
1The geometry of the word problem
Martin R. BridsonIntrodutionThe study of deision problems in group theory is a subjet that does not im-pinge on most geometers' lives { for many it remains an apparently arane regionof mathematis near the borders of group theory and logi, ehoing with talkof omplexity and undeidability, devoid of the light of geometry. The studyof minimal surfaes, on the other hand, is an immediately engaging �eld thatombines the shimmering appeal of soap �lms with intriguing analytial prob-lems; Plateau's problem has a partiularly intuitive appeal. The �rst purpose ofthis artile is to explain that despite this sharp ontrast in emotions, the studyof the large sale geometry of least-area diss in Riemannian manifolds is inti-mately onneted with the study of the omplexity of word problems in �nitelypresented groups.Joseph Antoine Ferdinand Plateau was a Belgian physiist who, in 1873, pub-lished a stimulating aount of his experiments with soap �lms [90℄. The questionof whether or not every reti�able Jordan loop in 3-dimensional Eulidean spaebounds a dis of minimal area subsequently beame known as Plateau's Problem.This problem was solved by Jesse Douglas [37℄ and Tibor Rad�o [91℄ (indepen-dently) around 1930. In 1948 C.B. Morrey [75℄ extended the results of Douglasand Rad�o to a lass of spaes that inludes the universal overing of any losed,smooth Riemannian manifold M .One one knows that least-area diss exist in this generality, numerous ques-tions ome to mind onerning their loal and global geometry (f. [79℄, [86℄, and[71℄). The questions on whih we shall fous in this artile onern the large-salegeometry of these diss: Can one bound the area of least-area diss in M by afuntion of the length of their boundaries? If so, what is the least suh funtion?What happens to the asymptoti behaviour of this funtion when one perturbsthe metri or varies M within its homotopy type? What an one say about thediameter of least-area diss? et.Remarkably, these questions turn out to be intimately onneted with thenature of the word problem in the fundamental group of M , i.e. the problem ofdetermining whih words in the generators of the group equal the identity. Themost important and striking onnetion of this type is given by the Filling The-The author's researh is supported by an EPSRC Advaned Fellowship



2 M.R. Bridsonorem in Setion 2: the smallest funtion FillM0 (l) bounding the area of least-areadiss in terms of their boundary length has qualitatively the same asymptotibehaviour1 as the Dehn funtion Æ�1M (l) of the fundamental group of M .The Dehn funtion of a �nitely presented group � = hA j Ri measures theomplexity of the word problem for � by giving the least upper bound on thenumber of de�ning relations r 2 R that must be applied in order to show thata word w in the letters A�1 is equal to 1 2 �; the bound is given as a funtionof the length of w (see Paragraph 1.2).The �rst purpose of this artile is to give a thorough aount of the FillingTheorem. The seond purpose of this artile is to sketh the urrent state ofknowledge onerning Dehn funtions. Thus, in Setion 3, I shall explain whatis known about the set of ' lasses of Dehn funtions (equivalently, isoperimetrifuntions FillM0 of losed Riemannian manifolds), and I shall also desribe what isknown about the Dehn funtions of various groups that are of geometri interest.In later setions we shall see a variety of methods for alulating Dehn funtions(some geometri, some algebrai, and some purely ombinatorial). Along theway we shall see examples of how the equivalene Æ�1M ' FillM0 an inform inboth diretions (f. (2.2) and Setion 6).Historial Bakground. The preise equivalene between �lling funtions ofmanifolds and omplexity funtions for word problems is a modern observationdue to Mikhael Gromov, but this onnetion sits omfortably with the geometriorigins of ombinatorial group theory.Topology and ombinatorial group theory emerged from the same irle ofideas at the end of the nineteenth entury. By 1910 Dehn had realized thatthe problems with whih he was wrestling in his attempts to understand low-dimensional manifolds were instanes of more general group-theoreti problems.In 1912 he published the elebrated paper in whih he set forth the three basideision problems that remained the main fous for ombinatorial group theorythroughout the twentieth entury:\The general disontinuous group is given by n generators andm relations between them. [. . . ℄ Here there are above all three fun-damental problems [. . . ℄1: [The Word Problem℄ An element of the group is given as a produtof generators. One is required to give a method whereby it may bedeided in a �nite number of steps whether this element is the identityor not. [2: The Conjugay Problem. 3: The Isomorphism Problem℄One is already led to them by neessity with work in topology.Eah knotted spae urve, in order to be ompletely understood, de-mands the solution of the three above problems in a speial ase.2"1More preisely, FillM0 is ' equivalent to Æ�1M in the sense of 1.3.2.2The speial ases referred to here were not resolved fully until the early 1990s, and theirultimate solution rested on some of the deepest geometry and topology of the time, in partiularthe work of Thurston on the geometri nature of 3-manifolds.



The geometry of the word problem 3In the present artile I shall onentrate almost exlusively on the word prob-lem, but in Setion 8 I shall explain onstrutions that translate the omplexityof word problems into onjugay problems and isomorphism problems. Thesebasi deision problems are all unsolvable in the absene of further hypotheses(see [72℄ for a survey of these matters) and in the spirit of Dehn's omments Ishould note that this undeidability has onsequenes for the study of manifolds.For example, the undeidability of the isomorphism problem for groups impliesthat there is no algorithm to reognise whether or not a losed 4-manifold (givenby a �nite triangulation, say) is homeomorphi to the 4-sphere [70℄.Despite Dehn's early inuene, the geometri vein in ombinatorial group the-ory laked prominene for muh of the twentieth entury (see [30℄ for a historyup to 1980). A striking example of this neglet onerns a paper [61℄ writtenby E.R. van Kampen in 1931 whih seems to have gone essentially unnotieduntil redisovered3 by C. Weinbaum in the 1960s, just after Roger Lyndon [65℄redisovered the paper's main idea. This idea translates many questions on-erning word problems into questions onerning the geometry of ertain planar2-omplexes alled van Kampen diagrams (see Setion 4). This translation atsas a link between Riemannian �lling problems and word problems. The work ofGromov [55℄, [56℄ gave full voie to the impliations of this link. In the deadesine Gromov's foundational work there has been a great deal of ativity in thisarea and I hope that when the reader has �nished the present artile (s)he willhave absorbed a sense of this ativity and its ahievements.Contents. I have written this artile with the intention that it should be aes-sible to graduate students and olleagues working in other areas of mathematis.It is organised as follows. In Setion 1 we shall see how a naive head-on approahto the word problem leads to the de�nition of the Dehn funtion of a group. InSetion 2 we introdue the 2-dimensional, genus-0 isoperimetri funtion of alosed Riemannian manifold M and state the theorem relating it to the Dehnfuntion of �1M ; the proof of this theorem is postponed until Setion 5. Thistheorem is generally regarded as folklore { its validity has been assumed impli-itly in many papers, but the absene of a detailed proof in the literature hasbeen the soure of omment and disquiet. The proof given here is self-ontained.It is based on the notes from my letures at the onferenes in Durham, Lyonand Champoussin in the spring and summer of 1994. Jos�e Burillo and JenniferTabak [26℄ have suggested an alternative proof, motivated by arguments in [42℄.Both proofs rely on van Kampen's Lemma, whih is proved in omplete detailin Setion 4.Setion 3 ontains a brief survey desribing the urrent state of knowledgeabout the nature of Dehn funtions for groups in general as well as groups thatare of partiular geometri interest. We shall not prove the results in this setion,but several of the key ideas involved are explained in subsequent setions.3Van Kampen's artile was next to the one in whih he proved the Seifert-van KampenTheorem.



4 M.R. BridsonSetion 6 ontains information about the lasses of groups whose Dehn fun-tions are linear or quadrati. We shall see that having a linear Dehn funtion isa manifestation of negative urvature. We shall also see that non-positive ur-vature is related to having a quadrati Dehn funtion, although the onnetionis muh weaker than in the linear ase.The �nal setion of this paper ontains a brief disussion of di�erent measuresof omplexity for the word problem, as well as onstrutions relating the wordproblem to the other basi deision problems of group theory.There are three appendies to this paper. The �rst ontains a desription ofsome basi onepts in geometri group theory { this is inluded to make thearguments in the main body of the paper aessible to a wider audiene. Theseond appendix desribes some of the basi voabulary of length spaes. Thethird appendix ontains the proof of a tehnial result onerning the geometryof ombinatorial diss; this result, whih is original, is needed in Setion 5.Exerises are sattered throughout the text, some are routine veri�ations,some lead the diligent reader through proofs, and others are hallenges intendedto entie the reader along fruitful tangents.This artile is dediated with deep a�etion to my tutor and friend BrianSteer. Between 1983 and 1986 Brian transformed me into a budding mathemati-ian and thereby determined the ourse of my adult life.
Setion 1: The Word ProblemSetion 2: The Isoperimetri Funtion FillM0 of a ManifoldSetion 3: Whih Funtions are Dehn Funtions?Setion 4: Van Kampen DiagramsSetion 5: The Equivalene FillM0 ' Æ�1MSetion 6: Linear and Quadrati Dehn FuntionsSetion 7: Tehniques for Establishing Isoperimetri InequalitiesSetion 8: Other Deision Problems and Measures of ComplexityAppendix A: Geometri Realisations of Finitely Presented GroupsAppendix B: Length SpaesAppendix C: A Proof of the Cellulation Lemma



The geometry of the word problem 51 The Word ProblemThe purpose of this �rst setion is to indiate why Dehn funtions are funda-mental to the understanding of disrete groups.1.1 Presenting Groups that Arise in NatureSuppose that one wishes to understand a group � that arises as a group oftransformations of some mathematial objet, for example isometries of a metrispae. Typially, one might be interested in the group generated by ertain basitransformations A = fa1; : : : ; ang. One then knows that arbitrary elements of �an be expressed as words in these generators and their inverses, but in order togain a real understanding of the group one needs to know whih pairs of wordsw;w0 represent the same element of �, i.e. when w�1w0 = 1 in �. Words thatrepresent the identity are alled relations.Let us suppose that the ontext in whih our group arose is suh that we anidentify at least a few relations R = fr1; : : : ; rmg. How might we use this list todedue that other words represent the identity?If a word w ontains r 2 R or its inverse as a subword, say4 w = w1r�1w2 ,then we an replae w by the shorter word w0 = w1w2 , knowing that w0 andw represent the same element of �. More generally, if r an be broken into(perhaps empty) subwords r � u1u2u3 and if w � w1u�12 w2 , then one knowsthat w0 � w1(u3u1)�1w2 equals w in �. Under these irumstanes5 one saysw0 is obtained from w by applying the relator r .If we an redue w to the empty word by applying a sequene of relatorsr 2 R, then we will have dedued that w = 1 in �. If suh a sequene anbe found for every word w that represents the identity { in other words, everyrelation in the group an be dedued from the set R { then the pair6 hA j Ri isalled a presentation of �, and one writes7 � = hA j Ri.1.2 Attaking the Word Problem Head-OnA solution to the word problem in � is an algorithm that will deide whihelements of the group represent the identity and whih do not. If one an boundthe number of relators that must be applied to a word w in order to show thatw = 1, and this bound an be expressed as a omputable funtion of the lengthof w , then one has an e�etive solution to the word problem. In order to quantifythis idea preisely, one works with equalities in the free group F (A).Suppose that w0 = w1(u3u1)w2 has been obtained from w = w1u�12 w2 byapplying the relator r � (u1u2u3)�1 . In � we have w = w0 , while in the free4We write = for equality in the free group, and � when words are atually idential.5At this point we are viewing words as elements of the free group F (A), so impliitly weallow the insertion and deletion of subwords of the form aa�1 .6 If R = fr1; r2; : : :g , one often writes hA j r1 = 1; r2 = 1; : : :i instead of hA j Ri , parti-ularly when this reates a desirable emphasis. Likewise, one may write hA j u1 = v1; u2 =v2; : : :i , where ri � uiv�1i .7To assign a name to a presentation, P say, one writes P � hA j Ri .



6 M.R. Bridsongroup F (A) we have:w � w1u�12 w2 free= (x�11 rx1) w1u3u1w2 � (x�11 rx1) w0;where x1 := u�13 w�11 . If w00 is a word obtained from w0 by applying a furtherrelator r0 , then there is an equality of the form w free= (x�11 rx1) (x�12 r0x2) w00 .Proeeding in this manner, if we an redue w to the empty word by applyinga sequene of N relators from R, then we will have an equality8w free= NYi=1x�1i rixi; (1.2.1)where ri 2 R�1 and xi 2 F (A).Thus we see that when one attaks the word problem head-on by simplyapplying a list of relators to a word w , one is impliitly expressing w as a produtof onjugates of those relators. The ease with whih one an expet to identifysuh an expression for w will vary aording to the group under onsideration,and in partiular will depend very muh on the number N of fators in a leastsuh expression.De�nition 1.2.2 Given a �nite presentation P � hA j Ri de�ning a group �,we say that a word w in the letters A�1 is null-homotopi if w =� 1, i.e. wlies in the normal losure of R in the free group F (A). We de�ne the algebraiarea of suh a word to beAreaa(w) := minfN j w free= NYi=1x�1i rixi with xi 2 F (A); ri 2 R�1g:The Dehn funtion of P is the funtion ÆP : N ! N de�ned byÆP (n) := maxfAreaa(w) j w =� 1; jwj 6 ng;where jwj denotes the length of the word w .1.3 The Dehn Funtion of a GroupSine we are really interested in groups rather than partiular �nite presenta-tions of them, we would like to talk about the Dehn funtion of � rather thanof P . The following exerise illustrates how the Dehn funtions of di�erentpresentations of a group may vary.Exerise 1.3.1 Show that the Dehn funtion of ha j ;i is Æ(n) � 0 and the Dehnfuntion of ha; b j bi is Æ(n) = n . For eah positive integer k �nd a presentationof Z with Dehn funtion Æ(n) = kn .8This equality shows in partiular that � = hA j Ri i� the kernel of the natural mapF (A)! � is the normal losure of R .



