrictions is (easy) original work.

Definition 5.2.1. A monoidal ∞-category is a coCartesian fibration C~ → N(∆)op in ŝSet/N(∆)op such

that C~[n] → C
~
{0,1} × · · · × C

~
{n−1,n} determines an equivalence to (C~[1])

×n for all n.

We mark every edge in N(∆)op and consider the combinatorial model category A = (ŝSet
+

)/N(∆)op of (not

necessarily small) marked simplicial sets over N(∆)op, endowed with the coCartesian model structure defined

in Remark 3.1.3.9 in [Lur09]. The category Ao of fibrant-cofibrant objects is given by coCartesian fibrations

over N(∆)op with coCartesian edges marked. We will write Ĉat
coCart

∞/N(∆)op = N(Ao) for the simplicial nerve

of Ao.

Definition 5.2.2. The ∞-category of monoidal ∞-categories Ĉat
Mon

∞ is given by the full subcategory of

Ĉat
coCart

∞/N(∆)op spanned by all monoidal ∞-categories.

Definition 5.2.3. Given a monoidal ∞-category C~ p−→ N(∆)op, the ∞-category Alg(C) of algebra objects

consists of the full subcategory of FunN(∆)op(N(∆)op, C~) spanned by all sections which send every convex

morphism to a p-coCartesian morphism.

Definition 5.2.4. A tensored ∞-category is a morphism M~ → C~ → N(∆)op in ŝSet/N(∆)op such that

• C~ is a monoidal ∞-category

• The structure map M~ → N(∆)op is a coCartesian fibration.

• The map M~ → C~ is a categorical fibration which preserves coCartesian edges.

• For each n, the inclusion {n} ⊂ [n] induces an equivalence M~[n] → C
~
[n] ×M

~
{n}.

The category A[1] inherits the structure of a simplicial model category with the injective model structure. By

Proposition 4.2.4.4. in [Lur09], there is an equivalence of∞-categories N((A[1])o)
∼=−→ Fun(∆1, Ĉat∞/N(∆)op).

The following proposition appears in Section 2.6. of [Lura]:
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Proposition 5.2.5. The fibrant-cofibrant objects in A[1] are precisely given by triangles

C f
> D

N(∆)op
∨>

satisfying the following properties:

• C → N(∆)op,D → N(∆)op are coCartesian fibrations of simplicial sets with coCartesian edges marked.

• The map f is a categorical fibration of simplicial sets.

Definition 5.2.6. The ∞-category of tensored ∞-categories, denoted by ̂CatMod, is given by the full

subcategory of N((A[1])o) spanned by all tensored ∞-categories.

Definition 5.2.7. Let M~ q−→ C~ p−→ N(∆)op be a tensored ∞-category.

The ∞-categoryMod(M) of modules is given by the full subcategory of MapN(∆)op(N(∆)op,M~) spanned

by all functors F for which

• the composition q ◦ F is an algebra object of C~

• if α : [m]→ [n] is a convex map in ∆ with α(m) = n, then F (α) is a (p ◦ q)-coCartesian edge.

Composition with q gives a natural map Mod(M)
U−→ Alg(C). Following Remark 2.1.8 in [Lura], we define:

Definition 5.2.8. Given an algebra object A ∈ Alg(C), the ∞-category of (left) A-modules ModA(M) is

given by the fibre of U over A.

If M~ → N~ is a morphism of C~-tensored ∞-categories, every A ∈ Alg(C) gives rise to a functor

ModA(M)→ ModA(N ).

5.2.2 On coAlgebras and coModules

We have an involution (op) : Ĉat
Mon

∞ → Ĉat
Mon

∞ obtained by observing that the functor

Ĉat
coCart

∞/N(∆)op
St−→ Fun(N(∆op), Ĉat∞)

(op)◦(−)−−−−−→ Fun(N(∆op), Ĉat∞)
Un−−→ Ĉat

coCart

∞/N(∆)op

sends monoidal ∞-categories to monoidal ∞-categories. Here St and Un denote straightening and un-

straightening respectively. Here op is the “opposite” involution of Ĉat∞.

Definition 5.2.9. The ∞-category of coalgebras in a monoidal ∞-category C is coAlg(C) := Alg(Cop)op.
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We can define an involution (op) : ̂CatMod→ ̂CatMod by observing that the following functor sends tensored

∞-categories to tensored ∞-categories.

Fun(∆1, Ĉat
coCart

∞/N(∆)op)
St◦(−)−−−−→ Fun(∆1,Fun(N(∆)op, Ĉat∞))

(op)◦(−)−−−−−→ Fun(∆1,Fun(N(∆)op, Ĉat∞))
Un−−→ Fun(∆1, Ĉat

coCart

∞/N(∆)op)

Definition 5.2.10. Let M~ q−→ C~ p−→ N(∆)op be a tensored ∞-category. The ∞-category coMod(M) of

comodules is given by coMod(M) = (Mod(Mop))op.

There is a natural map coMod(M)
U−→ coAlg(C). Given a coalgebra object C ∈ coAlg(C), the ∞-category

of (left) C-comodules coModC(M) is given by the fibre of U over C.

5.2.3 Constructing tensored ∞-categories

Let S be a category. We invite the reader to recall the relative Nerve functor Nf (S) : ŝSet
S
→ (ŝSet)/S

defined in Definition 3.2.5.2. of [Lur09]. Let K ⊂ (ŝSet
∆op

)[1] be the full subcategory spanned by all

transformations F → G of functors ∆op → ŝSet for which F (i) → G(i) is a categorical fibration between

∞-categories for all i ∈ ∆op. Using Lemma 3.2.5.11 in [Lur09], the relative nerve gives a map K → (A[1])o.

We now introduce a strict variant of tensored ∞-categories:

Definition 5.2.11. The category ̂CatMod
ord

of strictly (left) tensored ∞-categories has objects (C,M),

where C is an ∞-category endowed with the structure of a simplicial monoid and M is an ∞-category

endowed with a (left) monoid action C ×M→M by C. Morphisms are defined in the evident way.

Remark 5.2.12. The functor (−)op : ŝSet→ ŝSet is strictly monoidal with respect to the cartesian product

and sends∞-categories to∞-categories. Thus, it induces an endofunctor (−)op : ̂CatMod
ord
→ ̂CatMod

ord
.

There is a natural functor of categories τ : ̂CatMod
ord
→ K ⊂

(
ŝSet

∆op
)[1]

sending (C,M) to

. . . C × C ×M

��

//

//
// C ×Moo

oo //
//

��

Moo

��

. . . C × C
//

//
// Coo

oo //
// [0]oo

Composing with the relative nerve hence gives a functor of simplicial categories θ : ̂CatMod
ord
→ (A[1])o.

Applying the simplicial nerve and observing that all objects “on the right” indeed satisfy the axioms for a

tensored ∞-category, we have constructed a functor Θ : N( ̂CatMod
ord

) −→ ̂CatMod.
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5.2.4 Restriction of Tensored ∞-Categories

We will now review how to pull back tensored structures along monoidal functors.

Definition 5.2.13. A morphism of tensored ∞-categories in (A[1])o given by

M~ > N~

C~
∨

F~

> D~
∨

N(∆)op
∨>

is called restrictive if the top square is a pullback in ŝSet/N(∆op).

Since C~, D~, and N~ are fibrant objects of A and N~ → D~ is a fibration in A (by Proposition 2.6.4

in [Lura]), this happens precisely if the top square is a homotopy pullback in A, i.e. a pullback in the

∞-category Ĉat
cocart

∞/N(∆)op = N(Ao).

We also say that the morphism exhibits M as restriction of N along the monoidal functor F : C → D.

Proposition 5.2.14. The functor (op) : ̂CatMod→ ̂CatMod preserves restrictive morphisms.

Proof. We think of a 1-morphism G ∈ Fun(∆1, ̂CatMod) ⊂ Fun(∆1,Fun(∆1, Ĉat
coCart

∞/N(∆)op)) as an element

of ∆1 × ∆1 → Ĉat
coCart

∞/N(∆)op . Then (op)(G) corresponds to ∆1 × ∆1 → Ĉat
coCart

∞/N(∆)op
(op)−−→ Ĉat

coCart

∞/N(∆)op .

Since (op) is an equivalence, G is a pullback square if and only if (op)(G) is one.

Lemma 5.2.15. Let F : C → D be a map of simplicial monoids which are ∞-categories. Assume that M

is an ∞-category with a (left) action by the monoid D. We write MC for M with the C-action obtained by

restriction along F . Applying θ to the morphism F̃ = (C,MC)→ (C,M) in ̂CatMod
ord

yields a morphism

M~C >M~

C~
∨

F~

> D~
∨

N(∆)op
∨>

which exhibits MC as restriction of M along F .

Proof. The morphism τ(F̃ ) ∈ ((ŝSet
∆op

)[1])[1] ∼= (ŝSet
∆op

)[1]×[1] is a pullback of functors ∆op → ŝSet as it

is evidently a pointwise pullback. As remarked in 3.2.5.5. of [Lur09], the relative nerve preserves limits, and
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we therefore see that θ(F̃ ) ∈ (A[1])[1] ∼= A[1]×[1] is a pullback square in A = (ŝSet
+

)/N(∆)op .

Now assume that
M~ > N~

C~
∨

F~

> D~
∨

N(∆)op
<

>

is a morphism of tensored ∞-categories which exhibits M as obtained from N by restriction along F .

Lemma 5.2.16. Given an algebra C ∈ Alg(C), the functor ModC(M)
'−→ ModF (C)(N ) is an equivalence.

Proof. By the universal property of pullbacks, we have a natural isomorphism

FunN(∆)op(N(∆)op,M~) ×
FunN(∆)op (N(∆)op,C~)

{C} '−→ FunN(∆)op(N(∆)op,N~) ×
FunN(∆)op (N(∆)op,D~)

{F (C)}

The claim follows by observing that this isomorphism identifies modules in the sense of Definition 5.2.7.

