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Abstract. We study the asymptotic growth of homology groups and the cel-

lular volume of classifying spaces as one passes to normal subgroups Gn < G
of increasing finite index in a fixed finitely generated group G, assuming⋂

nGn = 1. We focus in particular on finitely presented residually free groups,

calculating their `2 betti numbers, rank gradient and asymptotic deficiency.
If G is a limit group and K is any field, then for all j ≥ 1 the limit of

dimHj(Gn,K)/[G,Gn] as n→∞ exists and is zero except for j = 1, where it

equals −χ(G). We prove a homotopical version of this theorem in which the
dimension of dimHj(Gn,K) is replaced by the minimal number of j-cells in a

K(Gn, 1); this includes a calculation of the rank gradient and the asymptotic

deficiency of G. Both the homological and homotopical versions are special
cases of general results about the fundamental groups of graphs of slow groups.

We prove that if a residually free group G is of type FPm but not of type
FP∞, then there exists an exhausting filtration by normal subgroups of finite

index Gn so that limn dimHj(Gn,K)/[G : Gn] = 0 for j ≤ m. If G is of type

FP∞, then the limit exists in all dimensions and we calculate it.

1. Introduction

In this article we study the growth of homology groups and the cellular volume
of classifying spaces as one passes to subgroups Gn of increasing index in a fixed
finitely generated group G; we are particularly interested in finitely presented resid-
ually free groups. For the most part we shall restrict our attention to exhausting
normal chains (a.k.a residual chains), i.e. we shall assume that the finite-index
subgroups Gn are normal in G, are nested Gn+1 ⊂ Gn, and that

⋂
n≥0Gn = {1}.

It is easy to see that if the ambient group G is of type FPm over a field K, then
dimHi(Gn,K)/[G : Gn] is bounded by a constant; but does this ratio always tend
to a limit as [G : Gn] → ∞, and if so, will the limit be a (significant) invariant
of G or merely an artifact of the exhausting normal chain (Gn) that we chose?
(Throughout this article, dimHj(B,K) denotes the dimension of Hj(B,K) as a
vector space over K.)

The approximation theorem of W. Lück provides an emphatic answer for fields
of characteristic zero: if G is finitely presented and of type FPm over Z, then
limn dimHi(Gn,K)/[G : Gn] exists for all i < m, the limit is independent of (Gn),
and is equal to the `2 betti number of G in dimension i. It is not known if an
analogous formula exists in positive characteristic, although there has been progress
in the case of torsion-free amenable groups [24], [15].
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`2 invariants are analytically defined. They originate in the work of Atiyah [3],
and a systematic theory was developed by Dodziuk [14] and then Cheeger-Gromov
[13]. In the modern era, Lück’s work (summarized in [26]) brought a new, more
algebraic understanding to the subject, and further important contributions were
made by Gaboriau [16] who, in particular, used `2 invariants as a powerful tool in
his study of measure equivalence. (Groups G1 and G2 are measure equivalent if
they admit commuting, measure-preserving, free actions on the same probability
space.) Gaboriau [18] proves that if G1 is measure equivalent to G2, then the `2
betti numbers of the groups are proportional, i.e. there exists a constant c such

that β
(2)
i (G1) = c β

(2)
i (G2) for all i ≥ 1.

We are particularly concerned here with residually free groups. Let Fr denote
the free group of rank r. A group G is residually free if for every g ∈ G r {1}
there exists a homomorphism φg : G → F2 such that φg(g) 6= 1. The class of
finitely generated residually free groups is rather wild, harbouring all manner of
pathologies. On the other hand, groups that are fully residually free are closely
akin to free groups in many ways.

By definition, a group is fully residually free if for every finite S ⊂ G there
is a homomorphism φS : G → F2 that is injective on S. Such groups are now
more commonly called limit groups, following Sela [29]. This remarkable class of
groups is the class one constructs when one attempts to formulate the notion of
an “approximately free group” in various natural ways. For example, they are the
finitely generated groups that have the same universal theory as a free group (in
the sense of first order logic); they are the groups that arise as Gromov-Hausdorff
limits of sequences of marked free groups [12]; and they are the groups one obtains
by taking limits of “stable” sequences of homomorphisms from a fixed group to
a free group [29]. Basic examples of limit groups are the fundamental groups of
closed surfaces of positive genus, free abelian groups, doubles of free groups along
maximal cyclic subgroups, and free products of any finite collection of the foregoing
groups.

An outstanding question of D. Gaboriau suggests a quite different respect in
which limit groups should behave like free groups. Gaboriau asks if every limit
group is measure equivalent to a free group. This has been answered in the affirma-
tive for elementarily free groups by Bridson, Tweedale and Wilton [10], but remains
open for limit groups in general. The `2 betti numbers of a finitely generated free

group are zero except in dimension 1, where β
(2)
1 (Fr) = −χ(F ), so a positive an-

swer to Gaboriau’s question would imply that the `2 betti numbers of a limit group
followed the same pattern. We shall prove that the asymptotics of the homology of
subgroups of finite index in limit groups follow this pattern regardless of the field of
coefficients. We shall deduce this from a homotopical result describing the number
of cells required to build classifying spaces for finite-index subgroups.

We shall need to impose some standard finiteness properties on the groups we
consider. Recall that a group B is of type Fs if it has a classifying space K(B, 1)
with finite s-skeleton, it is type F∞ if it is Fs for all s, and if is type type F if it
has a finite K(B, 1). Given a ring R, one says that B is of type FPs(R) if there
is a resolution of the trivial module R by projective RB-modules that are finitely
generated up to dimension s, and B is FP∞ over R if it is FPs for all s. When
R = Z, the phrase “over Z” is usually omitted. A finitely presented group of type
FPs is of type Fs. Limit groups are of type F.
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Given a group B of type Fk, we define volk(B) to be the least number of k-cells
among all classifying spaces K(B, 1) with a finite k-skeleton. (In other circum-
stances one would constrain this by balancing how many cells are used in lower
dimensions, but that will not be necessary here.) In dimension 1, this is equal to
the rank (minimal number of generators) d(B), while from consideration of dimen-
sion 2 we capture the deficiency def(Bn) (for us1 this is the infimum of |R| − |X|
over all finite presentations 〈X|R〉 of Bn). The limit limn d(Bn)/[G : Bn] is known
as the rank gradient of the chain (Bn) and is often denoted RG(G, (Bn)). Rank gra-
dient was introduced by Lackenby [23] and has been extensively studied in recent
years in connection with largeness for 3-manifolds [22]. The work of Albert and
Nikolov [2] links rank gradient to cost in the sense of measurable group theory. If
one regards finite generation and finite presentability as the finiteness conditions on
the skeleta of classifying spaces for a group, then in addition to rank gradient and
asymptotic deficiency, one should also consider the k-dimensional volume gradient
limn volk(Gn)/[G : Gn].

Theorem A (Volume Gradients for Limit Groups). Let (Bn) be an exhausting
chain of finite-index normal subgroups in a limit group G. Then,

(1) Rank Gradient: d(Bn)
[G : Bn]

→ −χ(G) as n→∞;

(2) Deficiency Gradient: def(Bn)
[G : Bn]

→ χ(G) as n→∞;

(3) volk(Bn)
[G : Bn]

→ 0 as n→∞, for all k ≥ 2.

For any group G of type Fj and any field K one has dimK Hj(G,K) ≤ volj(G).

Corollary B (Asymptotic Homology of Limit Groups). Let K be a field. If G is a
limit group and (Bn) is an exhausting sequence of normal subgroups of finite index
in G, then

lim
n→∞

dimHj(Bn,K)

[G : Bn]
=

{
−χ(G) if j = 1

0 otherwise.

Note that when char(K) = p we do not assume that [G : Bn] is a power of p
(cf. [22]).

Corollary C. If G is a limit group, then β
(2)
j (G) = 0 for j 6= 1 and β

(2)
1 (G) =

−χ(G).

The structure theory of limit groups lends itself well to inductive arguments:
there is a hierarchical structure on the class of such groups; free groups, free abelian
groups and surface groups lie at the bottom level of the hierarchy, and if one can
show that these groups enjoy a certain property then, proceeding by induction,
one can deduce that all limit groups satisfy that property provided that the prop-
erty is preserved under the formation of free products and HNN extensions along
cyclic subgroups. (See Section 2.) Given the nature of the induction step, one
is drawn naturally into Bass-Serre theory and, in the case of the results stated
above, counting arguments involving double coset decompositions of finite-index
subgroups. (See sections 5 and 3.)

1there are different conventions, with many authors taking the opposite sign for the deficiency
of an individual presentation, and defining the deficiency of the group to be the supremum of

|X| − |R|
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We shall deduce Theorem A from Theorem D, a more general result that relates
the growth of cellular volume in classifying spaces for fundamental groups of graphs
of groups to the growth in the vertex and edge groups of the decomposition. The key
idea is that of slowness for groups. A group G of type F∞ is slow above dimension 1
if it is residually finite and for every exhausting normal chain of finite-index normal
subgroups (Bn) there exists a finite K(Bn, 1) with rk(Bn) k-cells such that

lim
n→∞

rk(Bn)

[G : Bn]
= 0

for all k ≥ 2. We say that G is slow if it satisfies the additional requirement that
the limit exists and is zero for k = 1 as well.

Theorem D. If a residually finite group G of type F is slow above dimension 1,
then with respect to every exhausting normal chain (Bn),

(1) Rank gradient:

RG(G, (Bn)) = lim
n→∞

d(Bn)

[G : Bn]
= −χ(G),

(2) Deficiency gradient:

DG(G, (Bn)) = lim
n→∞

def(Bn)

[G : Bn]
= χ(G).

A key result in Section 4 is Proposition 4.5: If a residually-finite group G is
the fundamental group of a finite graph of groups where all of the edge-groups are
slow and all of the vertex-groups are slow above dimension 1, then G is slow above
dimension 1.

In Section 5 we consider a homological analogue of slowness, we call K-slowness
(Definition 5.1) and prove a homological analogue of Theorem D.

In the second part of this paper we focus on the class of finitely presented resid-
ually free groups. This class is much wilder than that of limit groups and the
structure theory is correspondingly more awkward. Thus the structure of the ar-
guments in the second half of the paper is more subtle and demanding than those
in the first half: there are many layers of arguments using spectral sequences and
they draw on finer structural information about the groups involved. Our starting
point is the fundamental theorem of [7] which states that a finitely presented group
is residually free if and only if it can be realised as a subgroup of a direct product
of finitely many limit groups so that its projection to each pair of factors is of finite
index. Our main result concerning residually free groups is the following.

Theorem E. Let m ≥ 2 be an integer, let G be a residually free group of type
FPm, and let ρ be the largest integer such that G contains a direct product of ρ
non-abelian free groups. Then, there exists an exhausting sequence (Bn) so that for
all fields K,

(1) if G is not of type FP∞, then limn
dimHi(Bn,K)

[G : Bn]
= 0 for all 0 ≤ i ≤ m;

(2) if G is of type FP∞ then for all j ≥ 1,

lim
n→∞

dimHj(Bn,K)

[G : Bn]
=

{
(−1)ρχ(G) if j = ρ

0 otherwise.
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Lück’s Approximation theorem tells us that when K is a field of characteristic
0, the limits calculated in Theorem E are the `2 betti numbers of G. In this case,
one knows that the limit is independent of the sequence (Bn), but for fields of
positive characteristic we do not know this, nor do we know if the limit exists for
an arbitrary exhausting normal chain in G.

