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The geometry of the word problem

Martin R. Bridson

Introduction

The study of decision problems in group theory is a subject that does not im-
pinge on most geometers’ lives — for many it remains an apparently arcane region
of mathematics near the borders of group theory and logic, echoing with talk
of complexity and undecidability, devoid of the light of geometry. The study
of minimal surfaces, on the other hand, is an immediately engaging field that
combines the shimmering appeal of soap films with intriguing analytical prob-
lems; Plateau’s problem has a particularly intuitive appeal. The first purpose of
this article is to explain that despite this sharp contrast in emotions, the study
of the large scale geometry of least-area discs in Riemannian manifolds is inti-
mately connected with the study of the complexity of word problems in finitely
presented groups.

Joseph Antoine Ferdinand Plateau was a Belgian physicist who, in 1873, pub-
lished a stimulating account of his experiments with soap films [90]. The question
of whether or not every rectifiable Jordan loop in 3-dimensional Euclidean space
bounds a disc of minimal area subsequently became known as Plateau’s Problem.
This problem was solved by Jesse Douglas [37] and Tibor Radé [91] (indepen-
dently) around 1930. In 1948 C.B. Morrey [75] extended the results of Douglas
and Rado to a class of spaces that includes the universal covering of any closed,
smooth Riemannian manifold M .

Once one knows that least-area discs exist in this generality, numerous ques-
tions come to mind concerning their local and global geometry (cf. [79], [86], and
[71]). The questions on which we shall focus in this article concern the large-scale
geometry of these discs: Can one bound the area of least-area discs in M by a
function of the length of their boundaries? If so, what is the least such function?
What happens to the asymptotic behaviour of this function when one perturbs
the metric or varies M within its homotopy type? What can one say about the
diameter of least-area discs? etc.

Remarkably, these questions turn out to be intimately connected with the
nature of the word problem in the fundamental group of M, i.e. the problem of
determining which words in the generators of the group equal the identity. The
most important and striking connection of this type is given by the Filling The-
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orem in Section 2: the smallest function Filléw (1) bounding the area of least-area
discs in terms of their boundary length has qualitatively the same asymptotic
behaviour! as the Dehn function §,17(1) of the fundamental group of M.

The Dehn function of a finitely presented group T' = (A | R) measures the
complexity of the word problem for I' by giving the least upper bound on the
number of defining relations r € R that must be applied in order to show that
a word w in the letters A*! is equal to 1 € T'; the bound is given as a function
of the length of w (see Paragraph 1.2).

The first purpose of this article is to give a thorough account of the Filling
Theorem. The second purpose of this article is to sketch the current state of
knowledge concerning Dehn functions. Thus, in Section 3, I shall explain what
is known about the set of ~ classes of Dehn functions (equivalently, isoperimetric
functions Fill)” of closed Riemannian manifolds), and I shall also describe what is
known about the Dehn functions of various groups that are of geometric interest.
In later sections we shall see a variety of methods for calculating Dehn functions
(some geometric, some algebraic, and some purely combinatorial). Along the
way we shall see examples of how the equivalence 6,1 ~ Filléw can inform in
both directions (cf. (2.2) and Section 6).

Historical Background. The precise equivalence between filling functions of
manifolds and complexity functions for word problems is a modern observation
due to Mikhael Gromov, but this connection sits comfortably with the geometric
origins of combinatorial group theory.

Topology and combinatorial group theory emerged from the same circle of
ideas at the end of the nineteenth century. By 1910 Dehn had realized that
the problems with which he was wrestling in his attempts to understand low-
dimensional manifolds were instances of more general group-theoretic problems.
In 1912 he published the celebrated paper in which he set forth the three basic
decision problems that remained the main focus for combinatorial group theory
throughout the twentieth century:

“The general discontinuous group s given by n generators and
m relations between them. |[...| Here there are above all three fun-
damental problems |...]
1: [The Word Problem| An element of the group is given as a product
of generators. One is required to give a method whereby it may be
decided in a finite number of steps whether this element is the identity
or not. [2: The Conjugacy Problem. 3: The Isomorphism Problem]

One is already led to them by necessity with work in topology.
Fach knotted space curve, in order to be completely understood, de-
mands the solution of the three above problems in a special case.?”

I More precisely, Filléu is > equivalent to é,, s in the sense of 1.3.2.

2The special cases referred to here were not resolved fully until the early 1990s, and their
ultimate solution rested on some of the deepest geometry and topology of the time, in particular
the work of Thurston on the geometric nature of 3-manifolds.
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In the present article I shall concentrate almost exclusively on the word prob-
lem, but in Section 8 I shall explain constructions that translate the complexity
of word problems into conjugacy problems and isomorphism problems. These
basic decision problems are all unsolvable in the absence of further hypotheses
(see [72] for a survey of these matters) and in the spirit of Dehn’s comments I
should note that this undecidability has consequences for the study of manifolds.
For example, the undecidability of the isomorphism problem for groups implies
that there is no algorithm to recognise whether or not a closed 4-manifold (given
by a finite triangulation, say) is homeomorphic to the 4-sphere [70].

Despite Dehn’s early influence, the geometric vein in combinatorial group the-
ory lacked prominence for much of the twentieth century (see [30] for a history
up to 1980). A striking example of this neglect concerns a paper [61] written
by E.R. van Kampen in 1931 which seems to have gone essentially unnoticed
until rediscovered® by C. Weinbaum in the 1960s, just after Roger Lyndon [65]
rediscovered the paper’s main idea. This idea translates many questions con-
cerning word problems into questions concerning the geometry of certain planar
2-complexes called van Kampen diagrams (see Section 4). This translation acts
as a link between Riemannian filling problems and word problems. The work of
Gromov [55], [56] gave full voice to the implications of this link. In the decade
since Gromov’s foundational work there has been a great deal of activity in this
area and I hope that when the reader has finished the present article (s)he will
have absorbed a sense of this activity and its achievements.

Contents. I have written this article with the intention that it should be acces-
sible to graduate students and colleagues working in other areas of mathematics.
Tt is organised as follows. In Section 1 we shall see how a naive head-on approach
to the word problem leads to the definition of the Dehn function of a group. In
Section 2 we introduce the 2-dimensional, genus-0 isoperimetric function of a
closed Riemannian manifold M and state the theorem relating it to the Dehn
function of 7y M ; the proof of this theorem is postponed until Section 5. This
theorem is generally regarded as folklore — its validity has been assumed implic-
itly in many papers, but the absence of a detailed proof in the literature has
been the source of comment and disquiet. The proof given here is self-contained.
It is based on the notes from my lectures at the conferences in Durham, Lyon
and Champoussin in the spring and summer of 1994. José Burillo and Jennifer
Taback [26] have suggested an alternative proof, motivated by arguments in [42].
Both proofs rely on van Kampen’s Lemma, which is proved in complete detail
in Section 4.

Section 3 contains a brief survey describing the current state of knowledge
about the nature of Dehn functions for groups in general as well as groups that
are of particular geometric interest. We shall not prove the results in this section,
but several of the key ideas involved are explained in subsequent sections.

3Van Kampen’s article was next to the one in which he proved the Seifert-van Kampen
Theorem.
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Section 6 contains information about the classes of groups whose Dehn func-
tions are linear or quadratic. We shall see that having a linear Dehn function is
a manifestation of negative curvature. We shall also see that non-positive cur-
vature is related to having a quadratic Dehn function, although the connection
is much weaker than in the linear case.

The final section of this paper contains a brief discussion of different measures
of complexity for the word problem, as well as constructions relating the word
problem to the other basic decision problems of group theory.

There are three appendices to this paper. The first contains a description of
some basic concepts in geometric group theory — this is included to make the
arguments in the main body of the paper accessible to a wider audience. The
second appendix describes some of the basic vocabulary of length spaces. The
third appendix contains the proof of a technical result concerning the geometry
of combinatorial discs; this result, which is original, is needed in Section 5.

Exercises are scattered throughout the text, some are routine verifications,
some lead the diligent reader through proofs, and others are challenges intended
to entice the reader along fruitful tangents.

This article is dedicated with deep affection to my tutor and friend Brian
Steer. Between 1983 and 1986 Brian transformed me into a budding mathemati-
cian and thereby determined the course of my adult life.

SeEcTION 1: THE WORD PROBLEM

SECTION 2: THE ISOPERIMETRIC FUNCTION Fillé"’ OF A MANIFOLD
SECTION 3: WHICH FUNCTIONS ARE DEHN FUNCTIONS?

SECTION 4: VAN KAMPEN DIAGRAMS

SECTION 5: THE EQUIVALENCE Fillé‘/[ ~ Oy M

SECTION 6: LINEAR AND QUADRATIC DEHN FUNCTIONS

SECTION 7: TECHNIQUES FOR ESTABLISHING [SOPERIMETRIC INEQUALITIES
SECTION 8: OTHER DECISION PROBLEMS AND MEASURES OF COMPLEXITY
APPENDIX A: GEOMETRIC REALISATIONS OF FINITELY PRESENTED GROUPS
APPENDIX B: LENGTH SPACES

APPENDIX C: A PROOF OF THE CELLULATION LEMMA
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1 The Word Problem

The purpose of this first section is to indicate why Dehn functions are funda-
mental to the understanding of discrete groups.

1.1 Presenting Groups that Arise in Nature

Suppose that one wishes to understand a group I' that arises as a group of
transformations of some mathematical object, for example isometries of a metric
space. Typically, one might be interested in the group generated by certain basic
transformations A = {ay,...,a,}. One then knows that arbitrary elements of T’
can be expressed as words in these generators and their inverses, but in order to
gain a real understanding of the group one needs to know which pairs of words
w,w' represent the same element of I', i.e. when w 'w’ = 1 in I'. Words that
represent, the identity are called relations.

Let us suppose that the context in which our group arose is such that we can
identify at least a few relations R = {ry,..., 7, }. How might we use this list to
deduce that other words represent the identity?

If a word w contains 7 € R or its inverse as a subword, say? w = wyr*lw,,
then we can replace w by the shorter word w’ = wyws,, knowing that w’ and
w represent the same element of I'. More generally, if » can be broken into
(perhaps empty) subwords r = ujususg and if w = wlugﬂwg, then one knows

that w' = wq(uzu;)Tlwy equals w in T'. Under these circumstances® one says

w’ is obtained from w by applying the relator r.

If we can reduce w to the empty word by applying a sequence of relators
r € R, then we will have deduced that w = 1 in T'. If such a sequence can
be found for every word w that represents the identity — in other words, every
relation in the group can be deduced from the set R — then the pair® (A | R) is

called a presentation of T', and one writes” ' = (A | R).

1.2 Attacking the Word Problem Head-On

A solution to the word problem in T' is an algorithm that will decide which
elements of the group represent the identity and which do not. If one can bound
the number of relators that must be applied to a word w in order to show that
w =1, and this bound can be expressed as a computable function of the length
of w, then one has an effective solution to the word problem. In order to quantify
this idea precisely, one works with equalities in the free group F(A).

Suppose that w' = wq(uguq)wy has been obtained from w = wluglwg by
applying the relator 7 = (ujusuz)~'. In T we have w = w', while in the free

4We write = for equality in the free group, and = when words are actually identical.

5 At this point we are viewing words as elements of the free group F(A), so implicitly we

allow the insertion and deletion of subwords of the form aa~!.

81f R = {ry,ra,...}, one often writes (A | r1 = 1,79 = 1,...) instead of (A | R), partic-
ularly when this creates a desirable emphasis. Likewise, one may write (A | u1 = vi,u2 =
va,...), where r; = uivfl.

7To assign a name to a presentation, P say, one writes P = (A | R).
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group F'(A) we have:

_ -1 free , 1 _ (-1 ’
W= wiuy we = (r] re1) wiusgugws = (v, rey) w,
where x| := uglwl_l. If w” is a word obtained from w’ by applying a further

relator 7', then there is an equality of the form w fee (zy'rzy) (zg ' r'zy) w".

Proceeding in this manner, if we can reduce w to the empty word by applying
a sequence of N relators from R, then we will have an equality®

N
w x; iy, (1.2.1)

i=1

where r; € R*! and z; € F(A).

Thus we see that when one attacks the word problem head-on by simply
applying a list of relators to a word w, one is implicitly expressing w as a product
of conjugates of those relators. The ease with which one can expect to identify
such an expression for w will vary according to the group under consideration,
and in particular will depend very much on the number N of factors in a least
such expression.

Definition 1.2.2  Given a finite presentation P = (A | R) defining a group T,
we say that a word w in the letters A*! is null-homotopic if w =p 1, i.e. w
lies in the normal closure of R in the free group F(A). We define the algebraic
area of such a word to be

N
Area,(w) := min{N | w free Hm;lrimi with z; € F(A),r; € R},
i=1

The Dehn function of P is the function ép : N — N defined by
dp(n) := max{Area,(w) | w =r 1, |w| < n},

where |w| denotes the length of the word w.

1.3 The Dehn Function of a Group

Since we are really interested in groups rather than particular finite presenta-
tions of them, we would like to talk about the Dehn function of I' rather than
of P. The following exercise illustrates how the Dehn functions of different
presentations of a group may vary.

Ezercise 1.3.1 Show that the Dehn function of (a | 0) is (n) = 0 and the Dehn
function of (a,b | b) is §(n) = n. For each positive integer k find a presentation
of Z with Dehn function d(n) = kn.

8 This equality shows in particular that T = (A | R) iff the kernel of the natural map
F(A) — T is the normal closure of R.
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Definition 1.8.2 Two functions f, g :[0,00) — [0,00) are said to be ~ equiv-
alent if f =% g and g < f, where f < g means that there exists a constant C > 0
such that f(1) < Cg(Cl+C)+ Cl+C foralll>0.

One extends this equivalence relation to functions N — [0, 00) by assuming them
to be constant on each interval [n,n + 1).

The relation ~ preserves the asymptotic nature of a function. For example,
if p > 1 then nP 2 nPlogn, and nP ~ n? implies g = p; likewise, n? % 2" and
22" £ 9" But ~ identifies all polynomials of the same degree, and likewise all
single exponentials (k™ ~ K™ for all constants k, K > 1).

Proposition 1.3.3 If the groups defined by two finite presentations are iso-
morphic, the Dehn functions of those presentations are >~ equivalent.

Proof First we consider what happens when we add redundant relators R’ to
a finite presentation P = (A | R). Let P = (A | RUR'). To say that the
new relators 7 € R’ are redundant means that each can be expressed in the free
group F(A) as a product TI, of (say m,) conjugates of the old relators R*!.
Let m be the maximum of the m,..

If a word w € F(A) is a product of N conjugates of relators from R U R’
and their inverses, then by substituting II,. for each occurrence of r € R’ in this
product we can rewrite w (freely) as a product of at most mN conjugates of
the relators R*!'. Since it is obvious that the area of w with respect to P’ is
not greater than its area with respect to P, we have dp:(n) < dp(n) < mdp/(n)
for all n € N. Hence dp ~ dp-.

Next we consider what happens when we add finitely many generators and
relators to P. Suppose that we add generators B, and add one relator bu;1
for each b € B, where u; is a word in F(A) that equals b in the group being
presented. Let P” be the resulting presentation. Let M be the maximum of
the lengths of the words wuy -

Given a null-homotopic word w € F(A U B), we first apply the new relators
to replace each occurrence of each letter b € B with the word u;. The result is a
word in F(A) that has length at most M|w|, and this word may be reduced to
the empty word by applying at most §p(M|w|) relators from R. Thus dp» < dp.

We claim that dp(n) < dpr(n) for all n € N. To prove this claim we must
show that if a word w € F(A) can be expressed in F(AUB) as a product II of at
most N conjugates of the given relators, then it can also be expressed in F'(A)
as a product of at most N conjugates of the relators R*'. To see that this is the
case, one simply looks at the image of IT under the retraction F(AUB) — F(A)
that sends each b € B to uy.

In general, given two finite presentations P = (A | R) and Py = (B | R') of
a group GG, one considers the presentation of G that has generators AU B and
relators R, R', {bu, ' | b € B} and {av,' | a € A}, where u;, (respectively v, ) is
a word in F(A) (respectively F(B)) that equals b (respectively a) in G. The
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first two steps of the proof imply that the Dehn function of this presentation is
equivalent to that of both P; and Ps. O

The first detailed proof of (1.3.3) in the literature is due to Steve Gersten
[45]. A more general result given in Appendix B (Proposition A.1.7) lends a
geometric perspective to the equivalence in (1.3.3).

Isoperimetric Inequalities and ér. In the light of the preceding proposition
we may talk of “the” Dehn function of a finitely presented group I', denoted Jr,
with the understanding that this is only defined up to ~ equivalence.

One says that T satisfies a quadratic isoperimetric inequality if dp(n) < n?.
Linear (also polynomial, exponential, etc.) isoperimetric inequalities are defined
similarly.

A finitely generated group is said to have a solvable word problem if there is
an algorithm that decides which words in the generators represent the identity
and which do not. Readers who are familiar with the rudiments of decidability
should treat the following statement as an exercise, and those who are not may
treat it as a definition.