5.3 Appendix C: Z-Graded Algebraic Theories

We recall the theory of many-sorted algebraic theories from [ARV11] in the special case where S = Z:

Definition 5.3.1. An algebraic theory is a small category T with finite products. A morphism T1 → T2 of

algebraic theories is a functor which preserves finite products. An algebra over an algebraic theory T is a

functor T → Set which preserves finite products. We write AlgT for the category of T -algebras.

Remark 5.3.2. Following [ARV11], we do not require every object to be a Cartesian power of a fixed object.

Hence this notion is more general than the notion of a Lawvere theory.

Example 5.3.3. Write Z∗ for the collection of (possibly empty) words of finite length in Z. We turn Z∗

into a category by declaring morphisms s1 . . . sn → t1 . . . tk to be functions f : {1, . . . , k} → {1, . . . , n} with

sf(i) = ti for all i. Then Z∗ is the free completion of Z under finite products. We can consider Z∗ as an

algebraic theory. Algebras over Z∗ are the same as functors Z→ Set.

Definition 5.3.4. A Z-graded algebraic theory consists of a pair (P, F ) of algebraic theory P with objects

the words over Z and F : Z∗ → T a morphism of theories which is the identity map on objects.

A morphism (P1, F1)→ (P2, F2) of Z-graded theories is a map of theories M : P1 → P2 with M ◦ F1 = F2.
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An algebra over a Z-graded algebraic theory (P, F ) consists of a functor P → Set which preserves finite

products. We write AlgP for the category of P-algebras.

There is a forgetful functor AlgP → SetZ. By Proposition 14.8 in [ARV11], this functor is faithful, conser-

vative, preserves and reflects limits, sifted colimits, monomorphisms, and regular epimorphisms.

We can define Z-graded algebraic theories by specifying operations and relations between them.

For this, assume Σ is a set together with a so-called “arity function” Σ→ Z∗ × Z.

Definition 5.3.5. A Σ-algebra is a Z-graded set X together with a map σX : Xj1 × . . . × Xjn → Xi for

each σ ∈ Σ with arity (j1 . . . ln, i). There is an evident notion of morphisms of Σ-algebras, and the resulting

category shall be denoted by AlgΣ.

Given a Z-graded set X, we write Fσ(X) for the free Σ-algebra on the set X.

An equation in Σ is given by an expression ∀x1 . . . ∀xn : (t = t′) where xi is a Z-graded variable of degree si

and t, t′ ∈ FΣ({x1, . . . , xn}). We say a Σ-algebra X satisfies a set of equations E if whenever (t = t′) ∈ E is

an equation in the graded variables x1, . . . , xn and f : {x1, . . . , xn} → X is a grading-preserving map with

canonical extension f : FΣ({x1, . . . , xn})→ X, then f(t) = f(t′).

Definition 5.3.6. Write AlgΣ(E) for the full subcategory consisting of all Σ-algebras satisfying the equations E.

We can construct a Z-graded algebraic theory whose category of algebras is equivalent to AlgΣ(E) as follows:

We start with the category PΣ which is opposite to the category whose objects are all FΣ({x1, . . . , xk}) for

graded variables x1, . . . , xk and whose morphisms are maps of Σ-algebras. Every equation (t = t′) in E gives

rise to two arrows t, t′ : FΣ({x1, . . . , xk}) ⇒ FΣ({y}). We follow Definition 10.4 in [ARV11] and define an

equivalence relation 'E on every Hom-set in the category PΣ by requiring:

1. t 'E t′ whenever (t = t′) is an equation in E.

2. If u, v : x→ y and s, t : y → z have u 'E v and s 'E t, then s ◦ u 'E t ◦ v.

3. If ui, vi : x→ yi have ui 'E vi for i = 1, . . . , n, then u1 × . . .× un 'E v1 × . . .× vn.

We form a new category PΣ/E by identifying equivalent morphisms in each hom-set (individually).

By Proposition 14.23 in [ARV11], PΣ/E defines a Z-graded algebraic theory whose category of algebras

Alg(PΣ/E) is canonically equivalent to AlgΣ(E).

The forgetful functor AlgΣ(E)→ SetZ is therefore again faithful, conservative, preserves and reflects limits,

sifted colimits, monomorphisms, and regular epimorphisms.
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5.4 Appendix D: Monadic Koszul Duality

Let D be an ∞-category containing geometric realisations and assume T → 1 is an augmented realisation-

preserving monad. By Lemma 4.5.12. in [Lura], the restriction triv : D ∼= Alg1(D)→ AlgT (D) admits a left

adjoint Q and we therefore obtain a comonad C = Q ◦ triv ∈ coAlg(End(D)). The comonad C is Koszul

dual to T in the sense of [Lur16]. We can now take homotopy categories to obtain an adjunction of ordinary

categories hQ : hAlgT (D)� hD : h triv and a corresponding comonad hC = hQ ◦h triv ∈ coAlg(End(hD)).

Now suppose that D is a cofibrantly generated simplicial or topological model category in which all objects

are fibrant. Write W for the class of weak equivalences in D. Let T : D→ D be a simplicial or topological

endofunctor which is endowed with the structure of an augmented monad and which preserves cofibrant

objects and weak equivalences between them. Assume that the left derived functor LT = T ◦Q preserves

geometric realisations (i.e. ∆op-indexed homotopy colimits). Here Q denotes the cofibrant replacement

functor which attaches to an object A the cofibrant domain QA of a trivial fibration QA→ A.

By Remark 4.5 in [SS00], we can apply Lemma 2.3 in [loc.cit] and deduce the existence of a model category

structure on T-algebras whose fibrations and weak equivalences are defined at the level of underlying objects.

We have a natural forget-free Quillen adjunction FreeT : D � AlgT(D) : ForgetT. Following [MG16] and

[Hin16] generalising Proposition 5.2.4.6. in [Lur09], we obtain an adjunction on underlying ∞-categories

FreeT : N(D)[W−1]� N(AlgT(D))[W−1] : ForgetT

whose constituent functors are induced by LFreeT = FreeT ◦Q and RForgetT = ForgetT respectively. Here

we have inverted weak equivalences by taking fibrant replacement of marked simplicial sets (cf. Remark

1.3.4.2. in [Lur14]), which is related to the Hammock localisation through Proposition 1.2.1 of [Hin16].

The associated monad T = ForgetT ◦FreeT on D := N(D)[W−1] is induced by T ◦ Q and thus preserves

geometric realisations. This implies that ForgetT also preserves geometric realisations. Since ForgetT is also

conservative, the Barr-Beck-Lurie theorem (Theorem 4.7.4.5 in [Lur14]) implies that the canonical functor

N(AlgT(D))[W−1]→ AlgT (D) is an equivalence of ∞-categories.

Using the augmentation T→ 1, we can define a functor AlgT(D)← D : triv. This functor is right Quillen

and hence admits a left adjoint V : AlgT(D) → D. As before, we obtain a corresponding adjunction of

∞-categories V : N(AlgT(D))[W−1]� N(D)[W−1] : triv whose constituent functors are induced by LV =

V ◦Q and Rtriv = triv respectively. After composing with the equivalence N(AlgT(D))[W−1]
'−→ AlgT (D),

we recover the adjunction discussed in the beginning of this section. Passing to homotopy categories gives
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rise to an adjunction hV : hAlgT (D) � hD : htriv and we can therefore identify the comonad hC induced

by C on the homotopy category hD with the comonad LV ◦ Rtriv = V ◦ Q ◦ triv with structure map

V ◦Q ◦ triv ∼= V ◦Q ◦ id ◦triv→ V ◦Q ◦ (triv ◦V ◦Q) ◦ triv .

The final map uses the natural arrow X
'←− QX → (triv ◦V)(QX) in the homotopy category, where the

second map is the unit of the original adjunction between triv and V. We will now give concrete descriptions

of this comonad in two cases of interest to us.

5.4.1 Additive Monads

Let A be an abelian category with enough projectives. We write Ch≥0(A) for the simplicial model category of

nonnegatively graded chain complexes in A, where weak equivalences are quasi-isomorphisms and fibrations

are levelwise epimorphisms – all objects are fibrant. It is well-known that geometric realisations in the

underlying∞-category D−≥0(A) can be computed “via the total complex” (see Proposition 19.9. of [Dug08]).

Given a simplicial chain complex X• ∈ Fun(∆op,Ch≥0(A)), we can first take the alternating face maps in

the simplicial direction to obtain a double complex (Yi,j = (Xj)i, dh : Y∗,∗ → Y∗−1,∗, dv : Y∗,∗ → Y∗,∗−1)

and then form a single complex |X•| =
⊕

i+j=n Yi,j with “total” differential D = dv + (−1)jdh.

Now assume we are handed an augmented simplicial monad T acting additively on A and preserving cofi-

brant objects. The natural extension of T to Ch≥0(A) preserves weak equivalences between cofibrant chain

complexes, and our above analysis shows that LT also preserves geometric realisations.

We can therefore apply the discussion in the last section to obtain a model category AlgT(Ch≥0(A)) whose

underlying ∞-category is canonically identified with AlgT (Ch≥0(A)) for T a monad on Ch≥0(A) whose

underlying functor is induced by LT.

The functor AlgT(Ch≥0(A))← Ch≥0(A) : triv has a left adjoint V which computes indecomposables. The

right derived functor Rtriv is just given by triv. In order to compute the left derived functor of V, we first

use the universal properties of V and T to observe that the value of V on free algebras TY is Y .

Using extra degeneracies and the definition of the model structure on T-algebras, we conclude that the

map |Bar•(T,T, X)| → X is a weak equivalence from a cofibrant object. By Corollary 2.12. in [GS07],

there is a homotopy-unique weak equivalence |Bar•(T,T, X)| → QX over X. We can therefore compute

LV(X) = VQX
'←− |Bar•(1,T, X)|. The unit id→ triv◦V◦Q can be understood by the following diagram:

X <
'

QX > triv(V(QX))

|Bar•(T,T, X)|

'
∧

>

'
<

triv(|Bar•(1,T, X)|)

'
∧
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We can therefore describe the comultiplication on the comonad hC = V◦Q◦triv via the following diagram:

(V ◦Q) ◦ triv(A) <
'

(V ◦Q) ◦Q ◦ triv(A) > (V ◦Q) ◦ triv ◦V ◦Q ◦ triv(A)

|Bar•(1,T, triv(A))|

'
∧

<
' |Bar•(1,T, |Bar•(T,T, triv(A))|)|

'
∧

> |Bar•(1,T, |Bar•(1,T, triv(A))|)|

'
∧

where the lower right horizontal map makes use of the augmentation.