We prove Theorem E by using the structure theory of residually free groups to
reduce it to a special case of the following result that we hope will have further
applications. The proof of this theorem is presented in Section 6; it accounts for
almost half the length of this paper.

Theorem F. Let G ⊆ G1 × . . . × Gk be a subdirect product of residually-finite
groups of type F, each of which contains a normal free subgroup Fi < Gi such that
Gi/Fi is torsion-free and nilpotent. Let m < k be an integer, let K be a field, and
suppose that each Gi is K-slow above dimension 1.

If the projection of G to each m-tuple of factors Gj1 × . . . × Gjm < G is of
finite index, then there exists an exhausting normal chain (Bn) in G so that for
0 ≤ j ≤ m,

lim
n→∞

dimHj(Bn,K)

[G : Bn]
= 0.

Our proof of Theorem F shows that the homology groups Hj(Bn,K) are finite
dimensional for j ≤ m. The Weak Virtual Surjections Theorem [21, Cor. 5.5]
implies that this finiteness holds more generally.

One would like to promote Theorem E to a theorem about volume gradients,
in the spirit of Theorem 4.6, but for the moment this is obstructed by unresolved
conjectures concerning the relationship between finiteness properties of residually
free groups and the projections to m-tuples of factors in their existential envelopes
(in the sense of [8]). However, in low dimensions these conjectures have been
resolved, and that enables us to prove the following theorem, which is the subject
of the final section of this paper.

Theorem G. Every G finitely presented residually free group that is not a limit
group admits an exhausting normal chain (Bn) with respect to which the rank gra-
dient

RG(G, (Bn)) = lim
n→∞

d(Bn)

[G : Bn]
= 0.

Furthermore, if G is of type FP3 but is not commensurable with a product of two
limit groups, (Bn) can be chosen so that the deficiency gradient DG(G, (Bn)) = 0.

These results were presented at several conferences in the summer of 2011, in-
cluding the IHP conference in Paris. We thank the organisers of these conferences
and apologise for the delay in producing the final version of this manuscript.

The recent work of M. Abert and D. Gaboriau [1] on higher-cost for groups
actions recovers part (1) and (2) of our Theorem A and establishes similar results
for larger classes of groups, including mapping class groups.

2. Limit groups and Residually Free Groups

In this section we isolate the basic properties of residually free groups and limit
groups that we need in later sections, providing references where the reader unfa-
miliar with these fascinating groups can find more details.
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2.1. ω-residually free towers and splittings of limit groups. Limit groups
have several equivalent definitions, each highlighting a different aspect of their
nature. In the introduction we defined them to be the finitely generated fully
residually free groups. But for the practical purposes of proving our theorems,
it is most useful to work with one of the less intuitively-appealing definitions: a
limit group is a finitely generated subgroup of an ω-residually free tower groups [30]
Theorem 1.1 and [20].
ω-rft spaces of height h ∈ N are defined by an induction on h and, by definition,

an ω-rft group is the fundamental group of an ω-rft space. A height 0 tower is
the 1-point union of a finite collection of circles, closed hyperbolic surfaces and
tori (of arbitrary dimension), except that the closed surface of Euler characteristic
−1 is excluded. An ω-rft space Y of height h is obtained from an ω-rft space
Y0 of height h − 1 by adding either (1) a torus T of some dimension, attached
to Y0 by identifying a coordinate circle in T with any loop c in Y0 such that [c]
generates a maximal cyclic subgroup of π1Y0, or (2) a connected, compact surface
S that is either a punctured torus or has Euler characteristic at most −2, where
the attachment identifying each boundary component of S with a homotopically
non-trivial loop in Y0, chosen so that there exists a retraction r : Y → Y0 and
sending π1S to a non-abelian subgroup of π1Y0.

By definition, the height of a limit group G is the minimal height of an ω-rft group
that has a subgroup isomorphic to G. Limit groups of height 0 are free products
of finitely many free abelian groups and of surface groups of Euler characteristic at
most −2. The Seifert-van Kampen Theorem associated to the addition of the final
block in the tower construction a decomposition of an ω-rft group as a 2-vertex
graph of groups with cyclic edge group, where one of the vertices is an ω-rft tower
group of lesser height and the other is free or free-abelian of finite rank at least 2;
the edge groups are cyclic. Thus an arbitrary limit group is a subgroup of such an
amalgam, and one can apply Bass-Serre theory to deduce the following — see [6,
Lemma 1.3].

Lemma 2.1. If G is a limit group of height h ≥ 1, then G is the fundamental
group of a finite bipartite graph of groups ∆ in which the edge groups are cyclic; the
vertex groups fall into two types corresponding to the bipartite partition of vertices:
type (i) vertex groups are isomorphic to subgroups of a limit group of height h− 1;
type (ii) vertex groups are all free or all free-abelian.

In the first part of this paper, the only properties of a limit group that we shall
use are residual finiteness and the following decomposition property:

Corollary 2.2. If a class of groups C contains all finitely generated free abelian and
surface groups and is closed under the formation of amalgamated free products and
HNN extensions with cyclic amalgamated groups, then C contains all limit groups.

In the second part of the paper we shall need the following additional property
of limit groups, which was established by Kochloukova [19].

Theorem 2.3. Every limit group G has a normal subgroup F that is free with G/F
torsion-free and nilpotent.

2.2. Residually free groups and subdirect products. By definition, a group G
is residually free if it is isomorphic to a subgroup of an unrestricted direct product of
free groups. In general, one requires infinitely many factors in this direct product,
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even if G is finitely generated. For example, the fundamental group of a closed
orientable surface Σ is residually free but it cannot be embedded in a finite direct
product if χ(Σ) < 0, since π1Σ does not contain Z2 and is not a subgroup of a free
group. However, Baumslag, Myasnikov and Remeslennikov [5, Corollary 19] proved
that one can force the enveloping product to be finite at the cost of replacing free
groups by limit groups (see also [20, Corollary 2] and [29, Claim 7.5]).

Bridson, Howie, Miller and Short [7], [8] characterized the finitely presented resid-
ually free groups as follows:

Theorem 2.4. A finitely presented group G is residually free if and only if it can be
embedded in a direct product of finitely many limit groups G ↪→ Λ1× · · · ×Λn := D
so that the intersection with each factor is non-trivial and the projection pij(G) <
Λi × Λj to each pair of factors is a subgroup of finite index.

Moreover, in these circumstances, there is a subgroup of finite index D0 < D
such that G contains the (n− 1)-st term of the lower central series of D0.

The “only if” implication in the first sentence of the above theorem was gener-
alized by Kochloukova [19] as follows.

Theorem 2.5. Let G be a subdirect product of non-abelian limit groups and let
s ≥ 2 be an integer. If G is of type FPs, then the projection of G to the direct
product of each s-tuple of these limit groups has finite index.

We shall also need Theorem A of [7].

Theorem 2.6. Every residually free group of type FP∞ is a subgroup of finite index
in a direct product of limit groups.

3. Bass-Serre Theory and Cellular Volume

We assume that the reader is familiar with Bass-Serre theory as laid out in [31]
and with the more topological interpretation described in [28]. We recall some of
the basic features of this theory and fix our notation.

For us, a graph X consists of two sets V (the vertices) and E (the unoriented
edges, or 1-cells). There are maps ι : E → V and τ : E → V , and we allow ι(e) =
τ(e). We require that the graph be connected in the sense that the equivalence
relation generated by ι(e) ∼ τ(e)∀e ∈ E has only one equivalence class in V . There
are two sets of groups: the vertex groups Gv, indexed by V , and the edge groups Ge,
indexed by E, together with monomorphisms ιe : Ge → Gι(e) and τe : Ge → Gτ(e).
A graph of groups G consists of the above data. It is termed finite if V is finite.
Serre associates to this data a “fundamental group” denoted G = πG and a left
action of G on a tree G̃ so that (modulo some natural identifications) the topological
quotient2 is X and the pattern of isotropy groups and inclusions correspond to the
original edge and vertex groups Gv, Ge < G.

If B < G is a subgroup, then the graph of groups B\\G̃, which has fundamental
group B, has vertex groups {Ggv ∩ B | v ∈ V, BgGv ∈ B\G/Gv} and edge groups
{Gge ∩ B | e ∈ E, BgGe ∈ B\G/Ge}. In particular, if B is normal and of finite

index, then for each v ∈ V there are |G/GvB| vertices in B\\G̃ where the vertex
group is a conjugate of Gv ∩ B, and for each e ∈ E there are |G/GeB| vertices
where the edge group is a conjugate of Ge ∩B.

2for H < G, we write H\\G̃ to denote the quotient graph of groups, which records the isotropy
groups and their inclusions as well as the topological quotient
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3.1. A model for K(G, 1) when G = π1G. Given explicit CW models for the
classifying spaces K(Gv, 1) and K(Ge, 1), one can realise the monomorphisms ιe
and τe by cellular maps, Ie : K(Ge, 1) → K(Gv, 1) and Te : K(Ge, 1) → K(Gv, 1).
Attaching the ends of K(Ge, 1) × [0, 1] to K(Gι(e), 1)

∐
K(Gτ(e), 1) by means of

these maps, for each e ∈ E, we obtain an explicit CW model for K(G, 1).
Note that for each k ≥ 1, the set of k-cells in K(G, 1) is in bijection with the

union of the sets of k-cells in K(Gv, 1) [v ∈ V ] together with the (k − 1)-cells in
K(Ge, 1) [e ∈ E], where an open (k − 1)-cell c in K(Ge, 1) contributes the open k-
cell c× (0, 1) to K(G, 1). We single this simple observation out as a lemma because
it is central to what follows. In order to state this lemma we need the following
terminology.

Definition 3.1. Let G be a group. A sequence of non-negative integers (rk)k≥1 is
a volume vector for G if there is a classifying space K(G, 1) that, for all k ∈ N,
has exactly rk open k-cells.

When we are discussing several groups, we shall abuse notation by writing the
entries of such a vector as rk(G) but this is not meant to imply that rk(G) is an
invariant of G.

Note that if G is type F∞ then volk(G) is the infimum of rk(G) over all volume
vectors for G.

Lemma 3.2. Let G be a finite graph of groups and let G = π1G. With the notation
established above, suppose that (rk(Gv)) is a volume vector for Gv (v ∈ V ) and
(rk(Ge)) is a volume vector for Ge (e ∈ E). For k ≥ 1, let

rk(G) :=
∑
v∈V

rk(Gv) +
∑
e∈E

rk−1(Ge).

Then (rk(G)) is a volume vector for G.

We are interested in what happens to volk(G) as we pass to subgroups of increas-
ing index, and we shall do this by constructing suitably-controlled volume vectors.
The most obvious way of getting models K(Bn, 1) for subgroups Bn < G is to
simply take the corresponding covering spaces of a fixed model for G. However,
this model is not efficient enough for our purposes: in general it has too many cells.
A simple example that illustrates this is the case G = Zr: the number of k-cells in
the cover corresponding to Bn < G goes to infinity as [G : Bn]→∞, but volk(Bn)
remains constant since Bn ∼= Zr for all n.