The geometry of the word problem 7De�nition 1.3.2 Two funtions f; g : [0;1)! [0;1) are said to be ' equiv-alent if f � g and g � f , where f � g means that there exists a onstant C > 0suh that f(l) 6 C g(Cl + C) + Cl + C for all l > 0.One extends this equivalene relation to funtions N ! [0;1) by assuming themto be onstant on eah interval [n; n+ 1).The relation ' preserves the asymptoti nature of a funtion. For example,if p > 1 then np 6' np logn, and np ' nq implies q = p; likewise, np 6' 2n and22n 6' 2n . But ' identi�es all polynomials of the same degree, and likewise allsingle exponentials (kn ' Kn for all onstants k;K > 1).Proposition 1.3.3 If the groups de�ned by two �nite presentations are iso-morphi, the Dehn funtions of those presentations are ' equivalent.Proof First we onsider what happens when we add redundant relators R0 toa �nite presentation P � hA j Ri. Let P 0 � hA j R [ R0i. To say that thenew relators r 2 R0 are redundant means that eah an be expressed in the freegroup F (A) as a produt �r of (say mr ) onjugates of the old relators R�1 .Let m be the maximum of the mr .If a word w 2 F (A) is a produt of N onjugates of relators from R [ R0and their inverses, then by substituting �r for eah ourrene of r 2 R0 in thisprodut we an rewrite w (freely) as a produt of at most mN onjugates ofthe relators R�1 . Sine it is obvious that the area of w with respet to P 0 isnot greater than its area with respet to P , we have ÆP 0(n) 6 ÆP (n) 6 mÆP 0(n)for all n 2 N . Hene ÆP ' ÆP 0 .Next we onsider what happens when we add �nitely many generators andrelators to P . Suppose that we add generators B, and add one relator bu�1bfor eah b 2 B, where ub is a word in F (A) that equals b in the group beingpresented. Let P 00 be the resulting presentation. Let M be the maximum ofthe lengths of the words ub .Given a null-homotopi word w 2 F (A [B), we �rst apply the new relatorsto replae eah ourrene of eah letter b 2 B with the word ub . The result is aword in F (A) that has length at most M jwj, and this word may be redued tothe empty word by applying at most ÆP (M jwj) relators from R. Thus ÆP 00 � ÆP .We laim that ÆP (n) 6 ÆP 00(n) for all n 2 N . To prove this laim we mustshow that if a word w 2 F (A) an be expressed in F (A[B) as a produt � of atmost N onjugates of the given relators, then it an also be expressed in F (A)as a produt of at most N onjugates of the relators R�1 . To see that this is thease, one simply looks at the image of � under the retration F (A[B)! F (A)that sends eah b 2 B to ub .In general, given two �nite presentations P1 � hA j Ri and P2 � hB j R0i ofa group G, one onsiders the presentation of G that has generators A [B andrelators R;R0; fbu�1b j b 2 Bg and fav�1a j a 2 Ag, where ub (respetively va ) isa word in F (A) (respetively F (B)) that equals b (respetively a) in G. The



8 M.R. Bridson�rst two steps of the proof imply that the Dehn funtion of this presentation isequivalent to that of both P1 and P2 . �The �rst detailed proof of (1.3.3) in the literature is due to Steve Gersten[45℄. A more general result given in Appendix B (Proposition A.1.7) lends ageometri perspetive to the equivalene in (1.3.3).Isoperimetri Inequalities and Æ� . In the light of the preeding propositionwe may talk of \the" Dehn funtion of a �nitely presented group �, denoted Æ� ,with the understanding that this is only de�ned up to ' equivalene.One says that � satis�es a quadrati isoperimetri inequality if Æ�(n) � n2 .Linear (also polynomial, exponential, et.) isoperimetri inequalities are de�nedsimilarly.A �nitely generated group is said to have a solvable word problem if there isan algorithm that deides whih words in the generators represent the identityand whih do not. Readers who are familiar with the rudiments of deidabilityshould treat the following statement as an exerise, and those who are not maytreat it as a de�nition.Proposition 1.3.4 A �nitely presentable group � has a solvable word problemif and only if the Dehn funtion of every �nite presentation of � is omputable(i.e. is a reursive funtion).Exerise 1.3.5 Two groups are said to be ommensurable if they have iso-morphi subgroups of �nite index. Dedue from the Filling Theorem (Setion2) that the Dehn funtions of ommensurable �nitely-presented groups are 'equivalent. (Hint: Use overing spaes.)The reader might �nd it instrutive to investigate how awkward it is to provethis fat algebraially.
2 The Isoperimetri Funtion FillM0 of a ManifoldLet M be a losed, smooth, Riemannian manifold. In this setion we shalldesribe the �lling funtion FillM0 and its relationship to the Dehn funtion ofthe fundamental group of M .2.1 The Filling TheoremLet D be a 2-dimensional dis and let S1 be its boundary irle. Let M be asmooth, omplete, Riemannian manifold. Let  : S1 !M be a null-homotopi,reti�able loop and de�ne FArea() to be the in�mum of the areas9 of all Lip-shitz maps g : D ! X suh that gj�D is a reparameterization10 of . If this9The situations that we shall be onsidering are suÆiently regular as to render all standardnotions of area equivalent; for de�niteness one ould take 2-dimensional Hausdor� measure, orthe notion of (Lebesgue) area in spaes with upper urvature bounds introdued by Alexandrov[1℄ and re�ned by Nikolaev (see [11℄ and [22℄ page 425).10When working with �lling problems it is usually better to onsider loops that are equivalentin the sense of Frehet, but this tehniality will have no bearing here.



The geometry of the word problem 9in�mum is attained by a (not neessarily injetive) map f : D !M then, blur-ring the question of reparameterization, we say that f is a least-area �lling ofthe loop  = f j�D , or simply that f is a least-area dis.If M is the universal overing of a losed manifold, then the existene of least-area diss (for embedded loops) is guaranteed by Morrey's solution to Plateau'sproblem [75℄.De�nition 2.1.1 Let M be a smooth, omplete, Riemannian manifold. Thegenus zero, 2-dimensional, isoperimetri funtion of M is the funtion [0;1)![0;1) de�ned byFillM0 (l) := supfFArea() j  : S1 !M null-homotopi, length() 6 lg:One of the main purposes of this artile is to provide a detailed proof of thefollowing fundamental equivalene:2.1.2 Filling Theorem. The genus zero, 2-dimensional isoperimetri funtionFillM0 of any smooth, losed, Riemannian manifold M is ' equivalent to theDehn funtion Æ�1M of the fundamental group of M .Remark 2.1.3 A similar statement holds with regard to isoperimetri funtionsof more general lasses of spaes with upper urvature bounds (in the sense ofAlexandrov [22℄) but we shall not dwell on this point as we do not wish to obsurethe main ideas with the tehnialities required to set-up the required de�nitions.Nevertheless, in our proof of the �lling theorem we shall make a point of iso-lating the key hypotheses so as to render these generalisations straightforward(f. 5.2.2). In partiular we avoid using any fats onerning the regularity ofsolutions to Plateau's problem in the Riemannian setting.We postpone the proof of the Filling Theorem to Setion 5, but we take amoment now to remove a onern about the de�nition of FillM0 : a priori thesupremum in the de�nition of FillM0 (l) ould be in�nite for ertain values of leven if M is ompat, but in fat it is not.Lemma 2.1.4 If M is ompat, the sup in the de�nition of FillM0 (l) is �nitefor all l > 0.Proof If the setional urvature of M is bounded above by k > 0 then anynull-homotopi loop in M of length l < 2�=pk bounds a dis whose area is atmost the area A(k; l) of the dis enlosed by a irle of length l on the sphereof onstant urvature k . Indeed Reshetnyak [93℄ proved that this bound holdsin any omplete geodesi spae of urvature 6 k (f. appendix to [71℄).Let � > 0 be less than the injetivity radius of M , �x a �nite set S so thatevery point of M lies in the �=3-neighbourhood of S and let ex;x0 : [0; 1℄! Mbe the onstant speed geodesi joining eah x; x0 2 S with d(x; x0) < �.Given any onstant-speed loop  : [0; 1℄ ! M , one an assoiate to it theonatenation ̂ = ex0;x1 : : : exn;x0 where n is the least integer greater than3l()=� and xi 2 S is suh that d(xi; (i=n)) < �=3 (f. �gure 5.1.2).



10 M.R. BridsonBy onstrution, jFArea()� FArea(̂)j 6 nA(k; 2�) and l(̂) 6 3l() + �. Itfollows that the ' lass FillM0 remains unhanged if instead of quantifying overall reti�able loops  one quanti�es only over loops that are onatenations ofthe loops ex;x0 . For all L > 0, there are only �nitely many suh edge-loops oflength 6 L, so in partiular FillM0 (l) is �nite for all l . �Remark 2.1.5 The redution to pieewise-geodesi loops in the above proofexempli�es the fat that if one is onerned only with the ' lass of FillM0 thenthere is no harm in restriting one's attention to well-behaved sub-lasses ofreti�able loops.2.2 Filling in Heisenberg GroupsThe results desribed in this paragraph are due to Mikhael Gromov. We presentthem here in order to give an immediate illustration of how one an exploit theequivalene FillM0 ' Æ�1M .Let n = 2m + 1. The n-dimensional Heisenberg group Hn is the group of(m+ 1)-by-(m+ 1) real matries of the form:0BBBBB�
1 x1 : : : xm�1 z0 1 0 0 y1... ... ...0 0 : : : 1 ym�10 0 : : : 0 1

1CCCCCA :
Hn is a nilpotent Lie group. Its Lie algebra L is generated by X1; : : : ; Xm�1 ,Y1; : : : ; Ym�1; Z = Xm = Ym with relations [Xi; Yj ℄ = [Xi; Xj ℄ = [Yi; Yj ℄ = 0for all i 6= j and [Xi; Yi℄ = Z for i = 1; : : : ;m � 1. There is a natural gradingL = L1 � L2 , where L2 is spanned by Z and L1 is spanned by the remainingXi and Yi .The translates of L1 by the left ation of Hn form a sub-bundle T1 of thetangent bundle of Hn . (This odimension-1 sub-bundle gives the standard on-tat struture on Hn .) A urve or surfae mapped to Hn is said to be horizontalif it is di�erentiable almost everywhere and its tangent vetors lie in T1 . Everysmooth urve  in Hn an be approximated by a horizontal urve whose lengthis arbitrarily lose to that of . The question of whether every horizontal loopbounds a horizontal dis (\the horizontal �lling problem") is deliate, and it ishere that we �nd a onnetion with Dehn funtions.The following result is an appliation of the theory developed by Gromov inSetion 2.3.8 of his book on partial di�erential relations [54℄ and is explained onpage 85 of [56℄.Proposition 2.2.1 If every horizontal loop in Hn an be �lled with a horizon-tal dis, then FillHn0 (l) ' l2 .The idea of the proof is as follows. First one must argue that there is aonstant C suh that any urve of length 6 1 an be �lled with a horizontal



The geometry of the word problem 11dis of area at most C . Then one onsiders the 1-parameter family of maps ht =exp Æ�t Æ exp�1 : Hn ! Hn , where the Lie-algebra homomorphism �t : L ! Lis multipliation by t 2 [0; 1℄ on L1 and by t2 on L2 . Note that ht multipliesthe length of horizontal urves by t and the area of horizontal diss by t2 .Given a horizontal loop  : S1 ! Hn of length l > 1, we onsider h1=l Æ .One an �ll this horizontal loop of length 1 with a horizontal dis f0 : D ! Hnof area at most C and hene obtain a horizontal dis f := h�11=l Æf0 of area 6 Cl2that �lls . Sine arbitrary loops an be approximated by horizontal loops, itfollows that Hn satis�es a quadrati isoperimetri inequality.The integer Heisenberg group Hn onsists of those matries in Hn that haveinteger entries. The subgroup Hn � Hn is disrete, torsion-free and oompat,hene M := HnnHn is a ompat Riemannian manifold with universal overingHn , and ÆHn ' FillM0 = FillHn0 .Gromov proves that the horizontal �lling problem is solvable in Hn if andonly if n > 5. It therefore follows11 from the Filling Theorem and the aboveproposition that the integral Heisenberg group Hn has a quadrati Dehn funtionif n > 5. On the other hand, it is not hard to show by various ombinatorialmeans (see 3.1.4 and 3.3.1 below) that the Dehn funtion of H3 is ubi, sofrom the Filling Theorem and the above proposition one gets a proof of theeasier \only if" impliation in Gromov's theorem: H3 ontains horizontal loopsof �nite length that annot be �lled with a horizontal dis.3 Whih Funtions are Dehn Funtions?The most fundamental question onerning isoperimetri inequalities for �nitelypresented groups is that of determining whih ' equivalene lasses of funtionsarise as Dehn funtions. The struggle to solve this question was a major themein geometri group theory in the 1990s. In this setion I shall explain why thisstruggle is almost over. I shall also desribe what is known about the Dehnfuntions of ertain groups that are of speial interest in geometry and topology.Setion 7 ontains a sample of the tehniques that were developed to establishthe results quoted in the present setion.3.1 The Isoperimetri SpetrumThe development of knowledge onerning the nature of Dehn funtions is bestexplained in terms of how the set of numbersIP = f� 2 [1;1) j f(n) = n� is ' a Dehn funtiongame to be understood. This set is alled the isoperimetri spetrum.Sine there are only ountably many �nite presentations of groups, Proposi-tion 1.3.3 implies that there are only ountably many ' lasses of Dehn fun-11For a self-ontained proof along these lines see Allok [2℄. More reently, a purely ombi-natorial proof has been disovered by Ol'shanskii and Sapir [83℄.



12 M.R. Bridsontions. Thus, intriguingly, IP is a naturally arising ountable set of positivenumbers.Integer Exponents. In Setion 6 we shall disuss the lass of groups that havelinear Dehn funtions. The following exerises desribe the simplest examplesfrom this lass.Exerises 3.1.1 (i) Finite groups and free groups have linear Dehn funtions.(ii) Let H 2 denote the hyperboli plane. There is a onstant C > 0 suh thatfor all l > 1, eah loop in H 2 of length 6 l bounds a dis of area 6 Cl .(iii) Every �nitely generated group that ats properly by isometries on H 2 hasa linear Dehn funtion. (Hint: If the ation is oompat you an use (ii). Ifthe ation is not oompat, argue that the group must have a free subgroupof �nite index.)In Setion 6 we shall also desribe what is known about the lass of groupsthat have quadrati Dehn funtions. Finitely generated abelian groups providethe easiest examples in this lass.Example 3.1.2 The Dehn funtion of P � ha; b j [a; b℄i is quadrati. Morepreisely, (l2 � 2l � 3) 6 16 ÆP (l) 6 l2 , the upper bound being attained in thease of words of the form a�nb�nanbn .Exerise 3.1.3 Prove that the inequality in (3.1.2) holds for the natural presen-tation of any free abelian group Zr ; r > 2, and that it is optimal. (Hint: Givena word w that equals the identity in Zr , fous on a spei� generator a andmove all ourrenes of a�1 to the left in w by applying the relators [a; b℄ = 1,freely reduing the resulting word whenever possible. Repeat for eah generatorand ount the total number of relators applied | f. Paragraph 1.2. If you havetrouble with the lower bound, look at Setion 7.)In about 1988 Bill Thurston [42℄ and Steve Gersten [45℄ proved that the 3-dimensional Heisenberg group H3 has a ubi Dehn funtion (see paragraph 2.2and Theorem 3.3.1).It now seems odd to report that there was a lull of a few years before peopledisovered sequenes of groups (�d)d2N suh that the Dehn funtion of �d ispolynomial of degree d. Suh sequenes were desribed by a number authorsat about the same time { Gromov [56℄, Baumslag, Miller and Short [10℄, andBridson-Pittet [23℄. The following result, proved by Bridson and Gersten in [21℄,provides many suh sequenes, and the literature now ontains examples withall manner of additional properties (e.g. having Eilenberg-Malane spaes ofspei�ed dimension [16℄).Theorem 3.1.4 The Dehn funtion of eah semi-diret produt of the formZn o� Z is ' either a polynomial or an exponential funtion. It is polynomialif and only if all of the eigenvalues of � 2 GL(n;Z) are roots of unity, in whih