Proposition 1.3.4 A finitely presentable group T' has a solvable word problem
if and only if the Dehn function of every finite presentation of T' is computable
(i.e. is a recursive function).

Ezercise 1.8.5 Two groups are said to be commensurable if they have iso-
morphic subgroups of finite index. Deduce from the Filling Theorem (Section
2) that the Dehn functions of commensurable finitely-presented groups are ~
equivalent. (Hint: Use covering spaces.)

The reader might find it instructive to investigate how awkward it is to prove
this fact algebraically.

2 The Isoperimetric Function Fill)’ of a Manifold

Let M be a closed, smooth, Riemannian manifold. In this section we shall
describe the filling function Filléw and its relationship to the Dehn function of
the fundamental group of M.

2.1 The Filling Theorem

Let D be a 2-dimensional disc and let S' be its boundary circle. Let M be a
smooth, complete, Riemannian manifold. Let c¢: S' — M be a null-homotopic,
rectifiable loop and define FArea(c) to be the infimum of the areas® of all Lip-
schitz maps g : D — X such that g|sp is a reparameterization'® of c. If this

9 The situations that we shall be considering are sufficiently regular as to render all standard
notions of area equivalent; for definiteness one could take 2-dimensional Hausdorff measure, or
the notion of (Lebesgue) area in spaces with upper curvature bounds introduced by Alexandrov
[1] and refined by Nikolaev (see [11] and [22] page 425).

10When working with filling problems it is usually better to consider loops that are equivalent
in the sense of Frechet, but this technicality will have no bearing here.
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infimum is attained by a (not necessarily injective) map f: D — M then, blur-
ring the question of reparameterization, we say that f is a least-area filling of
the loop ¢ = flgp, or simply that f is a least-area disc.

If M is the universal covering of a closed manifold, then the existence of least-
area discs (for embedded loops) is guaranteed by Morrey’s solution to Plateau’s
problem [75].

Definition 2.1.1 Let M be a smooth, complete, Riemannian manifold. The
genus zero, 2-dimensional, isoperimetric function of M is the function [0, 00) —
[0,00) defined by

Filly" (1) := sup{FArea(c) | ¢ : S' — M null-homotopic, length(c) < 1}.

One of the main purposes of this article is to provide a detailed proof of the
following fundamental equivalence:

2.1.2 Filling Theorem. The genus zero, 2-dimensional isoperimetric function
Fillé\/[ of any smooth, closed, Riemannian manifold M is ~ equivalent to the
Dehn function 0, v of the fundamental group of M .

Remark 2.1.3 A similar statement holds with regard to isoperimetric functions
of more general classes of spaces with upper curvature bounds (in the sense of
Alexandrov [22]) but we shall not dwell on this point as we do not wish to obscure
the main ideas with the technicalities required to set-up the required definitions.
Nevertheless, in our proof of the filling theorem we shall make a point of iso-
lating the key hypotheses so as to render these generalisations straightforward
(cf. 5.2.2). In particular we avoid using any facts concerning the regularity of
solutions to Plateau’s problem in the Riemannian setting.

We postpone the proof of the Filling Theorem to Section 5, but we take a
moment now to remove a concern about the definition of Fill}': a priori the
supremum in the definition of Fill}(I) could be infinite for certain values of [
even if M is compact, but in fact it is not.

Lemma 2.1.4 If M is compact, the sup in the definition of Filléw(l) 18 finite
forall 1 > 0.

Proof 1If the sectional curvature of M is bounded above by k > 0 then any
null-homotopic loop in M of length | < 271'/\/E bounds a disc whose area is at
most the area A(k,l) of the disc enclosed by a circle of length | on the sphere
of constant curvature k. Indeed Reshetnyak [93] proved that this bound holds
in any complete geodesic space of curvature < k (cf. appendix to [71]).

Let p > 0 be less than the injectivity radius of M, fix a finite set S so that
every point of M lies in the p/3-neighbourhood of S and let e, .- : [0,1] — M
be the constant speed geodesic joining each z,z’ € S with d(z,z') < p.

Given any constant-speed loop ¢ : [0,1] — M, one can associate to it the
concatenation ¢ = ey, ...€s, 2, Where n is the least integer greater than
3l(c)/p and z; € S is such that d(z;,c(i/n)) < p/3 (cf. figure 5.1.2).
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By construction, |[FArea(c) — FArea(¢)| < n A(k,2p) and [(¢) < 3l(c) +p. It
follows that the ~ class FillOM remains unchanged if instead of quantifying over
all rectifiable loops ¢ one quantifies only over loops that are concatenations of
the loops ey .. For all L > 0, there are only finitely many such edge-loops of
length < L, so in particular Fill)! () is finite for all I. O

Remark 2.1.5 The reduction to piecewise-geodesic loops in the above proof
exemplifies the fact that if one is concerned only with the ~ class of Fill}’ then
there is no harm in restricting one’s attention to well-behaved sub-classes of
rectifiable loops.

2.2 Filling in Heisenberg Groups

The results described in this paragraph are due to Mikhael Gromov. We present
them here in order to give an immediate illustration of how one can exploit the
equivalence Filléw ~ Oy M-

Let n = 2m + 1. The n-dimensional Heisenberg group H,, is the group of
(m 4+ 1)-by-(m + 1) real matrices of the form:

1 1 ... Tmo1 z
0 1 0 0 Y1

0 0 ... 1 Ym—1
0o o0 ... 0 1

H.,, is a nilpotent Lie group. Its Lie algebra L is generated by X1,..., X;n—1,
Yi,...,Ym_1,Z = X, =Y, with relations [X;,Y;] = [X,,X;] = [V;,Y;] =0
for all 4 # j and [X;,Y;] = Z for i = 1,...,m — 1. There is a natural grading
L =Ly @ Ly, where Ly is spanned by Z and L; is spanned by the remaining
X; and Y;.

The translates of Ly by the left action of H,, form a sub-bundle T} of the
tangent bundle of H,,. (This codimension-1 sub-bundle gives the standard con-
tact structure on H,,.) A curve or surface mapped to H, is said to be horizontal
if it is differentiable almost everywhere and its tangent vectors lie in T3 . Every
smooth curve ¢ in JH,, can be approximated by a horizontal curve whose length
is arbitrarily close to that of ¢. The question of whether every horizontal loop
bounds a horizontal disc (“the horizontal filling problem”) is delicate, and it is
here that we find a connection with Dehn functions.

The following result is an application of the theory developed by Gromov in
Section 2.3.8 of his book on partial differential relations [54] and is explained on
page 85 of [56].

Proposition 2.2.1 If every horizontal loop in H,, can be filled with a horizon-
tal disc, then Fillg™ (1) ~ I2.

The idea of the proof is as follows. First one must argue that there is a
constant C' such that any curve of length < 1 can be filled with a horizontal
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disc of area at most C'. Then one considers the 1-parameter family of maps h; =
expo); oexp ! : H, — H,, where the Lie-algebra homomorphism s : L — L
is multiplication by ¢ € [0,1] on L; and by ¢?> on L,. Note that h; multiplies
the length of horizontal curves by ¢ and the area of horizontal discs by t2.

Given a horizontal loop ¢ : S' — 3, of length [ > 1, we consider hyjioc.
One can fill this horizontal loop of length 1 with a horizontal disc fy: D — H,
of area at most C' and hence obtain a horizontal disc f := h;/ll o fo of area < CI?
that fills ¢. Since arbitrary loops can be approximated by horizontal loops, it
follows that J,, satisfies a quadratic isoperimetric inequality.

The integer Heisenberg group H, consists of those matrices in J,, that have
integer entries. The subgroup H, C H, is discrete, torsion-free and cocompact,
hence M := H,\J, is a compact Riemannian manifold with universal covering
Hy, and b, ~ Fill}" = Fillg™.

Gromov proves that the horizontal filling problem is solvable in I, if and
only if n > 5. It therefore follows'! from the Filling Theorem and the above
proposition that the integral Heisenberg group H, has a quadratic Dehn function
if » > 5. On the other hand, it is not hard to show by various combinatorial
means (see 3.1.4 and 3.3.1 below) that the Dehn function of Hj is cubic, so
from the Filling Theorem and the above proposition one gets a proof of the
easier “only if” implication in Gromov’s theorem: H3 contains horizontal loops
of finite length that cannot be filled with a horizontal disc.

3 Which Functions are Dehn Functions?

The most fundamental question concerning isoperimetric inequalities for finitely
presented groups is that of determining which ~ equivalence classes of functions
arise as Dehn functions. The struggle to solve this question was a major theme
in geometric group theory in the 1990s. In this section I shall explain why this
struggle is almost over. I shall also describe what is known about the Dehn
functions of certain groups that are of special interest in geometry and topology.

Section 7 contains a sample of the techniques that were developed to establish
the results quoted in the present section.

3.1 The Isoperimetric Spectrum

The development of knowledge concerning the nature of Dehn functions is best
explained in terms of how the set of numbers

TP ={pe€[l,0) | f(n) =n”is ~ a Dehn function}
came to be understood. This set is called the isoperimetric spectrum.

Since there are only countably many finite presentations of groups, Proposi-
tion 1.3.3 implies that there are only countably many ~ classes of Dehn func-

1 For a self-contained proof along these lines see Allcock [2]. More recently, a purely combi-
natorial proof has been discovered by Ol’shanskii and Sapir [83].
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tions. Thus, intriguingly, IP is a naturally arising countable set of positive
numbers.

Integer Exponents. In Section 6 we shall discuss the class of groups that have
linear Dehn functions. The following exercises describe the simplest examples
from this class.

Ezercises 3.1.1 (i) Finite groups and free groups have linear Dehn functions.

(ii) Let H? denote the hyperbolic plane. There is a constant C' > 0 such that
for all I > 1, each loop in H? of length < I bounds a disc of area < CI.

(iii) Every finitely generated group that acts properly by isometries on H? has
a linear Dehn function. (Hint: If the action is cocompact you can use (ii). If
the action is not cocompact, argue that the group must have a free subgroup
of finite index.)

In Section 6 we shall also describe what is known about the class of groups
that have quadratic Dehn functions. Finitely generated abelian groups provide
the easiest examples in this class.

Ezample 3.1.2 The Dehn function of P = (a,b | [a,b]) is quadratic. More
precisely, (12 — 2l —3) < 166p(l) < I2, the upper bound being attained in the
case of words of the form a="b~"a"b".

Ezercise 8.1.3 Prove that the inequality in (3.1.2) holds for the natural presen-
tation of any free abelian group Z", r > 2, and that it is optimal. (Hint: Given
a word w that equals the identity in Z", focus on a specific generator a and
move all occurrences of a®' to the left in w by applying the relators [a,b] =1,
freely reducing the resulting word whenever possible. Repeat for each generator
and count the total number of relators applied — cf. Paragraph 1.2. If you have
trouble with the lower bound, look at Section 7.)

In about 1988 Bill Thurston [42] and Steve Gersten [45] proved that the 3-
dimensional Heisenberg group Hj3 has a cubic Dehn function (see paragraph 2.2
and Theorem 3.3.1).

Tt now seems odd to report that there was a lull of a few years before people
discovered sequences of groups (I'j)gen such that the Dehn function of Ty is
polynomial of degree d. Such sequences were described by a number authors
at about the same time — Gromov [56], Baumslag, Miller and Short [10], and
Bridson-Pittet [23]. The following result, proved by Bridson and Gersten in [21],
provides many such sequences, and the literature now contains examples with
all manner of additional properties (e.g. having Eilenberg-Maclane spaces of
specified dimension [16]).

Theorem 3.1.4 The Dehn function of each semi-direct product of the form
Z" % Z is ~ either a polynomial or an exponential function. It is polynomial
if and only if all of the eigenvalues of ¢ € GL(n,7Z) are roots of unity, in which
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case the degree of the polynomial is ¢ + 1, where ¢ 1is the size of the largest
elementary block in the Jordan form of ¢.

Notice that groups of the form 7Z" x4 Z are precisely those that arise as
fundamental groups of torus bundles over the circle, and hence the above theorem
classifies the isoperimetric functions Filléw of such bundles.

The appearance of the Jordan form in the above theorem is connected to the
following facts (cf. 7.1.4).

Ezercises 8.1.5 (i) If a matrix ¢ € GL(n,Z) does not have an eigenvalue of
absolute value greater than 1, then all of its eigenvalues are N-th roots of
unity, where N depends only on n. (Hint, [21], page 7: Let P C Z[z] be the
set of monic polynomials of degree n whose roots all lie on the unit circle. P is
finite. If the characteristic polynomial of ¢ lies in P then so does that of each

power ¢".)
(ii) Regard GL(n,Z) as a subset of R™ and fix a norm on R" . Prove that

m — ||¢™|| is =~ equivalent to an exponential function or a polynomial of degree
¢ — 1, where c is the size of the largest elementary block in the Jordan form of

®.

Filling the Gaps in IP. The following theorem is due to Gromov [55]. Detailed
proofs were given by Olshanskii [81], Bowditch [14] (also [22] page 422) and
Papasoglu [87].

Theorem 3.1.6 If the Dehn function of a group is sub-quadratic (i.e. ér(n) =
o(n?) ) then it is linear (dr(n) ~n). Thus IP N (1,2) is empty.

This theorem begs the question of what other gaps there may be in the
isoperimetric spectrum, or indeed whether there are any non-integral isoperi-
metric exponents at all. This last question was settled by the discovery of the
abe groups [19]. These groups are obtained by taking three torus bundles over
the circle (each of a different dimension) and amalgamating their fundamental
groups along central cyclic subgroups.

The basic building block is G, = 7Z¢ x4, 7, where ¢, € GL(c,Z) is the unipo-
tent matrix with ones on the diagonal and super-diagonal and zeros elsewhere.
(. has presentation:

(1, ...y Teyt | @i, ;] = 1 for all 4,4, [xc,t] =1, [z, t] =241 if ¢ < ). (3.1.7)

Notice that the centre of G, is the infinite cyclic subgroup generated by x.. To
emphasise this fact we write z. in place of z...

The abe groups T'(a,b,c) are defined as follows: first we amalgamate G,
with Gy X Z by identifying the centre of G, with that of G}, then we form
the amalgamated free product of the resulting group with G, by identifying the
centre of the latter with the right-hand factor of G x Z. In symbols:

F(a, b, C) == Ga *za:zb (Gb X <C >) *C:Zc G’:'
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Theorem 3.1.8 For all integers 1 < b < a < ¢, the Dehn function of T'(a,b,c)
is ~nctE,

Variations on this construction yield other families of rational exponents [19].

By far the most comprehensive result concerning the structure of Dehn func-
tions is due to Sapir, Birget and Rips. Their result, which we shall describe in a
moment, essentially classifies the Dehn functions = n*. In particular they show
that IP is dense in [4,00).

Subsequently, Brady and Bridson [15] showed that Gromov’s gap (1, 2) is the
only gap in the isoperimetric spectrum:

Theorem 3.1.9 For each pair of positive integers p > q, there exist finitely
presented groups whose Dehn functions are ~ n?* where a = logy,(2p/q)-

Corollary 3.1.10 The closure of IP is {1} U[2, 00).

Note that the exponents described in the above theorem are transcendental
if they are not integers [80], Theorem 10.2. The easiest examples of groups as
described in the above theorem are

Gp,q = (a,b,s,t | ]a,b] = 1asaq571 = aPb, talt ! = (lpb71>a

which we shall look at more closely in (7.2.12).

The Sapir-Birget-Rips Theorem. In [95] Mark Sapir, Jean-Camille Birget
and Eliyahu Rips show that if a number a > 4 is such that there is a constant
C > 0 and a Turing machine that calculates the first m digits of the decimal
expansion of a in time < 022cm, then a € TP. Conversely, they show that if
a € IP then there is a Turing machine that calculates the first m digits of a in

Cm
time < o2 . (The discrepancy in the height of the two towers of exponentials
is connected to the P = NP problem.) More generally they prove:

Theorem 3.1.11 Let Dy be the set of ~ equivalence classes of Dehn functions
§(n) = n*. Let T4 be the set of ~ classes of time functions t(n) = n* of arbitrary
Turing machines. Let T* be the set of ~ classes of super-additive'® functions
that are fourth powers of time functions. Then T4 C Dy C Ty.

Tt is unknown whether T4 coincides with the ~ classes of all super-additive
functions in T4. If it does, then the above theorem would completely classify
Dehn functions > n*. In the light of Theorem 3.1.9, one suspects that Dehn
functions > n? are similarly unrestricted in nature.

As it stands, the above result already implies that any rational or other
reasonable number, for example 7 + €2, is the exponent of a Dehn function.
Likewise, the following are Dehn functions: 2V™, ", n? logs(log, n), ...

2 f(m+n) = f(n)+ f(m) for all n,m € N
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As one might guess from the statement, the theorem is proved by showing
that one can encode the workings of a certain class of machines (“S-machines”)
into group presentations.

3.2 Examples of Large Dehn Functions

Thus far in this section I have concentrated on IP in order to explain the de-
velopment of our understanding of Dehn functions. Let me offset this now by
pointing out that many naturally occurring groups do not have Dehn functions
that are bounded above by a polynomial function. We saw some such examples
in (3.1.4). Here are some more simple examples of this type.