To avoid the phenomenon illustrated by this example, given a finite-index sub-

group B < G we first pass to the covering graph-of-groups B\\G̃, where G̃ is the

universal covering (tree) for G. In the graph of groups B\\G̃, for each v ∈ V the
vertices lying above v are indexed by the double cosets B\G/Gv, and the vertex

group at the vertex indexed by BgGv is Bg ∩ Gv. Likewise, the edges of B\\G̃
are indexed by

∐
e∈E B\G/Ge and the edge groups have the form Bg ∩ Ge. We

now assemble K(B, 1) from classifying spaces for the edge and vertex groups, as
described in paragraph (3.1). If B is normal, then we take the same classifying
space above each of the vertices indexed by a fixed vertex or edge of G.

We are interested only in the case where B is normal. In that case, the above

discussion shows that the vertices of the finite graph of groups B\\G̃ are index
by cosets G/BGv, and the edges by G/BGe, and from Lemma 3.2 we obtain the
following count:
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Proposition 3.3. Let G be the fundamental group of a finite graph of groups with
vertex groups Gv (v ∈ V ) and edge groups Ge (e ∈ E). Let B < G be a normal
subgroup of finite index. Suppose that volume vectors (rk(B∩Gv)) and (rk(B∩Ge))
are given and define

rk(B) :=
∑
v∈V

[G : BGv] rk(B ∩Gv) +
∑
e∈E

[G : BGe] rk−1(B ∩Ge).

Then (rk(B)) is a volume vector for B.

It is clear from the above formula that we will need to count cosets carefully.
The following trivial observation is useful in this regard.

Remark 3.4. Let G be a group, let H < G be a subgroup and let B/G be a normal

subgroup of finite index. Then [G:BH]
[G:B] = 1

[H:B∩H] .

4. Volume gradient, slow groups and hierarchies

Definition 4.1. A group G of type F is slow above dimension 1 if it is residually
finite and for every chain of finite-index normal subgroups (Bn) with

⋂
nBn = {1},

there exist volume vectors (rk(Bn))k with only finitely many non-zero entries, so
that

lim
n→∞

rk(Bn)

[G : Bn]
= 0

for all k ≥ 2.
G is slow if it satisfies the additional requirement that the limit exists and is zero

for k = 1 as well.

The following theorem was stated in the introduction as Theorem D.

Theorem 4.2. If a residually finite group G of type F is slow above dimension 1,
then with respect to every exhausting normal chain (Bn),

(1) Rank gradient:

RG(G, (Bn)) = lim
n→∞

d(Bn)

[G : Bn]
= −χ(G),

(2) Deficiency gradient:

DG(G, (Bn)) = lim
n→∞

def(Bn)

[G : Bn]
= χ(G).

Lemma 4.3. Let G be a residually-finite group of type F with an exhausting normal
chain (Bn). Suppose that G is slow above dimension 1 and choose volume vectors
(rk(Bn))k as in the definition. Then

lim
n→∞

r0(Bn)− r1(Bn)

[G : Bn]
= χ(G),

and for every field K

lim
n→∞

H1(Bn,K)

[G : Bn]
= −χ(G).
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Proof. As Bn is of type F, it has an Euler characteristic, which may be calculated
from a finite K(Bn, 1) with rk(Bn) cells of dimension k,

χ(Bn) = r0(Bn)− r1(Bn) + r2(Bn)− r3(Bn) + · · ·+ (−1)k0rk0(Bn).

Euler characteristic is multiplicative, in the sense that χ(Bn) = [G : Bn]χ(G). To
obtain the first equality, we divide by [G : Bn] and let n→∞.

Towards the second equality, observe that since the homology of Bn can be com-
puted from the cellular chain complex ofK(Bn, 1), we have rk(Bn) ≥ dimHk(Bn,K),
and therefore limn dimHk(Bn,K)/[G : Bn] = 0 for k ≥ 2 (by slowness). Thus the
second equality can be obtained by calculating χ(Bn) as the alternating sum of
betti numbers (omitting the coefficients K)

[G : Bn]χ(G) = χ(Bn) = 1− dimH1(Bn) + · · ·+ (−1)k0 dimHk0(Bn),

then dividing through by [G : Bn] and taking the limit. �

Proof of Theorem 4.2. First we prove (1). Let rk(Bn) be as in Lemma 4.3. Now,
Bn is a quotient of the fundamental group of the 1-skeleton of K(Bn, 1), which is
a free group of rank r1(Bn)− r0(Bn) + 1, so

dimH1(Bn,Q) ≤ d(Bn) ≤ r1(Bn)− r0(Bn) + 1.

If we divide by [G : Bn] and take the limit, both sides will converge to −χ(G), by
Lemma 4.3.

Turning to the proof of (2), we remind the reader that the deficiency def(Γ) is
the infimum of |R| − |X| over all possible finite presentations 〈X | R〉 of Γ.

From the 2-skeleton of any K(Bn, 1) we get a group presentation with r1(Bn)−
r0(Bn) + 1 generators and r2(Bn) relators, so

r2(Bn)− r1(Bn) + r0(Bn)− 1 ≥ def(Bn).

And from [9, Lemma 2] we have

def(Bn) ≥ d(H2(Bn,Z))− rkQ H1(Bn,Z)

= d(H2(Bn,Z))− dimH1(Bn,Q)

≥ dimH2(Bn,Q)− dimH1(Bn,Q).

Thus

r2(Bn)− r1(Bn) + r0(Bn)− 1 ≥ def(Bn) ≥ dimH2(Bn,Q)− dimH1(Bn,Q).

We divide by [G : Bn] and let n go to infinity. Since G is slow above dimension 1,
the limit of r2(Bn)/[G : Bn] and H2(Bn)/[G : Bn] is zero, and by Lemma 4.3 the
limit of what remains on each side tends to χ(G). �

Examples 4.4. Easy examples of slow groups include finitely generated torsion-free
nilpotent groups. The trivial group is slow. Free groups are slow above dimension 1,
trivially. Surface groups are slow above dimension 1 because a finite-index subgroup
of a surface group is again a surface group, so for any finite-index subgroup B we
have the volume vector 1, d(B), 1, 0, . . .

A far greater range of examples is provided by the following construction.
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4.1. Hierarchies. Given a class C0 of residually-finite groups, we define S(C0) =⋃
n Cn inductively by decreeing that Cn+1 consist of all residually-finite groups that

can be expressed as the fundamental group of a finite graph of groups with edge-
groups that are slow and vertex-groups that lie in Cn. The following proposition
tells us that if the groups in C0 are slow above dimension 1, then the groups in S(C0)
are as well. Note that this includes the statement that free products of groups that
are slow above dimension 1 are again slow above dimension 1.

Proposition 4.5. If a residually-finite group G is the fundamental group of a finite
graph of groups where all of the edge-groups are slow and all of the vertex-groups
are slow above dimension 1, then G is slow above dimension 1.

Proof. Given a sequence of finite index normal subgroups (Bn) exhausting G, we
build classifying spaces K(Bn, 1) as in Proposition 3.3 so that they have volume
vectors (rk(Bn)) satisfying

(4.1) rk(Bn) =
∑
v∈V

[G : BnGv]rk(Bn ∩Gv) +
∑
e∈E

[G : BnGe]rk−1(Bn ∩Ge),

where Gv and Ge are the vertex and edge groups in the given decomposition of G.
By hypothesis, the Gv are slow above dimension 1, so for all k ≥ 2 we have

lim
n→∞

rk(Bn ∩Gv)
[Gv : Bn ∩Gv]

= 0.

But, as we noted in Remark 3.4, [Gv : Bn ∩Gv] = [G : Bn]/[G : BnGv], so dividing
equality (4.1) by [G : Bn], the first sum becomes∑

v∈V

rk(Bn ∩Gv)
[Gv : Bn ∩Gv]

,

which converges to 0 as n → ∞. Likewise, since Ge is assumed to be slow (in all
dimensions including 1), we have

1

[G : Bn]

∑
e∈E

[G : BnGe]rk−1(Bn ∩Ge) =
∑
e∈E

rk−1(Bn ∩Ge)
[Ge : Bn ∩Ge]

→ 0

as n→∞. Thus rk(Bn)
[G:Bn]

→ 0 as n→∞ for all k ≥ 2, as required. �

We saw in Example 4.4 that all finitely generated free groups, surface groups,
and free-abelian groups of finite rank are slow above dimension 1, and Corollary
2.2 tells us that if C0 contains these groups then S(C0) contains all limit groups.
Thus Proposition 4.5 implies:

Theorem 4.6. All limit groups are slow above dimension 1.

4.2. Proof of Theorem A. Immediate from Theorems 4.2 and 4.6.

5. Homological slowness

In this section we present homological analogues of the results in the previous
section. The results for residually free groups that are the main focus of this article
can be deduced using these homological results rather than the homotopical ones,
but this is not the point of presenting this variation on our earlier theme. The real
justification is that these homological results apply to more groups. For example,
one does not require the groups to have classifying spaces with finite skeleta. Also,
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if an amenable group G of type F is residually finite and the group algebra KG
does not have zero divisors, then one knows that G is K-slow in the following
sense for any field K [24, Thm. 0.2 (ii)] but we do not know that it must be slow.
Thus one can use amenable groups among the building blocks for groups built in a
hierarchical manner by repeated application of Proposition 5.3.

Definition 5.1. Let K be a field and let G be a residually finite group. G is K-
slow above dimension 1 if for every chain of finite-index normal subgroups (Bn)
with

⋂
nBn = {1},

lim
n→∞

dimK Hj(Bn,K)

[G : Bn]
= 0

for all j ≥ 2.
G is K-slow if it satisfies the additional requirement that the limit exists and is

zero for j = 1 as well.

The argument given in Lemma 4.3 establishes the following result.

Lemma 5.2. Let K be a field and let G be a residually finite group of type F with
an exhausting normal chain (Bn). If G is K-slow above dimension 1 then

lim
n→∞

dimH1(Bn,K)

[G : Bn]
= −χ(G).

Proposition 5.3. Let K be a field. If a residually-finite groups G is the funda-
mental group of a finite graph of groups where all of the edge-groups are K-slow
and all of the vertex-groups are K-slow above dimension 1, then G is K-slow above
dimension 1.

Proof. Given a sequence of finite index normal subgroups (Bn) exhausting G, we
build classifying spaces K(Bn, 1) as in Proposition 3.3. Our aim is to decompose
these spaces and use the Mayer-Vietoris sequence of this decomposition to establish
the following inequality for all j ≥ 2 (expressed in the notation of Section 3.1, with
the coefficients K omitted),
(5.1)

dimK Hj(Bn) ≤
∑
v∈V

[G : BnGv] dimK Hj(Bn ∩Gv)+∑
e∈E

[G : BnGe] dimK Hj(Bn ∩Ge) + 2
∑
e∈E

[G : BnGe] dimK Hj−1(Bn ∩Ge).

The proof can then be completed as in Proposition 4.5: we divide by [G : Bn], let
n→∞ and use K-slowness (and a simple coset counting identity) to conclude that
limn dimK Hj(Bn,K)/[G : Bn] = 0, as claimed.