We will now spell this map out in detail. For this, let m : T2 → T be the monadic multiplication, η : 1→ T

the unit, and ε : T → 1 the augmentation transformation. Given a T-algebra X in A (which can be

thought of as a complex in degree 0) with multiplication map a : TX → X, we can write the monadic Bar

construction |Bar•(T,T, X)| as the following augmented simplicial chain complex:

. . . > T4X
mT2X−TmTX+T2mX−T3a

> T3X
mTX−TmX+T2a

> T2X
mX−Ta

> TX
a
> X

Applying the functor V and using that the augmentation T→ 1 is a map of monads gives an expression for

|Bar•(1,T, X)| as . . .
εT2X−mTX+TmX−T2a

> T2X
εTX−mX+Ta

> TX
εX−a

> X. For X endowed with triv-

ial multiplication, the augmented simplicial chain complex Bar•(1,T, |Bar•(T,T, X)|) > Bar•(1,T, X)

therefore yields the following double complex (we include the augmentation on the right):

...
...

...
...

. . .T5X
T2mTX−T3mX+T4εX

> T4X
T2mX−T3εX

> T3X
T2εX

> T2X

. . .T4X

εT4X−mT3X+TmT2X

∨
TmTX−T2mX+T3εX

> T3X

εT3X−mT2X+TmTX

∨
TmX−T2εX

> T2X

εT2X−mTX+TmX

∨
TεX

> TX

εTX−mX+TεX

∨

. . .T3X

εT3X−mT2X

∨
mTX−TmX+T2εX

> T2X

εT2X−mTX

∨
mX−TεX

> TX

εTX−mX

∨
εX

> X

εX−εX

∨

Taking total complexes (and remembering to insert the correct signs) gives rise to the map of complexes

. . . T3X ⊕T3X ⊕T3X > T2X ⊕T2X > TX

. . . > T2X

[
0 0 T2εX

]
∨

εTX−mX+TεX
> TX

[
0 TεX

]
∨

εX−εX
> X

[
εX

]
∨

The nth differential dn : TnX → Tn−1X in the lower row is given by

dn = εTn−1X −mTn−2X + TmTn−3X + . . .+ (−1)n−1Tn−2mX + (−1)nTn−1εX
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In the top row, the nth differential Dn : Tn+1⊕ . . .⊕Tn+1 → Tn⊕ . . .⊕Tn is given by the n×(n+1)-matrix


mTn−1X −TmTn−2X + ...+ (−1)nTnεX εTnX −mTn−1X 0 ...

0 −TmTn−2X + ...+ (−1)nTnεX εTnX −mTn−1X + TmTn−2X ...

... ... ... ...


For example, D2 is given by the matrix

mTX −TmX + T2εX εT2X −mTX 0

0 −TmX + T2εX εT2X −mTX + TmX

 .
In order to relate the comultiplication on |Bar•(1,T, 1)| to the Yoneda product on Tor groups, we prove:

Lemma 5.4.1. Suppose we are given a morphism A
a−→ TnX for which

dn ◦ a = (εTn−1X −mTn−2X + TmTn−3X + . . .+ (−1)n−1Tn−2mX + (−1)nTn−1εX)a = 0 (F)

We can then consider the map: A
a−→ TnX

ηTnX+TηTn−1X+...+TnηX−−−−−−−−−−−−−−−−−−−→ Tn+1X ⊕ . . .⊕Tn+1X.

This map provides a lift of a in the above map of chain complexes and composing it with Dn gives zero.

Proof. The first claim is clear. For the second, observe that the kth component of this composite is given by

(−1)k(TkmTn−k−1X)(TkηTn−kX)a+(−1)k+1(Tk+1mTn−k−2X)(TkηTn−kX)a+. . .+(−1)n(TnεX)(TkηTn−kX)a

+(εTnX)(Tk+1ηTn−k−1X)a−(mTn−1X)(Tk+1ηTn−k−1X)a+. . .+(−1)k−1(TkmTn−k−1X)(Tk+1ηTn−k−1X)a.

Observe that (TnεX)(TkηTn−kX) = (Tkηn−k−1X)(Tn−1εX). We use (F), we transform the above sum to:

= (−1)k(TkmTn−k−1X)(TkηTn−kX)a+ . . .+ (−1)n−1(Tn−1mX)(TkηTn−kX)a

−(TkηTn−k−1X)(εTn−1X)+(TkηTn−k−1X)(mTn−2X)+ . . .+(−1)n(TkηTn−k−1X)(Tn−2mX)

+(εTnX)(Tk+1ηTn−k−1X)a−(mTn−1X)(Tk+1ηTn−k−1X)a+. . .+(−1)k−1(TkmTn−k−1X)(Tk+1ηTn−k−1X)a

By naturality of ε, we have (TkηTn−k−1X)(εTn−1X) = (εTnX)(Tk+1ηTn−k−1X). The naturality of η gives

that for j ≥ k, we have (TkηTn−k−1X)(TjmTn−j−2X) = (Tj+1mTn−j−2X)(TkηTn−kX) and the naturality of

m gives that for j < k, we have (TkηTn−k−1X)(TjmTn−j−2X) = (TjmTn−j−1X)(Tk+1ηTn−k−1X).

The above expression becomes:

= (−1)k(TkmTn−k−1X)(TkηTn−kX)a+. . .+(−1)n−1(Tn−1mX)(TkηTn−kX)a

−(εTnX)(Tk+1ηTn−k−1X)a+(mTn−1X)(Tk+1ηTn−k−1X)a+. . .+(−1)k−1(Tk−1mTn−kX)(Tk+1ηTn−k−1X))a+. . .
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+(−1)k(Tk+1mTn−k−2X)(TkηTn−kX)a+ . . .+(−1)n(Tn−1mX)(TkηTn−kX)a+

+(εTnX)(Tk+1ηTn−k−1X)a−(mTn−1X)(Tk+1ηTn−k−1X)a+. . .+(−1)k−1(TkmTn−k−1X)(Tk+1ηTn−k−1X)a

This simplifies to (−1)k(TkmTn−k−1X)(TkηTn−kX)a+ (−1)k−1(TkmTn−k−1X)(Tk+1ηTn−k−1X)a = 0.

5.4.2 Operadic Koszul Duality

We will now establish a link between Ching’s Koszul duality for operads via tree grafting as developed in

[Chi05] (cf. also [Sal98]) and Lurie’s ∞-categorical monadic Koszul duality from [Lur11b].

Operadic from Monadic Koszul Duality

Let C be either the symmetric monoidal model category (Sp,⊗, S) of S-modules (see [EKMM97]) with

the smash product or the symmetric monoidal model category (Top∗,∧, S) of pointed compactly generated

Hausdorff spaces with the smash product. Write C for the underlying ∞-category of C. As in Section 4.1.2,

SSeq(C) := Fun(Fin
∼=,C) carries the structure of a model category using the projective model structure on

functors. We write SSeq(C)c for the full subcategory spanned by all cofibrant objects.

The model category SSeq(C) carries a monoidal structure ◦ called the composition product and a symmetric

monoidal structure ⊗ given by Day convolution. Write 1 for the unit of the composition product.

Since Day convolution on SSeq(C) preserves cofibrant symmetric sequences and weak equivalences between

them, the underlying ∞-category SSeq(C) = N(SSeq(C)c)[W−1] inherits the structure of a symmetric

monoidal ∞-category by Proposition 4.1.3.4. in [Lur14]. More formally, we obtain a coCartesian fibration

SSeq(C)⊗ → N(Fin∗) satisfying the conditions of Definition 2.0.0.7 in [loc.cit], where Fin∗ denotes the

category of finite pointed sets and pointed maps between them.

One can organise the collection of all symmetric monoidal∞-categories and all symmetric monoidal functors

between them into an ∞-category CatComm,⊗
∞ , see Remark 1.3.11 in [Lur07]. We define a subcategory

CatComm,⊗
∞,PrL

whose objects are the symmetric monoidal∞-categories C⊗ → N(Fin∗) for which the underlying

∞-category C is presentable and the symmetric monoidal structure is compatible with small colimits in

the sense of Definition 2.2.17 in [Lur07]. Morphisms in CatComm,⊗
∞,PrL

are symmetric monoidal functors which

preserve small colimits. By Remark 4.8.1.9 in [Lur14], there is an equivalence CatComm,⊗
∞,PrL

∼= CAlg(PrL). The

symmetric monoidal ∞-category SSeq(C) is now simply a specific object in CatComm,⊗
∞,PrL

.

Let Endc,w,⊗(SSeq(C))rev be the full subcategory spanned by endofunctors which preserve homotopy colim-

its, Day convolutions, and (weak equivalences between) cofibrant objects, considered as a monoidal category
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by reversing functor composition. Write SSeq(C)c for the category of Σ-cofibrant objects, i.e. sequences M

for which Mn is Σn-cofibrant for n 6= 1 and with M1 either cofibrant or equal to S0. We define functors

Φ : SSeq(C)c � Endc,w,⊗(SSeq(C))rev : ev1c

by declaring that ev1c evaluates on a cofibrant replacement 1c of the unit symmetric sequence and Φ sends

a symmetric sequence A to the endofunctor Φ(A) = (−◦A). Since both functors send weak equivalences to

weak equivalences, we can pass to underlying ∞-categories and obtain a diagram

N(SSeq(C)c)
Φ
>

<
ev1c

N(Endc,w,⊗(SSeq(C)))rev

SSeq(C)
∨ Φ

>
<

ev1

EndCatComm,⊗
∞,PrL,st

(SSeq(C))rev
∨

The two squares commute by definition. We have silently introduced Φ and ev1 on the bottom and identified

the underlying ∞-categories of SSeq(C)c and SSeq(C)c. The argument presented in Section 4.1.2 shows

that ev1 is an equivalence. Since ev1 ◦Φ ∼= id, we know that Φ is an inverse. We define a monoidal structure

on SSeq(C) which makes ev1 monoidal. The functor Φ is monoidal by inspection. The right vertical functor

is evidently monoidal. This implies that the left vertical functor is monoidal as well.