Consider the recursively-defined sequence of functions e;(n) := 2%-1(")
where £9(n) =n and e;(n) = 2". Let

B = (20, Z1, -y T | 2y ' gz =27 | fori=1,...,m). (3.2.1)

The best known of these groups is By, which has many manifestations, e.g. as a
group of affine transformations of the real line, where zy acts as t — ¢t + 1 and
x1 as t— 2t.

Proposition 3.2.2 The Dehn function of By, is ~ epn(n).

For the lower bound, see Exercise 7.2.11. The following exercises explain one
method of establishing the upper bound.

Ezercises 8.2.3 (i) Let w be a word in the generators of By. Show that one can
transform w into a word of the form z’f’mgmf’"l with m, m’ > 0 by applying
the defining relator z;'zgz1zy2 at most 2" times. (Hint: Move each occur-
rence of z; in w to the left by replacing subwords zgz1 with mlmg, and malml
with 2125 2. Move all occurrences of z7' to the right.)

(ii) Prove that zo € By has infinite order. (You could consider the representa-
tion By — Aff(R) described above.'®) Deduce that 6z, (n) < 2". (Hint: By
looking at the map By — (z1) that kills 2o and the map Bi — Z, X Z that
kills #} (where g is an arbitrary odd prime), one can see that if w =1 in T
then the word obtained in (i) has m = m’ and r = 0.)

A less ad hoc proof of (i) can be based on Britton’s Lemma (see 7.2.4(ii) or
[22], page 498):

(iii) Deduce from Britton’s Lemma that if a word in the generators of B, rep-
resents the identity and contains at least one occurrence of zt! then it contains
a subword of the form wo = i, w1x,,”, where e = +1 and w1 is a word in the
letters {z; | i < m} with wy = 2% _, in B,,_1, where p is even if e = 1.
Arguing by induction on m, and a secondary induction on the number of oc-
currences of z5' in wo, show that one can replace wg by mfn/il or acff_l by
applying at most €,,—1(2p) relators from the presentation of B,,_i. Deduce
that dg,,(n) < em(n).
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Ezample 3.2.4 Steve Gersten [45] showed that the Dehn function of the group

S=(z,y| (yzy ") '2(yzy") = 2?)

grows faster than any iterated exponential. Specifically, ds(n) ~ e,(n). A
classical theorem of Magnus states that all 1-relator groups have a solvable word
problem. Tt is conjectured that £,(n) is an upper bound on the Dehn functions
of all 1-relator groups; in [46] Gersten established a weaker upper bound.

Ezercise 3.2.5 Show that for every m > 0 there exists a monomorphism By, —
S. (Hint: Conjugate (y'zy~') by (y*+'zy= (1))

3.3 Groups of Classical Interest

In this subsection I shall describe what is known about the Dehn functions of
various groups that are of interest for geometric reasons.

Low-Dimensional Topology. If S is a compact 2-manifold, then 7.5 has a
linear Dehn function unless S is a Torus or a Klein bottle, in which case 7S
has a quadratic Dehn function (see 3.1.1, 3.1.2, 1.3.5). The following theorem
describes the situation for 3-dimensional manifolds — it follows easily from results
of Epstein and Thurston [42] (cf. [17] and 7.1.4 below). Since all finitely presented
groups arise as fundamental groups of closed n-manifolds for each n > 4 (see
A.3.1), there can be no such general statement in higher dimensions.

Theorem 3.3.1 Let M be a compact 3-manifold. Suppose that M satisfies

Thurston’s geometrization conjecture'®.

The Dehn function of miM is linear, quadratic, cubic, or exponential. It is
linear if and only if mi M does not contain 7. It is quadratic if and only if
mM contains Z* but does not contain a subgroup Z* x4 Z with ¢ € GL(2,Z)
of infinite order. Subgroups 7Z* x4 Z arise only if a finite-sheeted covering of
M has a connected summand that is a torus bundle over the circle, and the
Dehn function of 71 M is cubic only if each such summand is a quotient of the
Heisenberg group (in which case ¢ is unipotent)®.

13 More ambitiously, you could try to prove the following result of Higman, Neumann and
Neumann (see [97] for a geometric treatment). Given a group I' = (A | R) and an isomorphism
¢ : S1 — S2 between subgroups of I', one can form the HNN extension 'y = (A, ¢ | R, ¢'(s) =
t=1lst, Vs' € S), where t ¢ A, S C F(A) is a set of words that maps bijectively to S1, and for
each s € S the word ¢'(s) € F(A) maps to ¢(s) € Sz. Show that the map I' — I'x, induced
by id4 is an injection.

141n the absence of this assumption it remains unknown whether every compact 3-manifold
has a solvable word problem.

15 11 M has an exponential Dehn function if and only if M has a connected summand that

is modelled on the geometry Sol — cf. 3.1.4
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Remark 3.83.2 [Free-by-Cyclic Groups] If a 3-manifold M fibres over the circle
then one sees from the long exact sequence in homotopy that mo M = 0 and that
m1 M is a semi-direct product ¥ x4 Z, where ¥ is the fundamental group of the
surface fibre. Since oM = 0, one knows that M does not split as a non-trivial
connected sum, so the above theorem implies that if Z?> ¢ ¥, then the Dehn
function of w1 M is either linear or quadratic.

If M has boundary then ¥ will be a finitely generated free group. Not all free-
group automorphisms arise from fibrations of 3-manifolds, and it is has yet to
be proved that the Dehn functions of arbitrary semi-direct products of the form
I' = X x4 Z, with ¥ free, are at most quadratic, cf. [69]. In [12] Bestvina and
Feighn show that the Dehn function of I is linear if and only if Z? Z T.

There are strong analogies between mapping class groups of surfaces, Braid
groups (more generally, Artin groups), and automorphism groups of free groups.
These groups play important roles in low-dimensional topology. Bill Thurston
proved that the Braid groups are automatic, [42] Chapter 9 (see also Charney
[31]), and Lee Mosher proved that the mapping class groups of all surfaces of
finite type are automatic [76]. As a consequence (see 6.3.2) we obtain:

Theorem 3.3.3 The mapping class group of any surface of finite type satisfies
a quadratic isoperimetric inequality.

Hatcher and Vogtmann [58] and Gersten (unpublished) proved that the Dehn
function of the group of (outer) automorphisms of any finitely generated free
group is =< 2". Bridson and Vogtmann [24] proved that this bound is sharp in
rank 3, and special considerations apply in rank 2.

Theorem 3.3.4 Let F,. denote a free group of rank r. The Dehn function of
Out(Fy) is linear. The Dehn function of Aut(Fs) is quadratic. The Dehn func-

tions of Aut(F3) and Out(F3) are exponential. In general the Dehn functions
of Aut(F,) and Out(F,) are < 2".

Lattices in Semisimple Lie Groups. Let G be a connected semisimple Lie
group with finite centre and no compact factors. Associated to G one has a
Riemannian symmetric space X = G/K, where K C G is a maximal compact
subgroup. A discrete subgroup T' C G is called a lattice if the quotient T\ X has
finite volume; the lattice is called uniform (or cocompact) if T'\X is compact.
The rank of G is the dimension of the maximal isometrically embedded flats
E — X.

If G has rank 1 then X has strictly negative curvature (e.g. G = SO(n, 1)
and X = H") and in general (e.g. G = SL(n,R)) X has non-positive curvature
(see, for example, [22] Chapter I1.10). It follows that the Dehn functions of
uniform lattices are linear (in the rank 1 case) or quadratic (the higher rank
case) — see Section 6.

Each non-uniform lattice in a rank 1 group contains non-trivial subgroups
that stabilize points at infinity in the symmetric space X ; these subgroups leave
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invariant the horospheres centred at the fixed points at infinity. We use the
term horospherical to describe these subgroups. An example of a horospheri-
cal subgroup is the fundamental group of the boundary torus in a hyperbolic
knot complement. Each maximal horospherical subgroup contains a nilpotent
subgroup of finite index: in the case G = SO(n, 1), this nilpotent subgroup is
isomorphic to Z" !, and in the case G = SU(n,1) it is isomorphic to Ha,_1,
the integer Heisenberg group.

Theorem 3.3.5 Let G be a semisimple Lie group of rank 1 and let T C G be a
lattice. If T' is uniform then its Dehn function is linear. If T' is non-uniform then
its Dehn function is equal to that of each of its maximal horospherical subgroups.

This result is due to Gromov [56].

Ezample 3.3.6 Tt follows from our discussion in 2.2 that non-uniform lattices in
SU(2,1) have cubic Dehn functions, whereas those in SU(n,1) with n > 2 have
quadratic Dehn functions. More generally, it follows from the above theorem that
a non-uniform lattice in a rank 1 group G will have a quadratic Dehn function
unless the symmetric space for GG is the hyperbolic plane over the real, complex,
quaternionic or Cayley numbers. For the real hyperbolic plane the Dehn function
of non-uniform lattices is linear (3.1.1), in the complex case (G = SU(2,1)) it is
cubic, and it is also believed to be cubic in the remaining cases.

The following theorem of Leuzinger and Pittet [62], which builds on the work
of Gromov on solvable groups [56], completes the picture of Dehn functions for
lattices in rank 2.

Theorem 3.3.7 If G is a connected semisimple Lie group with finite centre
and rank 2, then the Dehn function of any irreducible, non-uniform lattice in G
18 ~ 2",

The situation for non-uniform lattices in rank > 3 is more complicated and is
the subject of active research. We refer the reader to Gromov [56] for an exciting
glimpse of some of the issues that arise and to Drutu [38] and Leuzinger-Pittet
[63] for significant recent progress in this direction. The following assertion of Bill
Thurston illustrates some of the subtleties involved in higher rank: Dehn function
of SL(3,Z) is exponential, but the Dehn function of SL(n,Z) is quadratic if
n>3.

See [42] page 230 for a proof of this statement in the case n = 3 (cf. [3§]
and [56] page 91). A complete proof is not available in the case n > 3. Drutu’s
recent work has helped to clarify the situation, but there remains much work to
be done in this direction.

Nilpotent Groups. We saw in (3.1.2) that abelian groups satisfy a quadratic
isoperimetric inequality. Using a modest amount of knowledge about the struc-
ture of nilpotent groups, it is not hard to show that all finitely generated nilpotent
groups satisfy a polynomial isoperimetric inequality (see [56] for example). But
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determining the degree of the optimal bound on the Dehn function, both in gen-
eral and for specific examples, is a more delicate matter, as our earlier discussion
of the Heisenberg groups illustrates.

Gromov, [56] Chapter 5, gives an enticing overview of this area. In particular
he sketches a reason why nilpotent groups of class ¢ should have Dehn functions
that are polynomial of degree < ¢+ 1 and gives a proof of this inequality for
groups where the Lie algebra of the Malcev completion is graded. (For a detailed
account of this last result, and extensions, see Pittet [89].) A number of other
researchers have obtained related results using both geometric and combinatorial
methods. In particular, Hidber [59] gives a purely algebraic proof that the Dehn
function of a nilpotent group of class ¢ is bounded above by a polynomial of
degree 2c.

Finally, I should mention that the study of Dehn functions of non-nilpotent
solvable groups is also an active area of research. Indeed this is closely connected
to the study of Dehn functions for higher-rank lattices.

Let me end this brief survey of our knowledge of Dehn functions for specific
groups by making it clear that I have omitted far more than I have included.
I apologise to the many colleagues whose excellent work I have been forced to
ignore by reason of space and time.

3.4 Dehn Functions of Products

The following exercises describe how Dehn functions behave under the formation
of products. Their behaviour under more complicated operations such as amal-
gamated free products, HNN extensions, and central extensions is less straight-
forward.

Ezercises 3.4.1 (i) A subgroup H of a group G is called a retract if there is a
homomorphism G — H whose restriction to H is the identity. Show that if
H is a retract of the finitely presented group G, then H is finitely presented
and 0g(n) < dg(n). (Hint: First note that H is finitely generated. Take a
finite subset that generates H and argue that it can be extended to a finite
generating set for G by adding elements k of the kernel of G — H. Argue
that one can take a finite presentation for G with this generating set. Add the
relations k = 1.)

(ii) Let G1 and G2 be infinite, finitely presented groups. Show that the Dehn
function of G1 x G2 is ~ max{n?, g, (n),dc,(n)}, and that that of the free
product G1 * G2 is ~ max{dq, (n),da,(n)}. (Use (i) for the bounds >.)

4 Van Kampen Diagrams

Let (A | R) be a finite presentation of a group I' and let w be a word in the
letters A%, Suppose that w = 1 in I'. Roughly speaking, a van Kampen
diagram for w is a planar CW complex that portrays a scheme for reducing w
to the empty word by applying a sequence of relations r € R; the number of
2-cells in the diagram is the number of relations that one applies and is therefore
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at least as great as Area,(w), as defined in (1.2.2). Conversely, we shall see
that one can always construct a van Kampen diagram for w that has Area,(w)
2-cells. Tt follows that the Dehn function of (A | R) can be interpreted in terms
of isoperimetric inequalities for planar diagrams.

Max Dehn was the first to use planar diagrams in order to study word prob-
lems [34], but his diagrams arose in concrete settings (primarily as regions in a
tessellated hyperbolic plane). The idea of using diagrams to study relations in
arbitrary finitely presented groups is due to E. van Kampen [61]. The idea was re-
discovered by Roger Lyndon in the 1960s. At about the same time C. Weinbaum
brought van Kampen’s original paper to light and made interesting applications
of it.

There are a number of correct proofs of the celebrated van Kampen Lemma
in the literature. The use of pictures in these proofs causes disquiet in some
circles, so I have tried to fashion the following proof in a manner that will allay
such misgivings.

4.1 Singular Disc Diagrams

Fix an orientation on R?. A singular disc diagram D is a compact, contractible
subset of the plane endowed with the structure of a finite combinatorial 2-
complex. (See Appendix A for basic definitions concerning combinatorial com-
plexes.)

We write Area, D to denote the number of 2-cells in D. And given a vertex
p € D we write Diam, D to denote the maximum of the distance from p to the
other vertices v € D, where “distance” is the number of 1-cells traversed by a
shortest path joining p to v in the 1-skeleton of D.

To avoid pathologies, we assume the 1-cells e : [0,1] — D < R? are smoothly
embedded. Associated to each 1-cell one has two directed edges £(t) = e(t) and
e(t) =e(1 —t). Let Ap denote the set of directed edges. (By definition £ = ¢.)

The boundary cycle of D is the loop of directed edges describing the frontier
of the metric completion of R? \. D in the positive (anti-clockwise) direction — it
consists of a thin part, where the underlying 1-cells do not lie in the boundary of
any 2-cell, and a thick part; the boundary cycle traverses each 1-cell in the thick
part once and each 1-cell in the thin part twice.

Definition 4.1.1 [Labelled Diagrams| Let A be a set and let A~ be the set of
symbols {a~! | a € A}. A diagram over A consists of a singular disc diagram
D and a (labelling) map \ : Ap — AUA™L such that \(e) = \(e)™! for all
e€Ap.

A extends to a map from the set of directed edge-paths in D to the set of words
in the letters AUA 1. The face labels of D are the words that this map assigns
to the attaching loops of the 2-cells of D (beginning at any vertex and proceeding
with either orientation).

Proposition 4.1.2 Let A be a set, let D be a diagram over A and let R, be
a set of words that contains the face labels of D. If a word w occurs as the label
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on the boundary cycle of D, read from some vertex p in the boundary of D, then
in the free group F(A)

a
_ -1
w = Z; TiTg,
i=1

where o = Area, D, the words z; have length |z;| < Diam, D, and r; € R,.

In particular w =1 in the group (A | R,).

Proof Fix D and p. In the 1-skeleton of D we choose a geodesic spanning tree
T rooted at p (see Exercise 4.1.3).

Arguing by induction (the base step is trivial) we may assume that the propo-
sition has been proved for diagrams D’ with Area, D’ < Area, D and for dia-
grams with Area, D' = Area, D where D’ has fewer 1-cells than D.

We say that D has a dangling edge if it has a vertex other than p that
has only one edge incident at it. If D has such an edge then we may apply
our inductive hypothesis to the diagram obtained by removing it — the resulting
diagram has the same area as D, its diameter is no greater than that of D, and
its boundary label is obtained from that of D by free reduction. Thus we may
assume that D has no dangling edges.

If D were a tree it would have dangling edges (or be a single point). Thus
D # T. We follow the boundary cycle of D from p until we encounter the first
directed edge ¢ that is not in T'; let a be the label on ¢, let w; be the label on
the segment of the boundary cycle that precedes € and let wy be the label on
the segment that follows it. The part of the boundary cycle labelled w; is an
injective path, because it lies entirely in the tree T" and must be locally injective
since a backtracking would imply that D had a dangling edge. In particular w;
has length at most Diam, D.

Since T contains all of the vertices of D, we do not disconnect D by removing
the open 1-cell underlying e, and hence this 1-cell must lie in the boundary of
some 2-cell E. Suppose that the attaching loop of E (read in the positive
direction from the initial vertex of ¢) has label r~! := au™"'.