The desired decomposition of K(Bn, 1) = Xn ∪ Yn is obtained as follows. In
paragraph 3.1 we described how to assemble K(Bn, 1) from vertex spaces K(Bn ∩
Gv, 1) and edge spaces K(Bn∩Ge, 1)× [0, 1] according to the template of the graph

of groups Bn\\G̃, where G is the given graph of groups with G = π1G, and G̃ is its
universal cover. We define Xn to be the subset consisting of the images of the open

edge spaces K(Bn ∩Ge, 1)× (0, 1), together with the underlying graph Bn\G̃ (the
addition of which makes Xn connected). We define Y ′n to be the union of the vertex

spaces together with the underlying graph Bn\G̃. We then expand Y ′n into each
edge space K(Bn ∩ Ge, 1) × (0, 1), adding a small cylinder K(Bn ∩ Ge, 1) × (0, ε)
at each end of the edge and obtain Yn this way. Note that Y ′n deformation retracts
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onto Yn, and Xn ∩ Yn is easy to describe: it consists of the underlying graph Bn\G̃
plus two disjoint copies of K(Bn∩Ge, 1)×(0, ε) for each edge where the edge group
is Bn ∩Ge.

In this construction, Xn is homotopic to the 1-point union of the graph Bn\G̃
and, for each edge e ∈ E, disjoint copies of K(Bn ∩ Ge, 1) indexed by Bn\G/Ge.
And Yn is homotopic to the 1-point union of Bn\G̃ and, for each vertex v ∈ V ,
disjoint copies of K(Bn ∩ Gv, 1) indexed by Bn\G/Gv. Thus for each j ≥ 2,
omitting the coefficients K, we have

Hj(Yn) = ⊕v∈VHj(Bn ∩Gv)[G:BnGv], Hj(Xn) = ⊕e∈EHj(Bn ∩Ge)[G:BnGe],

and Hj(Xn ∩ Yn) = Hj(Xn) ⊕ Hj(Xn). For j ≥ 3, the required estimate (5.1) is
now immediate from the exactness of the Mayer-Vietoris sequence

· · · → Hj(Xn,K)⊕Hj(Yn,K)→ Hj(Bn,K)→ Hj−1(Xn ∩ Yn,K)→ . . .

In the calculation of H1, the graph Bn\G̃ contributes equally to Xn, Yn and

Xn ∩ Yn, augmenting each of the above forumlae with a summand H1(Bn\G̃,K).
The map on homology induced by the inclusions of Xn ∩ Yn maps the summand

H1(Bn\G̃) ofH1(Xn∩Yn) isomorphically to the diagonal of the summandH1(Bn\G̃)⊕
H1(Bn\G̃) in H1(Xn)⊕H1(Yn). In particular, the H1(Bn\G̃) summand contributes
nothing to the kernel of H1(Xn ∩ Yn)→ H1(Xn)⊕H1(Yn), so the exactness of the
Mayer-Vietoris sequence gives us the desired estimate in the case j = 2 as well. �

6. The Proof of Theorem F

We now turn our attention towards residually free groups that are not limit
groups. These form a much larger and wilder class of groups. In the next section
we shall use the structure theory of residually free groups, as summarised in Section
2, to deduce Theorem E from the following more general result, which was stated
as Theorem F in the introduction.

Theorem 6.1. Let G ⊆ G1 × . . . × Gk be a subdirect product of residually-finite
groups of type F, each of which contains a normal free subgroup Fi < Gi such that
Gi/Fi is torsion-free and nilpotent. Let m < k be an integer, let K be a field, and
suppose that each Gi is K-slow above dimension 1.

If the projection of G to each m-tuple of factors Gj1 × . . . × Gjm < G is of
finite index, then there exists an exhausting normal chain (Bn) in G so that for
0 ≤ j ≤ m,

lim
n→∞

dimHj(Bn,K)

[G : Bn]
= 0.

The proof of this theorem occupies the whole of this section. We break it into
four steps. First, we construct exhausting chains (Bn) of finite-index subgroups inG
that are carefully adapted to our purposes. We then state two technical propositions
– Propositions Ψ and Ω – that provide key estimates in the basic spectral sequence
argument that we use to prove Theorem 6.1. This basic spectral sequence argument
is carried out in subsection 6.4, after which we return to Propositions Ψ and Ω and
prove them. These proofs require extensive spectral sequence calculations that are
much more involved than the ‘basic’ one referred to above.

The basic spectral sequence argument itself can be outlined without the difficult
technicalities that precede it. We present an outline immediately so that the reader
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can see where we are going and what we are doing. We assume that the reader
is familiar with the Lyndon-Hochschild-Serre (LHS) spectral sequence in homology
associated to a short exact sequence of groups (see [11], p.171). In the case where
the coefficient module is the field K with trivial action, the E2-page of the LHS
spectral sequence associated to 1 → N → Γ → Q → 1 has (p, q)-term E2

p,q =
Hp(Q,Hq(N,K)) and the terms E∞p,q with p+ q = s are the composition factors of
a series for Hs(Γ,K).

6.1. The spectral sequence argument we want to use. Given G as in Theo-
rem 6.1, we will construct carefully an exhausting normal chain (Bn) so that (after
lengthy argument) we obtain enough control on the dimension of the homology
groups Hp(Bn/(Bn ∩N),K) and Hq(Bn ∩N,K) with p and q in a suitable range,
where N is the direct product of the free groups Fi in the statement of Theorem
6.1. We then argue as follows:

Lemma 6.1. Let (Bn) be an exhausting normal chain for G, let N /G be a normal
subgroup and let K be a field. Fix an integer s. Suppose for all non-negative integers
α, q with α+ q = s and every n we have dimHα(Bn/Bn∩N,Hq(Bn∩N,K)) <∞.
Suppose further that, for all such (α, q)

lim
n→∞

dimHα(Bn/Bn ∩N,Hq(Bn ∩N,K))

[G : Bn]
= 0.

Then

lim
n→∞

dimHs(Bn,K)

[G : Bn]
= 0.

Proof. The LHS spectral sequence

E2
α,q = Hα(Bn/Bn ∩N,Hq(Bn ∩N,K))

converges via α to Hα+q(Bn,K). Hence

dimHs(Bn,K) ≤
∑

α+q=s

dimHα(Bn/Bn ∩N,Hq(Bn ∩N,K)).

�

6.2. Special filtrations of subdirect products. We remind the reader that
G < G1 × · · · ×Gk is called a subdirect product of the groups Gi if it projects onto
each factor, i.e. πi(G) = Gi for all 1 ≤ i ≤ k. It is called a full subdirect product
if, in addition, G ∩Gi 6= 1 for all 1 ≤ i ≤ k.

Notation: Given a direct product G1 × . . . × Gk and indices I = {i1, . . . , im}
with 1 ≤ i1 < . . . < im ≤ k we denote the canonical projection by

πI : G1 × . . .×Gk → Gi1 × . . .×Gik ,
or πi1,...,im , if it is appropriate to be more expansive.

For a group H and an integer d, we write H [d] to denote the subgroup generated
by {hd | h ∈ H}.

Lemma 6.2. Let Γ = G1 × · · · × Gk be a direct product of finitely-generated
residually-finite groups. Let G < Γ be a subdirect product. Assume that for all
1 ≤ j ≤ k there is a free group Fj < G∩Gj that is normal in Gj with Gj/Fj torsion-
free and nilpotent. Let N = F1× . . .×Fk ⊆ G. Let m ≤ k be an integer and assume
that πj1,...,jm(G) has finite index in Gj1 × . . .×Gjm for all 1 ≤ j1 < . . . < jm ≤ k.
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Then, one can exhaust G by a chain of finite-index normal subgroups (Bn) such
that :

(1) Bn ∩N = (Bn ∩ F1)× . . .× (Bn ∩ Fk) for every n;
(2)

⋂
nBnN = N ;

(3)
⋂
n πj(Bn) = 1 for all 1 ≤ j ≤ k;

(4) Bn ∩ Fj = πj(Bn) ∩ Fj for all n and all 1 ≤ j ≤ k;
(5) Fj =

⋂
n πj(Bn)Fj for all 1 ≤ j ≤ k;

(6) there exists a positive integer δ such that for all n and 1 ≤ j1 < . . . < jm ≤ k(
m∏
i=1

πji(Bn)[δ]

)(
Bn ∩

m∏
i=1

Fji

)
⊆ πj1,...,jm(Bn) ⊆

m∏
i=1

πji(Bn)

and
(∏m

i=1 πji(Bn)[δ]
)

(Bn ∩
∏m
i=1 Fji) is a normal subgroup of finite index

in
∏m
i=1 πji(Bn) such that the quotient group is a subquotient of Γ/N .

Furthermore, if every Gj is residually p-finite for a fixed prime p then every Bn
can be chosen to have p-power index in G.

Proof. Every torsion-free finitely generated nilpotent group is residually p (see [4]).
Thus we may exhaust each Gj/Fj by a sequence of normal subgroups of p-power
index, and pulling these back to Gj we obtain normal subgroups of p-power index
(Sj,i)i in Gj such that ∩iSj,iFj = Fj . Next, since Gj is a residually finite there is a
filtration (Kj,i)i of Gj by normal subgroups of finite index so that

⋂
iKj,i = 1 and

Kj,i ⊆ Sj,i. If Gj is residually finite p-group we can assume that Kj,i has p-power
index in Gj . In any case, Fj ⊆

⋂
iKj,iFj ⊆

⋂
i Sj,iFj = Fj , hence

(6.1)
⋂
i

Kj,iFj = Fj .

Define
Ai = K1,i × . . .×Kk,i and B̃i = Ai ∩G.

Then by (6.1)⋂
i

AiN =
⋂
i

(K1,iF1 × . . .×Kk,iFk) = (
⋂
i

K1,iF1)× . . .× (
⋂
i

Kk,iFk) =

(6.2) F1 × . . .× Fk = N

and since N ⊆ G and

(6.3) Kj,i ∩ Fj ⊆ Ai ∩ Fj = Ai ∩G ∩ Fj = B̃i ∩ Fj
we have

B̃i ∩N = Ai ∩G ∩N = Ai ∩N = (K1,i ∩ F1)× . . .× (Kk,i ∩ Fk) ⊆

(6.4) (B̃i ∩ F1)× . . .× (B̃i ∩ Fk) ⊆ B̃i ∩N.

Writing ni for the exponent of the finite group G/B̃i we have

(6.5) G[ni] ⊆ B̃i.
(Note that if Kj,i has p-power index in Gj for all j then ni is a power of p).

Inductively, for each i we choose si ∈ niZ so that si divides si+1 and si is divisible
by pai where ai goes to infinity as i goes to infinity. (If all ni are powers of p then
we choose si to be powers of p.) We will impose some extra conditions on si later
on.
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Finally we are able to define

(6.6) Bi := G[si](B̃i ∩N).

From (6.5) and (6.6) we have

(6.7) Bi ⊆ B̃i and Bi ∩N = B̃i ∩N.

And since (G/N)[si] has finite index in the nilpotent G/N while B̃i ∩N has finite
index in N , we see that Bi < G is a normal subgroup of finite index.

(1). From (6.4) and (6.7) we have

Bi ∩N = B̃i ∩N = (B̃i ∩ F1)× . . .× (B̃i ∩ Fk),

and

(6.8) Bi ∩ Fj = (Bi ∩N) ∩ Fj = (B̃i ∩N) ∩ Fj = B̃i ∩ Fj .
Then

(6.9) Bi ∩N = B̃i ∩N = (Bi ∩ F1)× . . .× (Bi ∩ Fk).