The geometry of the word problem 13ase the degree of the polynomial is  + 1, where  is the size of the largestelementary blok in the Jordan form of �.Notie that groups of the form Zn o� Z are preisely those that arise asfundamental groups of torus bundles over the irle, and hene the above theoremlassi�es the isoperimetri funtions FillM0 of suh bundles.The appearane of the Jordan form in the above theorem is onneted to thefollowing fats (f. 7.1.4).Exerises 3.1.5 (i) If a matrix � 2 GL(n;Z) does not have an eigenvalue ofabsolute value greater than 1, then all of its eigenvalues are N -th roots ofunity, where N depends only on n . (Hint, [21℄, page 7: Let P � Z[x℄ be theset of moni polynomials of degree n whose roots all lie on the unit irle. P is�nite. If the harateristi polynomial of � lies in P then so does that of eahpower �r .)(ii) Regard GL(n;Z) as a subset of Rn2 and �x a norm on Rn2 . Prove thatm 7! k�mk is ' equivalent to an exponential funtion or a polynomial of degree� 1, where  is the size of the largest elementary blok in the Jordan form of� .Filling the Gaps in IP. The following theorem is due to Gromov [55℄. Detailedproofs were given by Ol'shanskii [81℄, Bowdith [14℄ (also [22℄ page 422) andPapasoglu [87℄.Theorem 3.1.6 If the Dehn funtion of a group is sub-quadrati (i.e. Æ�(n) =o(n2)) then it is linear (Æ�(n) ' n). Thus IP \ (1; 2) is empty.This theorem begs the question of what other gaps there may be in theisoperimetri spetrum, or indeed whether there are any non-integral isoperi-metri exponents at all. This last question was settled by the disovery of theab groups [19℄. These groups are obtained by taking three torus bundles overthe irle (eah of a di�erent dimension) and amalgamating their fundamentalgroups along entral yli subgroups.The basi building blok is G = Zo� Z , where � 2 GL(;Z) is the unipo-tent matrix with ones on the diagonal and super-diagonal and zeros elsewhere.G has presentation:hx1; : : : ; x; t j [xi; xj ℄ = 1 for all i; j; [x; t℄ = 1; [xi; t℄ = xi+1 if i < i: (3.1.7)Notie that the entre of G is the in�nite yli subgroup generated by x . Toemphasise this fat we write z in plae of x .The ab groups �(a; b; ) are de�ned as follows: �rst we amalgamate Gawith Gb � Z by identifying the entre of Ga with that of Gb , then we formthe amalgamated free produt of the resulting group with G by identifying theentre of the latter with the right-hand fator of Gb � Z . In symbols:�(a; b; ) = Ga �za=zb (Gb � h � i) ��=z G:



14 M.R. BridsonTheorem 3.1.8 For all integers 1 6 b 6 a < , the Dehn funtion of �(a; b; )is ' n+ ab .Variations on this onstrution yield other families of rational exponents [19℄.
By far the most omprehensive result onerning the struture of Dehn fun-tions is due to Sapir, Birget and Rips. Their result, whih we shall desribe in amoment, essentially lassi�es the Dehn funtions � n4 . In partiular they showthat IP is dense in [4;1).Subsequently, Brady and Bridson [15℄ showed that Gromov's gap (1; 2) is theonly gap in the isoperimetri spetrum:Theorem 3.1.9 For eah pair of positive integers p > q , there exist �nitelypresented groups whose Dehn funtions are ' n2� where � = log2(2p=q).Corollary 3.1.10 The losure of IP is f1g [ [2;1).Note that the exponents desribed in the above theorem are transendentalif they are not integers [80℄, Theorem 10.2. The easiest examples of groups asdesribed in the above theorem areGp;q = ha; b; s; t j [a; b℄ = 1; saqs�1 = apb; taqt�1 = apb�1i;whih we shall look at more losely in (7.2.12).The Sapir-Birget-Rips Theorem. In [95℄ Mark Sapir, Jean-Camille Birgetand Eliyahu Rips show that if a number � > 4 is suh that there is a onstantC > 0 and a Turing mahine that alulates the �rst m digits of the deimalexpansion of � in time 6 C22Cm , then � 2 IP. Conversely, they show that if� 2 IP then there is a Turing mahine that alulates the �rst m digits of � intime 6 C222Cm . (The disrepany in the height of the two towers of exponentialsis onneted to the P = NP problem.) More generally they prove:Theorem 3.1.11 Let D4 be the set of ' equivalene lasses of Dehn funtionsÆ(n) � n4 . Let T4 be the set of ' lasses of time funtions t(n) � n4 of arbitraryTuring mahines. Let T4 be the set of ' lasses of super-additive12 funtionsthat are fourth powers of time funtions. Then T4 � D4 � T4 .It is unknown whether T4 oinides with the ' lasses of all super-additivefuntions in T4 . If it does, then the above theorem would ompletely lassifyDehn funtions � n4 . In the light of Theorem 3.1.9, one suspets that Dehnfuntions � n2 are similarly unrestrited in nature.As it stands, the above result already implies that any rational or otherreasonable number, for example � + e2 , is the exponent of a Dehn funtion.Likewise, the following are Dehn funtions: 2pn , en� , n2 log3(log7 n); : : :12 f(m+ n) > f(n) + f(m) for all n;m 2 N



The geometry of the word problem 15As one might guess from the statement, the theorem is proved by showingthat one an enode the workings of a ertain lass of mahines (\S-mahines")into group presentations.3.2 Examples of Large Dehn FuntionsThus far in this setion I have onentrated on IP in order to explain the de-velopment of our understanding of Dehn funtions. Let me o�set this now bypointing out that many naturally ourring groups do not have Dehn funtionsthat are bounded above by a polynomial funtion. We saw some suh examplesin (3.1.4). Here are some more simple examples of this type.Consider the reursively-de�ned sequene of funtions "i(n) := 2"i�1(n) ,where "0(n) = n and "1(n) = 2n . LetBm = hx0; x1; : : : ; xm j x�1i xi�1xi = x2i�1 for i = 1; : : : ;mi: (3.2.1)The best known of these groups is B1 , whih has many manifestations, e.g. as agroup of aÆne transformations of the real line, where x0 ats as t 7! t+ 1 andx1 as t 7! 2t.Proposition 3.2.2 The Dehn funtion of Bm is ' "m(n).For the lower bound, see Exerise 7.2.11. The following exerises explain onemethod of establishing the upper bound.Exerises 3.2.3 (i) Let w be a word in the generators of B1 . Show that one antransform w into a word of the form xm1 xr0x�m01 with m;m0 > 0 by applyingthe de�ning relator x�11 x0x1x�20 at most 2n times. (Hint: Move eah our-rene of x1 in w to the left by replaing subwords x0x1 with x1x20 , and x�10 x1with x1x�20 . Move all ourrenes of x�11 to the right.)(ii) Prove that x0 2 B1 has in�nite order. (You ould onsider the representa-tion B1 ! A�(R) desribed above.13) Dedue that ÆBm(n) � 2n . (Hint: Bylooking at the map B1 ! hx1i that kills x0 and the map B1 ! Zq o Z thatkills xq0 (where q is an arbitrary odd prime), one an see that if w = 1 in �then the word obtained in (i) has m = m0 and r = 0.)A less ad ho proof of (ii) an be based on Britton's Lemma (see 7.2.4(ii) or[22℄, page 498):(iii) Dedue from Britton's Lemma that if a word in the generators of Bm rep-resents the identity and ontains at least one ourrene of x�1m then it ontainsa subword of the form w0 = xemw1x�em , where e = �1 and w1 is a word in theletters fxi j i < mg with w1 = xpm�1 in Bm�1 , where p is even if e = 1.Arguing by indution on m , and a seondary indution on the number of o-urrenes of x�1m in w0 , show that one an replae w0 by xp=2m�1 or x2pm�1 byapplying at most "m�1(2p) relators from the presentation of Bm�1 . Deduethat ÆBm(n) 6 "m(n).



16 M.R. BridsonExample 3.2.4 Steve Gersten [45℄ showed that the Dehn funtion of the groupS = hx; y j (yxy�1)�1x(yxy�1) = x2igrows faster than any iterated exponential. Spei�ally, ÆS(n) ' "n(n). Alassial theorem of Magnus states that all 1-relator groups have a solvable wordproblem. It is onjetured that "n(n) is an upper bound on the Dehn funtionsof all 1-relator groups; in [46℄ Gersten established a weaker upper bound.
Exerise 3.2.5 Show that for every m > 0 there exists a monomorphism Bm !S . (Hint: Conjugate (yixy�i) by (yi+1xy�(i+1)).)

3.3 Groups of Classial InterestIn this subsetion I shall desribe what is known about the Dehn funtions ofvarious groups that are of interest for geometri reasons.Low-Dimensional Topology. If S is a ompat 2-manifold, then �1S has alinear Dehn funtion unless S is a Torus or a Klein bottle, in whih ase �1Shas a quadrati Dehn funtion (see 3.1.1, 3.1.2, 1.3.5). The following theoremdesribes the situation for 3-dimensional manifolds { it follows easily from resultsof Epstein and Thurston [42℄ (f. [17℄ and 7.1.4 below). Sine all �nitely presentedgroups arise as fundamental groups of losed n-manifolds for eah n > 4 (seeA.3.1), there an be no suh general statement in higher dimensions.Theorem 3.3.1 Let M be a ompat 3-manifold. Suppose that M satis�esThurston's geometrization onjeture14.The Dehn funtion of �1M is linear, quadrati, ubi, or exponential. It islinear if and only if �1M does not ontain Z2 . It is quadrati if and only if�1M ontains Z2 but does not ontain a subgroup Z2 o� Z with � 2 GL(2;Z)of in�nite order. Subgroups Z2 o� Z arise only if a �nite-sheeted overing ofM has a onneted summand that is a torus bundle over the irle, and theDehn funtion of �1M is ubi only if eah suh summand is a quotient of theHeisenberg group (in whih ase � is unipotent)15.13More ambitiously, you ould try to prove the following result of Higman, Neumann andNeumann (see [97℄ for a geometri treatment). Given a group � = hA j Ri and an isomorphism� : S1 ! S2 between subgroups of �, one an form the HNN extension ��� = hA; t j R; �0(s) =t�1st; 8s0 2 Si , where t =2 A; S � F (A) is a set of words that maps bijetively to S1 , and foreah s 2 S the word �0(s) 2 F (A) maps to �(s) 2 S2 . Show that the map �! ��� induedby idA is an injetion.14 In the absene of this assumption it remains unknown whether every ompat 3-manifoldhas a solvable word problem.15 �1M has an exponential Dehn funtion if and only if M has a onneted summand thatis modelled on the geometry Sol { f. 3.1.4



The geometry of the word problem 17Remark 3.3.2 [Free-by-Cyli Groups℄ If a 3-manifold M �bres over the irlethen one sees from the long exat sequene in homotopy that �2M = 0 and that�1M is a semi-diret produt �o� Z , where � is the fundamental group of thesurfae �bre. Sine �2M = 0, one knows that M does not split as a non-trivialonneted sum, so the above theorem implies that if Z2 6� �, then the Dehnfuntion of �1M is either linear or quadrati.If M has boundary then � will be a �nitely generated free group. Not all free-group automorphisms arise from �brations of 3-manifolds, and it is has yet tobe proved that the Dehn funtions of arbitrary semi-diret produts of the form� = � o� Z , with � free, are at most quadrati, f. [69℄. In [12℄ Bestvina andFeighn show that the Dehn funtion of � is linear if and only if Z2 6� �.There are strong analogies between mapping lass groups of surfaes, Braidgroups (more generally, Artin groups), and automorphism groups of free groups.These groups play important roles in low-dimensional topology. Bill Thurstonproved that the Braid groups are automati, [42℄ Chapter 9 (see also Charney[31℄), and Lee Mosher proved that the mapping lass groups of all surfaes of�nite type are automati [76℄. As a onsequene (see 6.3.2) we obtain:Theorem 3.3.3 The mapping lass group of any surfae of �nite type satis�esa quadrati isoperimetri inequality.Hather and Vogtmann [58℄ and Gersten (unpublished) proved that the Dehnfuntion of the group of (outer) automorphisms of any �nitely generated freegroup is � 2n . Bridson and Vogtmann [24℄ proved that this bound is sharp inrank 3, and speial onsiderations apply in rank 2.Theorem 3.3.4 Let Fr denote a free group of rank r . The Dehn funtion ofOut(F2) is linear. The Dehn funtion of Aut(F2) is quadrati. The Dehn fun-tions of Aut(F3) and Out(F3) are exponential. In general the Dehn funtionsof Aut(Fr) and Out(Fr) are � 2n .Latties in Semisimple Lie Groups. Let G be a onneted semisimple Liegroup with �nite entre and no ompat fators. Assoiated to G one has aRiemannian symmetri spae X = G=K , where K � G is a maximal ompatsubgroup. A disrete subgroup � � G is alled a lattie if the quotient �nX has�nite volume; the lattie is alled uniform (or oompat) if �nX is ompat.The rank of G is the dimension of the maximal isometrially embedded atsE r ,! X .If G has rank 1 then X has stritly negative urvature (e.g. G = SO(n; 1)and X = H n ) and in general (e.g. G = SL(n; R )) X has non-positive urvature(see, for example, [22℄ Chapter II.10). It follows that the Dehn funtions ofuniform latties are linear (in the rank 1 ase) or quadrati (the higher rankase) { see Setion 6.Eah non-uniform lattie in a rank 1 group ontains non-trivial subgroupsthat stabilize points at in�nity in the symmetri spae X ; these subgroups leave



18 M.R. Bridsoninvariant the horospheres entred at the �xed points at in�nity. We use theterm horospherial to desribe these subgroups. An example of a horospheri-al subgroup is the fundamental group of the boundary torus in a hyperboliknot omplement. Eah maximal horospherial subgroup ontains a nilpotentsubgroup of �nite index: in the ase G = SO(n; 1), this nilpotent subgroup isisomorphi to Zn�1 , and in the ase G = SU(n; 1) it is isomorphi to H2n�1 ,the integer Heisenberg group.Theorem 3.3.5 Let G be a semisimple Lie group of rank 1 and let � � G be alattie. If � is uniform then its Dehn funtion is linear. If � is non-uniform thenits Dehn funtion is equal to that of eah of its maximal horospherial subgroups.This result is due to Gromov [56℄.Example 3.3.6 It follows from our disussion in 2.2 that non-uniform latties inSU(2; 1) have ubi Dehn funtions, whereas those in SU(n; 1) with n > 2 havequadrati Dehn funtions. More generally, it follows from the above theorem thata non-uniform lattie in a rank 1 group G will have a quadrati Dehn funtionunless the symmetri spae for G is the hyperboli plane over the real, omplex,quaternioni or Cayley numbers. For the real hyperboli plane the Dehn funtionof non-uniform latties is linear (3.1.1), in the omplex ase (G = SU(2; 1)) it isubi, and it is also believed to be ubi in the remaining ases.The following theorem of Leuzinger and Pittet [62℄, whih builds on the workof Gromov on solvable groups [56℄, ompletes the piture of Dehn funtions forlatties in rank 2.Theorem 3.3.7 If G is a onneted semisimple Lie group with �nite entreand rank 2, then the Dehn funtion of any irreduible, non-uniform lattie in Gis ' 2n .The situation for non-uniform latties in rank > 3 is more ompliated and isthe subjet of ative researh. We refer the reader to Gromov [56℄ for an exitingglimpse of some of the issues that arise and to Drut�u [38℄ and Leuzinger-Pittet[63℄ for signi�ant reent progress in this diretion. The following assertion of BillThurston illustrates some of the subtleties involved in higher rank: Dehn funtionof SL(3;Z) is exponential, but the Dehn funtion of SL(n;Z) is quadrati ifn > 3.See [42℄ page 230 for a proof of this statement in the ase n = 3 (f. [38℄and [56℄ page 91). A omplete proof is not available in the ase n > 3. Drut�u'sreent work has helped to larify the situation, but there remains muh work tobe done in this diretion.Nilpotent Groups. We saw in (3.1.2) that abelian groups satisfy a quadratiisoperimetri inequality. Using a modest amount of knowledge about the stru-ture of nilpotent groups, it is not hard to show that all �nitely generated nilpotentgroups satisfy a polynomial isoperimetri inequality (see [56℄ for example). But