Consider the subcomplex D’ obtained from D by deleting the open 1-cell
labelled ¢ and the interior of E. Note that D’ is again a diagram over A (its
labelling map is just the restriction of the labelling map of D), its set of face
labels is a subset of the face labels of D, its diameter is the same as that of
D (because the geodesic spanning tree T is entirely contained in D) and its
boundary cycle, read from p, is w’' := wyuws,. In the free group F(A) we have

w' = (wlrwfl)(wlawg) = (wlrwfl)w.

We have argued that |w;| < Diam, D = Diam, D'. And by induction we
may assume that w’ can be expressed as a product of conjugates of at most
Area, D' = Area, D — 1 face labels, with conjugating elements of length at most
Diam, D' = Diam, D. This completes the induction. Ol
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One can give a shorter proof of the above proposition if one ignores the length
of the conjugating elements z;; this weaker form of the result is more standard,
e.g. [66].

Ezercise 4.1.3 Let G be a connected graph (1-dimensional CW complex). Let
d be a length metric in which each edge has length 1. Fix a vertex p € G.
Prove that § contains a geodesic spanning tree rooted at p, i.e. a 1-connected
subgraph T that contains a path of length d(p,v) from p to each vertex v € G.

4.2 Van Kampen’s Lemma

Definition 4.2.1 [Van Kampen Diagrams] Let A be a set, let R be a set of words
in the letters AT' and let R, be the smallest set of words that contains R and is
closed under the operations of taking cyclic permutations and inverses of words.

(Note that (A |R) = (A|R.).)

If w, D and p are as in the above proposition, then D is called a van Kampen diagram
for w over (A | R) with basepoint p.

Theorem 4.2.2 (Van Kampen’s Lemma) Let A be a set, let w be a word in
the letters AUA L, and let R be a set of words in these letters.

(1) w=1 in the group T = (A | R) if and only if there exists a van Kampen
diagram for w over (A | R).
(2) If w=11nT then

Area,(w) = min{Area, D | D a van Kampen diagram for w over (A | R)}.

In order to complete the proof of this theorem we shall need two lemmas.
In the first we consider the following ordering on diagrams over A that have an
initial vertex'® specified in the boundary cycle: D < D’ if D’ has fewer 1-cells
than D and the words labelling the boundary cycles of D and D’, read from
their initial vertices, are equal as elements of the free group F'(A).

Lemma 4.2.3 If D, with initial point p, is minimal in the ordering <, then
the boundary label of D is a freely reduced word.

Proof We shall assume that D is a diagram whose boundary label w is not
freely reduced and construct a diagram < D.

Since w is not reduced, there is a pair of successive directed edges &,&’ in
the boundary cycle that are labelled a,a™! respectively, where a € A UA~L. If
the initial vertex of € is equal to the terminal vertex of & then we can delete

16 A choice of “initial vertex” includes the specification of which edge of the boundary cycle is
to be traversed first. Nevertheless, when no confusion is threatened, one talks as if the “initial
vertex” is simply a vertex of D.
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from D these edges together with the contractible region that they enclose, thus
obtaining a diagram < D.

If the initial vertex of ¢ is not equal to the terminal vertex of ¢’ then!” we
can connect the latter vertex to the former by a smooth arc ¢ : [-1,1] — R?
that intersects D only at its endpoints. Let T C R? be the open disc enclosed
by the loop e¢’c; we shall collapse T in a controlled manner. Let A = {(z,y) |
1>y > |z, |z|] <1} C R? and fix a diffeomorphism ¢ : A — T that has a
continuous extension to A with ¢[j_1 1)xq13 = ¢ and ¢(—t,t) = €'(1 — ) and
@(t,t) = e(t) for all ¢ € [0,1]. The map T — {0} x R that sends z = ¢(z,y)
to y has a continuous extension 7 : R? — R2 that is a diffecomorphism on the
complement of the closure of T'.

c
o

SS\

—
Tt

Figure 4.2.4 Reducing the boundary label

D = m(D) inherits a combinatorial structure from D as well as a choice
of initial point for its boundary cycle. D has fewer 1-cells than D because
moe ! = moe'. The directed edges 7 o¢e; of D inherit the labelling A(e;)
from D, and the label on the boundary cycle of D, read from its initial point,
is obtained from w by deleting the subword aa~' corresponding to ee¢’. Thus
D =< D. O

Remark 4.2.5 1If one employs a suitably natural procedure for choosing the edge
€, then the proof given above actually constitutes an algorithm for transforming
a diagram D whose boundary label is not freely reduced into a diagram D’ < D.
By repeated application of this algorithm one obtains a diagram Dy < D whose
boundary label is reduced. Moreover, the set of face labels of Dy is contained
in the set of face labels of D, and Area. Dy < Area. D.

The following lemma is used to pass from diagrams whose boundary labels
are reduced to those whose labels are not.

Lemma 4.2.6 Let A be a set, let w be a word in the letters AU AT and let
wo be the reduced word that is equal to w in F(A). Given a diagram Dy for
wo over A, one can construct a diagram D for w with Area, Dy = Area. D so
that the set of face labels of D is the same as that of Dy .

17 There are no hidden assumptions here: &€ and &’ may be in the thin part of the boundary
or in the thick part, and one of them might be a loop.
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Uy Uy

Figure 4.2.7 Changing the boundary label from uijus to uiaa™ 'us.

Proof w is obtained from wq by repeatedly inserting pairs of letters aa~' with
a € A. To modify the boundary label of a diagram by such an insertion, one adds
a new vertex v of valence 1 and an edge labelled a to v from the appropriate
vertex of the boundary cycle (figure 4.2.7).

The Proof of Van Kampen’s Lemma. If w =1 in T = (A | R) then in the

free group F(A) we have:

N
free 1
w = T; TiZq

i=1

where r; € R*! and N = Area,w. The word W on the right of this equality
is the boundary label on the “lollipop” diagram D; shown in figure 4.2.8; note
that Area. D; = N.

Let Dy = D7 be a <-minimal diagram. The boundary label of Dy is the
freely reduced word wq that is equal to w in F(A), the face labels of Dy are a
subset of those of Dy, and Area. Dy < Area, D; = Area,w (Lemma 4.2.3 and
(4.2.5)). By applying Lemma 4.2.6 to Dy we obtain a van Kampen diagram D
of area < N for w over (A | R). This proves the implication “only if” in (1)
and the inequality > in (2). Proposition 4.1.2 provides the complementary “if”
implication and < inequality. [l

f3
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Figure 4.2.8 The lollipop diagram

4.3 Words and Van Kampen Diagrams as Maps

In this subsection I shall assume that the reader is familiar with the material in
Section A.2 (Appendix A).

If D is a van Kampen diagram over (A | R) with basepoint p, then there
is a unique label-preserving combinatorial map from the 1-skeleton of D to
the Cayley graph C,4(T") that sends p to the vertex 1 € T'. This extends to
a combinatorial map from D to the universal covering K of the standard 2-
complex K(A:R).

Let M be a closed, smooth Riemannian manifold and let T' = (A | R) be
a finite presentation of the fundamental group of M. Let K be the universal
covering of K(A:R). We fix a basepoint p € M, and for every a € A we choose
a geodesic ¢, joining p to a.p. These choices give rise to a I'-equivariant map
from G4 (I') = K to M: this map sends the 1-cell labelled a emanating from
~v homeomorphically onto the segment ~.c,. Since M is simply-connected, we
may extend this map across the 2-cells of K in a I'-equivariant manner. We
choose this extension so that on each 2-cell it is smooth almost everywhere and
has finite area.

If w is a word in the letters A UA~', then for each v € T' there is a unique
edge-path in €4 (T') = K() that begins at v and is labelled w. We write %" to
denote the image of this path in M (except that if v =1 we write @ instead of
w'). Such paths in M are called word-like.

If D is a van Kampen diagram for w over (A | R), then by composing the
above maps D — K and K — M we obtain a map hp : D — M whose
restriction to the boundary cycle of D is a parameterization of the loop w.

5 The Equivalence Filléw >~ Oy M
This section is devoted entirely to the proof of the Filling Theorem:
Theorem 5.0.1 The 2-dimensional, genus-zero isoperimetric function Filléw

of any smooth, closed Riemannian manifold M is ~ equivalent to the Dehn
function 6x,pr of the fundamental group of M .

5.1 The Bound Fill}’ < 6,

This direction of the proof is substantially easier than the other. In order to
understand the proof, the reader will need to have absorbed the definition of a
van Kampen diagram.

Proposition 5.1.1 If M is a smooth, closed Riemannian manifold then T :=
w1 M s finitely presented and Fill(]]w < dr.

Proof Corollary A.4.2 of the Appendix shows that I' is finitely presented. We
fix a finite presentation for I' and assume that the universal cover K of the
standard 2-complex of this presentation has been mapped to M as explained in
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the preceding subsection. We identify T' (the 0-skeleton of K) with its image in
M. We define X to be the maximum distance of any point of M from I', we
define u to be the maximum of the lengths of the 1-cells of K, as measured in
M, and we define m = max{dr(v,7') | djz(7,7") < 2\ + 1}, where dr is the
word metric associated to our chosen generators for T'.

The images in M of the 2-cells of K are discs of finite area; let o be the
maximum of these areas.

Let w be a word in the given generators that equals 1 € I' and consider the
corresponding piecewise-geodesic loop w in M . Choose a van Kampen diagram
D for w with Area,(w) 2-cells, and consider the associated map hp : D — M,
which fills . The area of this map is at most « times the number of 2-cells in
D, hence

FArea(w) < aArea,(w) < a dr(|w]).

Given a loop ¢ : S' — M of finite length I(c), parameterized by arc length,
we choose a set of n equally-spaced points g, ...,0, 1 € S', where n is the least
integer greater than [(c). We then choose a geodesic segment o; from each ¢(6;)
to a nearest point y; € I' C M . The distance in M between successive i (indices
mod n) is at most 2+ 1 and hence 7; can be connected to ;11 by a word-like
path ;7% of length at most mu, where u; is a word of (algebraic) length m.
Since each of the loops'® 0,4 7;41¢/(g, 6,,,] has length at most L := mpu+1+2),
we have

FArea(c) < FArea([jc) +n Fillé\/l (L),

where U, is the concatenation of the words u; (see figure 5.1.2).

Figure 5.1.2 Approzimating ¢ by the word-like loop [/J\'c

18 an overbar denotes reversed orientation
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The loop ¢ is arbitrary, the word U, has (algebraic) length at most nmy,
and n < I(c) + 1. Thus, the two inequalities displayed above imply that

Fill)’ (1) < adp(m(l+1)) + (I + 1) Fill)’(L).

for all I > 0. In particular, since Fill}’(L) is a constant, Fill}Y < 4.

5.2 The Bound 6, < Fill)’.

There are many subtleties concerning the nature of solutions to Plateau’s prob-
lem in Riemannian manifolds, but the existence of least-area discs (although
highly non-trivial) has little to do with the fine structure of the spaces concerned.
Indeed Igor Nikolaev [78] showed that one can solve Plateau’s problem in any
complete simply-connected geodesic space with an upper curvature'® bound k.
In this generality, when endowed with the pull-back path metric, a least-area
spanning disc will itself have curvature < k. (To get some intuition about why
this is true, observe that if a disc embedded in Euclidean 3-space has a point of
positive curvature, then there is an obvious local pushing move that reduces the
area of the disc without disturbing its boundary.)

Definition 5.2.1 Let D be a metric space homeomorphic to a (perhaps singu-
lar*®) 2-disc and fix ¢ > 0. A set X C D is said to e-fill D if every point of D
18 a distance less than € from ¥ and every point of the boundary cycle 0D can
be connected to a point of 0D N'Y by an arc in 0D that has length at most €.

The only fact that we need concerning the nature of solutions to Plateau’s
problem is that loops in the universal covering of a closed Riemannian mani-
fold can be filled by discs that exhibit the following crude consequence of the
curvature bound described above.

Proposition 5.2.2 If M is a complete Riemannian manifold of curvature < k,
then the induced metric on every least-area disc D — M is such that D can be
pr-filled by a set of cardinality less than Ap(Area(D) 4 |0D| + 1), where |0D)|
denotes the length of the boundary of D and the constants A\ and pj depend
only on k.

Proof When equipped with the pull-back metric D has curvature < k. In the
Riemannian setting this means that if a metric ball of radius r < 7/(2Vk) is
contained in the interior of D, then the area of that ball is at least as great as
the area of a disc of radius r in M7?. So if a(k,r) denotes the area of such a
disc, then there can be at most Area(D)/a(k,r) disjoint balls of radius r in the
interior of D.

191n the sense of A.D. Alexandrov; see Appendix B for the definition. In Nikolaev’s theorem
there is a natural restriction on the length of the loops being filled if &£ > 0.

20 A singular disc is a space homeomorphic to the underlying space of a singular disc diagram,
as defined in (4.1). In the Riemannian setting (dimension > 3) one can avoid the need to
discuss (topologically) singular discs by considering fillings of embedded loops only (cf. 2.1.5).
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We set 7 = ), := 7/(4Vk) and choose a maximal collection of disjoint balls
of radius r in the interior of D. Let ¥y denote the set of centres of these
balls. We also choose a collection ¥; of no more than %\8D| + 1 points along
0D so that every point of 9D can be connected to a point in X; by an arc
of length less than 7. By construction, the balls of radius 2r; centred at the
points ¥y U X; cover D and the cardinality of ¥y U Xy is bounded above by
mArea(D)—%%\aDH—l. Set pp = 2ry and )\k:max{m,%}. O

In order to establish the reverse inequality in the Filling Theorem we shall use
the following technical tool for manufacturing combinatorial discs out of e-filling
sets.

5.2.3 Cellulation Lemma. Let D be a length space homeomorphic to a (per-
haps singular) 2-disc, and suppose that D is e-filled by a set 3 of cardinality N .
Then there exists a combinatorial 2-complex ®, homeomorphic to the standard
2-disc, and a continuous map ¢ : ® — D such that:

(1) @ has less than 8N faces (2-cells) and each is a k-gon with k < 12;
(2) the restriction of ¢ to each 1-cell in ® is a path of length at most 2¢;

(3) ¢loa is a monotone parameterisation of 0D and XN OD lies in the image
of the 0-skeleton of 0P .

In the case of the e-fillings yielded by Proposition 5.2.2 (which are the focus
of our concern), instead of using the decomposition of D furnished by the Cel-
lulation Lemma, one might use the dual to the Voronoi decomposition for the
given filling — this dual will generically be a triangulation (cf. [99] 5.58). Some
care is needed in pursuing this remark, but nevertheless we use it as a pretext?!
for relegating the proof of the Cellulation Lemma to Appendix C.

The Remainder of the Proof of the Filling Theorem.

It remains to show that ér < Filléw, where I' = 7y M. Let k > 0 be an upper
bound on the sectional curvature of M.

We fix a basepoint p € M and choose a number p > 0 sufficiently large
to ensure that the balls of radius p/8 about {y.p | v € '} cover M and that
p > 8py (notation of 5.2.2). Let A be the set of a € T such that d(a.p,p) < p
and let R be the set of words in the symbols AUA™! that have length < 12 and
equal the identity in T'. (Note that A contains a letter that represents 1 € T'.)
Corollary A.4.2 shows that (A | R) is a presentation of I'. We shall show that
every null-homotopic word w over this presentation satisfies

Area, (w) < 4 (Filléw(p lw]) + p |w| +1).

Given a word w with w = 1 in T' we consider the piecewise geodesic loop

W in M (notation of 4.3). This loop has length less than p|w| and hence??

21 The honest reason for this deferral is that the proof is lengthy and inelegant.

22If one wants to quote Morrey directly here one should perturb @ to ensure that it is

embedded.
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can be filled with a least-area disc f : D — M of area at most Fill) (p|w]).
Using Proposition 5.2.2 we can pg-fill D with a set ¥ of cardinality less than
N = M\ (Fill} (p |w]) + p|w| + 1). Increasing the cardinality of ¥ by at most
|w|, we may assume that it contains the vertices of .

Consider a combinatorial 2-disc ® and a map ¢ : ® — D as furnished by the
Cellulation Lemma. Our aim is to label ® so that it becomes a van Kampen
diagram for w over (A | R). The composition fo ¢ : ® — M will guide us
in this construction. Note that the restriction of f o ¢ to d® is a monotone
parameterization of w. The initial point of @ determines a basepoint for ®.

For each vertex v in the interior of ® we choose a point -, - p in the T" orbit
of p that is closest to fo@(v). If v and v’ are the vertices of a 1-cell in @, then
fod(v) and fog(v') are a distance at most 2py, apart in M (the second property
of ® in the Cellulation Lemma). It follows that d(v, p, vy 'p) < 2pr+p/4, which
is less than p/2. Hence there exists a generator a € A such that a = 7, v,/ in
I'. We introduce the label a on the edge in ® joining v to v’.

Among the vertices of 9® we have a set of distinguished vertices, namely
those mapping to the vertices of w. Call these zg,...,z,_1, corresponding to
the vertices w; - p on w, where w; is the i-th prefix of w.