(2). We have Bi ⊆ B̃i ⊆ Ai, so from (6.2) we deduce N ⊆
⋂
iBiN ⊆

⋂
iAiN =

N hence

(6.10)
⋂
i

BiN = N.

Also,

(6.11)
⋂
i

Bi ⊆
⋂
i

Ai = (
⋂
i

K1,i)× . . .× (
⋂
i

Kk,i) = 1.

Thus (Bi) is an exhausting filtration of G.
(3). Consider

⋂
i πj(Bi). Note that by (6.4) and (6.6)

πj(Bi) = πj(G
[si])πj(B̃i ∩N) = G

[si]
j πj((K1,i ∩ F1)× . . .× (Kk,i ∩ Fk)) =

(6.12) G
[si]
j (Kj,i ∩ Fj) ⊆ G[si]

j N.

Recall that G/N is a finitely generated torsion-free nilpotent group, so is residually
p-finite and

⋂
t(G/N)[t] = 1, whenever t runs through an increasing sequence of

p-powers. Then by (6.12)
⋂
i πj(Bi) ⊆

⋂
iG

[si]
j N ⊆

⋂
iG

[pai ]
j N ⊆ N, so

(6.13)
⋂
i

πj(Bi) =
⋂
i

(πj(Bi) ∩N).

Note that by (6.12)

πj(Bi) ∩N = (G
[si]
j (Kj,i ∩ Fj)) ∩N =

(6.14) (G
[si]
j ∩N)(Kj,i ∩ Fj) = (G

[si]
j ∩ Fj)(Kj,i ∩ Fj).

Now we specify the choice of si more tightly, multiplying our original choice by the
exponents of the finite group Gj/Kj,i if necessary to ensure that for all i and all
1 ≤ j ≤ k we have

(6.15) G
[si]
j ⊆ Kj,i.

Then by (6.14)

(6.16) πj(Bi) ∩N = (Gsij ∩ Fj)(Kj,i ∩ Fj) = Kj,i ∩ Fj ⊆ Kj,i,
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hence by (6.13), (6.16) and the definition of Kj,i⋂
i

πj(Bi) =
⋂
i

(πj(Bi) ∩N) ⊆
⋂
i

Kj,i = 1.

(4). By (6.3), (6.8) and (6.16)

Kj,i ∩ Fj ⊆ B̃i ∩ Fj = Bi ∩ Fj ⊆ πj(Bi) ∩N = Kj,i ∩ Fj
and so

(6.17) Bi ∩ Fj = πj(Bi) ∩ Fj .
(5). By (6.12)⋂

i

πj(Bi)Fj =
⋂
i

G
[si]
j (Kj,i ∩ Fj)Fj =

⋂
i

G
[si]
j Fj = Fj .

(6). Define

Yi := πj1(Bi)× . . .× πjm(Bi) and Xi = Yi ∩N.
Note that Yi is the term on the right in the statement of item (6). We claim that
Xi is equal to the second bracketed term on the left. Indeed, from (6.9) and (6.17)
we have

(6.18) Bi ∩
m∏
t=1

Fjt =

m∏
t=1

(Bi ∩ Fjt) =

m∏
t=1

(πjt(Bi) ∩ Fjt) = Xi C Yi.

To see that the middle term of item (6) is contained in Yi, we use (6.9) and (6.6)
to calculate:

(6.19)

πj1,...,jm(Bi) = πj1,...,jm(G[si])πj1,...,jm(B̃i ∩N)

= (πj1,...,jm(G))[si]πj1,...,jm
( k∏
l=1

(Bi ∩ Fl)
)

= (πj1,...,jm(G))[si]πj1,...,jm
( m∏
t=1

(Bi ∩ Fjt)
)

= (πj1,...,jm(G))[si]Xi

⊆
( m∏
t=1

G
[si]
jt

)( m∏
t=1

(Bi ∩ Fjt)
)

=

m∏
t=1

G
[si]
jt

(Bi ∩ Fjt) =

m∏
t=1

πjt(Bi) = Yi.

At this point we have proved that

Bi ∩
m∏
t=1

Fjt = Xi ⊆ πj1,...,jm(Bi) ⊆ Yi

and that
πj1,...,jm(Bi) = (πj1,...,jm(G))[si]Xi.

So to complete the proof of the inclusions displayed in (6) it only remains to estab-
lish the existence of δ such that

(6.20)

m∏
t=1

πjt(Bi)
[δ] ⊆ (πj1,...,jm(G))[si]Xi.
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By (6.12) and since Kjt,i ∩ Fjt ⊆ Bi ∩ Fjt (see (6.3))

πjt(Bi)
[δ](Bi ∩ Fjt) = (G

[si]
jt

(Kjt,i ∩ Fjt))[δ](Bi ∩ Fjt) = (G
[si]
jt

)[δ](Bi ∩ Fjt).

Hence, since
∏m
t=1(Bi ∩ Fjt) ⊆ Xi, (6.20) is equivalent to

(6.21)

m∏
t=1

(G
[si]
jt

)[δ] ⊆ (πj1,...,jm(G))[si]Xi,

so we will be done if we can find δ to do this.
To this end, assume for a moment that we have found δ such that

(6.22)

m∏
t=1

(G
[si]
jt

)[δ] ⊆ (πj1,...,jm(G))[si]N.

Then, recalling that we chose si so that G
[si]
j ⊆ Kj,i = πj(Ai), for all j, we would

have
m∏
t=1

(G
[si]
jt

)[δ] ⊆ ((πj1,...,jm(G))[si]N) ∩
m∏
t=1

Kjt,i,

and since N is normal in
∏k
j=1Gj , the right hand side equals

(πj1,...,jm(G))[si]
(
N ∩

m∏
t=1

Kjt,i

)
.

Finally, (6.4), (6.9) assure us that the second term equals Bi ∩
∏m
t=1 Fjt,i, which is

Xi, so we have completed the required proof of (6.21), modulo assumption (6.22),
which we shall prove using the following simple fact.

Claim: Let Q be a finitely generated torsion-free nilpotent group and let Q0 < Q
be a subgroup of finite index. Then there exists δ so that for every natural number
s,

(Q[s])[δ] ⊆ Q[s]
0 .

Proof of Claim. For abelian groups this is obvious. In the general case, one applies
induction on Hirsch length to deduce the result for G from the result for G modulo
its centre (which is again torsion-free [4]).

Returning to the proof of (6.22), recall that by hypothesis, for our fixed integer
m ≤ k, each projection of the form πj1,...,jm(G) has finite index in Gj1 × . . .×Gjm .
Thus we can apply the Claim with Q =

∏m
t=1GjtN/N and Q0 = πj1,...,jm(G)N/N .

This completes the proof that the promised inclusions in the statement of part (6)
of the lemma hold.

Note that (6.18) establishes the normality and subquotient properties we were
required to prove. The finite index property follows from the fact that every finitely
generated nilpotent group of finite exponent is finite. The additional p-power prop-
erty claimed in the last sentence of the statement is easily verified by following the
stages of the construction.

This completes the proof of the lemma. �
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6.3. Proposition Ψ and Proposition Ω. From now until the end of Section 6
we fix G to be a group satisfying the assumptions of Theorem F. We will work
exclusively with a special filtration, i.e. a particular exhausting sequence (Bi) of
finite-index normal subgroups, constructed to satisfy the conditions of Lemma 6.2.
(The fact that the index [G : Bi] can be a power of a fixed prime p if each Gi is
residually p will, however, play no role.) We shall maintain the notation of Lemma
6.2 (in particular δ is the integer whose existence was established there). We also
fix, for the duration of the section, an arbitrary

I = {j1, . . . , jm}
with 1 ≤ j1 < . . . < jm ≤ k, and define

ΓI := Gj1 × · · · ×Gjm
Λi := (Fj1 ∩Bi)× . . .× (Fjm ∩Bi),

Si := πj1(Bi)
[δ](Bi ∩ Fj1)× . . .× πjm(Bi)

[δ](Bi ∩ Fjm),

Di := Si/Λi

and
Ci := πI(Bi)/Λi.

By Lemma 6.2 (6), Di ⊆ Ci.
Lemma 6.3. There is a positive integer b, independent of I, so that for all i,

|Ci/Di| ≤ b.
Proof. Each Ci/Di is a finite nilpotent group, so to bound its cardinality it is
enough to bound the size of a minimal generating set, the nilpotency class and
the exponent. Lemma 6.2(6) tells us that Ci/Di is a subquotient of the finitely
generated nilpotent group (G1 × . . .×Gk)/N . Since (G1 × . . .×Gk)/N has finite
rank there is an upper bound, independent of i, on the number of elements required
to generate Ci/Di. The nilpotency class of (G1× . . .×Gk)/N is an upper bound on
the nilpotency class of Ci/Di, and by Lemma 6.2(6) the exponent of Ci/Di divides
δ. �

The proof of Theorem F depends on the following two technical results about
asymptotics of homology groups. Recall that m = |I|.
Proposition Ψ. For all positive integers α and q with α+ q ≤ m− 1 we have

lim
i→∞

1

[ΓI : Si]
dimHα(Di, Hq(Λi,K)) = 0

and for α+ q = m we have

lim sup
i→∞

1

[ΓI : Si]
dimHα(Di, Hq(Λi,K)) <∞.

Proposition Ω. Suppose that for α+ q ≤ m we have

lim sup
i→∞

1

[ΓI : πI(Bi)]
dimHα(Ci, Hq(Λi,K)) <∞.

Then for α+ q ≤ m

lim
i→∞

1

[G : Bi]
dimHα(Bi/(N ∩Bi), Hq(Λi,K)) = 0.
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Remark 6.4. The hypothesis of Theorem F that the summands Gj are K-slow
above dimension 1 enters the proof of Proposition Ψ in an essential way but is not
required in the proof of Proposition Ω.

6.4. Proposition Ψ and Proposition Ω imply Theorem F. Let Ci and Di

be as in subsection 6.3 and let b be the constant of Lemma 6.3. The output of
Proposition Ψ controls the homology of Di while Proposition Ω requires as input
control on the homology of Ci. The following lemma bridges this gap.

Lemma 6.5. For every s ∈ N, there exists a constant c = c(s, b) so that if M is a
KCi-module with dimHα(Di,M) <∞ for all α ≤ s, then

dimHα(Ci,M) ≤ c max
t≤α
{dimHt(Di,M)}.

Proof. Consider the LHS spectral sequence Hγ(Ci/Di, Ht(Di,M)) converging to
Hγ+t(Ci,M). Since Ci/Di is a finite group of order at most b there is a free
resolution of the trivial Z[Ci/Di]-module Z with finitely generated modules in every
dimension. We fix one such resolution for every possible finite group of order at
most b and define c1 to be the least upper bound on the number of generators of
the free modules up to dimension s in these resolutions. Then, for all γ ≤ s we
have

dimHγ(Ci/Di, Ht(Di,M)) ≤ c1 dimHt(Di,M).