The geometry of the word problem 19determining the degree of the optimal bound on the Dehn funtion, both in gen-eral and for spei� examples, is a more deliate matter, as our earlier disussionof the Heisenberg groups illustrates.Gromov, [56℄ Chapter 5, gives an entiing overview of this area. In partiularhe skethes a reason why nilpotent groups of lass  should have Dehn funtionsthat are polynomial of degree 6  + 1 and gives a proof of this inequality forgroups where the Lie algebra of the Malev ompletion is graded. (For a detailedaount of this last result, and extensions, see Pittet [89℄.) A number of otherresearhers have obtained related results using both geometri and ombinatorialmethods. In partiular, Hidber [59℄ gives a purely algebrai proof that the Dehnfuntion of a nilpotent group of lass  is bounded above by a polynomial ofdegree 2.Finally, I should mention that the study of Dehn funtions of non-nilpotentsolvable groups is also an ative area of researh. Indeed this is losely onnetedto the study of Dehn funtions for higher-rank latties.Let me end this brief survey of our knowledge of Dehn funtions for spei�groups by making it lear that I have omitted far more than I have inluded.I apologise to the many olleagues whose exellent work I have been fored toignore by reason of spae and time.3.4 Dehn Funtions of ProdutsThe following exerises desribe how Dehn funtions behave under the formationof produts. Their behaviour under more ompliated operations suh as amal-gamated free produts, HNN extensions, and entral extensions is less straight-forward.Exerises 3.4.1 (i) A subgroup H of a group G is alled a retrat if there is ahomomorphism G ! H whose restrition to H is the identity. Show that ifH is a retrat of the �nitely presented group G , then H is �nitely presentedand ÆH(n) � ÆG(n). (Hint: First note that H is �nitely generated. Take a�nite subset that generates H and argue that it an be extended to a �nitegenerating set for G by adding elements k of the kernel of G ! H . Arguethat one an take a �nite presentation for G with this generating set. Add therelations k = 1.)(ii) Let G1 and G2 be in�nite, �nitely presented groups. Show that the Dehnfuntion of G1 � G2 is ' maxfn2; ÆG1(n); ÆG2(n)g , and that that of the freeprodut G1 �G2 is ' maxfÆG1(n); ÆG2(n)g . (Use (i) for the bounds � .)
4 Van Kampen DiagramsLet hA j Ri be a �nite presentation of a group � and let w be a word in theletters A�1 . Suppose that w = 1 in �. Roughly speaking, a van Kampendiagram for w is a planar CW omplex that portrays a sheme for reduing wto the empty word by applying a sequene of relations r 2 R; the number of2-ells in the diagram is the number of relations that one applies and is therefore



20 M.R. Bridsonat least as great as Areaa(w), as de�ned in (1.2.2). Conversely, we shall seethat one an always onstrut a van Kampen diagram for w that has Areaa(w)2-ells. It follows that the Dehn funtion of hA j Ri an be interpreted in termsof isoperimetri inequalities for planar diagrams.Max Dehn was the �rst to use planar diagrams in order to study word prob-lems [34℄, but his diagrams arose in onrete settings (primarily as regions in atessellated hyperboli plane). The idea of using diagrams to study relations inarbitrary �nitely presented groups is due to E. van Kampen [61℄. The idea was re-disovered by Roger Lyndon in the 1960s. At about the same time C. Weinbaumbrought van Kampen's original paper to light and made interesting appliationsof it.There are a number of orret proofs of the elebrated van Kampen Lemmain the literature. The use of pitures in these proofs auses disquiet in someirles, so I have tried to fashion the following proof in a manner that will allaysuh misgivings.4.1 Singular Dis DiagramsFix an orientation on R 2 . A singular dis diagram D is a ompat, ontratiblesubset of the plane endowed with the struture of a �nite ombinatorial 2-omplex. (See Appendix A for basi de�nitions onerning ombinatorial om-plexes.)We write Area D to denote the number of 2-ells in D . And given a vertexp 2 D we write Diamp D to denote the maximum of the distane from p to theother verties v 2 D , where \distane" is the number of 1-ells traversed by ashortest path joining p to v in the 1-skeleton of D .To avoid pathologies, we assume the 1-ells e : [0; 1℄! D ,! R 2 are smoothlyembedded. Assoiated to eah 1-ell one has two direted edges "(t) = e(t) and"(t) = e(1� t). Let AD denote the set of direted edges. (By de�nition " = ".)The boundary yle of D is the loop of direted edges desribing the frontierof the metri ompletion of R 2 rD in the positive (anti-lokwise) diretion { itonsists of a thin part, where the underlying 1-ells do not lie in the boundary ofany 2-ell, and a thik part; the boundary yle traverses eah 1-ell in the thikpart one and eah 1-ell in the thin part twie.De�nition 4.1.1 [Labelled Diagrams℄ Let A be a set and let A�1 be the set ofsymbols fa�1 j a 2 Ag. A diagram over A onsists of a singular dis diagramD and a (labelling) map � : AD ! A [ A�1 suh that �(") = �(")�1 for all" 2 AD .� extends to a map from the set of direted edge-paths in D to the set of wordsin the letters A[A�1 . The fae labels of D are the words that this map assignsto the attahing loops of the 2-ells of D (beginning at any vertex and proeedingwith either orientation).Proposition 4.1.2 Let A be a set, let D be a diagram over A and let R� bea set of words that ontains the fae labels of D . If a word w ours as the label



The geometry of the word problem 21on the boundary yle of D , read from some vertex p in the boundary of D , thenin the free group F (A) w = �Yi=1x�1i rixi;where � = Area D , the words xi have length jxij 6 Diamp D , and ri 2 R� .In partiular w = 1 in the group hA j R�i.Proof Fix D and p. In the 1-skeleton of D we hoose a geodesi spanning treeT rooted at p (see Exerise 4.1.3).Arguing by indution (the base step is trivial) we may assume that the propo-sition has been proved for diagrams D0 with AreaD0 < Area D and for dia-grams with Area D0 = AreaD where D0 has fewer 1-ells than D .We say that D has a dangling edge if it has a vertex other than p thathas only one edge inident at it. If D has suh an edge then we may applyour indutive hypothesis to the diagram obtained by removing it { the resultingdiagram has the same area as D , its diameter is no greater than that of D , andits boundary label is obtained from that of D by free redution. Thus we mayassume that D has no dangling edges.If D were a tree it would have dangling edges (or be a single point). ThusD 6= T . We follow the boundary yle of D from p until we enounter the �rstdireted edge " that is not in T ; let a be the label on ", let w1 be the label onthe segment of the boundary yle that preedes " and let w2 be the label onthe segment that follows it. The part of the boundary yle labelled w1 is aninjetive path, beause it lies entirely in the tree T and must be loally injetivesine a baktraking would imply that D had a dangling edge. In partiular w1has length at most Diamp D .Sine T ontains all of the verties of D , we do not disonnet D by removingthe open 1-ell underlying ", and hene this 1-ell must lie in the boundary ofsome 2-ell E . Suppose that the attahing loop of E (read in the positivediretion from the initial vertex of ") has label r�1 := au�1 .Consider the subomplex D0 obtained from D by deleting the open 1-elllabelled " and the interior of E . Note that D0 is again a diagram over A (itslabelling map is just the restrition of the labelling map of D), its set of faelabels is a subset of the fae labels of D , its diameter is the same as that ofD (beause the geodesi spanning tree T is entirely ontained in D0 ) and itsboundary yle, read from p, is w0 := w1uw2 . In the free group F (A) we havew0 = (w1rw�11 )(w1aw2) = (w1rw�11 )w:We have argued that jw1j 6 Diamp D = Diamp D0 . And by indution wemay assume that w0 an be expressed as a produt of onjugates of at mostArea D0 = Area D�1 fae labels, with onjugating elements of length at mostDiamp D0 = Diamp D . This ompletes the indution. �



22 M.R. BridsonOne an give a shorter proof of the above proposition if one ignores the lengthof the onjugating elements xi ; this weaker form of the result is more standard,e.g. [66℄.Exerise 4.1.3 Let G be a onneted graph (1-dimensional CW omplex). Letd be a length metri in whih eah edge has length 1. Fix a vertex p 2 G .Prove that G ontains a geodesi spanning tree rooted at p , i.e. a 1-onnetedsubgraph T that ontains a path of length d(p; v) from p to eah vertex v 2 G .
4.2 Van Kampen's LemmaDe�nition 4.2.1 [Van Kampen Diagrams℄ Let A be a set, let R be a set of wordsin the letters A�1 and let R� be the smallest set of words that ontains R and islosed under the operations of taking yli permutations and inverses of words.(Note that hA j Ri �= hA j R�i.)If w;D and p are as in the above proposition, then D is alled a van Kampen diagramfor w over hA j Ri with basepoint p.Theorem 4.2.2 (Van Kampen's Lemma) Let A be a set, let w be a word inthe letters A [A�1 , and let R be a set of words in these letters.(1) w = 1 in the group � = hA j Ri if and only if there exists a van Kampendiagram for w over hA j Ri.(2) If w = 1 in � thenAreaa(w) = minfArea D j D a van Kampen diagram for w over hA j Rig:In order to omplete the proof of this theorem we shall need two lemmas.In the �rst we onsider the following ordering on diagrams over A that have aninitial vertex16 spei�ed in the boundary yle: D � D0 if D0 has fewer 1-ellsthan D and the words labelling the boundary yles of D and D0 , read fromtheir initial verties, are equal as elements of the free group F (A).Lemma 4.2.3 If D , with initial point p, is minimal in the ordering �, thenthe boundary label of D is a freely redued word.Proof We shall assume that D is a diagram whose boundary label w is notfreely redued and onstrut a diagram � D .Sine w is not redued, there is a pair of suessive direted edges "; "0 inthe boundary yle that are labelled a; a�1 respetively, where a 2 A [A�1 . Ifthe initial vertex of " is equal to the terminal vertex of "0 then we an delete16A hoie of \initial vertex" inludes the spei�ation of whih edge of the boundary yle isto be traversed �rst. Nevertheless, when no onfusion is threatened, one talks as if the \initialvertex" is simply a vertex of D .



The geometry of the word problem 23from D these edges together with the ontratible region that they enlose, thusobtaining a diagram � D .If the initial vertex of " is not equal to the terminal vertex of "0 then17 wean onnet the latter vertex to the former by a smooth ar  : [�1; 1℄ ! R 2that intersets D only at its endpoints. Let T � R 2 be the open dis enlosedby the loop ""0; we shall ollapse T in a ontrolled manner. Let � = f(x; y) j1 > y > jxj; jxj < 1g � R 2 and �x a di�eomorphism � : � ! T that has aontinuous extension to � with �j[�1;1℄�f1g =  and �(�t; t) = "0(1 � t) and�(t; t) = "(t) for all t 2 [0; 1℄. The map T ! f0g � R that sends z = �(x; y)to y has a ontinuous extension � : R 2 ! R 2 that is a di�eomorphism on theomplement of the losure of T .
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Figure 4.2.4 Reduing the boundary labelD = �(D) inherits a ombinatorial struture from D as well as a hoieof initial point for its boundary yle. D has fewer 1-ells than D beause� Æ "�1 = � Æ "0 . The direted edges � Æ "i of D inherit the labelling �("i)from D , and the label on the boundary yle of D , read from its initial point,is obtained from w by deleting the subword aa�1 orresponding to ""0 . ThusD � D . �Remark 4.2.5 If one employs a suitably natural proedure for hoosing the edge", then the proof given above atually onstitutes an algorithm for transforminga diagram D whose boundary label is not freely redued into a diagram D0 � D .By repeated appliation of this algorithm one obtains a diagram D0 � D whoseboundary label is redued. Moreover, the set of fae labels of D0 is ontainedin the set of fae labels of D , and Area D0 6 Area D .The following lemma is used to pass from diagrams whose boundary labelsare redued to those whose labels are not.Lemma 4.2.6 Let A be a set, let w be a word in the letters A [A�1 and letw0 be the redued word that is equal to w in F (A). Given a diagram D0 forw0 over A, one an onstrut a diagram D for w with Area D0 = Area D sothat the set of fae labels of D is the same as that of D0 .17There are no hidden assumptions here: " and "0 may be in the thin part of the boundaryor in the thik part, and one of them might be a loop.
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Figure 4.2.7 Changing the boundary label from u1u2 to u1aa�1u2 .Proof w is obtained from w0 by repeatedly inserting pairs of letters aa�1 witha 2 A. To modify the boundary label of a diagram by suh an insertion, one addsa new vertex v of valene 1 and an edge labelled a to v from the appropriatevertex of the boundary yle (�gure 4.2.7).The Proof of Van Kampen's Lemma. If w = 1 in � = hA j Ri then in thefree group F (A) we have: w free= NYi=1x�1i rixiwhere ri 2 R�1 and N = Areaaw . The word W on the right of this equalityis the boundary label on the \lollipop" diagram D1 shown in �gure 4.2.8; notethat Area D1 = N .Let D0 � D1 be a �-minimal diagram. The boundary label of D0 is thefreely redued word w0 that is equal to w in F (A), the fae labels of D0 are asubset of those of D1 , and Area D0 6 AreaD1 = Areaaw (Lemma 4.2.3 and(4.2.5)). By applying Lemma 4.2.6 to D0 we obtain a van Kampen diagram Dof area 6 N for w over hA j Ri. This proves the impliation \only if" in (1)and the inequality > in (2). Proposition 4.1.2 provides the omplementary \if"impliation and 6 inequality. �
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The geometry of the word problem 25Figure 4.2.8 The lollipop diagram4.3 Words and Van Kampen Diagrams as MapsIn this subsetion I shall assume that the reader is familiar with the material inSetion A.2 (Appendix A).If D is a van Kampen diagram over hA j Ri with basepoint p, then thereis a unique label-preserving ombinatorial map from the 1-skeleton of D tothe Cayley graph CA(�) that sends p to the vertex 1 2 �. This extends toa ombinatorial map from D to the universal overing ~K of the standard 2-omplex K(A :R).Let M be a losed, smooth Riemannian manifold and let � = hA j Ri bea �nite presentation of the fundamental group of M . Let ~K be the universalovering of K(A :R). We �x a basepoint p 2 ~M , and for every a 2 A we hoosea geodesi a joining p to a:p. These hoies give rise to a �-equivariant mapfrom CA(�) = ~K(1) to ~M : this map sends the 1-ell labelled a emanating from homeomorphially onto the segment :a . Sine ~M is simply-onneted, wemay extend this map aross the 2-ells of ~K in a �-equivariant manner. Wehoose this extension so that on eah 2-ell it is smooth almost everywhere andhas �nite area.If w is a word in the letters A [A�1 , then for eah  2 � there is a uniqueedge-path in CA(�) = ~K(1) that begins at  and is labelled w . We write ŵ todenote the image of this path in ~M (exept that if  = 1 we write ŵ instead ofŵ1 ). Suh paths in ~M are alled word-like.If D is a van Kampen diagram for w over hA j Ri, then by omposing theabove maps D ! ~K and ~K ! ~M we obtain a map hD : D ! ~M whoserestrition to the boundary yle of D is a parameterization of the loop ŵ .5 The Equivalene FillM0 ' Æ�1MThis setion is devoted entirely to the proof of the Filling Theorem:Theorem 5.0.1 The 2-dimensional, genus-zero isoperimetri funtion FillM0of any smooth, losed Riemannian manifold M is ' equivalent to the Dehnfuntion Æ�1M of the fundamental group of M .5.1 The Bound FillM0 � Æ�1MThis diretion of the proof is substantially easier than the other. In order tounderstand the proof, the reader will need to have absorbed the de�nition of avan Kampen diagram.Proposition 5.1.1 If M is a smooth, losed Riemannian manifold then � :=�1M is �nitely presented and FillM0 � Æ� .Proof Corollary A.4.2 of the Appendix shows that � is �nitely presented. We�x a �nite presentation for � and assume that the universal over ~K of thestandard 2-omplex of this presentation has been mapped to ~M as explained in