We shall now consider composition with a given symmetric sequence from the left. Write Endw(SSeq(C))

for the collection of endofunctors which preserve cofibrant objects and weak equivalences between them and

consider the “Schur functor” S : SSeq(C)c → Endw(SSeq(C)) which attaches to a Σ-cofibrant symmetric

sequence A the endofunctor SA = (A ◦ −). On the level of ∞-categories, we obtain a diagram

N(SSeq(C)c)
S
> N(Endw(SSeq(C)))

SSeq(C)
∨

S
> End(SSeq(C))

∨

The top horizontal map is monoidal by inspection, the right vertical map is evidently monoidal, and the left

vertical map is monoidal as argued above. The lower horizontal map is clearly monoidal. Since S preserves

realisations, Example 4.4.19. in [Lur11b] gives a commutative square linking the Koszul duality functors:

Algaug(SSeq(C)) S
> Algaug(End(SSeq(C)))

coAlgaug(SSeq(C))

KD
∨

S
> coAlgaug(End(SSeq(C)))

KD
∨

Here we slightly abused notation in the labeling of the horizontal maps. We can therefore compute the

left action of the Koszul dual KD(O) of an operad O in terms of the comonad KD(SO) Koszul dual to the
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“Schur monad” SO associated to O. The upshot of this is that we can now apply our reasoning from the

beginning of this Appendix D (see p.133) to understand the comultiplication map on KD(O) explicitly.

For this, suppose O ∈ Algaug(SSeq(C)c) is an augmented cofibrant operad. Write O ∈ Algaug(SSeq(C)) for

the ∞-operad associated to O. By our reasoning above, the augmented monad SO on SSeq(C) is induced

by the augmented monad SO = (O ◦ −). The monad SO acts topologically on the cofibrantly generated

topological model category SSeq(C) and preserves cofibrant objects and weak equivalences between them

(by the analogue of Proposition 4.1.6).

As explained on p.133, the work by Schwede-Shipley can therefore be used to endow the category AlgSO
(SSeq(C))

with a model category structure whose weak equivalences and fibrations are defined pointwise, and the func-

tor SSeq(C)
triv−−→ AlgSO

(SSeq(C)) induced by the augmentation admits a left adjoint V. The monad SO

preserves geometric realisations and the comonad hKD(SO) ∼= hSKD(O) on the homotopy category hSSeq(C)

is given by V ◦Q ◦ triv with structure map V ◦Q ◦ triv→ V ◦Q ◦ (triv ◦V ◦Q) ◦ triv, where Q denotes

the cofibrant replacement functor (along trivial fibrations) in the model category AlgSO
(SSeq(Sp)).

For every simplicial object M• in SSeq(C), we can take the levelwise geometric realisation and define

|M•|A =

∫ n∈∆

∆n
+ ⊗ (Mn)A

Given a left SO-algebra M , we can form the augmented simplicial SO-algebra Bar•(SO,SO,M) → M .

Since this diagram admits an extra degeneracy, the resulting map |Bar•(SO,SO,M)| → M gives a weak

equivalence (see for example Corollary 4.5.2. in [Rie14]). The SO-algebra |Bar•(SO,SO,M)| is readily seen

to be cofibrant in the model structure defined by Schwede and Shipley [SS00]. By Corollary 2.12. in [GS07],

we therefore again have a homotopy-unique weak equivalence |Bar•(SO,SO,M)| '−→ QM . We can therefore

compute V ◦Q ◦ triv(M) ' |Bar•(1,SO,1)| ◦M .

The cocomposition map for the comonad hKD(SO) ∼= hSKD(O) is therefore equivalent to the transformation

obtained by applying S(−) to the following sequence of Σ-cofibrant symmetric sequences

|Bar•(1,O,1)| '←− |Bar•(1,O, |Bar•(O,O,1)|)| → |Bar•(1,O, |Bar•(1,O,1)|)|

This in turn implies that the comultiplication map KD(O) → KD(O) ◦ KD(O) is homotopic to the map

|Bar•(1,O,1)| → |Bar•(1,O,1)| ◦ |Bar•(1,O,1)| constructed above. We will soon (see p.142) write down

this map as explicitly as possible and compare it to Ching’s construction.
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Useful Notions from Ching’s Work

We first recall several definitions from Ching’s thesis [Chi05].

Definition 5.4.2. Given a finite set A, an A-labelled (generalised) tree consists of a finite poset T containing

a unique minimal element (the “root”) together with a surjection ι from A to the set of maximal elements

of T (the “leaves”) such that T satisfies the following additional conditions:

1. If u, v, and t are any elements of T with u ≤ t and v ≤ t, then u ≤ v or v ≤ u.

2. If u, t are elements in T with u > t and t 6= r, then there exists a v with v > t and u � v.

Elements of T which are neither roots nor leaves are called vertices. An edge in a tree is an inequality (u < v)

such that there does not exist a t with u < t < v. An incoming edge for some vertex t is an edge of the form

(t < v). Given t ∈ T , we write i(t) for the set of incoming edges.

There is an evident notion of isomorphism of A-labelled trees. We define a poset Tree(A) whose objects are

isomorphism classes of A-labelled trees. We declare that T ′ ≤ T if T ′ can be obtained from T by a sequence

of the following two elementary operations:

• Edge collapses: Given an edge (u < v) with v a vertex (i.e. neither a root nor a leaf), we can form a

new A-labelled tree by removing v (hence “collapsing” the edge (u < v)).

• Bud collapses: Given a vertex b for which all u > b are leaves, we can remove all those u > b and take

the evident induced surjection from A to the set of maximal elements of the new tree.

Definition 5.4.3. A weighting on a tree T ∈ Tree(A) consists of an assignment of nonnegative numbers to

every edge of T such that the “distance” from the root to any leaf is 1. We write w(T ) for the space of all

weightings (with topology induced by realising this as a subspace of [0, 1]{edges}).

Definition 5.4.4. Given a reduced operad O in Top∗ with a right module R and a left module L satisfying

L0 = R0 = 0, we define B(R,O,L)A =
∫ T∈Tree(A)

w(T )+ ∧ (R,P,L)A(T ) for

(R,O,L)A(T ) := R(i(r)) ∧
∧

vertices v∈T
O(i(v)) ∧

∧
leaves l∈T

L(ι−1l)

Here ι denotes the labelling. We recall Proposition 7.10 from [Chi05]:

Proposition 5.4.5. Let O be a reduced operad in Top∗ with right module R and left module L satisfying

L0 = R0 = 0. Then there is an isomorphism of symmetric sequences B(R,O,L) ∼= |Bar•(R,O,L)|.
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Extension to Multisimplicial Bar Constructions

Assume now that we are given reduced operads O1, . . . ,On ∈ Alg(SSeq(Top∗)), a right O1-module R, a

left On-module L, and (Oi,Oi+1)-bimodules Bi with (L)0 = (R)0 = (Bi)0 = 0 for all i.

We can then form a multisimplicial object Bar•(R,O1,B1, . . . ,Bn−1,On,L) : (∆op)×n → Top∗ by general-

ising the usual Bar construction and define its geometric realisation as the coend

|Bar•(R,O1,B1, . . . ,Bn−1,On,L)|A :=

∫ (i1,...,in)∈∆×n (
(R◦O◦i11 ◦B1◦. . .◦Bn−1◦O◦inn ◦L)A∧∆i1

+∧. . .∧∆in
+

)
.

We will now generalise Ching’s construction to this multisimplicial case:

Definition 5.4.6. Given a finite set A, an A-labelled n-stage tree T consists of a poset T containing a unique

minimal element r (the “root”) together with a map of posets T
d−→ [n] = {0 < . . . < n} and a surjection ι

from the set A to the set of maximal elements of T (the “leaves”) such that the following conditions hold true:

1. If u, v, and t are any elements of T with u ≤ t and v ≤ t, then u ≤ v or v ≤ u.

2. If u > t and t is not a leaf in the tree T≤d(t) := d−1([0 < . . . < d(t)]), then there is a v with v > t and u � v.

3. T0 = d−1(0) = {r}, all leaves of T are mapped to n, and if (u < v) is an edge, then d(v) ≤ d(u) + 1.

Here we used the notation T≤k = d−1([0 < . . . < k]) and Tk = d−1(k).

We define a poset Treen(A) whose objects are isomorphism classes of A-labelled n-stage trees and where we

declare that T ′ ≤ T if T ′ can be obtained from T by a sequence of the following elementary moves:

• Edge collapses: Given an edge e = (u < v) with v not a leaf in T≤d(v), we form a new A-labelled tree

T/e by removing v. We rename the vertex u in T as u ◦ v in T/e.

• Bud collapses: Given a vertex b for which all outgoing edges (b < u1), . . . , (b < uk) have uj a leaf in

T≤d(b), we can remove all ui > b and thereby obtain a new tree T//b. We obtain an evident surjection

from A to the set of maximal elements of the new tree. We denote the new vertex by {uj}.

Remark 5.4.7. We observe that for n = 1, we have Tree1(A) = Tree(A) and thus recover Definition 5.4.2.

Definition 5.4.8. A weighting on an n−stage tree T ∈ Tree(A) consists of an assignment of nonnegative

numbers to all edges of T such that for any k, the “distance” from the root r to any leaf of T≤k is exactly k.