As one passes from the E2 page of the spectral sequence to the E∞ page, the
dimension of the K-module in each coordinate does not increase, so the filtration
of Hα(Ci,M) corresponding to the antidiagonal γ + t = α on the E∞ page allows
us to estimate

dimHα(Ci,M) ≤
∑

γ+t=α

dimHγ(Ci/Di, Ht(Di,M)) ≤ c1
∑

γ+t=α

dimHt(Di,M).

Thus
dimHα(Ci,M) ≤ (c1s) max

t≤α
{dimHt(Di,M)} for α ≤ s,

and setting c = c1s we are done. �

We now turn to the main argument. We are trying to get into a situation where
we can apply Lemma 6.1. From Lemma 6.3 we have

(6.23)
[ΓI : Si]

[ΓI : πI(Bi)]
= [Ci : Di] ≤ b.

In the light of this, we can combine Proposition Ψ, Proposition Ω, using Lemma
6.5 with M = Hq(Λi,K), to deduce that for α+ q ≤ m,

(6.24) lim
i→∞

dimHα(Bi/(N ∩Bi), Hq(Λi,K))

[G : Bi]
= 0.

Now, by Lemma 6.2(1),

(6.25) Bi ∩N = (F1 ∩Bi)× . . .× (Fk ∩Bi).
Since Fj∩Bi is a subgroup of a free group Fj , it is free itself and Hs(Fj∩Bi,K) = 0
for s ≥ 2. Then by the Künneth formula [27, Thm. 11.31]

(6.26) Hq(Bi ∩N,K) = ⊕JH1(Fl1 ∩Bi,K)⊗K . . .⊗K H1(Flq ∩Bi,K)

where the sum is over all J = {l1, . . . , lq} with 1 ≤ l1 < . . . < lq ≤ k, while

(6.27) Hq(Λi,K) = ⊕J⊂IH1(Fl1 ∩Bi,K)⊗K . . .⊗K H1(Flq ∩Bi,K).
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By (6.24) and (6.27), for J = {l1, . . . , lq} ⊆ I we have

lim
i→∞

1

[G : Bi]
dimHα(Bi/N ∩Bi, H1(Fl1 ∩Bi,K)⊗K . . .⊗K H1(Flq ∩Bi,K)) = 0.

As the above holds for all choices of I, we deduce from (6.26) that

lim
i→∞

1

[G : Bi]
dimHα(Bi/N ∩Bi, Hq(N ∩Bi,K)) = 0 for all α+ q ≤ m.

This is the estimate that we need as input for the simple spectral sequence argument
Lemma 6.1, so the proof of Theorem F is complete. �

6.5. Proof of Proposition Ω. In our proof of Proposition Ω we shall need the esti-
mates presented in the following two lemmas. These estimates relate the dimension
of homology groups of nilpotent groups to Hirsch length.

Lemma 6.6. For every q ∈ N there is a polynomial fq ∈ Z[x] so that for every
finitely-generated torsion-free nilpotent group M ,

dimHq(M,K) ≤ fq(h(M)),

where h(M) is the Hirsch length of M .

Proof. Let N be a central normal subgroup of M . As in our previous arguments,
from the LHS spectral sequence for the short exact sequence 1 → N → M →
M/N → 1 we have

dimHq(M,K) ≤
∑

α+β=q

dimHα(M/N,Hβ(N,K)).

As N is central in M , the action of M/N (via conjugation) on N (hence H∗(N,K))
is trivial, so

(6.28) Hα(M/N,Hβ(N,K)) ∼= Hα(M/N,K)⊗K Hβ(N,K),

and
dimHq(M,K) ≤

∑
α+β=q

dim(Hα(M/N,K)⊗K Hβ(N,K)).

By [4, Cor. 2.11] there is a central series (Mi)i for M with all quotients Mi/Mi−1
infinite cyclic. Arguing by induction on the length s+ 1 = h(M) of this series and
making repeated applications of (6.28), for M = Ms we have

dimHq(M,K) ≤∑
α0+...+αs=q

dim(Hαs(Ms/Ms−1,K)⊗K . . .⊗KHαi(Mi/Mi−1,K)⊗K . . .⊗KHα0(M0,K))

But Mi/Mi−1 ∼= Z, so Hαi(Mi/Mi−1,K) = 0 if αi > 1 and is K in dimensions 0
and 1. Thus, defining M−1 = 0 we have

dimHq(M,K) ≤
∑

α0+...+αs=q

∏
0≤i≤s

dimHαi(Mi/Mi−1,K)

≤
∑

αi≤1,α0+...+αs=q

1

=

(
s+ 1

q

)
= fq(s+ 1),

where fq(x) = x(x− 1) . . . (x− q + 1)/q!. �
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Lemma 6.7. Let Q be a torsion-free finitely generated nilpotent group, H a sub-
group of Q, V a KH-module and M a normal subgroup of H such that M acts
trivially on V . Then, for every integer s there is a constant β depending only on s
and the Hirsch length h(Q) such that

dimHs(H,V ) ≤ β
∑

0≤p≤s

dimHp(H/M,V ).

Proof. Consider the LHS spectral sequence

E2
p,q = Hp(H/M,Hq(M,V ))

converging to Hp+q(H,V ). Since M acts trivially on V we have

Hq(M,V ) = Hq(M,K)⊗K V,

where H/M acts diagonally on the tensor product. Since H is nilpotent, it acts
nilpotently on M (by conjugation) and hence H acts nilpotently on Hq(M,K), so
there is a filtration of Hq(M,K) by KH-submodules such that H acts trivially on
the quotients of this filtration; we denote these sections W1, . . . ,Wj .

(6.29) dimHp(H/M,Hq(M,K)⊗K V ) ≤
∑

1≤i≤j

dimHp(H/M,Wi ⊗K V )

and since H acts trivially on Wi we have that, as a K[H/M ]-module, Wi ⊗K V is
a direct sum of dim(Wi) copies of V . Thus

(6.30) dimHp(H/M,Wi ⊗K V ) ≤ dimWi dimHp(H/M,V ).

Note that ∑
i

dimWi = dimHq(M,K),

so

(6.31)
∑
i

dimWi dimHp(H/M,V ) = dimHq(M,K) dimHp(H/M,V ).

Combining (6.29), (6.30) and (6.31) we have
(6.32)

dimE2
p,q = dimHp(H/M,Hq(M,K)⊗K V ) ≤ dimHq(M,K) dimHp(H/M,V ).

By Lemma 6.6, there is a polynomial fq(x) depending only on q, so that the
dimension of Hq(M,K) is bounded above by fq(h(M)). Let β be the maximum of
fq(z), where 0 ≤ q ≤ s and 0 ≤ z ≤ h(Q). Then by (6.32)

dimE2
p,q ≤ dimHq(M,K) dimHp(H/M,V ) ≤ β dimHp(H/M,V ).

Finally,

dimHs(H,V ) ≤
∑
p+q=s

dimE2
p,q ≤

∑
0≤p≤s

β dimHp(H/M,V ).

�

Proof of Proposition Ω.
We saw in Lemma 6.2 that for I = {j1, . . . , jm} we have

(6.33) πI(Bi ∩N) = Λi := (Fj1 ∩Bi)× . . .× (Fjm ∩Bi).
πI induces a map

ρI : Bi/(Bi ∩N)→ Ci = πI(Bi)/πI(Bi ∩N).
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This map is surjective and we denote its kernel by Mi. Define

Wi = Hq(Λi,K).

Note that Wi is a Ci-module via the conjugation action of πI(Bi) and Wi is a
Bi/(Bi ∩N)-module via the map ρI .

These two incarnations of Wi are what we must understand, since the passage
from the input of Proposition Ω to the output involves changing Hα(Ci,Wi) to
Hα(Bi/(Bi∩N),Wi), changing denominators, and sharpening the limit from finite
to zero.

Concerning the denominators, observe that for P =
∏
j /∈I Fj we have πI(P ) = 1,

so πI(PBi) = πI(Bi). Then, recalling that ΓI := Gj1 × . . .×Gjm , we have

[G : PBi] ≥ [πI(G) : πI(Bi)] =
[ΓI : πI(Bi)]

[ΓI : πI(G)]

and so
[ΓI : πI(Bi)]

[G : Bi]
≤ [ΓI : πI(G)][G : PBi]

[G : Bi]

=
[ΓI : πI(G)]

[P : Bi ∩ P ]
.

We have assumed that |I| = m < k, so P 6= 1 and

(6.34) 0 ≤ lim
i→∞

[ΓI : πI(Bi)]

[G : Bi]
≤ lim
i→∞

[ΓI : πI(G)]

[P : Bi ∩ P ]
= 0.

By definition, Mi is the kernel of ρI and hence acts trivially on Wi. By hypothe-
sis, G/N is torison-free nilpotent and Mi is a subgroup of Bi/(Bi∩N) ∼= BiN/N ⊆
G/N . We apply Lemma 6.7 with H = Bi/(Bi ∩ N), Q = G/N and M = Mi to
find a constant β depending on h(Q) and m so that for Ci = H/Mi and all α ≤ m

dimHα(Bi/(Bi ∩N),Wi) ≤ β
∑

0≤p≤α

dimHp(Ci,Wi).

Then

(6.35)

dimHα(Bi/(Bi ∩N),Wi)

[G : Bi]
≤ β

[G : Bi]

∑
0≤j≤α

dimHj(Ci,Wi)

= β

∑
0≤j≤α dimHj(Ci,Wi)

[ΓI : πI(Bi)]

[ΓI : πI(Bi)]

[G : Bi]
.

Since for α+ q ≤ m we have

lim sup
i→∞

dimHα(Ci,Wi)

[ΓI : πI(Bi)]
<∞

we obtain by (6.34) and (6.35) that

lim
i→∞

dimHα(Bi/N ∩Bi,Wi)

[G : Bi]
= 0 for α+ q ≤ m

as required. �
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6.6. Proof of Proposition Ψ. We need the following weak form of slowness for
nilpotent groups. This is a special case of [24, Thm. 0.2(ii)] and can be proved by
a straightforward induction on Hirsch length (cf. Lemma 7.2).

Lemma 6.8. If N is a finitely generated nilpotent group and K is a field then N
is K-slow, i.e. for every exhausting normal chain (Bi) and every m ≥ 0

lim
i→∞

dimHm(Bi,K)

[N : Bi]
= 0.

The direct summands Gj in the statement of Theorem F are assumed to satisfy
the hypotheses of the following lemma.

Lemma 6.9. Let K be a field, let G be a finitely generated residually finite group
that is K-slow above dimension 1 and let F be a normal subgroup of G such that
G/F is nilpotent and F is free. Let (Li)i≥1 be an exhausting sequence of normal
subgroups of finite index in G such that

⋂
i LiF = F . Then, for q ≥ 1

lim
i→∞

1

[G : Li]
dimHq(Li/F ∩ Li, (Li ∩ F )ab ⊗Z K) = 0,

and

lim sup
i→∞

1

[G : Li]
dimH0(Li/F ∩ Li, (Li ∩ F )ab ⊗Z K) <∞.

Proof. K-slowness means that for q ≥ 2

(6.36) lim
i→∞

dimHq(Li,K)

[G : Li]
= 0.

And since dimH1(Li,K) is bounded above by d(Li), the number of generators
required to generate Li,

(6.37) lim sup
i→∞

dimH1(Li,K)

[G : Li]
<∞.