26 M.R. Bridsonthe preeding subsetion. We identify � (the 0-skeleton of ~K ) with its image in~M . We de�ne � to be the maximum distane of any point of ~M from �, wede�ne � to be the maximum of the lengths of the 1-ells of ~K , as measured in~M , and we de�ne m = maxfd�(; 0) j d ~M (; 0) 6 2� + 1g, where d� is theword metri assoiated to our hosen generators for �.The images in ~M of the 2-ells of ~K are diss of �nite area; let � be themaximum of these areas.Let w be a word in the given generators that equals 1 2 � and onsider theorresponding pieewise-geodesi loop ŵ in ~M . Choose a van Kampen diagramD for w with Areaa(w) 2-ells, and onsider the assoiated map hD : D ! ~M ,whih �lls ŵ . The area of this map is at most � times the number of 2-ells inD , hene FArea(ŵ) 6 �Areaa(w) 6 � Æ�(jwj):Given a loop  : S1 ! ~M of �nite length l(), parameterized by ar length,we hoose a set of n equally-spaed points �0; : : : ; �n�1 2 S1 , where n is the leastinteger greater than l(). We then hoose a geodesi segment �i from eah (�i)to a nearest point i 2 � � ~M . The distane in ~M between suessive i (indiesmod n) is at most 2�+1 and hene i an be onneted to i+1 by a word-likepath ûii of length at most m�, where ui is a word of (algebrai) length m.Sine eah of the loops18 �iûii �i+1j[�i;�i+1℄ has length at most L := m�+1+2�,we have FArea() 6 FArea(Û) + n FillM0 (L);where U is the onatenation of the words ui (see �gure 5.1.2).
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Figure 5.1.2 Approximating  by the word-like loop bU18an overbar denotes reversed orientation



The geometry of the word problem 27The loop  is arbitrary, the word U has (algebrai) length at most nm�,and n 6 l() + 1. Thus, the two inequalities displayed above imply thatFillM0 (l) 6 �Æ��m(l + 1)�+ (l + 1) FillM0 (L):for all l > 0. In partiular, sine FillM0 (L) is a onstant, FillM0 � Æ� .5.2 The Bound Æ�1M � FillM0 .There are many subtleties onerning the nature of solutions to Plateau's prob-lem in Riemannian manifolds, but the existene of least-area diss (althoughhighly non-trivial) has little to do with the �ne struture of the spaes onerned.Indeed Igor Nikolaev [78℄ showed that one an solve Plateau's problem in anyomplete simply-onneted geodesi spae with an upper urvature19 bound k .In this generality, when endowed with the pull-bak path metri, a least-areaspanning dis will itself have urvature 6 k . (To get some intuition about whythis is true, observe that if a dis embedded in Eulidean 3-spae has a point ofpositive urvature, then there is an obvious loal pushing move that redues thearea of the dis without disturbing its boundary.)De�nition 5.2.1 Let D be a metri spae homeomorphi to a (perhaps singu-lar20) 2-dis and �x " > 0. A set � � D is said to "-�ll D if every point of Dis a distane less than " from � and every point of the boundary yle �D anbe onneted to a point of �D \ � by an ar in �D that has length at most ".The only fat that we need onerning the nature of solutions to Plateau'sproblem is that loops in the universal overing of a losed Riemannian mani-fold an be �lled by diss that exhibit the following rude onsequene of theurvature bound desribed above.Proposition 5.2.2 If M is a omplete Riemannian manifold of urvature 6 k ,then the indued metri on every least-area dis D ! ~M is suh that D an be�k -�lled by a set of ardinality less than �k(Area(D) + j�Dj + 1), where j�Djdenotes the length of the boundary of D and the onstants �k and �k dependonly on k .Proof When equipped with the pull-bak metri D has urvature 6 k . In theRiemannian setting this means that if a metri ball of radius r < �=(2pk) isontained in the interior of D , then the area of that ball is at least as great asthe area of a dis of radius r in M2k . So if a(k; r) denotes the area of suh adis, then there an be at most Area(D)=a(k; r) disjoint balls of radius r in theinterior of D .19 In the sense of A.D. Alexandrov; see Appendix B for the de�nition. In Nikolaev's theoremthere is a natural restrition on the length of the loops being �lled if k > 0.20A singular dis is a spae homeomorphi to the underlying spae of a singular dis diagram,as de�ned in (4.1). In the Riemannian setting (dimension > 3) one an avoid the need todisuss (topologially) singular diss by onsidering �llings of embedded loops only (f. 2.1.5).



28 M.R. BridsonWe set r = rk := �=(4pk) and hoose a maximal olletion of disjoint ballsof radius r in the interior of D . Let �0 denote the set of entres of theseballs. We also hoose a olletion �1 of no more than 1rk j�Dj + 1 points along�D so that every point of �D an be onneted to a point in �1 by an arof length less than rk . By onstrution, the balls of radius 2rk entred at thepoints �0 [ �1 over D and the ardinality of �0 [ �1 is bounded above by1a(k;rk)Area(D) + 1rk j�Dj+ 1. Set �k = 2rk and �k = maxf 1a(k;rk) ; 1rk g. �In order to establish the reverse inequality in the Filling Theorem we shall usethe following tehnial tool for manufaturing ombinatorial diss out of "-�llingsets.5.2.3 Cellulation Lemma. Let D be a length spae homeomorphi to a (per-haps singular) 2-dis, and suppose that D is "-�lled by a set � of ardinality N .Then there exists a ombinatorial 2-omplex �, homeomorphi to the standard2-dis, and a ontinuous map � : �! D suh that:(1) � has less than 8N faes (2-ells) and eah is a k -gon with k 6 12;(2) the restrition of � to eah 1-ell in � is a path of length at most 2";(3) �j�� is a monotone parameterisation of �D and �\�D lies in the imageof the 0-skeleton of ��.In the ase of the "-�llings yielded by Proposition 5.2.2 (whih are the fousof our onern), instead of using the deomposition of D furnished by the Cel-lulation Lemma, one might use the dual to the Voronoi deomposition for thegiven �lling | this dual will generially be a triangulation (f. [99℄ 5.58). Someare is needed in pursuing this remark, but nevertheless we use it as a pretext21for relegating the proof of the Cellulation Lemma to Appendix C.The Remainder of the Proof of the Filling Theorem.It remains to show that Æ� � FillM0 , where � = �1M . Let k > 0 be an upperbound on the setional urvature of M .We �x a basepoint p 2 ~M and hoose a number � > 0 suÆiently largeto ensure that the balls of radius �=8 about f:p j  2 �g over ~M and that� > 8�k (notation of 5.2.2). Let A be the set of a 2 � suh that d(a:p; p) < �and let R be the set of words in the symbols A[A�1 that have length 6 12 andequal the identity in �. (Note that A ontains a letter that represents 1 2 �.)Corollary A.4.2 shows that hA j Ri is a presentation of �. We shall show thatevery null-homotopi word w over this presentation satis�esAreaa(w) 6 4�k �FillM0 (� jwj) + � jwj+ 1�:Given a word w with w = 1 in � we onsider the pieewise geodesi loopŵ in ~M (notation of 4.3). This loop has length less than �jwj and hene2221The honest reason for this deferral is that the proof is lengthy and inelegant.22 If one wants to quote Morrey diretly here one should perturb ŵ to ensure that it isembedded.



The geometry of the word problem 29an be �lled with a least-area dis f : D ! ~M of area at most FillM0 (� jwj).Using Proposition 5.2.2 we an �k -�ll D with a set � of ardinality less thanN := �k(FillM0 (� jwj) + � jwj + 1). Inreasing the ardinality of � by at mostjwj, we may assume that it ontains the verties of ŵ .Consider a ombinatorial 2-dis � and a map � : �! D as furnished by theCellulation Lemma. Our aim is to label � so that it beomes a van Kampendiagram for w over hA j Ri. The omposition f Æ � : � ! ~M will guide usin this onstrution. Note that the restrition of f Æ � to �� is a monotoneparameterization of ŵ . The initial point of ŵ determines a basepoint for �.For eah vertex v in the interior of � we hoose a point v � p in the � orbitof p that is losest to f Æ�(v). If v and v0 are the verties of a 1-ell in �, thenf Æ�(v) and f Æ�(v0) are a distane at most 2�k apart in ~M (the seond propertyof � in the Cellulation Lemma). It follows that d(v �p; v0 �p) 6 2�k+�=4, whihis less than �=2. Hene there exists a generator a 2 A suh that a = �1v v0 in�. We introdue the label a on the edge in � joining v to v0 .Among the verties of �� we have a set of distinguished verties, namelythose mapping to the verties of ŵ . Call these x0; : : : ; xn�1 , orresponding tothe verties wi � p on ŵ , where wi is the i-th pre�x of w .If v 2 �r�� is the initial point of an edge whose endpoint v0 lies on the arjoining xi�1 to xi in ��, then v is a distane less than �=8 + 2�k + �=2 fromeither wi�1 � p or wi � p, depending on whih side of the midpoint of the ar v0lies (where \midpoint" is measured in the ar length pulled bak from ~M ).For eah i = 1; : : : ; n we ollapse all but one of the edges along the ar of ��joining xi�1 to xi ; the edge ontaining the midpoint is not ollapsed23, and itsimage in the quotient dis � is labelled with the i-th letter of w . The image in �of the quotient of the edge [v; v0℄ disussed in the previous paragraph is labelledeither �1v wi�1 or �1v wi , aording to the side of the midpoint on whih v0 lies.(This label will be an element of A beause �=8 + 2�k + �=2 < �.)At this stage we have onstruted a ombinatorial 2-dis � with a label fromA on eah direted 1-ell. The label on the boundary irle �� is our originalnull-homotopi word w . The label on the boundary yle of eah 2-ell is, byonstrution, a word of length at most 12 in the letters A that represents theidentity in �, beause the faes of �, and hene �, are k -gons with k 6 12. Thus� is a van Kampen diagram for w over our hosen presentation of � = �1M .The Cellulation Lemma gave us � and told us that it had at most 8N faes,where N = �k(FillM0 (� jwj) + � jwj + 1). And � has the same number of faesas �. Thus we have established the desired upper bound on the algebrai areaof the arbitrary null-homotopi word w , and we dedue that Æ� � FillM0 . �6 Linear and Quadrati Dehn FuntionsIn this setion we shall see that the groups that have linear Dehn funtions arepreisely those that are negatively urved on the large sale, i.e. hyperboli in23 this involves a hoie if the midpoint is a vertex



30 M.R. Bridsonthe sense of 6.1.3. This fundamental insight is due to Misha Gromov [55℄.We shall also disuss the weaker link between non-positive urvature and thelass of groups that have a quadrati Dehn funtion.6.1 Hyperboliity: from Dehn to GromovGiven a �nite set of generators A for a group �, one would have a partiularlyeÆient algorithm for solving the word problem if one ould onstrut a �nitelist of words u1; v1; u2; v2; : : : ; un; vn; with ui =� vi and jvij < juij, suh thatevery freely-redued word in the letters A�1 that represents 1 2 � ontains atleast one of the ui as a subword.If suh a list of words exists then one proeeds as follows: given an arbitraryredued word w , look for subwords of the form ui ; if there is no suh subword,stop and delare that w does not represent 1 2 �; if ui ours as a subword,replae ui with vi , freely redue the resulting word w0 and then repeat thesearh for subwords of the form uj (noting that w = w0 in �). Proeeding inthis way, after at most jwj steps one will have either redued w to the emptyword (in whih ase w = 1 in �) or else veri�ed that w 6= 1 in �.De�nition 6.1.1 When it exists, the above proedure for solving the word prob-lem is alled a Dehn algorithm for �; it is enoded in hA j u1v�11 ; : : : ; unv�1n i,whih we all a Dehn presentation.Max Dehn proved that Fuhsian groups admit Dehn presentations [35℄. JimCannon proved that the fundamental groups of all losed negatively urved man-ifolds admit Dehn presentations [27℄. The following small anellation onditionprovides many other examples (see [66℄ Chapter V).Example 6.1.2 Let hA j Ri be a �nite presentation in whih eah relator isfreely redued. Assume that if r 2 R then r�1 and every yli permutationof r is in R. And suppose that whenever there exist distint r; r0 2 R with aommon pre�x u (i.e. r � uv and r0 � uv0 ), the inequality juj < jrj=6 holds.Then hA j Ri is a Dehn presentation.It requires only a moment's lear thought to see that the existene of a Dehnalgorithm for a group � implies that � has a linear Dehn funtion (f. paragraph1.2). A more profound observation is that the onverse is also true. The proof ofthis fat is indiret, proeeding via Gromov's notion of a hyperboli group [55℄.Gromov made the following remarkable disovery: the simple geometri on-dition given in (6.1.3) fores a geodesi metri spae, regardless of its loal stru-ture, to exhibit many of the large-sale features that one assoiates with simply-onneted manifolds of negative urvature. Thus he was able to extend the powerof negative urvature well beyond its traditional realm24 in Riemannian geome-try. This stripping away of extraneous struture leads to a deeper understanding24The work of H. Busemann and, more partiularly, A.D. Alexandrov, had already expandedthe range of spaes in whih one an disuss negative and non-positive urvature (see [22℄),but that work was based on loal de�nitions of urvature, whereas in Gromov's approah oneignores the loal struture of the spae.