If v € ® . 0P is the initial point of an edge whose endpoint v’ lies on the arc
joining z; 1 to x; in 9P, then v, is a distance less than p/8 + 2p;, + p/2 from
either w; 1 -p or w; - p, depending on which side of the midpoint of the arc v’
lies (where “midpoint” is measured in the arc length pulled back from M).

For each i = 1,...,n we collapse all but one of the edges along the arc of 0®
joining x;_; to x;; the edge containing the midpoint is not collapsed??, and its
image in the quotient disc ® is labelled with the i-th letter of w. The image in ®
of the quotient of the edge [v,v'] discussed in the previous paragraph is labelled
either vy, tw;_; or 7, 'w;, according to the side of the midpoint on which v’ lies.
(This label will be an element of A because p/8 + 2pi + p/2 < p.)

At this stage we have constructed a combinatorial 2-disc ® with a label from
A on each directed 1-cell. The label on the boundary circle 9@ is our original
null-homotopic word w. The label on the boundary cycle of each 2-cell is, by
construction, a word of length at most 12 in the letters A that represents the
identity in T', because the faces of ®, and hence ®, are k-gons with k& < 12. Thus
@ is a van Kampen diagram for w over our chosen presentation of I' = w1 M.

The Cellulation Lemma gave us ® and told us that it had at most 8N faces,
where N = A\ (Fill) (p|w|) + p|w| +1). And & has the same number of faces
as ®. Thus we have established the desired upper bound on the algebraic area
of the arbitrary null-homotopic word w, and we deduce that ér < Filléw. O

6 Linear and Quadratic Dehn Functions

In this section we shall see that the groups that have linear Dehn functions are
precisely those that are negatively curved on the large scale, i.e. hyperbolic in

23 this involves a choice if the midpoint is a vertex
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the sense of 6.1.3. This fundamental insight is due to Misha Gromov [55].
We shall also discuss the weaker link between non-positive curvature and the
class of groups that have a quadratic Dehn function.

6.1 Hyperbolicity: from Dehn to Gromov

Given a finite set of generators A for a group I', one would have a particularly
efficient algorithm for solving the word problem if one could construct a finite
list of words wy, vy, us, Vo, ..., Up, Uy, With u; =p v; and |v;| < |u;|, such that
every freely-reduced word in the letters A*! that represents 1 € I' contains at
least one of the u; as a subword.

If such a list of words exists then one proceeds as follows: given an arbitrary
reduced word w, look for subwords of the form w;; if there is no such subword,
stop and declare that w does not represent 1 € T'; if u; occurs as a subword,
replace u; with v;, freely reduce the resulting word w’ and then repeat the
search for subwords of the form u; (noting that w = w' in I'). Proceeding in
this way, after at most |w| steps one will have either reduced w to the empty
word (in which case w =1 in T") or else verified that w # 1 in T'.

Definition 6.1.1 When it exists, the above procedure for solving the word prob-
lem is called a Dehn algorithm for T'; it is encoded in (A | uyvy ", ..., upv;t),
which we call a Dehn presentation.

Max Dehn proved that Fuchsian groups admit Dehn presentations [35]. Jim
Cannon proved that the fundamental groups of all closed negatively curved man-
ifolds admit Dehn presentations [27]. The following small cancellation condition
provides many other examples (see [66] Chapter V).

Ezample 6.1.2 Let (A | R) be a finite presentation in which each relator is
freely reduced. Assume that if » € R then r~! and every cyclic permutation
of r is in R. And suppose that whenever there exist distinct r,7’ € R with a
common prefix u (i.e. r = uv and r’ = uwv'), the inequality |u| < |r|/6 holds.
Then (A | R) is a Dehn presentation.

It requires only a moment’s clear thought to see that the existence of a Dehn
algorithm for a group T implies that T' has a linear Dehn function (cf. paragraph
1.2). A more profound observation is that the converse is also true. The proof of
this fact is indirect, proceeding via Gromov’s notion of a hyperbolic group [55].

Gromov made the following remarkable discovery: the simple geometric con-
dition given in (6.1.3) forces a geodesic metric space, regardless of its local struc-
ture, to exhibit many of the large-scale features that one associates with simply-
connected manifolds of negative curvature. Thus he was able to extend the power
of negative curvature well beyond its traditional realm?* in Riemannian geome-
try. This stripping away of extraneous structure leads to a deeper understanding

24 The work of H. Busemann and, more particularly, A.D. Alexandrov, had already expanded
the range of spaces in which one can discuss negative and non-positive curvature (see [22]),
but that work was based on local definitions of curvature, whereas in Gromov’s approach one
ignores the local structure of the space.
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of the fundamental groups of closed negatively curved manifolds, and extends
such an understanding to much wider classes of groups.

Definition 6.1.3 A geodesic metric space X is hyperbolic (in the sense of
Gromov) if there exists a constant 1 > 0 such that for every geodesic triangle*
A C X, each edge of A lies in the n-neighbourhood of the union of the other
two edges. (One writes “X is n-hyperbolic” when it is useful to specify the
constant.)

A finitely generated group I is said to be hyperbolic if its Cayley graph?® is
n-hyperbolic for some 1 > 0.

Ezercises 6.1.4 (i) Prove that real hyperbolic space H" is hyperbolic in the
above sense and find the optimal n. (Hint: There is a bound on the area of
semicircular discs that can be inscribed in geodesic triangles in TH?® .)

(ii) Deduce that the universal covering X of any closed manifold of negative
sectional curvature is hyperbolic in the sense of Gromov. (Hint: If one scales
the metric so that the curvature of X is bounded above by —1, then every
geodesic triangle A C X is the image of a non-expanding map ¢ : A — A,
where A is a triangle in H? and the restriction of ¢ to each edge of A is an
isometry. This is called the CAT (—1) inequality [22].)

The following results are due to Gromov [55] (see also Cannon [28]). Detailed
references and proofs can be found in Chapter IIL.T of [22].

Theorem 6.1.5 The following statements are equivalent for finitely presented
groups T':

(1)

(2) T has a finite Dehn presentation.

(3) T has a linear Dehn function.

(4) The Dehn function of T is sub-quadratic (i.e. ér(n) = o(n?)).

I' is a hyperbolic group.

Proceeding in cyclic order, the only non-trivial implications are (4) = (1)
and (1) = (2). We shall not discuss (4) = (1) except to say that Cornelia Drutu
[38] recently discovered an elegant proof that uses asymptotic cones (cf. 3.1.6).

The proof that (1) = (2) requires an understanding of the following types
of locally-efficient paths. Let I C R be an interval and let X be a metric space.
A map c: I — X is called a k-local geodesic if d(c(t),c(t')) = |t — t'| for all
t,t' € I with |t —t'| < k. And c is called a (), &) -quasi-geodesic if

1
3 t—t|—e<d(c(t),ct)) <A |t—t]+e

25Gee Appendix B for definitions such as that of a triangle in an arbitrary metric space.

26 The ambiguity that arises from the fact that we have not specified a generating set is
removed by Exercise 6.1.9(2).
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for all ¢,t' € I.
In hyperbolic spaces one has the following local criterion for recognising cer-
tain quasi-geodesics (see [22] page 405).

Lemma 6.1.6 If X s n-hyperbolic then every 8n-local geodesic in X 1is a
(), €) -quasi-geodesic, where the constant A > 0 depends only on n, and ¢ is less
than 8n.

The implication (1) = (2) in Theorem 6.1.5 follows easily from this lemma:

Ezercise 6.1.7 Suppose that the Cayley graph of T' with respect to the finite
generating set A is n-hyperbolic. Let R be the set of words um[l, where u;
runs over all words of length < 87 in the letters A*! for which there exists
a word v; with |v;| < |u;| and u; = v; in T'. Show that (A | R) is a Dehn
presentation.

The following stability property of quasi-geodesics marks an important dif-
ference between spaces of non-positive curvature and spaces of strictly negative
curvature (see [22] page 401).

Proposition 6.1.8 For all n,\,;e > 0 there exists R(n,\,e) > 0 such that:
if X is n-hyperbolic and c : [a,b] — X is (A, ¢€)-quasi-geodesic with endpoints
p and q, then the Hausdorff distance between the image of ¢ and each geodesic
segment joining p to q 1is less than R(n, A, €).

This proposition provides a proof (independent of the Filling Theorem) that
the fundamental groups of closed negatively curved manifolds have linear Dehn
functions — see 6.1.4(ii) and 6.1.9(iii).

The following exercises require the reader to understand certain items from
Appendix A, namely the definition of quasi-isometry, the Svarc-Milnor Lemma
and A.1.3(ii).

Ezercise 6.1.9 (i) Let X be a geodesic space. If X is quasi-isometric to a 7-
hyperbolic space, then X is n'-hyperbolic for some n' > 0. (Hint: Consider
quasi-geodesic triangles.)

(ii) If the Cayley graph of a group with respect to one finite generating set is
hyperbolic, then so is the Cayley graph of that group with respect to any other
finite generating set.

(iii) If a group acts properly and cocompactly by isometries on a hyperbolic
geodesic space, then that group has a linear Dehn function.

We refer the reader to Chapter IIL.T of [22] for an introduction to the rich
theory of hyperbolic metric spaces (the references given therein will also point
the reader to recent developments in this active field). Here are a few of the
basic properties of hyperbolic groups.

Theorem 6.1.10 If a group T has a linear Dehn function then:
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(1) T does not contain 7*;

(2) T has a solvable conjugacy problem;

(3) T has only finitely many conjugacy classes of finite subgroups;
(4)

I acts on a contractible simplicial complex with compact quotient and finite
stabilizers.

(5) Let A be a finite generating set for T' and let d be the associated word
metric. Define 7(y) = lim,_, o d(1,74™)/n. Then there is an integer N
such that {N 7(y) | v € T ~ {1}} is a set of positive integers.

6.2 Quadratic Dehn Functions and Non-Positive Curvature

If a geodesic metric space X is complete, 1-connected and non-positively curved
in the sense of A.D. Alexandrov (see Appendix B), then its metric is convex
in the sense that d(c(t),c(t)) < td(e(1),c(1)) + (1 — t)d(e(0),c'(0)) for all
geodesics ¢, : [0,1] — X parameterized by arc length. This class of spaces
includes the universal covering M of any compact Riemannian manifold whose
sectional curvatures are non-positive, and hence the following result applies to
the fundamental groups of such manifolds (acting by deck transformation on

M). Tt also applies to cocompact lattices in semisimple Lie groups (cf. 3.3.7).

Theorem 6.2.1 Let X be a complete geodesic space whose metric is convex.
If the group T acts properly by isometries on X and the quotient of this action
18 compact, then T is finitely presented and its Dehn function is either linear or
quadratic.

The following proof is adapted from [5] and [22], and has earlier origins, e.g.

[42].
Proof The point of the proof is to construct the diagram shown in figure 6.2.3.
Let d be the metric on X. Fix p € X and let p > 1 be such that the balls
of radius p about the I'-orbit of p cover X. Let c, be the arc-length parame-
terization of the unique geodesic segment joining p to ~.p. Let A C I' be the
set of v € T such that d(p,v.p) < 3p. Given v € T, let m be the least integer
greater than d(p,~.p)/p and for each positive integer ¢t < m choose vy, € T' with
d(cy(pt),v:-p) < p. Define 79 =1 and v, = 7.

Consider the word o, :=ay...a,, where a; := 7;11%- eAfori=1,...,m.
With an eye on future generalisations, we write o, (i) instead of -; to denote
the image in I' of the i-th prefix of 0. ; by definition o, (i) =~ if ¢ > m. (In
general we write w(¢) for the image in T' of the i-th prefix of any word w.)

It follows from the convexity of the metric on X that in the word metric dg
on I' one has

da(oy(i), o (i)) < 3da(v,7") (6.2.2)

for all v,7" € I' and all integers i > 0 (see Exercise 6.2.4(i)). We shall use this
inequality to construct efficient diagrams for null-homotopic words.
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Let w be a null-homotopic word, of length n say. We draw an oriented
circle in R?, mark vertices vy, ...,v, 1 (in cyclic order) on the circle and label
the oriented arc (v;_1,v;) with the i-th letter of w (indices mod n). We then
connect vg to each of the vertices v; with a line segment [vg,v;] divided into
\ow(iy| 1-cells; these 1-cells are oriented and labelled by the letters of o,,(;) in the
obvious manner. Define o,,(g) = 0y(n) to be the empty word, and for j > |0,/
define “the j-th vertex of [vg,v;]” to be v;. Let J(i) = max{|c.,)|, |owi+1)l}-

We complete the construction of our diagram for w by introducing an edge
from the j-th vertex of [vg, v;] to the j-th vertex of [vg,v;y1] for i =0,...,n—1
and j =1,...,J(7); this edge is labelled by a word of minimal length that equals
Tw(i) (j)’lcrw(z-+1)(j) € I'; according to (6.2.2) this word has length at most 3.

We have constructed a diagram over A with boundary label w, where w
is an arbitrary null-homotopic word. The face labels are null-homotopic words
of length < 8; let R be the set of all such words. Lemma 4.1.2 tells us that
I' = (A | R) and that Area,(w) is at most the number of faces in the diagram.
Thus Area,(w) < |w| max{|oy, | : i < |w|}. And since da(1,w(i)) < |w|/2 for
all 4, Exercise 6.2.4(ii) tells us that Area,(w) < (3/2)|w|?.

Figure 6.2.3 Using the combing o~ to construct a van Kampen diagram

Ezercises 6.2.4 (i) Establish the inequality 6.2.2. (Hint: If m = da(v,') then
d(y.p,7'.p) < 3mp. Hence, by the convexity of the metric, d(cy(pt), c,/(pt) <
3mp for all ¢ > 0. Recall that, by definition, o4(¢) = g;. Divide the geodesic
[ey(pt), ey (pt)] into 3m segments of equal length, and associate to each division
point a closest point of T'.p, with 4; and v, associated to the endpoints.)

(it) Deduce that for all v € T' the length of the word o, in the above proof is
at most 3da(1l,7).
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6.3 Automatic Groups

The intensive study of isoperimetric inequalities for finitely presented groups
began in the late 1980s. It emerged primarily from the work of Gromov [55], but
a certain impetus also came from the theory of automatic groups. This theory
sprang from conversations between Jim Cannon and Bill Thurston and grew into
a rich theory due to a team effort orchestrated by David Epstein — see [42].

Roughly speaking, a group I with finite generating set A is automatic if one
can construct its Cayley graph by computations on finite state automata: there
must exist a set of words £ = {0, | v € '} in the letters A*!, with o, = 7 in
I', such that membership of £ can be determined by a finite state automaton
(FSA); and for each a € A there must exist a FSA that recognises those pairs
of words (o4, 0,/) for which 4" = ~a.

The finiteness of these FSA forces the existence of constants k, K > 0 such
that |o,| < kda(l,v) and

da (0 (i), 00 (1)) < K da(1,7') (6.3.1)

for all 7,4 € I'. By using the normal form L in place of the words o, con-
structed in the proof of (6.2.1) we obtain:

Theorem 6.3.2 If I' is automatic then it is finitely presented and its Dehn
function is linear or quadratic.

Automatic groups form a large class. This class includes many groups that
do not arise in the setting of Theorem 6.2.1, for example central extensions of
hyperbolic groups [77].

In Chapter 9 of [42] Epstein and Thurston determine which geometrizable 3-
manifolds have automatic fundamental groups, and Theorem 3.3.1 follows from
this work. All mapping class groups are automatic [76].

6.4 The Link with Non-Positive Curvature is Limited

In analogy with the theory of hyperbolic groups, one can develop a theory of
semihyperbolic groups, defined by a coarse geometric constraint that forces such
groups to satisfy most of the useful properties enjoyed by the fundamental groups
of compact non-positively curved manifolds (cf. Alonso and Bridson [5] and
Gromov [56]).

With Theorems 3.1.6 and 6.1.10 in mind, one might hope that requiring a
group to satisfy a quadratic isoperimetric inequality would force it to behave in
a “semihyperbolic” manner, satisfying a list of properties analogous to (6.1.10).
The examples that we have seen thus far support this hope to some extent —
abelian groups, hyperbolic groups, automatic groups, fundamental groups of
compact non-positively curved spaces, SL(n,Z) for n > 4, various nilpotent
groups IV, and those non-uniform lattices in rank 1 Lie groups that have these
N as cusp groups. But the examples discovered more recently indicate that the
class of groups that have a quadratic Dehn function is wilder than this list would
suggest, but quite how wild is not clear. For example, it is unknown if a group T’
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that has a quadratic?” Dehn function can have an unsolvable conjugacy problem
(it is conjectured that if such a group exists, it should not have a 2-dimensional
K(T,1)).

Besides the property that defines them, the most significant property that
is known to be enjoyed by groups with quadratic Dehn functions is the fact
that their asymptotic cones are all simply-connected [88]. This property is not
enjoyed by all groups with polynomial Dehn functions [18].

7 Techniques for Estimating Isoperimetric Functions

This section contains a sample of the methods that have been developed to
calculate Dehn functions. The techniques that I shall describe have been used
widely, but T must emphasise that this is only a sample, not a thorough survey.
This sample is biased in favour of the methods that T have found most useful in
my own work.