Definition 5.4.9. Given reduced operads O1, . . . ,On ∈ Alg(SSeq(Top∗)), a right O1-module R, a left

On-module L, and (Oi,Oi+1)-bimodules Bi with (L)0 = (R)0 = (Bi)0 = 0 for all i. We define:

B(R,O1,B1, . . . ,On,L)A =

∫ T∈Treen(A)

w(T )+ ∧ (R,O1,B1, . . . ,On,L)A(T )
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where (R,O1,B1, . . . ,On,L)A : Treen(A)op → Top∗ is the functor defined on objects as

R(i(r)) ∧
∧

vertices v∈T1

O1(i(v)) ∧
∧

leaves l∈T1

B1(i(l)) ∧ . . . ∧
∧

vertices v∈Tn

On(i(v)) ∧
∧

leaves l∈Tn

L(ι−1(l))

Here i(v) denotes the edges coming into a vertex v and ι denotes the surjection from A to the leaves of T . We

define the morphism (R,O1,B1, . . . ,On,L)A(T )→ (R,O1,B1, . . . ,On,L)A(T ′) corresponding to T ′ ≤ T :

• If T ′ = T/e ≤ T is obtained by collapsing an edge e = (l < v) (with v not a leaf in T≤d(v)) and l is a

leaf of T≤d(l), then the morphism is defined using the map Bd(l)(i(l)) ∧Od(l)+1(i(v))→ Bd(l)(i(l ◦ v))

coming from the right Od(l)+1-module structure on Bd(l). Here we use the convention that B0 = R.

• If T ′ = T/e ≤ T is obtained by collapsing an edge e = (u < v) (with v not a leaf in T≤d(v)) and u is

not a leaf of T≤d(u) (and thus d(u) = d(v) = d), then the morphism in question is defined using the

map Od(i(u)) ∧Od(i(v))→ Od(i(u ◦ v)) coming from the operad structure on Od.

• If T ′ = T//b ≤ T for b a vertex for which all edges (b < u1), . . . , (b < uk) have uj a leaf in T≤d(b), define

the required map using the morphism Od(b)(i(b)) ∧Bd(b)(i(u1)) ∧ . . . ∧Bd(b)(i(uk))→ Bd(b)(i({uj})).

If d(b) = n, we use the convention that Bn = L and i(ur) = ι−1(ur).

We extend this assignment to composite morphisms to obtain a well-defined functor.

Points inB(R,O1,B1, . . . ,Bn−1,On,L)A will be called “weighted decorated trees” and are given by weighted

n-stage trees T together with elements in Ok(i(v)) attached to all vertices v in Tk which are not leaves in T≤k

and elements in Bk(i(v)) attached to all vertices v in Tk which are leaves in T≤k (where we again use the

convention that B0 = R, Bn = L, and i(v) = ι−1(v) for v a leaf of a tree T ). The coend then identifies

trees for which some edges have length zero with smaller trees and uses the module and operad structures

to modify decorations accordingly. Proposition 7.10 in [Chi05] has the following generalisation:

Proposition 5.4.10. Given reduced operads O1, . . . ,On ∈ Alg(SSeq(Top∗)), a right O1-module R, a left

On-module L, and (Oi,Oi+1)-bimodules Bi with (L)0 = (R)0 = (Bi)0 = 0 for all i. Then

B(R,O1,B1, . . . ,Bn−1,On,L) ∼= |Bar•(R,O1,B1, . . . ,Bn−1,On,L)|.

Explicit Comonadic Comultiplication

Let O be a reduced operad in Top∗ with its canonical augmentation O → 1. We now use the language of

n-stage trees (Definition 5.4.6) to give an explicit description of the following sequence (cf. p.139):

|Bar•(1,O,1)| '←− |Bar•(1,O, |Bar•(O,O,1)|)| → |Bar•(1,O, |Bar•(1,O,1)|)|
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Using Proposition 5.4.10 for the top vertical arrows, we observe the following commutative diagram

B(1,O,1)A <
α

B(1,O,O,O,1)A
δ

> B(1,O,1,O,1)A

|Bar•(1,O,1)|A

∼=
∨

<
' |Bar•(1,O,O,O,1)|A

∼=
∨

> |Bar•(1,O,1,O,1)|A

∼=
∨

|Bar•(1,O,1)|A

∼=
∨

<
' |Bar•(1,O, |Bar•(O,O,1)|)|A

∼=
∨

> |Bar•(1,O, |Bar•(1,O,1)|)|A

∼=
∨

The map α sends a weighted decoratedA-labelled 2-stage tree T to the basepoint whenever T≤1 has fewer than

|A| leaves or some v with dv = 2 is decorated by the basepoint. If neither of these cases holds, then the map α

sends T to the weighted decorated tree T≤1, considered as an element of B(1,O,1)A in the natural way. Here

we use that in the second case, every leaf in T≤1 must be decorated by an element of O(1) = S0 = 1(1). The

map δ on the right of the above diagram uses the augmentation O → 1. The right column is equivalent to

B(1,O,1)◦B(1,O,1)
∼=−→ |Bar•(1,O,1)| ◦ |Bar•(1,O,1)|

∼=−→ |Bar•(1,O,1)| ◦ |Bar•(1,O,1)|. We illustrate

these maps for A a set of size 2 by the following picture:

Figure 10: The monadic comultiplication on spaces of trees at weight 2.

The left map collapses the bottom semicircle to a point, the right map pinches. We will now produce a

homotopy inverse β to α. For our illustrated case, β will wrap the left circle once round the middle circle.

In general, assume that we are given element T ∈ B(1,O,1)A, i.e. an A-labelled weighted tree decorated

with elements in O(i(v)) attached to all internal vertices v. Write dv for the “distance” from the root r to v.

We produce an element in B(1,O,O,O,1)A by “scaling by 2 and slicing in the middle”. More precisely:

1. For any edge (u < w) in T with du < 1
2 < dw, we add a new vertex v to the poset T satisfying

u < v < w and all implied relations. We assign the weight 1
2 − du to the edge (u < v). The edge

(v < w) receives the weight dw − 1
2 . Observe that dv = 1

2 by construction.

2. Decorate the new vertices by the non-basepoint in O(1) = S0, thus obtaining a weighted decorated tree T ′.

3. We consider the function T ′ → [0 < 1 < 2] which sends a point v to k minimal with dv ≤ k
2

4. We multiply all weights by 2.
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We now want to produce a homotopy between the identity and α ◦ β. For every t ∈ (0, 1], we define a

self-map γt on B(1,O,1)A by asserting that its effect on a weighted decorated A-labelled tree T is given by

executing the following steps:

1. If there are fewer than |A| (leaf) edges (u < w) with du < t ≤ dw or some leaf is decorated by the

basepoint, send T to the basepoint. Otherwise add a vertex v for each such edge satisfying u < v < w

(with all implied relations). Give (u < v) and (v < w) the weights t− du and dw − t, respectively.

2. Remove all leaves w and rescale the weights on the remaining edges by a factor of 1
t , hence obtaining

a weighted tree T ′ carrying a naturally induced A-labeling.

3. Decorate each new leaf v ∈ T ′ by the non-basepoint of S0 = O(1). The decorations of the remaining

vertices are the same as in T .

We observe that γ 1
2

= α ◦ β and γ1 = id. Since γt varies continuously in t, we have defined a homotopy

id ' α◦β and therefore conclude that our map β is a homotopy inverse to α. Since this map varies naturally

in A, we have produced maps of reduced symmetric sequences

B(1,O,1)
β
> B(1,O,O,O,1)

δ
> B(1,O,1,O,1) ∼= B(1,O,1) ◦B(1,O,1)

We can now apply the functor Σ∞ to O to obtain an augmented operad in S-modules, which we shall denote

by the same name. Suppose Õ→ O is a cofibrant replacement of this augmented operad in S-modules.

We then have a homotopy commutative diagram of symmetric sequences

|Bar•(1, Õ,1)| '> |Bar•(1, Õ, |Bar•(Õ, Õ,1)|) > |Bar•(1, Õ, |Bar•(1, Õ,1)|) ∼= |Bar•(1, Õ,1)| ◦ |Bar•(1, Õ,1)|

|Bar•(1,O,1)|

'
∨

'
> |Bar•(1,O, |Bar•(O,O,1)|)

'
∨

> |Bar•(1,O, |Bar•(1,O,1)|) ∼= |Bar•(1,O,1)| ◦ |Bar•(1,O,1)|

'
∨

B(1,O,1)

'
∨

β
> B(1,O,O,O,1)

'
∨

δ
> B(1,O,1,O,1) ∼= B(1,O,1) ◦B(1,O,1)

'
∨

Writing O ∈ Algaug(SSeq(Sp)) for the augmented ∞-operad induced by Õ, our argument on p.139 shows

that if X is a symmetric sequence, then the map KD(O) ◦X → KD(O) ◦KD(O) ◦X is equivalent to

B(1,O,1) ◦h X
(δ◦β)◦hid−−−−−−→ (B(1,O,1) ◦B(1,O,1)) ◦h X

Here ◦h denotes a version of ◦ which uses homotopy orbits instead of strict orbits. We will review this and

other related constructions in our Section “Variants of the Composition Product” on p.146.
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Ching’s Comultiplication

Ching’s thesis endows the Spanier-Whitehead dual of the bar construction of any reduced operad O in

pointed spaces with a new operad structure. For X ∈ Sp an S-module, we write D(X) = F (X,S) for the

mapping spectrum to the (non-cofibrant) sphere spectrum. The functor D gives a contravariant endofunctor

of Sp called Spanier-Whitehead duality and it sends colimits to limits.

There is a symmetric monoidal colimit-preserving functor Σ∞ : Top∗ → Sp constructed in Section II.1.1 of

[EKMM97] (not preserving cofibrant objects). We will usually suppress Σ∞ from our notation. We will now

recall Ching’s construction of the Koszul dual of a reduced operad O ∈ Algred(SSeq(Top∗)):

Definition 5.4.11. The Koszul dual operadK(O) = D(B(1,O,1)) ∈ Algred(SSeq(Sp)) is a reduced operad

in spectra whose underlying symmetric sequence is given by K(O)A = D(B(1,O,1)A). The structure map

K(O) ◦K(O) −→ K(O) is defined as follows:

1. For each partition A = A1

∐
. . .
∐
Ar of a set A into nonempty subsets Ai, we define a map of spaces

B(1,O,1)A → B(1,O,1)r∧B(1,O,1)A1
∧. . .∧B(1,O,1)Ar by the following rule. Let T ∈ B(1,O,1)A

be an A-labelled weighted decorated tree.