The geometry of the word problem 31of the fundamental groups of losed negatively urved manifolds, and extendssuh an understanding to muh wider lasses of groups.De�nition 6.1.3 A geodesi metri spae X is hyperboli (in the sense ofGromov) if there exists a onstant � > 0 suh that for every geodesi triangle25� � X , eah edge of � lies in the � -neighbourhood of the union of the othertwo edges. (One writes \X is � -hyperboli" when it is useful to speify theonstant.)A �nitely generated group � is said to be hyperboli if its Cayley graph26 is� -hyperboli for some � > 0.Exerises 6.1.4 (i) Prove that real hyperboli spae H n is hyperboli in theabove sense and �nd the optimal � . (Hint: There is a bound on the area ofsemiirular diss that an be insribed in geodesi triangles in H 2 .)(ii) Dedue that the universal overing X of any losed manifold of negativesetional urvature is hyperboli in the sense of Gromov. (Hint: If one salesthe metri so that the urvature of X is bounded above by �1, then everygeodesi triangle � � X is the image of a non-expanding map � : � ! �,where � is a triangle in H 2 and the restrition of � to eah edge of � is anisometry. This is alled the CAT(�1) inequality [22℄.)The following results are due to Gromov [55℄ (see also Cannon [28℄). Detailedreferenes and proofs an be found in Chapter III.� of [22℄.Theorem 6.1.5 The following statements are equivalent for �nitely presentedgroups �:(1) � is a hyperboli group.(2) � has a �nite Dehn presentation.(3) � has a linear Dehn funtion.(4) The Dehn funtion of � is sub-quadrati (i.e. Æ�(n) = o(n2)).Proeeding in yli order, the only non-trivial impliations are (4) ) (1)and (1) ) (2). We shall not disuss (4) ) (1) exept to say that Cornelia Drut�u[38℄ reently disovered an elegant proof that uses asymptoti ones (f. 3.1.6).The proof that (1) ) (2) requires an understanding of the following typesof loally-eÆient paths. Let I � R be an interval and let X be a metri spae.A map  : I ! X is alled a k -loal geodesi if d((t); (t0)) = jt � t0j for allt; t0 2 I with jt� t0j 6 k . And  is alled a (�; ")-quasi-geodesi if1� jt� t0j � " 6 d((t); (t0)) 6 � jt� t0j+ "25See Appendix B for de�nitions suh as that of a triangle in an arbitrary metri spae.26The ambiguity that arises from the fat that we have not spei�ed a generating set isremoved by Exerise 6.1.9(2).



32 M.R. Bridsonfor all t; t0 2 I .In hyperboli spaes one has the following loal riterion for reognising er-tain quasi-geodesis (see [22℄ page 405).Lemma 6.1.6 If X is � -hyperboli then every 8� -loal geodesi in X is a(�; ")-quasi-geodesi, where the onstant � > 0 depends only on � , and " is lessthan 8� .The impliation (1) ) (2) in Theorem 6.1.5 follows easily from this lemma:Exerise 6.1.7 Suppose that the Cayley graph of � with respet to the �nitegenerating set A is � -hyperboli. Let R be the set of words uiv�1i , where uiruns over all words of length 6 8� in the letters A�1 for whih there existsa word vi with jvij < juij and ui = vi in �. Show that hA j Ri is a Dehnpresentation.The following stability property of quasi-geodesis marks an important dif-ferene between spaes of non-positive urvature and spaes of stritly negativeurvature (see [22℄ page 401).Proposition 6.1.8 For all �; �; " > 0 there exists R(�; �; ") > 0 suh that:if X is � -hyperboli and  : [a; b℄ ! X is (�; ")-quasi-geodesi with endpointsp and q , then the Hausdor� distane between the image of  and eah geodesisegment joining p to q is less than R(�; �; ").This proposition provides a proof (independent of the Filling Theorem) thatthe fundamental groups of losed negatively urved manifolds have linear Dehnfuntions { see 6.1.4(ii) and 6.1.9(iii).The following exerises require the reader to understand ertain items fromAppendix A, namely the de�nition of quasi-isometry, the �Svar-Milnor Lemmaand A.1.3(ii).Exerise 6.1.9 (i) Let X be a geodesi spae. If X is quasi-isometri to a � -hyperboli spae, then X is �0 -hyperboli for some �0 > 0. (Hint: Considerquasi-geodesi triangles.)(ii) If the Cayley graph of a group with respet to one �nite generating set ishyperboli, then so is the Cayley graph of that group with respet to any other�nite generating set.(iii) If a group ats properly and oompatly by isometries on a hyperboligeodesi spae, then that group has a linear Dehn funtion.We refer the reader to Chapter III.� of [22℄ for an introdution to the rihtheory of hyperboli metri spaes (the referenes given therein will also pointthe reader to reent developments in this ative �eld). Here are a few of thebasi properties of hyperboli groups.Theorem 6.1.10 If a group � has a linear Dehn funtion then:



The geometry of the word problem 33(1) � does not ontain Z2 ;(2) � has a solvable onjugay problem;(3) � has only �nitely many onjugay lasses of �nite subgroups;(4) � ats on a ontratible simpliial omplex with ompat quotient and �nitestabilizers.(5) Let A be a �nite generating set for � and let d be the assoiated wordmetri. De�ne �() = limn!1 d(1; n)=n. Then there is an integer Nsuh that fN �() j  2 �r f1gg is a set of positive integers.
6.2 Quadrati Dehn Funtions and Non-Positive CurvatureIf a geodesi metri spae X is omplete, 1-onneted and non-positively urvedin the sense of A.D. Alexandrov (see Appendix B), then its metri is onvexin the sense that d((t); 0(t)) 6 t d((1); 0(1)) + (1 � t) d((0); 0(0)) for allgeodesis ; 0 : [0; 1℄ ! X parameterized by ar length. This lass of spaesinludes the universal overing ~M of any ompat Riemannian manifold whosesetional urvatures are non-positive, and hene the following result applies tothe fundamental groups of suh manifolds (ating by dek transformation on~M ). It also applies to oompat latties in semisimple Lie groups (f. 3.3.7).Theorem 6.2.1 Let X be a omplete geodesi spae whose metri is onvex.If the group � ats properly by isometries on X and the quotient of this ationis ompat, then � is �nitely presented and its Dehn funtion is either linear orquadrati.The following proof is adapted from [5℄ and [22℄, and has earlier origins, e.g.[42℄.Proof The point of the proof is to onstrut the diagram shown in �gure 6.2.3.Let d be the metri on X . Fix p 2 X and let � > 1 be suh that the ballsof radius � about the �-orbit of p over X . Let  be the ar-length parame-terization of the unique geodesi segment joining p to :p. Let A � � be theset of  2 � suh that d(p; :p) 6 3�. Given  2 �, let m be the least integergreater than d(p; :p)=� and for eah positive integer t < m hoose t 2 � withd((�t); t:p) 6 �. De�ne 0 = 1 and m =  .Consider the word � := a1 : : : am where ai := �1i�1i 2 A for i = 1; : : : ;m.With an eye on future generalisations, we write �(i) instead of i to denotethe image in � of the i-th pre�x of � ; by de�nition �(i) =  if i > m. (Ingeneral we write w(i) for the image in � of the i-th pre�x of any word w .)It follows from the onvexity of the metri on X that in the word metri dAon � one has dA(�(i); �0(i)) 6 3 dA(; 0) (6.2.2)for all ; 0 2 � and all integers i > 0 (see Exerise 6.2.4(i)). We shall use thisinequality to onstrut eÆient diagrams for null-homotopi words.



34 M.R. BridsonLet w be a null-homotopi word, of length n say. We draw an orientedirle in R 2 , mark verties v0; : : : ; vn�1 (in yli order) on the irle and labelthe oriented ar (vi�1; vi) with the i-th letter of w (indies mod n). We thenonnet v0 to eah of the verties vi with a line segment [v0; vi℄ divided intoj�w(i)j 1-ells; these 1-ells are oriented and labelled by the letters of �w(i) in theobvious manner. De�ne �w(0) = �w(n) to be the empty word, and for j > j�w(i)jde�ne \the j -th vertex of [v0; vi℄" to be vi . Let J(i) = maxfj�w(i)j; j�w(i+1)jg.We omplete the onstrution of our diagram for w by introduing an edgefrom the j -th vertex of [v0; vi℄ to the j -th vertex of [v0; vi+1℄ for i = 0; : : : ; n�1and j = 1; : : : ; J(i); this edge is labelled by a word of minimal length that equals�w(i)(j)�1�w(i+1)(j) 2 �; aording to (6.2.2) this word has length at most 3.We have onstruted a diagram over A with boundary label w , where wis an arbitrary null-homotopi word. The fae labels are null-homotopi wordsof length 6 8; let R be the set of all suh words. Lemma 4.1.2 tells us that� = hA j Ri and that Areaa(w) is at most the number of faes in the diagram.Thus Areaa(w) 6 jwj maxfj�w(i)j : i 6 jwjg. And sine dA(1; w(i)) 6 jwj=2 forall i, Exerise 6.2.4(ii) tells us that Areaa(w) 6 (3=2)jwj2 . �

w

σw(i+1)

w(i)σ

v

v

i+1

i

ov

Figure 6.2.3 Using the ombing � to onstrut a van Kampen diagram
Exerises 6.2.4 (i) Establish the inequality 6.2.2. (Hint: If m = dA(; 0) thend(:p; 0:p) 6 3m� . Hene, by the onvexity of the metri, d((�t); 0(�t) 63m� for all t > 0. Reall that, by de�nition, �g(t) = gt . Divide the geodesi[(�t); 0(�t)℄ into 3m segments of equal length, and assoiate to eah divisionpoint a losest point of �:p , with t and 0t assoiated to the endpoints.)(ii) Dedue that for all  2 � the length of the word � in the above proof isat most 3 dA(1; ).



The geometry of the word problem 356.3 Automati GroupsThe intensive study of isoperimetri inequalities for �nitely presented groupsbegan in the late 1980s. It emerged primarily from the work of Gromov [55℄, buta ertain impetus also ame from the theory of automati groups. This theorysprang from onversations between Jim Cannon and Bill Thurston and grew intoa rih theory due to a team e�ort orhestrated by David Epstein { see [42℄.Roughly speaking, a group � with �nite generating set A is automati if onean onstrut its Cayley graph by omputations on �nite state automata: theremust exist a set of words L = f� j  2 �g in the letters A�1 , with � =  in�, suh that membership of L an be determined by a �nite state automaton(FSA); and for eah a 2 A there must exist a FSA that reognises those pairsof words (� ; �0) for whih 0 = a.The �niteness of these FSA fores the existene of onstants k;K > 0 suhthat j� j 6 k dA(1; ) anddA(�(i); �0(i)) 6 K dA(; 0) (6.3.1)for all ; 0 2 �. By using the normal form L in plae of the words � on-struted in the proof of (6.2.1) we obtain:Theorem 6.3.2 If � is automati then it is �nitely presented and its Dehnfuntion is linear or quadrati.Automati groups form a large lass. This lass inludes many groups thatdo not arise in the setting of Theorem 6.2.1, for example entral extensions ofhyperboli groups [77℄.In Chapter 9 of [42℄ Epstein and Thurston determine whih geometrizable 3-manifolds have automati fundamental groups, and Theorem 3.3.1 follows fromthis work. All mapping lass groups are automati [76℄.6.4 The Link with Non-Positive Curvature is LimitedIn analogy with the theory of hyperboli groups, one an develop a theory ofsemihyperboli groups, de�ned by a oarse geometri onstraint that fores suhgroups to satisfy most of the useful properties enjoyed by the fundamental groupsof ompat non-positively urved manifolds (f. Alonso and Bridson [5℄ andGromov [56℄).With Theorems 3.1.6 and 6.1.10 in mind, one might hope that requiring agroup to satisfy a quadrati isoperimetri inequality would fore it to behave ina \semihyperboli" manner, satisfying a list of properties analogous to (6.1.10).The examples that we have seen thus far support this hope to some extent |abelian groups, hyperboli groups, automati groups, fundamental groups ofompat non-positively urved spaes, SL(n;Z) for n > 4, various nilpotentgroups N , and those non-uniform latties in rank 1 Lie groups that have theseN as usp groups. But the examples disovered more reently indiate that thelass of groups that have a quadrati Dehn funtion is wilder than this list wouldsuggest, but quite how wild is not lear. For example, it is unknown if a group �



36 M.R. Bridsonthat has a quadrati27 Dehn funtion an have an unsolvable onjugay problem(it is onjetured that if suh a group exists, it should not have a 2-dimensionalK(�; 1)).Besides the property that de�nes them, the most signi�ant property thatis known to be enjoyed by groups with quadrati Dehn funtions is the fatthat their asymptoti ones are all simply-onneted [88℄. This property is notenjoyed by all groups with polynomial Dehn funtions [18℄.7 Tehniques for Estimating Isoperimetri FuntionsThis setion ontains a sample of the methods that have been developed toalulate Dehn funtions. The tehniques that I shall desribe have been usedwidely, but I must emphasise that this is only a sample, not a thorough survey.This sample is biased in favour of the methods that I have found most useful inmy own work.7.1 Upper BoundsIn general it is easier to obtain upper bounds on Dehn funtions than it is toobtain lower bounds. Indeed whenever one has an expliit solution to the wordproblem in a �nitely presented group, one an look for an upper bound on theDehn funtion by analysing the use of relations in that solution (f. paragraph1.1). Thus there are many diret methods for obtaining upper bounds, eahadapted to the groups at hand. We have already seen examples of suh methodsin (3.1.2), (2.2), (6.1.1), and (3.2.3). One might also think of results suh as3.4.1 in this light. Diret methods of a geometri nature are to be found in manyof the papers listed in the bibliography, e.g. [19℄, [15℄, [95℄ and [18℄.The following general method for obtaining upper bounds on Dehn funtionshas been used in many ontexts.Using Combings to Get Upper Bounds. Let � be a group with �nitegenerating set A and let d be the assoiated word metri. A ombing (normalform) for � is a set of words f� j  2 �g in the letters A�1 suh that � =  in�. Whenever one an �nd a geometrially-eÆient ombing for a group � onean estimate the Dehn funtion Æ� by modifying the proof of Theorem 6.2.1. Theontrol that one needs in order to get non-trivial bounds is remarkably weak [16℄.We ontent ourselves with one of the simplest and most widely used methodsof ontrol, wherein one weakens the fellow-traveller property (6.3.1) by allowingreparameterizations of the words � (thought of as paths in the Cayley graphof �).De�nition 7.1.1 LetR = �� : N ! N j �(0) = 0; �(n+ 1) 2 f�(n); �(n) + 1g 8n; � unbounded	:27There do exist examples with ubi Dehn funtions, [20℄ Example 2.9.



The geometry of the word problem 37Given words w1; w2 in the letters A�1 , de�neD(w1; w2) = min�;�02R�maxt2N fd(w1(�(t)); w2(�0(t))g	:A ombing  7! � is said to satisfy the asynhronous fellow-traveller propertyif there is a onstant K > 0 suh thatD(� ; �0) 6 K dA(; 0)for all ; 0 2 �. The length of � is a funtion N ! N :L�(n) := max fj� j j dA(1; ) � ng:
Proposition 7.1.2 If a �nitely generated group � admits a ombing � thatsatis�es the asynhronous fellow-traveller property, then � is �nitely presentedand its Dehn funtion satis�es Æ�(n) � nL�(n). And regardless of the length ofthe ombing, Æ�(n) � 2n .