The group that we must understand is

Hq(Li/(F ∩ Li), (Li ∩ F )ab ⊗Z K) = Hq(Li/(F ∩ Li), H1(Li ∩ F,K))

which is the E2
q,1 term of the LHS spectral sequence

E2
α,β = Hα(Li/(Li ∩ F ), Hβ(Li ∩ F,K))

converging via α to Hα+β(Li,K). We denote the differentials

dkα,β : Ekα,β → Ekα−k,β+k−1.

Since F is free Ekα,β = 0 for β /∈ {0, 1}, so the sequence stabilizes on the E3 page
and

E∞q,1 = E3
q,1 = cokerd2q+2,0

is a direct summand of Hq+1(Li,K). Thus

(6.38)
dimE2

q,1 ≤ dimE3
q,1 + dimE2

q+2,0

≤ dimHq+1(Li,K) + dimHq+2(L̄i,K),

where L̄i := LiF/F ∼= Li/(Li ∩ F ). By hypothesis, (L̄i) is an exhausting sequence
of normal subgroups of finite index in G/F , so by Lemma 6.8 for s ≥ 0 we have

(6.39) lim
i→∞

dimHs(L̄i,K)

[G/F : L̄i]
= 0.
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Now, [G/F : L̄i] ≤ [G : Li], so dividing through (6.38) by [G : Li] and letting
i→∞, from (6.36) and (6.39) for q ≥ 1 we get

lim
i→∞

dimE2
q,1

[G : Li]
= 0,

while for q = 0 using (6.37) we get

lim sup
i→∞

dimE2
0,1

[G : Li]
≤ lim sup

i→∞

dimH1(Li,K)

[G : Li]
<∞,

as required. �

Proof of Proposition Ψ

To simplify the notation, we relabel so that I = {1, . . . ,m}, and for each j ∈ I
we define

Aj,i := πj(Bi)
[δ](Bi ∩ Fj).

Recall from (6.19) that πj(Bi) = G
[si]
j (Bi ∩ Fj) and hence

Aj,i = (G
[si]
j (Bi ∩ Fj))[δ](Bi ∩ Fj) = (G

[si]
j )[δ](Bi ∩ Fj)

is a normal subgroup of finite index in Gj . From Lemma 6.2 (5) and (6) we have

(6.40)
⋂
i≥1

Aj,iFj = Fj for all 1 ≤ j ≤ k

and

(6.41) Aj,i ∩ Fj = Bi ∩ Fj .

And the notation that we used to state Proposition Ψ was (dropping the subscript
I)

Γ = G1 × · · · ×Gm, Λi = (A1,i ∩ F1)× . . .× (Am,i ∩ Fm),

Si = A1,i × . . .×Am,i, and Di = Si/Λi.

We shall prove Proposition Ψ be examining the LHS spectral sequences for the
short exact sequences 1 → Λi → Si → Di → 1. The E2

α,β term of this spectral
sequence is

Ei(α, β) := Hα(Di, Hβ(Λi,K))

and what we must prove is that

lim
i→∞

Ei(α, β)

[Γ : Si]
= 0 for α+ β ≤ m− 1

and for α+ β = m

lim sup
i→∞

Ei(α, β)

[Γ : Si]
<∞.

We shall always assume that β ≤ m. The Fj , being free, have homological dimen-
sion 1, so by Künneth formula

Hβ(Λi,K) ∼= ⊕1≤j1<j2<...<jβ≤m(Aj1,i ∩ Fj1)ab ⊗ . . .⊗ (Ajβ ,i ∩ Fjβ )ab ⊗K.

(Here, and throughout, tensor products are over Z unless indicated otherwise.)
Thus

Ei(α, β) ∼= ⊕1≤j1<j2<...<jβ≤mWα,j1,...,jβ ,i,
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where

Wα,j1,...,jβ ,i = Hα(Di, (Aj1,i ∩ Fj1)ab ⊗ . . .⊗ (Ajβ ,i ∩ Fjβ )ab ⊗K).

We will be done if we can show, for fixed α ≥ 0, that

lim
i→∞

dimWα,j1,...,jβ ,i

[Γ : Si]
= 0 for β < m

and

lim sup
i→∞

dimWα,j1,...,jβ ,i

[Γ : Si]
<∞ for β = m.

To prove this let us fix one sequence 1 ≤ j1 < j2 < . . . < jβ ≤ m. Without loss of
generality we can assume that ji = i for all 1 ≤ i ≤ β. Define

R1,i = A1,i/(A1,i ∩ F1)× . . .×Aβ,i/(Aβ,i ∩ Fβ)

and

R2,i = Aβ+1,i/(Aβ+1,i ∩ Fβ+1)× . . .×Am,i/(Am,i ∩ Fm).

Set

Vi = (A1,i ∩ F1)ab ⊗ . . .⊗ (Aβ,i ∩ Fβ)ab ⊗K.
We will need the following generalised version of the Künneth formula: for k = 1, 2,
let Tk be a group and let Mk be a K[Tk]-module, then

Hα(T1 × T2,M1 ⊗K M2) = ⊕α1+α2=αHα1
(T1,M1)⊗K Hα2

(T2,M2).

To prove this formula, one takes a deleted projective resolution Pk of Mk as a K[Tk]-
module and observes that the complex P1 ⊗K P2 is a deleted projective resolution
of M1 ⊗K M2 as a K[ T1 × T2]-module (see [27, Thm. 10.81] for details).

With this formula in hand, we have

(6.42) Wα,1,...,β,i = Hα(R1,i×R2,i, Vi) = ⊕α1+α2=αHα1
(R1,i, Vi)⊗KHα2

(R2,i,K)

and if we define Σk1,...,kβ ,i to be

Hk1(A1,i/(A1,i∩F1), (A1,i∩F1)ab⊗K)⊗K . . .⊗KHkβ (Aβ,i/(Aβ,i∩Fβ), (Aβ,i∩Fβ)ab⊗K)

then

(6.43) Hα1
(R1,i, Vi) ∼= ⊕k1+...+kβ=α1

Σk1,...,kβ ,i.

Thus

dimHα1
(R1,i, Vi) =

(6.44)
∑

k1+...+kβ=α1

∏
1≤t≤β

dimHkt(At,i/(At,i ∩ Ft), (At,i ∩ Ft)ab ⊗K).

Lemma 6.9 assures us that

(6.45) lim sup
i→∞

∏
1≤t≤β dimHkt(At,i/(At,i ∩ Ft), (At,i ∩ Ft)ab ⊗K))

[G1 × . . .×Gβ : A1,i × . . .×Aβ,i]
<∞.

And by combining (6.44) and (6.45) we deduce that

(6.46) lim sup
i→∞

dimHα1
(H1,i, Vi)

[G1 × . . .×Gβ : A1,i × . . .×Aβ,i]
<∞.

If β = m then R2,i = 1, so (6.46) completes the proof in this case.
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Henceforth we assume that β < m. In this case, R2,i is non-trivial. Indeed, by
(6.41)

R2,i
∼= (Aβ+1,iFβ+1/Fβ+1)× . . .× (Am,iFm/Fm)

is a normal subgroup of finite index in the infinite nilpotent group Ñ = (Gβ+1/Fβ+1)×
. . .×(Gm/Fm). Moreover (6.40) tells us that these subgroups of finite index exhaust

Ñ , so we can apply Lemma 6.8 to deduce that

lim
i→∞

dimHα2
(R2,i,K)/[Gβ+1 × . . .×Gm : (Aβ+1,iFβ+1)× . . .× (Am,iFm)] = 0

for every α2 ≥ 0, hence

(6.47) lim
i→∞

dimHα2
(R2,i,K)/[Gβ+1 × . . .×Gm : Aβ+1,i × . . .×Am,i] = 0.

We now have all that we need to complete the proof. From (6.42) we have

dimWα,1,...,β,i =
∑

α1+α2=α

dimHα1
(R1,i, Vi).dimHα2

(R2,i,K).

We divide both sides by

[G1×· · ·×Gm : A1,i×. . .×Am,i] =

m∏
j=1

[Gj : Aj,i] =
( β∏
j=1

[Gj : Aj,i]
)( m∏

j=β+1

[Gj : Aj,i]
)

and let i → ∞. We proved that in (6.46) that, when normalised by
∏β
j=1[Gj :

Aj,i] the terms involving R1,i remain bounded, while (6.47) assures us that, when
normalised by

∏m
j=β+1[Gj : Aj,i], the terms involving R2,i tend to zero. Thus

lim
i→∞

dimWα,1,...,β,i

[G1 × · · · ×Gm : A1,i × . . .×Am,i]
= 0

as required, and the proofs of Proposition Ψ and Theorem F are complete. �

7. Proof of Theorem E

We recall the statement of Theorem E.

Theorem 7.1. Let m ≥ 2 be an integer, let G be a residually free group of type
FPm, and let ρ be the largest integer such that G contains a direct product of ρ
non-abelian free groups. Then, there exists an exhausting sequence (Bn) so that for
all fields K,

(1) if G is not of type FP∞, then limn
dimHi(Bn,K)

[G : Bn]
= 0 for all 0 ≤ i ≤ m;

(2) if G is of type FP∞ then for all j ≥ 1,

lim
n→∞

dimHj(Bn,K)

[G : Bn]
=

{
(−1)ρχ(G) if j = ρ

0 otherwise.

Theorem 2.4 allows us to regard an arbitrary finitely presented residually free
group G as a full subdirect product of limit groups G < G1 × . . . Gk and Theorem
2.3 tells us that the Gi are free-by-(torsion free nilpotent) as required in Theorem
F. If the Gi are all non-abelian, then item (1) of the above theorem is immediate
consequence of Theorem F and Theorem 2.5. If one of the factors Gi is abelian,
then the intersection of G with this factor is central and free abelian, so the Euler
characteristic of G is zero and the limits in the statement of the theorem are also
zero, by virtue of the following simple lemma. (Note that if G is of type Fm then
so is the quotient of G by any finitely generated normal abelian subgroup.)
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Lemma 7.2. Let 1→ Z → G
p→ Q→ 1 be a central extension, with Z ∼= Z and G

and Q residually finite and of type Fm. Then, for all fields K there is an exhausting
normal chain (Bn) in G by finite-index normal subgroups so that for all s ≤ m

lim
n→∞

dimHs(Bn,K)

[G : Bn]
= 0.

Proof. The first thing to note is that for any sequence of finite index subgroups
(Cn) in Q and any s ≤ m we have

(7.1) lim sup
n→∞

dimHs(Cn,K)/[Q : Cn] <∞.

Indeed Q has a classifying space BQ with finite m-skeleton and dimHs(Cn,K) is
bounded by the number of s-cells in the [Q : Cn]-sheeted covering space of BG
corresponding to Cn, which has rs[Q : Cn] cells of dimension s, where rs is the
number of s-cells in BQ.

Let (An) and (Dn) be exhausting chains of finite-index normal subgroups in
G and Q respectively. Let Bn = An ∩ p−1Dn and let B̄n = p(Bn). Then
we have a central extension 1 → Zn → Bn → B̄n → 1 with Zn = Z ∩ Bn,
and from the LHS spectral sequence we have dimHs(Bn,K) ≤ dimHs(B̄n,K) +
dimHs−1(B̄n, H1(Zn,K)). But H1(Zn,K) is the trivial KB̄n-module K, because
the action of Bn on Z by conjugation is trivial. Thus

dimHs(Bn,K) ≤ dimHs(B̄n,K) + dimHs−1(B̄n,K).