• Assume that there is a tree S ∈ Tree({1, . . . , r}) whose {1, . . . , r}-labeling is bijective and trees

Uj ∈ Tree(Aj) whose roots have only one incoming edge such that T is obtained from S,U1, . . . , Ur

by identifying the root edge of Ui with the leaf edge of S labelled by i for each i = 1, . . . , r.

In this case, we define a weighting on S by first restricting the weighting from T and then adjusting

the weight of the leaf edges of S so that the distance from root to all leaves of S is exactly 1.

For each i, we define a weighting on Ui by first restricting the weights from T and then rescaling

all weights by a common factor λi to make the root-leaf distance on Ui equal to 1. Care must

be taken of degenerate cases, and we refer the interested reader to Definition 4.16 in [Chi05] for

details. We decorate the vertices of S and U1, . . . , Ur by restricting the decorations from T . The

leaves of S and the root of each Ui are decorated by the non-basepoint of S0. The resulting tuple

of labelled weighted decorated trees (S,U1, . . . , Ur) is then the image of T .

• If T can not be built by trees in the way described above, we send T to the base point.

2. Applying D(Σ∞−) and summing over all decompositions of A, we obtain a Σr-equivariant map

⊕
A=A1

∐
...

∐
Ar

K(O)r ⊗K(O)A1
⊗ . . .⊗K(O)Ar −→ K(O)A

3. Passing to orbits and summing over all r gives the desired structure map.
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Variants of the Composition Product

We follow [Chi12] and introduce variants of the composition product from p.80. Given n ≥ 2 and a finite

set J , write Fin[n]J/ for the category of sequences (J
fn−1−−−→ In−1

fn−2−−−→ . . .
f1−→ I1) of finite sets with diagrams

In−1
fn−2
> . . .

f1
> I1

J >

>

I ′n−1

'
∨

fn−2
> . . .

f1
> I ′1

'
∨

as morphisms. Here the vertical maps are bijections. Given symmetric sequences M1, . . . ,Mn and a finite

set J , we define a functor (M1, . . . ,Mn) : Fin[n]J/ → Sp by sending the chain (J
fn−1−−−→ In−1

fn−2−−−→ . . .
f1−→ I1)

to M1(I1) ∧
∧
i∈I1 M

2(f−1
1 (i)) ∧ . . . ∧

∧
i∈In−1

Mn−1(f−1
n−1(i)). We define:

(M1◦. . .◦Mn)(J) = colim
f∈Fin[n]J/

(M1, . . . ,Mn)(f) '
∐

r1,...,rn−1

(∐
M1
r1
∧
r1∧
i=1

M2
J1,i
∧. . .∧

rn−1∧
i=1

Mn
Jn,i

)
Σr1×...×Σrn−1

(M1◦h. . .◦hMn)(J) = hocolim
f∈Fin[n]J/

(M1, . . . ,Mn)(f) '
∐

r1,...,rn−1

(∐
M1
r1
∧
r1∧
i=1

M2
J1,i
∧. . .∧

rn−1∧
i=1

Mn
Jn,i

)
hΣr1×...×Σrn−1

(M1 ◦̂ . . . ◦̂Mn)(J) = lim
f∈Fin[n]J/

(M1, . . . ,Mn)(f) '
∏

r1,...,rn−1

(∏
M1
r1
∧
r1∧
i=1

M2
J1,i
∧. . .∧

rn−1∧
i=1

Mn
Jn,i

)Σr1×...×Σrn−1

(M1 ◦̂h . . . ◦̂hMn)(J) = holim
f∈Fin[n]J/

(M1, . . . ,Mn)(f) '
∏

r1,...,rn−1

(∏
M1
r1
∧
r1∧
i=1

M2
J1,i
∧. . .∧

rn−1∧
i=1

Mn
Jn,i

)hΣr1×...×Σrn−1

The sums and products corresponding to r1, . . . , rn−1 range over all chains of ordered partitions of length n−1

of the set J into (possibly empty) sets, where the classes of the kth partition are labelled as Jk,1, . . . , Jk,rk .

Relying on the norm in the context of S-modules (cf. [Kle01], [Rog05]), we obtain natural transformations

(M1 ◦ . . . ◦Mn)←− (M1 ◦h . . . ◦hMn) −→ (M1 ◦̂h . . . ◦̂hMn)←− (M1 ◦̂ . . . ◦̂ Mn).

Proposition 5.4.12. If M1, . . . ,Mn are Σ-cofibrant, then the following morphisms are weak equivalences:

(M1 ◦ . . . ◦Mn)←− (M1 ◦h . . . ◦hMn) (DM1◦̂ . . . ◦̂ DMn) −→ (DM1◦̂h . . . ◦̂hDMn)

Proof. A straightforward generalisation of the proof of Lemma 9.20 in [AC11] shows that the Σr1×. . .×Σrn−1
-

spectra appearing in the definition of (M1 ◦ . . . ◦Mn)(J) are (projectively) cofibrant whenever some ri 6= 1.

Since taking coinvariants is a left Quillen functor, the first claim then follows by Theorem 24.3.1. of [MS06].

The second claim follows from the first by Spanier-Whitehead duality.
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Given n, `, r, Ching [Chi12] defines maps (M1 ◦ . . .◦Mn) −→ (M1 ◦ . . .◦M ` ◦ (M `+1 ◦ . . .◦M `+r)◦ . . .◦Mn).

By suitably cofibrantly replacing diagrams in Ching’s construction, we also obtain a natural morphism

(M1 ◦h . . . ◦hMn) −→ (M1 ◦h . . . ◦hM ` ◦h (M `+1 ◦h . . . ◦hM `+r) ◦hM `+r+1 ◦h . . . ◦hMn)

Dually, we also have natural arrows

(M1 ◦̂ . . . ◦̂ Mn)←− (M1 ◦̂ . . . ◦̂ M ` ◦̂ (M `+1 ◦̂ . . . ◦M `+r) ◦̂ M `+r+1 ◦ . . . ◦Mn)

(M1 ◦̂h . . . ◦̂hMn)←− (M1 ◦̂h . . . ◦̂hM ` ◦̂h(M `+1 ◦̂h . . . ◦̂hM `+r) ◦̂hM `+r+1 ◦̂h . . . ◦̂hMn)

Lemma 5.4.13. We have a homotopy commutative diagram

(M1 ◦ . . . ◦Mn) > (M1 ◦ . . . ◦M ` ◦ (M `+1 ◦ . . . ◦M `+r) ◦M `+r+1 ◦ . . . ◦Mn)

A

(M1 ◦h . . . ◦hMn)

∧

> (M1 ◦h . . . ◦hM ` ◦h (M `+1 ◦h . . . ◦hM `+r) ◦hM `+r+1 ◦h . . . ◦hMn)

∧

B

(M1 ◦̂h . . . ◦̂hMn)

∨
< (M1 ◦̂h . . . ◦̂hM ` ◦̂h(M `+1 ◦̂h . . . ◦̂hM `+r) ◦̂hM `+r+1 ◦̂h . . . ◦̂hMn)

∨

C

(M1 ◦̂ . . . ◦̂hMn)

∧

< (M1 ◦̂ . . . ◦̂ M ` ◦̂ (M `+1 ◦̂ . . . ◦̂ M `+r) ◦̂ M `+r+1 ◦̂ . . . ◦̂ Mn)

∧

Proof. Squares A and C follow from the comparison between homotopy (co)limits and ordinary (co)limits.

We now focus on the middle square. In order to not get lost in overly cumbersome notation, we only prove

the case necessary for our specific purposes: assume that n = 3, that M1
0 and M2

0 are both zero and that

M3 is given by the spectrum X concentrated in degree 0. For ` = 0, the claim turns out to be obvious.

So let ` = 1 and fix positive integers j1, . . . , jt and k1, . . . , kt. Write r =
∑
kiji. We observe that the asserted

claim is equivalent to the commutativity of the following square for all such sequences of numbers:

(M1
r ⊗ (M2

j1 ⊗X
⊗j1)⊗k1 ⊗ . . .)hΣj1 oΣk1

×...×Σjt oΣkt > (M1
r ⊗
hΣk1

×...×Σkt

(M2
j1 ⊗
hΣj1

X⊗j1)⊗k1 ⊗ . . .)

(M1
r ⊗ (M2

j1 ⊗X
⊗j1)⊗k1 ⊗ . . .)hΣj1 oΣk1

×...×Σjt oΣkt
∨

< (M1
r

hΣk1
×...×Σkt
⊗ (M2

j1

hΣj1
⊗ X⊗j1)⊗k1 ⊗ . . .)

∨

Since the composition X → XhG −→ XhG → X is simply
∑
g∈G g, it suffices to check that the composite

(
M1
r ⊗ (M2

j1 ⊗X
⊗j1)⊗k1 ⊗ . . .

)
(
M1
r ⊗
hΣk1

×...×Σkt

(M2
j1 ⊗
hΣj1

X⊗j1)⊗k1 ⊗ . . .
)

>

< (
M1
r

hΣk1
×...×Σkt
⊗ (M2

j1

hΣj1
⊗ X⊗j1)⊗k1 ⊗ . . .

)∧
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is equal to

( ∑
g∈Σj1 oΣk1

×...×Σjt oΣkt

g

)
. But this follows since naturality of the norm implies that the map in

question is equivalent to

( ∑
(h1,...,h`)∈Σk1

×...×Σkt

h1⊗. . .⊗h`

)
◦

(( ∑
g1,1∈Σj1

g1,1⊗. . .⊗
∑

g1,k1∈Σj1

g1,k1

)
⊗. . .⊗

( ∑
g`,1∈Σjt

g`,1⊗. . .⊗
∑

g`,kt∈Σjt

g`,kt
))

If N is a symmetric sequence with vanishing constant term, then composition products with N as a second

factor simplify since we only need to consider decompositions into nonempty finite sets when computing

the composition product. Given a finite set J , the group Σr acts freely on the finite set Sr(J) of ordered

decompositions of J into nonempty finite subsets. This implies:

Lemma 5.4.14. If N ∈ SSeq(Sp) has vanishing constant term, then the following diagram commutes:

∞∐
r=0

( ∐
[J1

∐
...