Exerise 7.1.3 Prove the assertions in the �rst sentene of the above proposition.(Hint: Follow the onstrution of Figure 5 in the proof of Theorem 6.2.1, butinstead of onneting �w(i)(j) to �w(i+1)(j) with a 1-ell, onnet �w(i)(�(j))to �w(i+1)(�0(j)), where � and �0 are reparameterizations as in the de�nitionof the asynhronous fellow-traveller property.)
Examples 7.1.4 (i) The upper bound desribed in Theorem 3.1.4 was estab-lished in [23℄ using the ombings onstruted in [17℄. Given � = Zm o� hti onean write eah  2 � uniquely in the form tnx with x 2 Zm . One �xes a basisfor Zm and represents x by a word lx that (viewed as a path in the lattie Zm )stays losest to the Eulidean segment [0; x℄ in Rm = Zm 
R . One then de�nes� = tnlx , heks that � satis�es the asynhronous fellow-traveller property andalulates that L�(n) ' n k�nk (see [23℄ page 215).(ii) I proved in [17℄ that if a ompat 3-manifold M satis�es the geometrizationonjeture, then �1M admits a ombing that satis�es the asynhronous fellow-traveller property, whene the exponential upper bound in Theorem 3.3.1.7.2 Lower Boundst-orridors and t-rings. t-orridors and t-rings are partiular types of sub-diagrams that one gets in van Kampen diagrams over presentations hA; t j R iwhere the group presented retrats onto hti. We refer to [21℄ for a arefultreatment, but point out that although this is where t-orridors were namedand systematised, they were in use muh earlier, e.g. in Rips's geometri proofof the unsolvability of the word problem (see the inside over of [94℄).



38 M.R. BridsonConsider the presentation � = hA; t1; : : : ; tn j Ri, where the symbols tjare not elements of A and the only relators involving any tj are of the formtjuit�1j vi 2 R, where ui; vi 2 F (A). Consider a van Kampen diagram Dover suh a presentation and fous on an edge " in the boundary labelledt 2 ft1; : : : ; tng. If this edge lies in the boundary of a 2-ell, then the boundaryyle of this 2-ell (read with suitable orientation from ") has the form tut�1vwith u; v 2 F (A). In partiular, there is a unique edge other than " in theboundary of the 2-ell that is labelled t; rossing this edge we enter another2-ell with a similar boundary label; by iterating the argument we get a hainof 2-ells running aross the diagram; this hain terminates at an edge of �Dwhih (following the orientation of �D in the diretion of our original edge ") islabelled t�1 . This hain of 2-ells is alled a t-orridor.Topologially, a t-orridor is a map [0; 1℄ � [0; 1℄ ! D that is injetiveon [0; 1℄ � (0; 1). We make this map a morphism of labelled ombinatorial 2-omplexes by pulling bak the ell struture and labelling from D . The labels onthe 1-ells in [0; 1℄�f0; 1g (the top and bottom of the orridor) are letters fromA�1 ; the remaining 1-ells are of the form fsg � [0; 1℄, and these are labelled t.A t-ring is de�ned similarly: it onsists of a hain of 2-ells giving a ombi-natorial map � : S1� [0; 1℄! D that is injetive on S1� (0; 1); in S1� [0; 1℄ the1-ells of the form f�g� [0; 1℄ are labelled t; the remaining 1-ells are ontainedin S1�f0; 1g and are labelled by letters from A�1 ; the map � is label-preserving.Muh of the utility of t-orridors and t-rings rests on the following observa-tions:Exerise 7.2.1 Let ti; ui; vi;� and D by as in the preeding disussion. Prove:(i) Distint t-orridors and t-rings have disjoint interiors.(ii) If P is the edge-path in D running along the top or bottom of a t-orridor,then P is labelled by a word in the letters A�1 that is equal in � to the wordslabelling the subars of �D whih share the endpoints of P (given appropriateorientations),(iii) and if k = minfmaxi juij;maxi jvijg , then the number of 2-ells in the t-orridor is at least 1=k times the length of P .(iv) The words labelling the inner and outer boundary yles of a t-ring arenull-homotopi.(v) If D ontains a 2-ell that has an edge labelled t in its boundary, then Dontains either a t-orridor or a t-ring.Instead of indulging in a general disussion, let me give one proposition toillustrate the utility of t-orridors and one to illustrate the utility of t-rings.Proposition 7.2.2 Let � be an automorphism of the �nitely presented groupB = hA j Si. For eah a 2 A, hoose a word va 2 F (A) representing �(a) 2 B .Let R = S[ ft�1j atj = va j a 2 A; j = 1; 2g and de�ne � := hA; t1; t2 j Ri. Thenthe Dehn funtion of � is ' bounded below byn 7! nmaxb fdA(1; �n(b)) j dA(1; b) 6 ng:



The geometry of the word problem 39Proof For eah positive integer n, we hoose a word � of length at most n inthe generators A�1 so as to maximize dA(1; �n(b)), where b is the image of � in�. Let un := t�n1 �tn1 and let wn := un(t2t�11 )nu�1n (t2t�11 )�n , a word of lengthat most 10n. Note that wn = 1 in �. Note also that no proper subword of wnis equal to 1 2 � (one sees this easily using the natural retration �! F (t1; t2)and the fat that t�ij �tij 6= 1 for all i). It follows that any van Kampen diagramfor wn is a dis, in partiular every edge of �D lies in the losure of some 2-ell, and therefore a tj -orridor emanates from eah edge of �D labelled tj , forj = 1; 2.The simple fat that distint tj -orridors annot ross (fat 7.2.1(i)) impliesthat the pattern of t2 -orridors in any van Kampen diagram for wn must beas shown in �gure 7.2.3. The words in the letters A�1 labelling the bottom ofeah of eah t2 -orridor is equal in � to un . Hene (fat 7.2.1(iii)) eah of theseorridors ontains at least 1k dA(1; �n(b)) 2-ells, where k is the length of thelongest of the words va . And there are n suh orridors. �
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Figure 7.2.3 The pattern of tj -orridors



40 M.R. Bridson
Exerises 7.2.4 (i) Let � 2 GL(n;Z) be a unipotent matrix and let � = Zm oF (t1; t2), where the generators t1 and t2 of the free group F (t1; t2) both at onZm as � . Dedue from the above proposition and your proof of (3.1.5) that theDehn funtion of � is bounded below by a polynomial of degree  + 1, where is the size of the largest elementary blok in the Jordan form of � . Adapt7.1.4(i) to dedue that in fat Æ�(n) ' n+1 . (If you get stuk, refer to [18℄.)(ii) Britton's Lemma states that, given an HNN extension G�� = (G; t j t�1st =�(s);8s 2 S), and a generating set A for G , every null-homotopi word in theletters (A [ ftg)�1 either ontains no ourrenes of t�1 , or else ontains asubword t"ut�" , where " = �1 and u is a word in the letters A�1 that lies inhSi if " = �1 and lies in h�(S)i if " = 1.Use t-orridors to prove Britton's Lemma.

Proposition 7.2.5 Let G be a �nitely presented group, let L;L0 � G be �nitelygenerated subgroups that are free, let � : L ! L0 be an isomorphism, and let� = G�� be the assoiated HNN extension. Then Æ� � ÆG .
Exerises 7.2.6 (i) Let D be a van Kampen diagram for a null-homotopi wordw over a presentation hA j Ri , and let u be the label on a simple losed loop in the 1-skeleton of D . Prove that if Area D = Areaaw , then the numberof 2-ells in the sub-diagram enlosed by  is Areaau . Extend this result tonon-rossing loops28.(ii) Prove Proposition 7.2.5. (Hint: � = hA; t j R; t�1lt = �(l); l 2 Si whereG = hA j Ri and S � A is a basis for L . Given a word w 2 F (A) with w = 1in �, take a van Kampen diagram D with Area D = Areaaw . Use (i) and thefat that L is free to argue that D ontains no t-rings and hene is a diagramover hA j Ri .)

Cohomologial Methods. Both Gersten and Gromov have developed oho-mologial methods for obtaining lower bounds on Dehn funtions. In partiular,Gersten [48℄ developed an `1 -ohomology theory whih, among other things,allows one to reover results obtained using t-orridors in a more elegant andsystemati manner. It would take too long to explain these ideas here, so werefer the reader to [48℄. We ontent ourselves with a more simple-minded resultthat uses de Rham ohomology. (We give this result in part beause it resonateswith ideas in Setion 5).The statement of the following lemma is phrased in the voabulary introduedin (4.3). The onstant A! is de�ned to be the maximum of the integrals RE !where E is a 2-ell mapped into ~M by ~K(A : R)! ~M .Lemma 7.2.7 Let M be a smooth, losed Riemannian manifold with funda-mental group � = hA j Ri and let ! be a �-invariant losed 2-form on ~M . If D28A non-rossing loop is the restrition to S1�f1g of a map S1�[0; 1℄! R2 that is injetiveon S1 � [0; 1).



The geometry of the word problem 41is a van Kampen diagram with boundary label w , and hD is the map desribedin (4.3), then ZD h�D! 6 A! Areaa(w):Proof The integral RD h�D! is well-de�ned beause hD is di�erentiable exepton a set of measure zero. If D0 is a seond van Kampen diagram for w , thenone an regard �hD [ hD0 as a 2-yle in ~M , and hene RD h�D! = RD0 h�D0! .And when Area D = Areaa(w) the inequality is lear. �The utility of this lemma stems from the fat that one does not need tounderstand the nature of least-area van Kampen diagrams in order to get alower bound on their area: if one an loate any van Kampen diagram D fora given word w , then one gets a lower bound on Areaa(w) by integrating h�D!over D . Moreover, by Stokes Theorem, if the 2-form ! is exat, say ! = d� ,then one an simply alulate Rŵ � , thus avoiding the onstrution of diagramsaltogether.Example 7.2.8 In the ase where � 2 Sp(m;Z), Bridson and Pittet [23℄ es-tablished the lower bound in Theorem 3.1.4 by applying Lemma 7.2.7 to thestandard sympleti form on Rm .Exploiting Aspheriity. A group presentation hA j Ri is alled aspherialif the assoiated 2-omplex K(A;R) is aspherial (i.e. its universal overing isontratible). One of the great joys of working with aspherial presentations isthat when one �nds an embedded van Kampen diagram one knows that it is ofminimal area:Lemma 7.2.9 Suppose that X = K(A;R) is aspherial. Let D be a vanKampen diagram for w . If the assoiated map D ! eX is injetive on theomplement of the 1-skeleton D(1) , then the number of 2-ells in D is Areaa(w).Proof Let D0 be a seond van Kampen diagram for w . One an regard D[D0as a 2-yle in the ellular hain omplex of ~X . Sine there are no 3-ells andH2 ~X is trivial (by Hurewiz), this 2-yle must be zero. And sine the 2-ells inthe image of D are all distint, eah must anel with some 2-ell in D0 . HeneAreaD 6 AreaD0 . And sine D0 was arbitrary, Areaa(w) = Area D . �Examples 7.2.10 (i) Z2 = ha; b j [a; b℄i is aspherial. Hene the area of theobvious (square) diagram for wn = a�nb�nanbn equals Areaa(wn) (f. 3.1.2).(ii) The presentation of Bm desribed in (3.2.1) is aspherial. Expliit disdiagrams show that ÆBm(n) � "m(n) | see Exerise 7.2.11.(iii) A elebrated theorem of Roger Lyndon shows that 1-relator presentationsare aspherial if the relation is not a proper power [66℄.(iv) The natural presentations of free-by-free groups are aspherial and provideinteresting examples of Dehn funtions [20℄.
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Exerises 7.2.11 (i) Let X denote the universal overing of the standard 2-omplex of the presentation of Bm desribed in (3.2.1). The 1-skeleton X(1) isidenti�ed with the Cayley graph of Bm . Show that the loop in X(1) labelledx�n1 x0xn1x�2n0 bounds an embedded dis �n(x0; x1) that has (2n�1) faes (2-ells). By juxtaposing two opies of �n(x0; x1), onstrut a dis D1 showingthat x�n1 x0xn1x0x�n1 x�10 xn1x�10 is a null-homotopi word of area 2(2n � 1).

(ii) Now suppose that n = 2r . By attahing four opies of a dis diagram�r(x1; x2) to the segments of �D1 labelled xn1 , onstrut a dis diagramfor (x�r2 x�11 xr2)x0(x�r2 x1xr2)x0(x�r2 x�11 xr2)x�10 (x�r2 x1xr2)x�10 that has more than22r faes (2-ells).Iterate this onstrution and use Lemma 7.2.9 to dedue that ÆBm(n) � "m(n).Reprove this inequality using t-orridors instead of aspheriity.