7.1 TUpper Bounds

In general it is easier to obtain upper bounds on Dehn functions than it is to
obtain lower bounds. Indeed whenever one has an explicit solution to the word
problem in a finitely presented group, one can look for an upper bound on the
Dehn function by analysing the use of relations in that solution (cf. paragraph
1.1). Thus there are many direct methods for obtaining upper bounds, each
adapted to the groups at hand. We have already seen examples of such methods
in (3.1.2), (2.2), (6.1.1), and (3.2.3). One might also think of results such as
3.4.1 in this light. Direct methods of a geometric nature are to be found in many
of the papers listed in the bibliography, e.g. [19], [15], [95] and [18].

The following general method for obtaining upper bounds on Dehn functions
has been used in many contexts.

Using Combings to Get Upper Bounds. Let I' be a group with finite
generating set A and let d be the associated word metric. A combing (normal
form) for T is a set of words {o |y € '} in the letters A*! such that ¢, = v in
I'. Whenever one can find a geometrically-efficient combing for a group I' one
can estimate the Dehn function §r by modifying the proof of Theorem 6.2.1. The
control that one needs in order to get non-trivial bounds is remarkably weak [16].
We content ourselves with one of the simplest and most widely used methods
of control, wherein one weakens the fellow-traveller property (6.3.1) by allowing
reparameterizations of the words o, (thought of as paths in the Cayley graph
of T).

Definition 7.1.1 Let

R={p:N—=N|p0)=0; p(n+1) € {p(n),p(n) + 1} Vn; p unbounded}.

27 There do exist examples with cubic Dehn functions, [20] Example 2.9.
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Given words wy,wy in the letters ALY, define

D(wy, = mi d 1)), ")} ).
(wnws) = min, { max {d(ws(p(t)), wale'()}}
A combing v — o, s said to satisfy the asynchronous fellow-traveller property
if there is a constant K > 0 such that

D(O-’Y) U"/’) S K dﬂ(’% 7/)
for all 4,4 € T'. The length of o is a function N — N:

Lo(n) = max {|o,| | da(1,7) < n}.

Proposition 7.1.2 If a finitely generated group T' admits a combing o that
satisfies the asynchronous fellow-traveller property, then T is finitely presented
and its Dehn function satisfies or(n) < nL,(n). And regardless of the length of
the combing, ér(n) < 2.

Ezercise 7.1.3 Prove the assertions in the first sentence of the above proposition.
(Hint: Follow the construction of Figure 5 in the proof of Theorem 6.2.1, but
instead of connecting o.,(i)(j) to ou(i+1)(J) with a 1-cell, connect o) (p(4))
to ow(i+1)(p'(4)), where p and p' are reparameterizations as in the definition
of the asynchronous fellow-traveller property.)

Ezxamples 7.1.4 (i) The upper bound described in Theorem 3.1.4 was estab-
lished in [23] using the combings constructed in [17]. Given I' = Z™ x (t) one
can write each v € ' uniquely in the form t"2 with = € Z™. One fixes a basis
for Z™ and represents z by a word [, that (viewed as a path in the lattice Z™)
stays closest to the Euclidean segment [0, z] in R™ = Z™ ® R. One then defines
0, = t"l;, checks that o satisfies the asynchronous fellow-traveller property and
calculates that L, (n) ~n |[¢"|| (see [23] page 215).

(ii) I proved in [17] that if a compact 3-manifold M satisfies the geometrization
conjecture, then 7y M admits a combing that satisfies the asynchronous fellow-
traveller property, whence the exponential upper bound in Theorem 3.3.1.

7.2 Lower Bounds

t-corridors and t-rings. t-corridors and t-rings are particular types of sub-
diagrams that one gets in van Kampen diagrams over presentations (A,t¢ | R)
where the group presented retracts onto (t). We refer to [21] for a careful
treatment, but point out that although this is where t¢-corridors were named
and systematised, they were in use much earlier, e.g. in Rips’s geometric proof
of the unsolvability of the word problem (see the inside cover of [94]).
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Consider the presentation I' = (A,t1,...,t, | R), where the symbols ¢;
are not elements of A and the only relators involving any t; are of the form
tjuitjflvi € R, where u;,v; € F(A). Consider a van Kampen diagram D
over such a presentation and focus on an edge ¢ in the boundary labelled
t € {t1,...,t,}. If this edge lies in the boundary of a 2-cell, then the boundary
cycle of this 2-cell (read with suitable orientation from ¢) has the form tut v
with u,v € F(A). In particular, there is a unique edge other than & in the
boundary of the 2-cell that is labelled ¢; crossing this edge we enter another
2-cell with a similar boundary label; by iterating the argument we get a chain
of 2-cells running across the diagram; this chain terminates at an edge of 0D
which (following the orientation of 9D in the direction of our original edge ¢) is
labelled ¢~ !. This chain of 2-cells is called a t-corridor.

Topologically, a t¢-corridor is a map [0,1] x [0,1] — D that is injective
on [0,1] x (0,1). We make this map a morphism of labelled combinatorial 2-
complexes by pulling back the cell structure and labelling from D. The labels on
the 1-cells in [0,1] x {0,1} (the top and bottom of the corridor) are letters from
A*!: the remaining 1-cells are of the form {s} x [0, 1], and these are labelled .

A t-ring is defined similarly: it consists of a chain of 2-cells giving a combi-
natorial map ¢ : S! x [0,1] — D that is injective on S x (0,1); in S x [0, 1] the
1-cells of the form {0} x [0,1] are labelled ¢; the remaining 1-cells are contained
in S' x {0, 1} and are labelled by letters from A*!: the map ¢ is label-preserving.

Much of the utility of ¢-corridors and ¢-rings rests on the following observa-
tions:

Ezercise 7.2.1 Let t;,u;,v;,[' and D by as in the preceding discussion. Prove:
(i) Distinct t¢-corridors and ¢-rings have disjoint interiors.

(ii) If P is the edge-path in D running along the top or bottom of a ¢-corridor,
then P is labelled by a word in the letters A*! that is equal in T' to the words
labelling the subarcs of @D which share the endpoints of P (given appropriate
orientations),

(iii) and if ¥ = min{max; |u;|, max; |v;|}, then the number of 2-cells in the ¢-
corridor is at least 1/k times the length of P.

(iv) The words labelling the inner and outer boundary cycles of a t¢-ring are
null-homotopic.

(v) If D contains a 2-cell that has an edge labelled ¢ in its boundary, then D
contains either a t-corridor or a t-ring.

Instead of indulging in a general discussion, let me give one proposition to
illustrate the utility of ¢-corridors and one to illustrate the utility of ¢-rings.

Proposition 7.2.2 Let ¢ be an automorphism of the finitely presented group
B = (A1S). For each a € A, choose a word v, € F(A) representing ¢(a) € B.
Let R=8U {t;latj =v,|a€ A, j=1,2} and define T := (A, t1,t2 | R). Then
the Dehn function of T is ~ bounded below by

n nm;ix{dA(l,qﬁ"(b)) | da(l,b) < n}.
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Proof For each positive integer n, we choose a word 8 of length at most n in
the generators A*! so as to maximize d (1, " (b)), where b is the image of 8 in
T. Let u, :=t; "Bt} and let wy, := u,(t2t; )" u,  (tat; *) ", a word of length
at most 10n. Note that w,, = 1 in T'. Note also that no proper subword of w,,
is equal to 1 € T' (one sees this easily using the natural retraction T' — F'(¢1,t2)
and the fact that t?ﬂt; # 1 for all 7). It follows that any van Kampen diagram
for w, is a disc, in particular every edge of dD lies in the closure of some 2-
cell, and therefore a t;-corridor emanates from each edge of 0D labelled ¢;, for
j=1,2.

The simple fact that distinct ¢;-corridors cannot cross (fact 7.2.1(i)) implies
that the pattern of ¢5-corridors in any van Kampen diagram for w, must be
as shown in figure 7.2.3. The words in the letters A*! labelling the bottom of
each of each ty-corridor is equal in T' to w, . Hence (fact 7.2.1(iii)) each of these
corridors contains at least 3 da(1,¢"(b)) 2-cells, where k is the length of the
longest of the words v,. And there are n such corridors. O

Figure 7.2.3 The pattern of t;-corridors
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Ezercises 7.2.4 (i) Let ¢ € GL(n,Z) be a unipotent matrix and let I' = Z™ X
F(t1,t2), where the generators ¢1 and t» of the free group F(t1,t2) both act on
Z™ as ¢. Deduce from the above proposition and your proof of (3.1.5) that the
Dehn function of I' is bounded below by a polynomial of degree ¢ + 1, where
c is the size of the largest elementary block in the Jordan form of ¢. Adapt
7.1.4(i) to deduce that in fact dr(n) ~ n°T'. (If you get stuck, refer to [18].)

(ii) Britton’s Lemma states that, given an HNN extension Gxg = (G,t |t~ 'st =
#(s),Vs € S), and a generating set A for G, every null-homotopic word in the
letters (A U {t})*! either contains no occurrences of t*!, or else contains a
subword t°ut—¢, where e = +1 and u is a word in the letters A*! that lies in
(S) if e = —1 and lies in (¢(S)) if e =1.

Use t-corridors to prove Britton’s Lemma.

Proposition 7.2.5 Let G be a finitely presented group, let L, L' C G be finitely
generated subgroups that are free, let ¢ : L — L' be an isomorphism, and let
I' = G4 be the associated HNN extension. Then o > 0q.

Ezercises 7.2.6 (i) Let D be a van Kampen diagram for a null-homotopic word
w over a presentation (A | R), and let u be the label on a simple closed loop
c in the 1-skeleton of D. Prove that if Area. D = Area,w, then the number
of 2-cells in the sub-diagram enclosed by ¢ is Area,u. Extend this result to
non-crossing loops®®.

(ii) Prove Proposition 7.2.5. (Hint: T' = (A,t | R,t7 It = ¢(1),l € S) where
G=(A|R) and S C A is a basis for L. Given a word w € F(A) with w =1
in T', take a van Kampen diagram D with Area. D = Area,w. Use (i) and the

fact that L is free to argue that D contains no ¢-rings and hence is a diagram
over (A | R).)

Cohomological Methods. Both Gersten and Gromov have developed coho-
mological methods for obtaining lower bounds on Dehn functions. In particular,
Gersten [48] developed an /.,-cohomology theory which, among other things,
allows one to recover results obtained using ¢-corridors in a more elegant and
systematic manner. It would take too long to explain these ideas here, so we
refer the reader to [48]. We content ourselves with a more simple-minded result
that uses de Rham cohomology. (We give this result in part because it resonates
with ideas in Section 5).

The statement of the following lemma is phrased in the vocabulary introduced
in (4.3). The constant A, is defined to be the maximum of the integrals [, w

where E is a 2-cell mapped into M by K(A: R) — M.

Lemma 7.2.7 Let M be a smooth, closed Riemannian manifold with funda-
mental group T' = (A | R) and let w be a T -invariant closed 2-form on M. If D

28 A non-crossing loop is the restriction to S x {1} of a map S' x[0,1] — R? that is injective
on St x[0,1).
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18 a van Kampen diagram with boundary label w, and hp is the map described

in (4.8), then
/ pw < A, Area,(w).
D

Proof The integral [, hj,w is well-defined because hp is differentiable except
on a set of measure zero. If D’ is a second van Kampen diagram for w, then
one can regard —hp Uhp/ as a 2-cycle in M, and hence [, hhw = [, hiw.
And when Area. D = Area,(w) the inequality is clear.

The utility of this lemma stems from the fact that one does not need to
understand the nature of least-area van Kampen diagrams in order to get a
lower bound on their area: if one can locate any van Kampen diagram D for
a given word w, then one gets a lower bound on Area,(w) by integrating h’w
over D. Moreover, by Stokes Theorem, if the 2-form w is exact, say w = dea,
then one can simply calculate fw a, thus avoiding the construction of diagrams
altogether.

Ezample 7.2.8 In the case where ¢ € Sp(m,Z), Bridson and Pittet [23] es-
tablished the lower bound in Theorem 3.1.4 by applying Lemma 7.2.7 to the
standard symplectic form on R™.

Exploiting Asphericity. A group presentation (A | R) is called aspherical
if the associated 2-complex K (A;R) is aspherical (i.e. its universal covering is
contractible). One of the great joys of working with aspherical presentations is
that when one finds an embedded van Kampen diagram one knows that it is of
minimal area:

Lemma 7.2.9 Suppose that X = K(A;R) is aspherical. Let D be a van

Kampen diagram for w. If the associated map D — X 1is injective on the
complement of the 1-skeleton DY) | then the number of 2-cells in D is Area, (w).

Proof Tet D' be a second van Kampen diagram for w. One can regard DU D’
as a 2-cycle in the cellular chain complex of X . Since there are no 3-cells and
H,X is trivial (by Hurewicz), this 2-cycle must be zero. And since the 2-cells in
the image of D are all distinct, each must cancel with some 2-cell in D’. Hence
Area.D < Area.D’. And since D’ was arbitrary, Area,(w) = Area, D. O

Examples 7.2.10 (i) 7Z* = (a,b | [a,b]) is aspherical. Hence the area of the
obvious (square) diagram for w,, = a~"b""a"b" equals Area,(w,) (cf. 3.1.2).

(ii) The presentation of B,, described in (3.2.1) is aspherical. Explicit disc
diagrams show that dp, (n) = €,,(n) — see Exercise 7.2.11.

(iii) A celebrated theorem of Roger Lyndon shows that 1-relator presentations
are aspherical if the relation is not a proper power [66].

(iv) The natural presentations of free-by-free groups are aspherical and provide
interesting examples of Dehn functions [20].
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Exercises 7.2.11 (i) Let X denote the universal covering of the standard 2-
complex of the presentation of B,, described in (3.2.1). The 1-skeleton X® g
identified with the Cayley graph of B,,. Show that the loop in X(*) labelled
zy"wozPry 2" bounds an embedded disc A, (zo, 1) that has (2" —1) faces (2-
cells). By juxtaposing two copies of A, (zo,z1), construct a disc D; showing
that o) "zoxlzor; "z, "xzTz, " is a null-homotopic word of area 2(2" — 1).

(i) Now suppose that n = 2". By attaching four copies of a disc diagram
A, (z1,22) to the segments of dD; labelled zT, construct a disc diagram
for (x5 " a7 25)zo (25 " z125) o (25 "2T ' 25) g (25 "w125)xy " that has more than
22" faces (2-cells).

Iterate this construction and use Lemma 7.2.9 to deduce that dg,, (n) > em(n).

Reprove this inequality using t-corridors instead of asphericity.

The following exercises lead the reader through the proof that the Dehn
function of the group G, , described in 3.1.10 is > n2!°822P/a¢_ If you get stuck
during these exercises, refer to [15].
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Ezercises 7.2.12 (i) Let f,g : [0,00) — [0,00) be non-decreasing functions
and let (n;) be an increasing sequence of positive integers with ng = 0 and
ni+1 < Cn; for all 4, where C > 0 is constant. Show that if f(n;) < g(n:)
for all 7, then f < g. (Thus we see that to establish lower bounds on Dehn
functions d(n), it is only necessary to look at fairly sparse sequences of integers
(ni).)

(ii) Consider the presentation of Gp 4 given in (3.1.10). Prove that this presen-
tation is aspherical. (Hint: One can build the 2-complex of the presentation as
follows. Start with a torus corresponding to the subgroup gp{a,b} C G, 4 and
fix a basepoint on it. Attach two cylinders (annuli) to the torus along simple
curves through the basepoint — one end of each cylinder traces out a curve in
the homotopy class a? and the other ends trace out aPb*'. The Seifert-van
Kampen theorem shows that this complex has fundamental group Gp,q. The
universal cover X of this 2-complex is a contractible complex obtained by glu-
ing planes indexed by the cosets of gp{a,b} C Gy, along strips (copies of the
line cross an interval) covering the annuli in the quotient.)

(iii) Complete the following outline to a proof that the Dehn function of G, 4
is = n® where a = 2log, 2p/q.

Let wo = a? and let wi = sa% 'ta?t . Define words wp =
swr_1a%1s Ywp_1a% 1t 1 with 0 < ep_q < q — 1 so that wg_1a°*~1 repre-
sents a power of a that is divisible by g. Show that 4(2%) < |wy| < (4¢)2F and
that wy = a™* in Gp,q, where my > q(2p/q)*.

Show that one can find embedded in X a van Kampen diagram portraying

the equality wy, = a™*. (See figure 7.2.13 — the large faces in this figure are
diagrams over the sub-presentation (a,b | [a,b]).)

Let Wi, = [swk,la‘k*15_1 , twk,la‘kflt_l]. Show that W} represents the
identity in G, , and describe a van Kampen diagram for Wj, that embeds in
X . Deduce that there is a constant C' > 0 such that

Area,(Wi) > Cmi > Cq?(2p/q)™*.