∐
Jr]∈Sr/Σr

Mr ⊗NJ1
⊗ . . .⊗NJr

)
>

∞∏
r=0

( ∏
[J1

∐
...

∐
Jr]∈Sr/Σr

Mr ⊗NJ1
⊗ . . .⊗NJr

)

(M ◦N)(J)

'∧
> (M ◦̂ N)(J)

'
∨

(M ◦h N)(J)

'
∧

> (M ◦̂hN)(J)

'∨

Proof. This follows from Theorem 5.2.5 in [Rog05] which identifies the norm on freely induced G-spectra.

Preliminary Observations on S-modules

Proposition 5.4.15. Let f : X → Y be a weak equivalence of spectra which are either cofibrant or suspension

spectra of well-pointed spaces. Then D(f) : D(Y )→ D(X) is a weak equivalence of S-modules.

Proof. Let Sc → S be a cofibrant replacement of the sphere spectrum. Since S-modules satisfy the “very

strong unit axiom” (see Example 6 in [Mur15]), we know that Sc ⊗X → Sc ⊗ Y is a weak equivalence. The

spectra Sc ⊗X and Sc ⊗ Y are cofibrant. This follows either by the axioms of a monoidal model category

or by combining Theorem VII.4.6. in [EKMM97] with Proposition 10.3.18 of [MS06]. Since S is fibrant, this

implies that F (Sc ⊗X,S)→ F (Sc ⊗ Y, S) is a weak equivalence.We then consider the following diagram:

F (X,S) > F (Y, S)

F (Sc, F (X,S))

'
∨

> F (Sc, F (Y, S))

'
∨

F (Sc ⊗X,S)

∼=
∨

'
> F (Sc ⊗ Y, S)

∼=
∨
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The top vertical arrows are weak equivalences by Lemma 4.2.7 of [Hov99]. This implies the claim.

Proposition 5.4.16. Let X1, . . . , Xn be well-pointed spaces. Assume we are given a weak equivalence

Yi → Xi with Yi a cofibrant S-module for all i (we denote the suspension spectrum of Xi by the same name).

Then the natural map Y1 ⊗ . . .⊗ Yn → X1 ⊗ . . .⊗Xn is a weak equivalence.

Proof. For each i, let X̃i → Xi be a trivial fibration with cofibrant domain. Since Sp satisfies the very

strong monoid axiom in the sense of [Mur15], the map (Sc ⊗ X1) ⊗ . . . ⊗ (Sc ⊗ Xn) → X1 ⊗ . . . ⊗ Xn is

a weak equivalence. For each i, the spectrum Sc ⊗Xi is cofibrant by Theorem VII.4.6. in [EKMM97] and

Proposition 10.3.18 of [MS06]. By Corollary 2.12 in [GS07], there are homotopy-unique weak equivalences

Sc ⊗Xi
'−→ X̃i

'←− Yi over Xi for all i. We therefore obtain a diagram

(Sc ⊗X1)⊗ . . .⊗ (Sc ⊗Xn)

X̃1 ⊗ . . .⊗ X̃n

'∨
> X1 ⊗ . . .⊗Xn

'

>

Y1 ⊗ . . .⊗ Yn

'
∧ >

The vertical maps are weak quivalence as they are obtained by smashing weak equivalences between cofibrant

objects. The claim now follows by the “2-out-of-3”-property.

We will now refine Proposition 8.5. in [AC11] to the situation relevant to us:

Proposition 5.4.17. Let O be a reduced operad in pointed spaces and assume Õ → O is a cofibrant

replacement of the corresponding reduced operad in spectra (denoted by the same symbol).

Then the map |B•(1, Õ,1)| → |B•(1,O,1)| is a weak equivalence of symmetric sequences.

Proof. For any n, k, the map Bk(1, Õ,1)(n) → Bk(1,O,1)(n) is the coproduct of maps of the form

Õk1
⊗ . . .⊗ Õkn → Ok1

⊗ . . .⊗Okn . These maps are equivalences by Lemma 5.4.16 since every term of

a cofibrant operad is either a cofibrant spectrum or equal to S0. Theorem 24.3.1. of [MS06] then implies

that the morphism B•(1, Õ,1)(n)→ B•(1,O,1)(n) is a levelwise weak equivalence of simplicial S-modules.

For any nonnegative integer t, the latching map colimt�s (Bs(1,O,1)(n))→ Bt(1,O,1)(n) can be written

as the inclusion of a spectrum X into a coproduct X
∐
Y . Such an inclusion satisfies the homotopy extension

property and we therefore deduce thatB•(1,O,1)(n) is a proper simplicial S-module in the sense of Definition

X.2.1 in [EKMM97]. A similar argument establishes that B•(1, Õ,1) is a proper simplicial S-module. By

Theorem X.2.4 (ii) of [EKMM97], this implies that the induced map on realisations is a weak equivalence.
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Remark 5.4.18. We warn the reader that there is a clash of notation: For us, the terms “fibrations” and

“cofibrations” refer to the respective distinguished classes of maps in the model category of S-modules. In

[EKMM97] and [MS06], these maps are called “q-fibrations” and “q-cofibrations”.

The Link

We can now articulate the compatibility between Ching’s comultiplication map defined on p.145 and the

comultiplication map on p.142 coming from Lurie’s Koszul duality .

Proposition 5.4.19. Let O be a reduced operad in Algaug(SSeq(Top∗)). The following diagram of sym-

metric sequences in Sp commutes up to homotopy:

K(O) ◦K(O) > K(O)

D(B(1,O,1)) ◦̂ D(B(1,O,1))

'
∨ ∼=

> D(B(1,O,1,O,1))
D(δ)
> D(B(1,O,O,O,1))

D(β)

'
> D(B(1,O,1))

wwwww

The upper horizontal map is Ching’s map from p.145. The maps β and δ are defined in the section “Explicit

Comonadic Comultiplication” starting on p. 142.

Proof. Fix a finite set A and an ordered decomposition (A1, . . . , Ar) ∈ Sr into nonempty subsets. Consider

B(1,O,1)A
δ◦β−−→ B(1,O,1,O,1)A

ε(A1,...,Ar)−−−−−−−→ B(1,O,1)r ∧B(1,O,1)A1 ∧ . . . ∧B(1,O,1)Ar

Here δ ◦β sends an A-labelled weighted decorated tree T to the weighted decorated 2-stage tree obtained by

first scaling the weights of T by 2, then introducing an additional vertex with distance 1 from the root on

every edge which “crosses the middle line”, decorating the “new” vertices “on the middle line” by the non-

basepoint in S0, and finally decorating the “old” vertices v on the middle line by applying O(i(v))→ 1(i(v)).

The second map ε(A1,...,Ar) identifies the quotient (
∐
σ∈Σr

B(1,O,1)r∧B(1,O,1)Aσ(1)
∧. . .∧B(1,O,1)Aσ(r)

)Σr

sitting inside B(1,O,1,O,1) ∼= B(1,O,1) ◦B(1,O,1) with the right hand side and projects the rest off to

zero. The composite map thus sends an A-labelled weighted decorated tree T to the basepoint unless the

“middle line” crosses precisely r edges, no vertices, and the partition of A obtained by identifying points if

they lie over the same “crossed edge” agrees with A = A1

∐
. . .
∐
Ar. If this happens, then the composite

map “cuts the tree in the middle”, multiplies the weights of the resulting (r + 1) trees by 2, and thereby

obtains a point in B(1,O,1)r ∧B(1,O,1)A1
∧ . . . ∧B(1,O,1)Ar .

The ‘down-right” map in the above square can be constructed by applying D(Σ∞−) to ε(A1,...,Ar) ◦ δ ◦ β,

summing over all (A1, . . . , Ar) ∈ Sr, dividing out by Σr, and finally summing over all r.
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We also have another natural map γ : B(1,O,1)A
γ−→ B(1,O,1)r∧B(1,O,1)A1

∧ . . .∧B(1,O,1)Ar given by

Ching’s construction. The map γ sends an A-labelled weighted decorated tree T on the left to the basepoint

unless it is grafted along the partition A = A1

∐
. . .
∐
Ar. If this is indeed the case, the map γ first ungrafts

T into an {1, . . . , r}-labelled tree S and Ai-labelled trees Ui with induced decorations and then weights S by

rescaling the leaf weights and each Ui by rescaling all weights by a constant factor λi. If we apply D(Σ∞−)

to this map, sum over all (A1, . . . , Ar) ∈ Sr, divide out by Σr, and finally sum over all r ≥ 0, we obtain

precisely the structure map K(O) ◦K(O)→ K(O) given by Ching’s construction.

The Homotopy. It suffices to construct a homotopy H from ε(A1,...,Ar)◦δ◦β to γ for each (A1, . . . , Ar) ∈ Sr

which interacts well with the Σr-action. Assume that T ∈ Tree(A) is an A-labelled tree which can be obtained

by grafting along the given partition A = A1

∐
. . .
∐
Ar. Given a weight w on T , we write ai for the vertex

of T corresponding to Ai and define di = di(w) to be the distance from the root r of T to ai and si = si(w)

to be the length of the unique edge under ai. Let S ⊂ w(T ) be the collection of weights w with di(w) = 1

and si(w) = 0 for some i. For t ∈ [0, 1], we define a function κt = κt(T ) : (w(T )− S)→ w(T ) as follows:

• If (u < v) is an edge with v < ai for all i, we define κt(w)(u < v) = max
(
1− t, 1

2

)
· w(u < v).Coming

• If (u < v) is an edge with ai ≤ u, we set κt(w)(u < v) =
(

1−(di−si)(1−t)−max(t− 1
2 ,0)

1−di+si

)
· w(u < v).