The proof is completed by dividing this equality through by [G : Bn] and letting n
go to infinity, using (7.1) twice and noting that [Z : Zn] = [G : Bn]/[Q, B̄n] tends
to infinity. �

It remains to consider the case where G is of type FP∞. Theorem 2.6 says that
G has a subgroup of finite index H = H1× . . .×Hr where the Hi are limit groups.
Let (Bi) be an exhausting normal chain in G such that each Bi is contained in H
and decompose as Bi = (Bi ∩H1)× . . .× (Bi ∩Hr). Then by the Künneth formula
and by Corollary B applied for each Hi we have

lim
i→∞

dimHj(Bi,K)

[G : Bi]
=

1

[G : H]

∑
j1+...+jr=j

∏
1≤s≤r

lim
i→∞

dimHjs(Bi ∩Hs,K)

[Hs : Bi ∩Hs]

=
1

[G : H]

∑
j1+...+jr=j

∏
1≤s≤r

(−δ1,jsχ(Hi))

=
1

[G : H]
(−1)rδj,rχ(H) = (−1)rδj,rχ(G).

A limit group does not contain a direct product of two or more non-abelian free
groups, and every non-abelian limit group contains a non-abelian free group, so
r = ρ unless one or more of the Hi is abelian. If some Hi is abelian, then χ(Hi) =
χ(G) = 0. This completes the proof of Theorem E. �

8. Rank gradient and deficiency gradient for residually free groups

Let G be a group and let (Bi) be an exhausting normal chain for G. We are
interested in the rank gradient

RG(G, (Bi)) = lim
i→∞

d(Bi)

[G : Bi]
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and the deficiency gradient

DG(G, (Bi)) = lim
i→∞

def(Bi)

[G : Bi]
.

The first limit exists because, for any nested sequence of subgroups of finite index,
the sequence (d(Bi) − 1)/[G : Bi] is non-increasing and bounded below by 0. The
second limit exists because the sequence (def(Bi) + 1)/[G : Bi] is non-increasing
and bounded below by −RG(G, (Bi)); cf. proof of Lemma 8.2.

The following lemma is known but we include a simple proof for the reader’s
convenience.

Lemma 8.1. Let G be a finitely generated residually finite group with a finitely
generated infinite normal subgroup N such that G/N is infinite and residually finite.

(1) There exist exhausting normal chains (Bi) in G such that (BiN/N) is an
exhausting normal chain in G/N .

(2) For any such chain, RG(G, (Bi)) = 0.

Proof. To see that filtrations (Bi) of the desired form exist, note that if (Hi) and
(Di) are exhausting normal chains for G and Q := G/N , and if p : G → Q is the
canonical projection, then Bi = Hi ∩ p−1(Di) has the required properties.

The proof of (2) is similar to Lemma 7.2. It relies on the standard fact that if Λ
is a subgroup of index k in a group Γ, then d(Λ)− 1 ≤ k(d(Γ)− 1).

Let Ni = N ∩ Bi and Qi = Bi/Ni. Then [G : Bi] = [N : Ni][Q : Qi] and
d(Bi) ≤ d(Ni) + d(Qi) ≤ (d(N)− 1)[N : Ni] + 1 + (d(Q)− 1)[Q : Qi] + 1. Hence

d(Bi)

[G : Bi]
≤ 1

[G : Bi]

(
((d(N)− 1)[N : Ni] + 1) + ((d(Q)− 1)[Q : Qi] + 1)

)
≤ d(N)

[Q : Qi]
+

d(Q)

[N : Ni]
+

2

[G : Bi]
.

Letting i go to infinity we conclude that RG(G, (Bi)) = 0. �

Moving up one dimension we have:

Lemma 8.2. Let G be a finitely presented residually finite group with a finitely
presented infinite normal subgroup N such that Q = G/N is infinite and residually
finite. Let (Bi) be an exhausting normal chain for G, let Ni = N ∩ Bi and Qi =
BiN/N and assume that

⋂
iQi = 1.

If RG(N, (Ni)) = 0 then DG(G, (Bi)) = 0.

Proof. There is a standard procedure that, given finite presentations Ni = 〈Xi | Ri〉
and Qi = 〈Yi | Si〉 will construct a finite presentation Bi = 〈Xi ∪ Yi | Ri, S̃i, Ti〉
where |S̃i| = |Si| and |Ti| = |d(Ni)|.|Yi|.

In more detail, one lifts the canonical projection from the free group F (Yi) →
Qi = Bi/Ni to obtain µ : F (Yi)→ Bi, then proceeds as follows. For each σ ∈ Si one

chooses a word uσ ∈ F (Xi) such that µ(σ)uσ equals 1 ∈ Bi; then S̃i ⊂ F (Xi∪Yi) is
defined to consist of the words σuσ. To define Ti, one first fixes a generating set Xi

for Ni with |Xi| = d(Ni). Then, for each x ∈ Xi one chooses a word ηx ∈ F (Xi)
such that x = ηx in Ni and for each y ∈ Yi one chooses a word vxy ∈ F (Xi) so
that vxy = µ(y)xµ(y)−1 in Bi. The set Ti consists of the words yηxy

−1v−1xy . (This
process, although well-defined, is not algorithmic because there is no algorithm that,
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given a finite presentation, can identify a generating set of minimal cardinality for
the group presented.)

Given a finitely presented group Γ = 〈Υ | Σ〉 and a subgroup Γi < Γ of index k,
one obtains a presentation 〈Υi | Σi〉 with |Υi|−1 = k(|Υ|−1) and |Σi| = k|Σ| by the
Reidemeister-Schreier rewriting process. (Topologically, this amounts to taking a
k-sheeted covering of the standard 2-complex for 〈Υ | Σ〉 and collapsing a maximal
tree in the 1-skeleton.) In particular,

(8.1) lim
i→∞

|Υi|
[Γ : Γi]

= |Υ| − 1 and lim
i→∞

|Σi|
[Γ : Γi]

= |Σ|.

We fix finite presentations N = 〈X | R〉 and Q = 〈Y | S〉 and apply the
construction of the previous paragraph to construct presentations Ni = 〈Xi | Ri〉
and Qi = 〈Yi | Si〉, and from these we construct a presentation 〈Xi ∪Yi | Ri, S̃i, Ti〉
for Bi. By definition, the deficiency of this presentation is an upper bound on the
deficiency of Bi, so

def(Bi) ≤ |Ti|+ (|Ri| − |Xi|) + (|Si| − |Yi|)
= d(Ni) |Yi|+ (|Ri| − |Xi|) + (|Si| − |Yi|).

Dividing by [G : Bi] = [N : Ni].[Q : Qi] we get

1

[G : Bi]
def(Bi) ≤

d(Ni)

[N : Ni]

|Yi|
[Q : Qi]

+
1

[Q : Qi]

|Ri| − |Xi|
[N : Ni]

+
1

[N : Ni]

|Si| − |Yi|
[Q : Qi]

.

Taking the limit i→∞, the second and third summands on the right tend to zero,
by (8.1), while the first tends to RG(N, (Ni)).(|Y |−1), which is zero by hypothesis.
Thus DG(G, (Bi)) ≤ 0.

On the other hand, for any finitely presented group, def(Γ) ≥ −d(Γ), because Γ
has a finite presentation on a set of d(Γ) generators. Thus −d(Bi) ≤ def(Bi) and

−RG(G, (Bi)) ≤ DG(G, (Bi)) ≤ 0.

The first term is zero, by Lemma 8.1, so the lemma is proved. �

The following theorem can be viewed as a homotopical version of Theorem E in
low dimensions. We believe that the condition that G is of type FP3 is too strong
and that type FP2 is enough (equivalently, finite presentability) as in the homo-
logical case, i.e. Theorem E, part (1). It also seems likely that higher dimensional
analogues of this result hold, but we cannot resolve this problem because we do
not have a complete characterisation of the residually free groups (i.e. subdirect
products of limit groups) that are of type FPm for m ≥ 3. More specifically, the
following conjecture remains open: for a full subdirect product H ≤ G1 × . . .×Gn
with each Gi a non-abelian limit group, H is of type FPm for some m ≤ n if and
only if for every 1 ≤ j1 < . . . < jm ≤ n the index of πj1,...,jm(H) in Gj1 × . . .×Gjm
is finite.

Theorem 8.3. Every G finitely presented residually free group that is not a limit
group admits an exhausting normal chain (Bn) with respect to which the rank gra-
dient

RG(G, (Bn)) = lim
n→∞

d(Bn)

[G : Bn]
= 0.

Furthermore, if G is of type FP3 but is not commensurable with a product of two
limit groups, (Bn) can be chosen so that the deficiency gradient DG(G, (Bn)) = 0.
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Proof. We use Theorem 2.4 to embed G as a full subdirect product of limit groups
G ≤ G1 × . . . × Gm such that each of the projections πj1,j2(G) < Gj1 × Gj2 is of
finite index; as G is not a limit group, m ≥ 2. There will be an abelian factor Gi
if and only if G has a non-trivial (free-abelian) centre. If G has such a centre, the
theorem follows immediately from Lemmas 8.1 and 8.2, so henceforth we assume
that the Gi are all non-abelian.

Proposition 3.2(3) of [8] states that M := G ∩ (G1 × . . . × Gm−1) is finitely
generated. The quotient G/M = Gm is residually finite. Hence, by Lemma 8.1,
there is an exhausting normal chain (Bi) with RG(G, (Bi)) = 0, as required.

If G is of type FP3 but not virtually a product of two limit groups then m ≥ 3
and Theorem 2.5 tells us for every 1 ≤ j1 < j2 < j3 ≤ m the projection πj1,j2,j3(G)
has finite index in Gj1×Gj2×Gj3 . In particular this holds for 1 ≤ j1 < j2 < j3 = m,
so for every 1 ≤ j1 < j2 ≤ m−1 we see that pj1,j2(M) has finite index in Gj1×Gj2 .
It follows from Theorem 2.4 (or the Virtual Surjections Theorem of [8]) that M is
finitely presented. To complete the proof, we want to appeal to Lemma 8.2 with
M = N and Q = Gm, but first we must construct a chain (Bi) as described in that
lemma. To this end, we fix exhausting normal chains (Di), (Ai) and (Qi) for G1, G
and Gm, respectively.

In the first step of the construction we follow the proof of Lemma 8.1 with
M → π1(M) playing the role of the map G→ G/N that was considered there, and
with Hi := Ai∩M . As in that proof, RG(M, (Mi)) = 0, where Mi := Hi∩π−11 (Di).

Finally, we define Bi = Ai ∩ π−11 (Di) ∩ π−1m (Qi). This is an exhausting normal

chain for G with Mi = Bi ∩M . Moreover, Qi := Bi/Mi ⊂ Qi, so
⋂
iQi = 1. Thus

Lemma 8.2 applies and the theorem is proved. �

Remark 8.4. The exceptions made in the statement of Theorem 8.3 are necessary:
if Gi, i = 1, 2, is a limit group then Theorem A(1) tells us that the rank gradient
of Gi is −χ(Gi), from which it is easy to deduce that if G = G1 ×G2 is a product
of two limit groups then its deficiency gradient is χ(G1)χ(G2).
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