Use (i) to conclude that the Dehn function of Gp 4 is bounded below by n
n2lo822p/q

(aPby (@Pb)”

a"k

43
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Figure 7.2.13 The diagram portraying wy = a™*

Calculating in Abelian Quotients. Let I' = (A | R) and let K be the
subgroup of F = F(A) generated by the set of elements C = {2z~ 'rz | 2 €
F(A), r € R}. By definition, Area,w is the least number N for which there
is an equality w = ¢;...cy with ¢; € @', One anticipates that the task of
estimating N would be easier if one were working with sums in abelian groups
rather products in free groups. With this in mind (and motivated by results of
Gersten [45]) Baumslag, Miller and Short [10] look at the projection of equalities
such as the one above into the abelianization of K, i.e. the relation module®® of
the presentation (A | R). They also consider what happens when one projects
further, onto K/[K, F].

Thus they define the abelianized isoperimetric function @%b by analogy with

the Dehn function (1.2.2), replacing Area,w by Areazbw, which is defined to
be the least integer N for which there is an equality

N
_ -1
w = T; TiZq
i=1

in K/[K,K], with 7; € R*! and z; € F. And they define the centralized
isoperimetric function @%ent by counting the minimum number of summands
required to express w in K/[K, F]. Baumslag et al. prove that each of these
functions is ~ independent of the chosen finite presentation of I'.

Note the obvious inequalities

peent < pab < 5.

From the Hopf formula ([25] page 41) one sees that K/[K, F| is a direct sum
of a free abelian group and H»(T', Z), and there is a well-developed technology for
calculating in Hy(T',Z) — in particular one has Fox’s free differential calculus. By
using this calculus Baumslag et al. obtain bounds on @%ent for various groups.
In certain cases they are also able to show that @%ent ~ §r. In this way they were
able to calculate the Dehn functions of free nilpotent groups, thus exemplifying
the merits of the aphorism that the homological approach works best for groups
that contain a lot of commutivity.

Ezercise 7.2.14 Observe that the argument given in (7.2.9) actually shows that
if D=V ¢ in the cellular chain complex of X then N > Area,(w) (where

2
the ¢; are 2-cells). Deduce from (7.2.12) that @%b (n) is = n>'°%2 T
p,a

29 The conjugation action of F' on K induces an action of I' on K/[K, K], hence the module
structure.
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8 Other Decision Problems and Measures of Complexity
8.1 Alternative Analyses of the Word Problem

We saw in Section 1 that the Dehn function measures one’s likelihood of success
when one mounts a direct attack on the word problem for a finitely presented
group. But there are other interesting ways to measure the complexity of the
word problem. For example, instead of focusing on the area of van Kampen
diagrams one might focus on some other aspect of their geometry, such as their
diameter or the radius of the largest ball in the interior of the diagram. One
might also bound the length of the intermediate words that arise during the
process of applying relations to reduce a null-homotopic word to the empty
word — “filling length”. In Chapters 4 and 5 of [56] Gromov discusses many
measures of complexity such as these, and there has been some interesting work
on their interdependency (e.g. [46], [18], and [50]). Let me describe the most
widely studied of these alternatives, which relates to the diameter of filling-discs
in Riemannian manifolds.

Definition 8.1.1 Let (A | R) be a finite presentation for the group T'. Let w
be a word that equals 1 in T and let D be a van Kampen diagram for w. Let
p be the basepoint of D. Endow the 1-skeleton of D with a path metric p that
gives each edge length 1. The diameter of w is defined by

diam(w) := n}:i)nmax{p(p, q) | q a vertex of D}.
q

The (unreduced) isodiametric function of (A | R) is

U(n):= ‘m‘:ix diam(w).

The ~ equivalence class of ¥ depends only on T' (see [46]) and is denoted Pr .

Isodiametric functions turn out to be as unconstrained in nature as Dehn
functions (3.1.11), see [95]. They can be interpreted in the following purely
algebraic manner.

Proposition 8.1.2 diam(w) = ming max |z;|, where the minimum is taken
over all free equalities of the form

N
_ -1
w = T; TT;.
i=1

Ezercises 8.1.3 (i) Deduce this proposition from the constructions in Section 4.

(i) Use the diagrams constructed in (7.1.3) to show that if a group I' admits a
combing with the asynchronous fellow-traveller property, then ¥r(n) ~n.

(iii) Prove that ¥r < dr for all finitely presented groups.
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Steve Gersten and Daniel Cohen (independently) proved that for any group
one can find constants A, B > 0 such that ér(n) < ABY™ , and it is conjectured
that in reality there is a single exponential bound. The relationship between ¥
and dOr is complicated by the fact that in general the minima in the definitions
of these functions will not be attained on the same family of diagrams: if one
proceeds as in Definition 8.1.1 but quantifies only over least-area diagrams, then
one obtains a function ¥'® that in general is < Ur.

8.1.4 Extrinsic Solutions to the Word Problem. In general, invariants
based entirely on the geometry of van Kampen diagrams cannot give a full and
accurate measure of the complexity of the word problem in a group because there
might exist algorithms that require extrinsic structure that cannot be seen in a
presentation. For example, one can solve the word problem for By = (zg, 21 |
a:flacowl = 2?) in polynomial time by looking at the orbit of % € R under the
action By — Aff(R) described following (3.2.1), and yet dp, (n) ~ 2.

If there is an embedding I' — I into a group whose Dehn function is smaller
than that of I' then one can apply the solution to the word problem in I’ to solve
the word problem in I'. Examples of this phenomena are described in [8], [47]
and [22] page 487. Remarkably, in [13] Birget, Ol’shanskii, Rips and Sapir prove
that such embeddings take full account of the complexity of the word problem
in a precise sense that includes the following statement: the word problem of a
finitely generated group G is an NP problem if and only if G is a subgroup of a
finitely presented group that has a polynomial Dehn function.

8.2 Other Decision Problems

In this article we are concentrating on the word problem, but I should say a few
words about the complexity of the other basic decision problems in group theory.

We fix a group I' with a finite generating set A. In order to solve the word
problem one must decide which words in the letters A*! equal 1 € T. Two
natural generalisations of this problem are:

(1) The Membership Problem (Relative Word Problem). Instead of determining
which words represent elements of the trivial subgroup, one is asked for an al-
gorithm that decides which words represent elements of the subgroup H C T
generated by a specified finite subset of T'.

(2) The Conjugacy Problem. Instead of determining which words represent ele-
ments conjugate to the identity, one is asked for an algorithm that decides which
pairs of words represent conjugate elements of I'.

Just as solving the word problem in I' amounts to finding discs with a spec-
ified boundary loop in a closed manifold M with 7y M = T', so the conjugacy
problem amounts to finding annuli whose boundary is a specified pair of loops
(minimizing the thickness of the annulus corresponds to bounding the length
of the conjugating element). In the same vein, the membership problem cor-
responds to determining which paths can be homotoped (rel endpoints) into a
given subspace of M.
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There are various constructions connecting the word, conjugacy and mem-
bership problems — see [73] and [9]. The following fibre product construction
provides a particularly nice example as it can be modelled readily in geometric
settings.

Ezercise 8.2.1 Let I' = (A | R) be a finitely presented group and let D C
F(A) x F(A) be the subgroup {(w,w') | w = w' inT}. Show that D is
finitely generated. Explain why solving the word problem for T' is equivalent to
solving the membership problem for D. Show that if one cannot solve the word
problem in ' then one cannot solve the conjugacy problem in D. (Hint: Fix
r € R. Given a word w in the generators of F'(A) x {1}, express the element
w ' (r,m)w as a word in your chosen generators of D. When is the word you
have created conjugate to (r,r) in D?)

If T is infinite then the group D in the above exercise is not finitely pre-
sentable (see [57]). For finitely presented examples and variations of a more
geometric nature, see [9].

Remark 8.2.2 The conjugacy problem is considerably more delicate than the
word problem in general. For example, in contrast to the fact that the com-
plexity of the word problem for a group remains essentially unchanged when one
passes to a subgroup or overgroup of finite index (1.3.5), Collins and Miller [32]
constructed pairs of finitely presented groups H C G such that |G/H| = 2 but
H has a solvable conjugacy problem while G does not. They also show that one
can arrange for G to have a solvable conjugacy problem when H does not.

The Isomorphism Problem. Roughly speaking, the isomorphism problem
asks for an algorithm that will decide which finite presentations drawn from a
specified list define isomorphic groups. The difficulty of this problem depends
very much on the nature of the groups being presented. For example, Zlil Sela [96]
proved that if one is given the knowledge that all of the groups being presented
are the fundamental groups of closed negatively curved manifolds, then there is
an algorithm that one can run to decide which of the groups are isomorphic. In
contrast, it is unknown if there exists such an algorithm when one weakens the
curvature condition to allow non-positively curved manifolds. Indeed there are
very few natural contexts in which the isomorphism problem has been solved.
(Note that in order to solve the isomorphism problem in a given class of groups it
is not enough to have an algorithm that determines which presentations give the
trivial group; for example, there is an algorithm to decide whether presentations
of automatic groups determine the trivial group (chapter 5 of [42]) but this does
not lead to a solution of the isomorphism problem in this class of groups.)

The following construction illustrates how HNN extensions can be used to
translate word problems into other sorts of decision problems.
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Ezercise 8.2.3 Let ' = (A | R) be a finitely presented group that is not free.
Suppose that A = {a1,...,a,} where each a; has infinite order in I" (this can
be arranged by replacing I' with T' % Z if necessary). Consider the following
sequence of finite presentations indexed by words w € F/(A):

Gy = {a1,t1,...,0n,tn | R,t;laiti =wfori=1,...,n}.
Show that I'y, is a free group if and only if w =1 in T'.

Assuming that there exists a group with an unsolvable word problem, use this
construction (or a variation on it) to show that there exist (recursive) classes
of finite presentations such that there are no algorithms to decide which of the
groups presented are free, are torsion-free, contain Z* (or any other specified
subgroup), can be generated by 3 elements, or admit a faithful representation
into SL(n,Z).

8.3 Subgroup Distortion

Following Gromov [56], we define the distortion of a pair of finitely generated
groups H C T to be the function p : N — N, where p(n) is the radius of the
set of vertices in the Cayley graph of H that are a distance at most n from
the identity in T'. (One shows that, up to ~ equivalence, this function does not
depend on the choice of generating sets.)

If T has a solvable word problem, then the membership problem for H C T
is solvable if and only if the distortion of H in T' is a recursive function.

Ezamples 8.3.1 (i) If ¢ € GL(r,Z) has an eigenvalue of absolute value greater
than 1, then Z" is exponentially distorted in Z" x4 Z.

(ii) Let G. be as in (3.1.7). In [19] I proved that for all positive integers a > b
the distortion of Gy in G, *(,) Gy, the group formed by amalgamating G, and
G, along their centres, is ~ n%. In [85] Osin proves that one can also obtain
arbitrary positive rational exponents a/b by considering subgroups of finitely
generated nilpotent groups.

(iii) Let Gp,q be as in (3.1.10). In [15] Brady and I proved that the distortion
function of the torus subgroup (a,b) in G, , is equivalent to n®, where o =

log,(2p/q).

Ol’'shanskii and Sapir have established comprehensive results, analogous to
Theorem 3.1.11, concerning the possible distortion functions of finitely presented
subgroups — see [82], [84].

See [22] page 507 for an interpretation of subgroup distortion in terms of
Riemannian geometry as well as a connection between subgroup distortion and
Dehn functions. See [43] for a discussion of relative Dehn functions.

A Geometric Realisations of Finitely Presented Groups

This appendix contains a brief description of some of the basic constructions of
geometric group theory. There are two main (inter-related) strands in geomet-
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ric group theory: one seeks to understand groups by studying their actions on
appropriate spaces, and one seeks understanding from the intrinsic geometry of
(discrete, finitely generated) groups endowed with word metrics. We begin by
introducing the latter approach.

A.1 Finitely Generated Groups and Quasi-Isometries

The following constructions allow one to regard finitely generated groups as
geometric objects.

A.1.1 Word Metrics and Cayley Graphs Given a group I with generating
set A, the first step towards realizing the intrinsic geometry of the group is to
give I' the word metric associated to A: this is the metric obtained by defining
da(71,72) to be the shortest word in the letters A*! that equals y; 42 in T'. The
action of T' on itself by left multiplication gives an embedding T' — Isom(T',d4).
(The action of 79 € G by right multiplication v — 77, is an isometry only if vq
lies in the centre of T'.)

The Cayley graph®® of T' with respect to A, denoted €4 (T'), has vertex set T’
and has an edge connecting v to ya for every v € T and a € A. The edges
of C4(T') are endowed with local metrics in which they have unit length, and
C4(T) is turned into a geodesic space by defining the distance between each pair
of points to be equal to the length of the shortest path joining them.

The word metrics associated to different finite generating sets A and A’
of ' are Lipschitz equivalent, i.e. there exists £ > 1 such that %dA('yl,vg) <
dar(v1,72) < €da(y1,72) for all 71,72 € T'. One sees this by expressing the
elements of A as words in the generators A’ and vice versa — the constant / is
the length of the longest word in the dictionary of translation.

The Cayley graphs associated to different finite generating sets are not home-
omorphic in general, but they are quasi-isometric in the following sense.

Definition A.1.2 A (not necessarily continuous) map f : X — X' between

metric spaces is called a quasi-isometry if there exist constants A > 1,e > 0,C' >
0 such that every point of X' lies in the C-neighbourhood of f(X) and

J(e.y) — € < d(f(). f(3)) < Md(z,9) + ¢

forall z,y € X.

30 This graph was introduced by Arthur Cayley in 1878 to study “the quasi-geometrical”
nature of (in his case, finite) groups. It played an important role in the seminal work of Max
Dehn (1910) who gave it the name Gruppenbild.
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Ezercises A.1.3 (i) If there exists a quasi-isometry X — X' then X and X' are
said to be quasi-isometric. Prove that being quasi-isometric is an equivalence
relation on any set of metric spaces.

(ii) Show that if A and A’ are finite generating sets for ', then (T',d4), Ca (T)
and €4/ (T") are quasi-isometric.

(iii) When is a homomorphism between finitely generated groups a quasi-
isometry?

Since the quasi-isometry type of a finitely generated group does not depend
on a specific choice of generators, statements such as “the finitely generated
group I' is quasi-isometric to the metric space Y” or “the finitely generated
groups I'y and I's are quasi-isometric” are unambiguous.

One may view the inclusion T' — C4(T) in the following light: T acts by
isometries on Cy4(T"), the action of ¢ € T' sending the edge with label a € A
emanating from the vertex v to the edge labelled a emanating from the vertex
Y7y, and I' < C4(T) is the map v + ~-1. This is a simple instance of the
important observation that quasi-isometries arise naturally from group actions
(see [22] page 140).

Proposition A.1.4 (The Svarc-Milnor Lemma) If a group T' acts properly and
cocompactly by isometries on a length space X , then for every choice of basepoint
xg € X the map v — 7v.x¢ is a quasi-isometry.

The fundamental group of any (locally simply-connected) space acts by deck
transformations on the universal covering. If the space is a compact geodesic
space and the universal covering is endowed with the induced length metric ([22]
page 42), then this action is proper, cocompact and by isometries. Thus we have:

Corollary A.1.5 The fundamental group of any closed Riemannian manifold
M s quasi-isometric to the universal covering M .

We note one other corollary of the Svarc-Milnor Lemma:

Corollary A.1.6 If X; and X, are length spaces and there is a finitely-
generated group T that acts properly and cocompactly by isometries on both X4
and X5, then X1 and X5 are quasi-isometric.

Dehn functions behave well with respect to quasi-isometries (see [4] and com-
pare with Proposition 1.3.3 above and pages 143 and 415 of [22]).

Proposition A.1.7 IfT is a finitely presented group and I'" is a finitely gen-
erated group quasi-isometric to I', then I is also finitely presented and the Dehn
functions of T and T’ are ~ equivalent.

By combining this proposition with the preceding corollaries and the Filling
Theorem we obtain:
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Theorem A.1.8 If the universal coverings of two closed, smooth, Rieman-
nian manifolds My and Ms are quasi-isometric, then the isoperimetric functions
Fill)"" and Fill)"? are ~ equivalent.

One can prove this result more directly by following Alonso’s proof of (A.1.7)
using the combinatorial approximation techniques developed in Section 5.

A.2 Realising the Geometry of Finite Presentations

We now focus on finitely presented groups. The following category of complexes
and maps is more rigid than the CW category and lends itself well to argu-
ments such as those that we saw in the section on Van Kampen’s Lemma. The
discussion here follows that of Appendix 1.8.A in [22].

A.2.1 Combinatorial Complexes These complexes are topological objects
with a specified combinatorial structure. They are defined by a recursion on
dimension; the definition of an open cell is defined by a simultaneous recursion.
If K1 and K5 are combinatorial complexes, then a continuous map K; — Ks
is said to be combinatorial if its restriction to each open cell of Ky is a homeo-
morphism onto an open cell of K.

A combinatorial complex of dimension 0 is simply a set with the discrete
topology; each point is an open cell. Having defined (n — 1)-dimensional combi-
natorial complexes and their open cells, one constructs n-dimensional combina-
torial complexes as follows.