• For an edge (u ≤ ai), we set κt(w)(u < ai) =


(

1−(di−si)(1−t)
1−di+si

)
· w(u < v) if t ≤ 1

2

si+di
2 + (1− di)

(
t− 1

2(1−di+si)

)
if t ≥ 1

2

We observe that κt(w) is indeed a valid weight on T and depends continuously on t.

At a first glance, the function κt seems to suffer from serious defects: It is undefined for weights in S. Even

when it is defined, it does not necessarily send trees for which some edge e has length zero to trees with the

same property (the case |A| = 2 illustrated above is instructive).

Nonetheless, we can use the map κt to continuously modify the map F := ε(A1,...,Ar) ◦ δ ◦ β from above. We

begin by considering the following composite map Ht:

(w(T )− S)+ ∧ (1,O,1)A
κt∧id−−−→ w(T )+ ∧ (1,O,1)A

F−→ B(1,O,1)r ∧B(1,O,1)A1 ∧ . . . ∧B(1,O,1)Ar

Write E(T ) ⊂ w(T ) for the subspace of w(T ) consisting of all weights such that “the horizontal line” of

distance 1
2 from the root cuts through precisely r edges (and no vertices) whose upper points a1, . . . ar
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partition A as A1

∐
. . .
∐
Ar. Let D(T ) be the complement of E(T ). Given a weight w in w(T ), we write

d(w,D(T )) = min
w′∈D(T )

(
max

(u<v) an edge in T
|w(u < v)− w′(u < v)|

)

We now consider the projection p : w(T )→ w(T ) := w(T )/D(T ). If w1, w2, . . . is any sequence in w(T ) such

that d(wi, D(T ))→ 0, then p(w1), p(w2), . . . converges to the collapsed point in the quotient topology.

We now observe that the map w(T )+ ∧ (1,O,1)A → B(1,O,1)r ∧ B(1,O,1)A1 ∧ . . . ∧ B(1,O,1)Ar sends

D(T ) ∧ (1,O,1)A to the basepoint.

We therefore obtain a factorisation of Ht(T ) as

(w(T )− S)+ ∧ (1,O,1)A

w(T )+ ∧ (1,O,1)A

κt∧id∨
> B(1,O,1)r ∧B(1,O,1)A1 ∧ . . . ∧B(1,O,1)Ar

>

We can extend κt : (w(T )− S) −→ w(T ) to w(T ) by setting κt(p) equal to the collapsed point for all p ∈ S.

This extended map is continuous as if wn is any sequence of weights in w(T )− S converging to a point w in

S, then d(wn, D(T )) is eventually zero. We denote the extension of Ht(T ) to w(T )+ ∧ (1,O,1)A by Ht(T ).

We can now define a map
∐
T∈Tree(A) w(T )+∧(1,O,1)A(T )→ B(1,O,1)r∧B(1,O,1)A1∧. . .∧B(1,O,1)Ar

by first collapsing the summands with T not grafted along the partition A = A1

∐
. . .
∐
Ar to the basepoint

and then using Ht on the summands corresponding to suitably grafted trees T .

We claim that this map indeed descends to the coend B(1,O,1)A. For this, suppose T is obtained by grafting

along the partition A1

∐
. . .
∐
Ar and write a1, . . . , ar for the points in T corresponding to the various sets.

Assume T/e ≤ T is obtained from T by collapsing an edge e = (u < v) in T . Any weight w on T/e gives

rise to a weight w̃ on T with w̃(e) = 0. We need to show that the following square commutes:

w(T/e)+ ∧ (1,O,1)A(T ) > w(T )+ ∧ (1,O,1)A(T )

w(T/e)+ ∧ (1,O,1)A(T/e)
∨

> B(1,O,1)r ∧B(1,O,1)A1
∧ . . . ∧B(1,O,1)Ar

∨

• If ai ≤ u or v < ai for some i, then we observe that κt(T )(w̃) and κt(T/e)(w) agree on all edges since

the values of di and si do not change when we collapse e. Hence the square commutes.

• If our collapsed edge e ends at a point v = ai, then for each t ∈ [0, 1], either the weight κt(T )(w̃) on e

is zero or the distance between the root r and ai in the weight κt(T )(w̃) is at most 1
2 . This implies that

Ht maps (T, w̃) to the basepoint of the space on the bottom right of the above square. The tree T/e is
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no longer obtained by grafting along the partition A1

∐
. . .
∐
Ar and thus also maps to the basepoint.

A similar argument shows that Ht interacts well with bud collapses and covers the remaining cases. We have

thus defined the desired homotopy from H0 = ε(A1,...,Ar) ◦ δ ◦ β to H1 = γ.

This argument is the non-formal input to the following result:

Corollary 5.4.20. Let O be a reduced operad in Top∗ and Õ→ O a cofibrant replacement of the correspond-

ing reduced operad in Sp. Let K̃(O)→ K(O) be a cofibrant replacement of Ching’s reduced operad K(O).

Write O,K(O) ∈ Algaug(SSeq(Sp)) for the operads induced by Õ and K̃(O), respectively.

Then there is a natural transformation νX : K(O) ◦ DX → D(KD(O) ◦ X) of endofunctors of Sp and the

following diagram commutes up to homotopy:

K(O) ◦K(O) ◦ DX > K(O) ◦ DX

K(O) ◦ D(KD(O) ◦X)

K(O)◦νX
∨

D(KD(O) ◦KD(O) ◦X)

νKD(O)◦X
∨

> D(KD(O) ◦X)

νX

∨

Proof. We write (̃−) for the cofibrant replacement functor on symmetric sequences. In this proof, the symbol

K(O) denotes the symmetric sequence D(B(1,O,1)). It can be endowed with Ching’s operad structure

K(O) ◦K(O)→ K(O) from p.145 and with the morphism K(O) ◦̂ K(O)→ K(O) obtained by applying D

to the map B(1,O,1)
'←− B(1,O, B(O,O,1)) → B(1,O,1) ◦ B(1,O,1) from p.142. For any cofibrant

S-module X (thought of as a symmetric sequence), there is a morphism

K̃(O) ◦ D̃(X)
'←− K̃(O) ◦h D̃(X)

'−→ K(O) ◦h D(X)→ K(O) ◦̂h D(X)
'−→ K(Õ) ◦̂h D(X)

'←− ˜K(Õ) ◦X)

The claim follows from the diagram on the following p.154. The squares A , B , and C commute by

Lemma 5.4.13. The square E commutes by Proposition 5.4.19 – this is the non-formal component of this

proof. Square D commutes by Lemma 5.4.14, and all other square commute for obvious reasons.

We argue that the arrows labelled with ‘ ' ‘ are indeed weak equivalences. We use that for any Σ-cofibrant

symmetric sequence A, the functor A ◦ (−) preserves weak equivalences between cofibrant symmetric se-

quences and that the functors (−) ◦h (−), (−) ◦̂h(−) send weak equivalences between pairs to weak equiv-

alences. The arrows labelled by 1 are weak equivalences by Proposition 5.4.12. The arrows 2 are

weak equivalences by Proposition 5.4.15 and Proposition 5.4.17, and the corresponding claim for the arrows

decorated by 3 follows by Lemma 5.4.14. The arrows 4 are equivalences because ◦ is associative.
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K̃
O
◦
K̃

O
◦
D̃
X

'
>
K̃

O
◦

˜
(K̃

O
◦
D̃
X

)
<
'

1
K̃

O
◦

˜
(K̃

O
◦ h
D̃
X

)
'
>
K̃

O
◦

˜
(K

O
◦ h
D
X

)
>
K̃

O
◦

˜
(K

O
◦̂h
D
X

)
' 2
>
K̃

O
◦

˜
(K

Õ
◦̂h
D
X

)
<
' 1

K̃
O
◦

˜
(K

Õ
◦̂D
X

)

A

(K̃
O
◦
K̃

O
)
◦
D̃
X

'
∨

A
K̃

O
◦ h
K̃

O
◦ h
D̃
X

>

'

<

K̃
O
◦ h

˜
(K̃

O
◦ h
D̃
X

)

'
1

∧

' >

'
<

K̃
O
◦ h

˜
(K

O
◦ h
D
X

)

'
1

∧

>
K̃

O
◦ h

˜
(K

O
◦̂h
D
X

)

'
1

∧

' 2>
K̃

O
◦ h

˜
(K

Õ
◦̂h
D
X

)

'
1

∧

<
' 1

K̃
O
◦ h

˜
(K

Õ
◦̂D
X

)

'
1

∧

(K̃
O
◦ h
K̃

O
)
◦ h
D̃
X

∨
'

<

K
O
◦ h
K

O
◦ h
D
X

>
>

K
O
◦ h

(K
O
◦ h
D
X

)

'
∨

>
>

K
O
◦ h

(K
O
◦̂h
D
X

)

'
∨

' 2>
K

O
◦ h

(K
Õ
◦̂h
D
X

)

'
∨

<
' 1

K
O
◦ h

(K
Õ
◦̂D
X

)

'
∨

B

(K
O
◦ h
K

O
)
◦ h
D
X

∨
>

B
K

O
◦̂h
K

O
◦̂h
D
X
<

>
K

O
◦̂h

(K
O
◦̂h
D
X

)

∨
' 2
>

>
K

O
◦̂h

(K
Õ
◦̂h
D
X

)

∨
<
' 1

K
O
◦̂h

(K
Õ
◦̂D
X

)

∨

(K̃
O
◦ h
K̃

O
)◦̂
h
D̃
X

∨
>

(K
O
◦ h
K

O
)◦̂
h
D
X

∨
>

(K
O
◦̂h
K

O
)◦̂
h
D
X

∧

>
K

Õ
◦̂h
K

Õ
◦̂h
D
X
<

>
K

Õ
◦̂h

(K
Õ
◦̂h
D
X

)

'
2

∨
<
' 1

>
K

Õ
◦̂h

(K
Õ
◦̂D
X

)

'
2

∨

C
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