Take the disjoint union of an (n — 1)-dimensional combinatorial complex
K™= and a family (ex | A\ € A) of copies of closed n-dimensional discs.
Suppose that for each A € A a homeomorphism is given from dey (a sphere)
to an (n — 1)-dimensional combinatorial complex Sy, and that a combinatorial
map Sy — K1 is also given; let ¢y : ey — K1 be the composition of
these maps. Define K to be the quotient of K™= U [14 ex by the equivalence
relation generated by t ~ ¢y (t) for all A € A and all ¢ € Jey. Then K, with the
quotient topology, is an n-dimensional combinatorial complex whose open cells
are the (images of) open cells in K1) and the interiors of the ey.

In the case n = 2, if the circle S, has k 1-cells then e, is called a k-gon.

A.2.2 The Standard 2-Complex K(A:R) Associated to any group presen-
tation (A | R) one has a 2-complex K = K(A:R) that is compact if and only
if the presentation is finite. K has one vertex and it has one edge ¢, (oriented
and labelled a) for each generator a € A; thus edge loops in the 1-skeleton of
K are in 1-1 correspondence with words in the alphabet A*!: the letter a !
corresponds to traversing the edge ¢, in the direction opposite to its orientation,
and the word w = ay ...a, corresponds to the loop that is the concatenation of
the directed edges aq,...,a,; one says that w labels this loop. The 2-cells e,
of K are indexed by the relations r € R; if » = a;...a, (as a reduced word)
then e, is attached along the loop labelled @ ...a,. The map that sends the
homotopy class of €, to a € T' gives an isomorphism m K(A:R) = ' (by the
Seifert-van Kampen theorem).
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I' acts on the universal covering K of K(A:R) by deck transformations and
there is a natural I'-equivariant identification of the Cayley graph C,4(T") with
the 1-skeleton of K : fix a base vertex vg € I?(A :R), identify v.vg with v, and
identify the edge of C4(T') labelled a issuing from v with the (directed) edge
at v.vp in the pre-image of £,. This identification is label-preserving: for all
words w and all v € I', there is a unique edge-path labelled w beginning at

v € Cx(T) and the image of this path in K is the lift at y.vg of the loop in
K(A:R) labelled w.

Ezercise A.2.3 Prove that if A is finite and w is a reduced word in which
a and o' both occur exactly once, for every a € A, then K = K(A:w) is
obtained from a closed surface by gluing together a finite set of points.

A.3 4-Manifolds Associated to Finite Presentations

Proposition A.3.1 FEwvery finitely presented group is the fundamental group of
a closed 4-dimensional manifold.

We indicate two proofs of this proposition, leaving the details to the reader.

Ezercises A.8.2 (i) Given a presentation (ai,...,an | 71,...,7m), consider
the compact 4-manifold obtained by taking the connected sum W of n copies
of S' x $* and identify m;W with the free group on {ai,...,a,}. Remove
open tubular neighbourhoods about m disjoint embedded loops in W whose
homotopy classes correspond to the relators 7; € myW . Let W' be the resulting
manifold with boundary. Use the Seifert-van Kampen theorem to show that by
attaching m copies of S? x D* to W' along W' one obtains a closed manifold
whose fundamental group is (a1,...,an | T1,...,Tm).

(ii) Show that if n > 4 then one can embed any compact combinatorial 2-
complex in R* by a piecewise linear map. Apply this construction to K(A:R)
and consider the boundary M of a regular neighbourhood. Argue that the
natural map 71 M — (A | R) is an isomorphism if n > 5.

By performing constructions of the above type more carefully one can force
the manifold to have additional structure. For example, in [52] Bob Gompf
proves:

Theorem A.3.3 FEvery finitely presented group is the fundamental group of a
closed symplectic 4-manifold.

A.4 Obtaining Presentations from Group Actions

Whenever one realises a group as the fundamental group of a (semi-locally
simply-connected) space one has the action of the group by deck transforma-
tions on the universal covering of the space. Thus the constructions of K (A :R)
and the manifolds considered above may be viewed as means of constructing
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group actions out of presentations. The following theorem shows that, con-
versely, group actions give rise to presentations.

Theorem A.4.1 Let X be a topological space, let T' be a group acting on X
by homeomorphisms, and let U C X be an open subset such that X =T.U.

(1) If X is connected, then the set S ={y €T |y UNU # 0} generates T.

(2) Let Ag be a set of symbols as indexed by S. If X and U are both path-
connected and X is simply connected, then T = (Ag | R), where

R= ~{aslc152(1;31 | si € S; UNsi.UNs3.U#0; s180 =83 in T}

Corollary A.4.2 If a group T acts by isometries on a complete Riemannian
manifold M, and if every point of M 1is a distance less than r from a certain
orbit T'-p, then T' can be presented as T' = (A | R) where A is the set of elements
a €T such that d(p,y-p) < 2r and R is the set of words in the letters A*! that
have length at most 3 and are equal to the identity in T'.

Proof Apply the theorem with U the open ball of radius r about p. O

The above theorem has a long history. In this form it is due to Murray
Macbeath [68]. See [22] page 136 for a proof and further information.

Ezercises A.4.8 Establish the following geometric characterisation of finitely
presented groups: a group is finitely presented if and only if it acts properly
and cocompactly by isometries on a simply-connected geodesic space.

Give an example to show that part (2) of the above theorem can fail if X is
not simply connected.

B Length Spaces
For the benefit of the reader unfamiliar with non-Riemannian length spaces we
list some of the basic vocabulary of the subject.

Length Metrics.

Definition B.0.1 Let X be a metric space. The length I(c) of a curve c :
[a,b] = X 1is

l(e) = sup Z d(e(ti), e(tiv1)),

a=to<t1<...<tn=>b i=0

where the supremum is taken over all possible partitions (no bound on n) with
a:togtlg...gtn:b.
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I(c) is either a non-negative number or it is infinite. The curve ¢ is said to be
rectifiable if its length is finite, and it is called a geodesic®! if its length is equal
to the distance between its endpoints.

A triangle A in a metric space consists of three points z,y, z (the vertices)
and a choice of geodesic connecting each pair of these points.

A (connected) length space is a metric space X in which every pair of points
z,y € X can be joined by a rectifiable curve and d(z,y) is equal to the infimum
of the length of rectifiable curves joining them; X is called a geodesic space if
this infimum is always attained, i.e. each pair of points x,y € X can be joined
by a geodesic. A general form of the Hopf-Rinow Theorem (see [6] or [22]) states
that if a length space is complete, connected and locally compact, then it is a
geodesic space (and all closed balls in it are compact).

Upper Curvature Bounds. Let M7? denote the complete simply-connected
2-manifold of constant sectional curvature k € R. (If kK = 0 then M? is the
Euclidean plane; if k < 0 then M7 is the hyperbolic plane with the metric
scaled by a factor of 1/y/—k; and if k > 0 then M? is S* with the metric scaled
by 1/VE.

A triangle A in a metric space consists of three points z1, zo, z3 (the vertices)
and a choice of geodesic connecting each pair of these points.

A geodesic space X is said to have curvature < k if every point z € X has
a neighbourhood in which all triangles A satisfy the following property: the
distance from each vertex of A to the midpoint of the opposite side is no greater
than the corresponding distance in a triangle A C M} that has the same edge
lengths as A. This definition is due to A.D. Alexandrov.

We refer the reader to [22] for a comprehensive introduction to (singular)
spaces with upper curvature bounds.

Pull-Back Length Metrics. Let D be a topological space. Associated to any
continuous map f: D — X to a metric space one has the length pseudo-metric
on D: the length of each curve in D is defined to be the length of its image under
f, and the distance between two points of D is defined to be the infimum of the
lengths of paths connecting them. We write (D,dy) to denote the length space
obtained by forming the quotient of this pseudo-metric space by the relation that
identifies points that are a distance 0 apart. In general one can say little about
the underlying space of (D, dy); it certainly need not be homeomorphic to D.
If X is a smooth Riemannian manifold and f : D — X is a least-area disc
with piecewise geodesic boundary, then (D,dy) will be a singular disc and its
curvature will be bounded above by the sectional curvature of X; if flsp is
injective, then (D,d;) will actually be a disc. It can also be that (D,dy) is a
disc when f is not injective, for example if f is the map z — 22 from the unit

31 This differs from the standard usage in differential geometry, where being geodesic is a
local concept. For this reason, some authors use the term “length-minimizing geodesic” in the
context of length spaces.
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disc to the complex plane, then (D, dy) is the metric completion of the connected
2-fold covering of the punctured unit disc.

C A Proof of the Cellulation Lemma

This appendix contains a proof of the following technical result that was needed
in Section 5. Recall that a singular disc is a space homeomorphic to the under-
lying space of a singular disc diagram, as defined in (4.1).

C.0.1 Cellulation Lemma. Let D be a length space homeomorphic to a (per-
haps singular) 2-disc, and suppose that D is e-filled by a set ¥ of cardinality N .
Then there exists a combinatorial 2-complex ®, homeomorphic to the standard
2-disc, and a continuous map ¢ : ® — D such that:

(1) ® has less than 8N faces (2-cells) and each is a k-gon with k < 12;
(2) the restriction of ¢ to each 1-cell in ® is a path of length at most 2¢;

(3) ¢loa is a monotone parameterisation of 0D and XN OD lies in the image
of the 0-skeleton of 0.

For convenience we rescale the metric on D and assume that ¢ = 1. To avoid
complicating the terminology, we also assume that D is a non-singular disc (the
concerned reader will have little difficulty in making the adjustments needed in
the general case). We fix a set ¥ of cardinality N that 1-fills D and define
EOZEHaD and 21 :E\Zo.

C.1 Reducing to the Case of Thin Discs

Our aim in the first stage of the proof is to reduce to the case where ¥ = ¥.
We shall do this by cutting D open along a certain graph whose vertex set has
cardinality less than 2NN and includes Y. To this end, we view 0D as a graph
Go with vertex set g and 1-cells the closures of the connected components of
8D N E(] .

Since every point of the connected space D lies in the 1-neighbourhood of
3, the open neighbourhoods of radius 1 about ¥y and X; cannot be disjoint.
Hence there exists s € ¥ and s’ € £y with d(s,s’) < 2. Choose a geodesic
[s,s'] and consider a minimal subarc [s,v] with v € §5. We augment G, (which
is D subdivided) by adding s and v as vertices and adding [s,v] as a new edge
(if v is not a vertex of Gy then its introduction will also subdivide one of the
existing edges). Call the new graph Gf and define X = Xy U {s}.

By repeating the above argument with X in place of X, and §j in place
of Gp, we obtain a connected graph with at most |Xo| 4+ 4 vertices including X
and two elements of ¥;. We iterate this argument a further |¥;| — 2 times to
obtain a connected graph G whose vertex set consists of ¥ and at most 2|X;|
other vertices; the important point is that this graph has less than 2N vertices in
total, and less than 2N edges. Note that the edges of G all have length at most
2, that E := D ~ G is homeomorphic to an open 2-disc, and that 7" := G\ 9D
is a forest (i.e. it is simply-connected, but not necessarily connected).
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We now focus our attention on E, which we endow with the induced path
metric from D. Let A be the space obtained by completing this metric. A
is homeomorphic to a 2-disc; intuitively speaking, it is obtained by cutting D
open along the branches of T' (cutting along each edge of T' forms two edges
in the boundary of A). The inclusion E — D extends continuously to a map
m: A — D that preserves the lengths of all curves and sends (a monotone pa-
rameterization of) dA onto the boundary cycle of E in G; we endow 9A with
the combinatorial structure induced from this identification. Thus A is a topo-
logical 2-disc endowed with a length metric such that 0A is the concatenation
of less than 4N geodesic segments, each of length at most 2. Moreover, every
point of A is a distance at most 1 from OA. This completes the first stage of
the proof.

Definition C.1.1 A singular disc of weight n consists of a singular disc A
and n distinguished points (vertices) x1 = f(t1),...,2n = f(tn) in cyclic order
on the boundary cycle f : S' — OA; the restriction of f to the arc joining t; to
tiy1 (indices mod n) is required to be a geodesic of length at most 2; the images
of these arcs are called facets. A is said to be thin if every point is a distance
less than 1 from OA.

A partition of A is a continuous map ¢ : ® — A, where ® is a combinatorial
2-complex that is homeomorphic to the standard disc and ¢|pe is a monotone
parameterisation of f sending vertices to vertices and edges to facets.

® is called a k-partition if each of its 2-cells is an m-gon with m < k. And ®
is said to be admissible if the restriction of ¢ to each 1-cell in ® is a path of
length at most 2. The area of ® is the number of 2-cells in ®.

The final stage in the proof of the Cellulation Lemma is:

Proposition C.1.2 If k > 12, then every thin singular disc of weight n admits
a k-partition of area at most 2n — 8.

Before turning to the proof of this proposition, let us see how it implies the
Cellulation Lemma.

End of the proof of the Cellulation Lemma. In the first stage of the proof
we showed that if a disc can be e-filled with a set of cardinality N then one can
construct in D a graph § with at most 2NV vertices so that the edges of the
graph have length less than 2¢ and the space obtained by cutting D open along
the forest T = G\ 0D is a thin disc X of weight less than 4N. The natural
map 7 : A — D is length-preserving.

The above proposition furnishes a 12-partition ¢ : ®9 — A of area at most
8N — 8. Define ® to be the combinatorial complex obtained by taking the
quotient of @' by the equivalence relation that identifies the pair of edges in
the pre-image of each edge of T' in the obvious manner. ® is a disc whose area
(number of 2-cells) is the same that of ®;. The map ¢ : ® — D induced by
mo ¢y Pg — D satisfies the requirements of the Cellulation Lemma. (I
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C.2 Surgery on Thin Discs

We shall prove Proposition C.1.2 by induction on n, the weight of the singular
disc being filled. In this induction we shall need the following surgery operation.

Let A be a singular disc of weight n with boundary cycle f : S! — 0A.
Given two vertices z,y € OA one can cut A along a geodesic [z,y] to form two
new singular discs. To do this, first note that one can choose [z,y] so that its
intersection with each facet of OA is a single arc, because given the first and
last points of intersection of an arbitrary geodesic [z,y]" with a facet, one can
replace the corresponding subarc of [z,y]" with a subarc of the facet. Having
chosen [z,y] in this way, express y as f(t) and proceed in the positive direction
around S! from ¢ to the first value ¢ such that f(¢') = x; let a denote this arc
from ¢ to ¢’ and call the complementary arc §'.

The first of the two singular sub-discs into which we cut A is that whose
boundary cycle is the concatenation of f|, and [z,y]. The boundary cycle of
the second sub-disc is the concatenation of f|s and [y,z]. We subdivide [z, y]
into the minimal possible number of sub-arcs of length less than 2 and define
these sub-arcs to be facets of our two new singular discs.

The reader should have no difficulty in verifying:

Lemma C.2.1 In the notation of the preceding paragraph: if A is thin then
the singular discs obtained by surgery are thin; and if d(x,y) < 4, then the sum
of the weights of the new singular discs is at most n + 4.

In the course of the proof of Proposition C.1.2 we shall require the following
fact.

Ezercise C.2.2 Let X = Uy UU; UUs U Uy be a metric space. Assume that
each of the sets U; is path-connected, that d(U;,U;) > 0 when |i — j| = 2, and
that U; NU; # 0 otherwise. Construct a surjective homomorphism m; X — Z.
(Hint: Consider the map to R/Z that is constant on X \ U, and is given on
U2 by g = d(I, Ul)/(d(ac, Ul) =+ d(I, Us)) )

The Proof of Proposition C.1.2. Let A be a singular disc of weight n that
is thin. We proceed by induction on n. If n < k there is nothing to prove.

Assuming n > 12, we express the boundary cycle f : S' — A as the concate-
nation of four subpaths, namely the first three facets taken together, the next
three facets, then the next three, and then the remaining n — 9 facets. Define
Uy,U;,Us, Uy to be the closed neighbourhoods of radius 1 about the images of
these four arcs. The union of these neighbourhoods is the whole of A (because
it is assumed to be thin). The U; cannot satisfy the hypotheses of the preced-
ing exercise because A is simply connected. Therefore U; N U; # 0 for some
i—j = 2. (Here we need the fact that the metric on A is a path metric in order
to know that the U; are path-connected.)

Since U; and Uj intersect, one of the vertices along our i-th arc, say =z, is
a distance at most 4 from one of the vertices along our j-th arc, say y. We
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separate A by surgery along [z, y]. Because all four of our sub-arcs contained at
least 3 facets, and because we need only divide [z, y] into two facets, the weights
n' and n” of the new singular discs A’ and A" obtained by surgery are both
strictly less than n. Also (see the lemma) n' +n” < n + 4.

By induction, there exist admissible k-partitions & — A’ and " — A"
whose areas are at most 2n’ — 8 and 2n” — 8 respectively. Let ® be the combi-
natorial disc obtained by gluing ®’ and ®" along the pre-images of [z, y] in the
obvious manner. The given maps ® — A’ and ®"” — A’ define an admissible
k-partition ® —+ A whose area is the sum of the areas of ® and ®”. In partic-
ular the area of ® is at most 2(n’ +n"") — 16 < 2(n+4) — 16 = 2n — 8, so the
induction is complete. O

The bound k& > 12 in Proposition C.1.2 can be improved at the expense of
complicating the proof.
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