The following exerises lead the reader through the proof that the Dehnfuntion of the group Gp;q desribed in 3.1.10 is � n2 log2 2p=q . If you get stukduring these exerises, refer to [15℄.
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Exerises 7.2.12 (i) Let f; g : [0;1) ! [0;1) be non-dereasing funtionsand let (ni) be an inreasing sequene of positive integers with n0 = 0 andni+1 6 Cni for all i , where C > 0 is onstant. Show that if f(ni) 6 g(ni)for all i , then f 4 g . (Thus we see that to establish lower bounds on Dehnfuntions Æ(n), it is only neessary to look at fairly sparse sequenes of integers(ni).)(ii) Consider the presentation of Gp;q given in (3.1.10). Prove that this presen-tation is aspherial. (Hint: One an build the 2-omplex of the presentation asfollows. Start with a torus orresponding to the subgroup gpfa; bg � Gp;q and�x a basepoint on it. Attah two ylinders (annuli) to the torus along simpleurves through the basepoint { one end of eah ylinder traes out a urve inthe homotopy lass aq and the other ends trae out apb�1 . The Seifert-vanKampen theorem shows that this omplex has fundamental group Gp;q . Theuniversal over ~X of this 2-omplex is a ontratible omplex obtained by glu-ing planes indexed by the osets of gpfa; bg � Gp;q along strips (opies of theline ross an interval) overing the annuli in the quotient.)(iii) Complete the following outline to a proof that the Dehn funtion of Gp;qis � n� where � = 2 log2 2p=q .Let w0 = aq and let w1 = saqs�1taqt�1: De�ne words wk =swk�1a�k�1s�1twk�1a�k�1 t�1 with 0 � �k�1 � q� 1 so that wk�1a�k�1 repre-sents a power of a that is divisible by q . Show that 4(2k) � jwkj � (4q)2k andthat wk = amk in Gp;q , where mk > q(2p=q)k .Show that one an �nd embedded in ~X a van Kampen diagram portrayingthe equality wk = amk . (See �gure 7.2.13 { the large faes in this �gure arediagrams over the sub-presentation ha; b j [a; b℄i .)Let Wk = [swk�1a�k�1s�1 ; twk�1a�k�1 t�1℄: Show that Wk represents theidentity in Gp;q and desribe a van Kampen diagram for Wk that embeds in~X . Dedue that there is a onstant C > 0 suh thatAreaa(Wk) � Cm2k � Cq2(2p=q)2k:Use (i) to onlude that the Dehn funtion of Gp;q is bounded below by n 7!n2 log2 2p=q .
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44 M.R. BridsonFigure 7.2.13 The diagram portraying wk = amk
Calulating in Abelian Quotients. Let � = hA j Ri and let K be thesubgroup of F = F (A) generated by the set of elements C = fx�1rx j x 2F (A); r 2 Rg. By de�nition, Areaaw is the least number N for whih thereis an equality w = 1 : : : N with i 2 C�1 . One antiipates that the task ofestimating N would be easier if one were working with sums in abelian groupsrather produts in free groups. With this in mind (and motivated by results ofGersten [45℄) Baumslag, Miller and Short [10℄ look at the projetion of equalitiessuh as the one above into the abelianization of K , i.e. the relation module29 ofthe presentation hA j Ri. They also onsider what happens when one projetsfurther, onto K=[K;F ℄.Thus they de�ne the abelianized isoperimetri funtion �ab� by analogy withthe Dehn funtion (1.2.2), replaing Areaaw by Areaaba w , whih is de�ned tobe the least integer N for whih there is an equality

w = NXi=1 x�1i rixi
in K=[K;K℄, with ri 2 R�1 and xi 2 F . And they de�ne the entralizedisoperimetri funtion �ent� by ounting the minimum number of summandsrequired to express w in K=[K;F ℄. Baumslag et al. prove that eah of thesefuntions is ' independent of the hosen �nite presentation of �.Note the obvious inequalities�ent� � �ab� � Æ�:From the Hopf formula ([25℄ page 41) one sees that K=[K;F ℄ is a diret sumof a free abelian group and H2(�;Z), and there is a well-developed tehnology foralulating in H2(�;Z) { in partiular one has Fox's free di�erential alulus. Byusing this alulus Baumslag et al. obtain bounds on �ent� for various groups.In ertain ases they are also able to show that �ent� ' Æ� . In this way they wereable to alulate the Dehn funtions of free nilpotent groups, thus exemplifyingthe merits of the aphorism that the homologial approah works best for groupsthat ontain a lot of ommutivity.Exerise 7.2.14 Observe that the argument given in (7.2.9) atually shows thatif D =PNi=1 i in the ellular hain omplex of ~X then N > Areaa(w) (wherethe i are 2-ells). Dedue from (7.2.12) that �abGp;q (n) is � n2 log2 2pq .
29The onjugation ation of F on K indues an ation of � on K=[K;K℄ , hene the modulestruture.



The geometry of the word problem 458 Other Deision Problems and Measures of Complexity8.1 Alternative Analyses of the Word ProblemWe saw in Setion 1 that the Dehn funtion measures one's likelihood of suesswhen one mounts a diret attak on the word problem for a �nitely presentedgroup. But there are other interesting ways to measure the omplexity of theword problem. For example, instead of fousing on the area of van Kampendiagrams one might fous on some other aspet of their geometry, suh as theirdiameter or the radius of the largest ball in the interior of the diagram. Onemight also bound the length of the intermediate words that arise during theproess of applying relations to redue a null-homotopi word to the emptyword { \�lling length". In Chapters 4 and 5 of [56℄ Gromov disusses manymeasures of omplexity suh as these, and there has been some interesting workon their interdependeny (e.g. [46℄, [18℄, and [50℄). Let me desribe the mostwidely studied of these alternatives, whih relates to the diameter of �lling-dissin Riemannian manifolds.De�nition 8.1.1 Let hA j Ri be a �nite presentation for the group �. Let wbe a word that equals 1 in � and let D be a van Kampen diagram for w . Letp be the basepoint of D . Endow the 1-skeleton of D with a path metri � thatgives eah edge length 1. The diameter of w is de�ned bydiam(w) := minD maxq f�(p; q) j q a vertex of Dg:The (unredued) isodiametri funtion of hA j Ri is	(n) := maxjwj6n diam(w):The ' equivalene lass of 	 depends only on � (see [46℄) and is denoted 	� .Isodiametri funtions turn out to be as unonstrained in nature as Dehnfuntions (3.1.11), see [95℄. They an be interpreted in the following purelyalgebrai manner.Proposition 8.1.2 diam(w) = min�max jxij, where the minimum is takenover all free equalities of the formw = NYi=1x�1i rxi:
Exerises 8.1.3 (i) Dedue this proposition from the onstrutions in Setion 4.(ii) Use the diagrams onstruted in (7.1.3) to show that if a group � admits aombing with the asynhronous fellow-traveller property, then 	�(n) ' n .(iii) Prove that 	� � Æ� for all �nitely presented groups.



46 M.R. BridsonSteve Gersten and Daniel Cohen (independently) proved that for any groupone an �nd onstants A;B > 0 suh that Æ�(n) 6 AB	(n) , and it is onjeturedthat in reality there is a single exponential bound. The relationship between 	�and Æ� is ompliated by the fat that in general the minima in the de�nitionsof these funtions will not be attained on the same family of diagrams: if oneproeeds as in De�nition 8.1.1 but quanti�es only over least-area diagrams, thenone obtains a funtion 	ma� that in general is � 	� .8.1.4 Extrinsi Solutions to the Word Problem. In general, invariantsbased entirely on the geometry of van Kampen diagrams annot give a full andaurate measure of the omplexity of the word problem in a group beause theremight exist algorithms that require extrinsi struture that annot be seen in apresentation. For example, one an solve the word problem for B1 = hx0; x1 jx�11 x0x1 = x21i in polynomial time by looking at the orbit of 13 2 R under theation B1 ! A�(R ) desribed following (3.2.1), and yet ÆB1(n) ' 2n .If there is an embedding � ,! �̂ into a group whose Dehn funtion is smallerthan that of � then one an apply the solution to the word problem in �̂ to solvethe word problem in �. Examples of this phenomena are desribed in [8℄, [47℄and [22℄ page 487. Remarkably, in [13℄ Birget, Ol'shanskii, Rips and Sapir provethat suh embeddings take full aount of the omplexity of the word problemin a preise sense that inludes the following statement: the word problem of a�nitely generated group G is an NP problem if and only if G is a subgroup of a�nitely presented group that has a polynomial Dehn funtion.8.2 Other Deision ProblemsIn this artile we are onentrating on the word problem, but I should say a fewwords about the omplexity of the other basi deision problems in group theory.We �x a group � with a �nite generating set A. In order to solve the wordproblem one must deide whih words in the letters A�1 equal 1 2 �. Twonatural generalisations of this problem are:(1) The Membership Problem (Relative Word Problem). Instead of determiningwhih words represent elements of the trivial subgroup, one is asked for an al-gorithm that deides whih words represent elements of the subgroup H � �generated by a spei�ed �nite subset of �.(2) The Conjugay Problem. Instead of determining whih words represent ele-ments onjugate to the identity, one is asked for an algorithm that deides whihpairs of words represent onjugate elements of �.Just as solving the word problem in � amounts to �nding diss with a spe-i�ed boundary loop in a losed manifold M with �1M = �, so the onjugayproblem amounts to �nding annuli whose boundary is a spei�ed pair of loops(minimizing the thikness of the annulus orresponds to bounding the lengthof the onjugating element). In the same vein, the membership problem or-responds to determining whih paths an be homotoped (rel endpoints) into agiven subspae of M .



The geometry of the word problem 47There are various onstrutions onneting the word, onjugay and mem-bership problems | see [73℄ and [9℄. The following �bre produt onstrutionprovides a partiularly nie example as it an be modelled readily in geometrisettings.Exerise 8.2.1 Let � = hA j Ri be a �nitely presented group and let D �F (A) � F (A) be the subgroup f(w;w0) j w = w0 in �g . Show that D is�nitely generated. Explain why solving the word problem for � is equivalent tosolving the membership problem for D . Show that if one annot solve the wordproblem in � then one annot solve the onjugay problem in D . (Hint: Fixr 2 R . Given a word w in the generators of F (A) � f1g , express the elementw�1(r; r)w as a word in your hosen generators of D . When is the word youhave reated onjugate to (r; r) in D?)
If � is in�nite then the group D in the above exerise is not �nitely pre-sentable (see [57℄). For �nitely presented examples and variations of a moregeometri nature, see [9℄.Remark 8.2.2 The onjugay problem is onsiderably more deliate than theword problem in general. For example, in ontrast to the fat that the om-plexity of the word problem for a group remains essentially unhanged when onepasses to a subgroup or overgroup of �nite index (1.3.5), Collins and Miller [32℄onstruted pairs of �nitely presented groups H � G suh that jG=Hj = 2 butH has a solvable onjugay problem while G does not. They also show that onean arrange for G to have a solvable onjugay problem when H does not.

The Isomorphism Problem. Roughly speaking, the isomorphism problemasks for an algorithm that will deide whih �nite presentations drawn from aspei�ed list de�ne isomorphi groups. The diÆulty of this problem dependsvery muh on the nature of the groups being presented. For example, Zlil Sela [96℄proved that if one is given the knowledge that all of the groups being presentedare the fundamental groups of losed negatively urved manifolds, then there isan algorithm that one an run to deide whih of the groups are isomorphi. Inontrast, it is unknown if there exists suh an algorithm when one weakens theurvature ondition to allow non-positively urved manifolds. Indeed there arevery few natural ontexts in whih the isomorphism problem has been solved.(Note that in order to solve the isomorphism problem in a given lass of groups itis not enough to have an algorithm that determines whih presentations give thetrivial group; for example, there is an algorithm to deide whether presentationsof automati groups determine the trivial group (hapter 5 of [42℄) but this doesnot lead to a solution of the isomorphism problem in this lass of groups.)The following onstrution illustrates how HNN extensions an be used totranslate word problems into other sorts of deision problems.
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Exerise 8.2.3 Let � = hA j Ri be a �nitely presented group that is not free.Suppose that A = fa1; : : : ; ang where eah ai has in�nite order in � (this anbe arranged by replaing � with � � Z if neessary). Consider the followingsequene of �nite presentations indexed by words w 2 F (A):Gw = ha1; t1; : : : ; an; tn j R; t�1i aiti = w for i = 1; : : : ; ng:Show that �w is a free group if and only if w = 1 in �.Assuming that there exists a group with an unsolvable word problem, use thisonstrution (or a variation on it) to show that there exist (reursive) lassesof �nite presentations suh that there are no algorithms to deide whih of thegroups presented are free, are torsion-free, ontain Z2 (or any other spei�edsubgroup), an be generated by 3 elements, or admit a faithful representationinto SL(n;Z).

8.3 Subgroup DistortionFollowing Gromov [56℄, we de�ne the distortion of a pair of �nitely generatedgroups H � � to be the funtion � : N ! N , where �(n) is the radius of theset of verties in the Cayley graph of H that are a distane at most n fromthe identity in �. (One shows that, up to ' equivalene, this funtion does notdepend on the hoie of generating sets.)If � has a solvable word problem, then the membership problem for H � �is solvable if and only if the distortion of H in � is a reursive funtion.Examples 8.3.1 (i) If � 2 GL(r;Z) has an eigenvalue of absolute value greaterthan 1, then Zr is exponentially distorted in Zr o� Z .(ii) Let G be as in (3.1.7). In [19℄ I proved that for all positive integers a > bthe distortion of Gb in Ga �hzi Gb , the group formed by amalgamating Ga andGb along their entres, is ' n ab . In [85℄ Osin proves that one an also obtainarbitrary positive rational exponents a=b by onsidering subgroups of �nitelygenerated nilpotent groups.(iii) Let Gp;q be as in (3.1.10). In [15℄ Brady and I proved that the distortionfuntion of the torus subgroup ha; bi in Gp;q is equivalent to n� , where � =log2(2p=q).Ol'shanskii and Sapir have established omprehensive results, analogous toTheorem 3.1.11, onerning the possible distortion funtions of �nitely presentedsubgroups | see [82℄, [84℄.See [22℄ page 507 for an interpretation of subgroup distortion in terms ofRiemannian geometry as well as a onnetion between subgroup distortion andDehn funtions. See [43℄ for a disussion of relative Dehn funtions.A Geometri Realisations of Finitely Presented GroupsThis appendix ontains a brief desription of some of the basi onstrutions ofgeometri group theory. There are two main (inter-related) strands in geomet-



The geometry of the word problem 49ri group theory: one seeks to understand groups by studying their ations onappropriate spaes, and one seeks understanding from the intrinsi geometry of(disrete, �nitely generated) groups endowed with word metris. We begin byintroduing the latter approah.A.1 Finitely Generated Groups and Quasi-IsometriesThe following onstrutions allow one to regard �nitely generated groups asgeometri objets.A.1.1 Word Metris and Cayley Graphs Given a group � with generatingset A, the �rst step towards realizing the intrinsi geometry of the group is togive � the word metri assoiated to A: this is the metri obtained by de�ningdA(1; 2) to be the shortest word in the letters A�1 that equals �11 2 in �. Theation of � on itself by left multipliation gives an embedding �! Isom(�; dA).(The ation of 0 2 G by right multipliation  7! 0 is an isometry only if 0lies in the entre of �.)The Cayley graph30 of � with respet to A, denoted CA(�), has vertex set �and has an edge onneting  to a for every  2 � and a 2 A. The edgesof CA(�) are endowed with loal metris in whih they have unit length, andCA(�) is turned into a geodesi spae by de�ning the distane between eah pairof points to be equal to the length of the shortest path joining them.The word metris assoiated to di�erent �nite generating sets A and A0of � are Lipshitz equivalent, i.e. there exists ` > 1 suh that 1̀dA(1; 2) 6dA0(1; 2) 6 ` dA(1; 2) for all 1; 2 2 �. One sees this by expressing theelements of A as words in the generators A0 and vie versa { the onstant ` isthe length of the longest word in the ditionary of translation.The Cayley graphs assoiated to di�erent �nite generating sets are not home-omorphi in general, but they are quasi-isometri in the following sense.De�nition A.1.2 A (not neessarily ontinuous) map f : X ! X 0 betweenmetri spaes is alled a quasi-isometry if there exist onstants � > 1; � > 0; C >0 suh that every point of X 0 lies in the C -neighbourhood of f(X) and1�d(x; y)� � 6 d(f(x); f(y)) 6 �d(x; y) + �
for all x; y 2 X .
30This graph was introdued by Arthur Cayley in 1878 to study \the quasi-geometrial"nature of (in his ase, �nite) groups. It played an important role in the seminal work of MaxDehn (1910) who gave it the name Gruppenbild.
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Exerises A.1.3 (i) If there exists a quasi-isometry X ! X 0 then X and X 0 aresaid to be quasi-isometri. Prove that being quasi-isometri is an equivalenerelation on any set of metri spaes.(ii) Show that if A and A0 are �nite generating sets for �, then (�; dA); CA(�)and CA0(�) are quasi-isometri.(iii) When is a homomorphism between �nitely generated groups a quasi-isometry?Sine the quasi-isometry type of a �nitely generated group does not dependon a spei� hoie of generators, statements suh as \the �nitely generatedgroup � is quasi-isometri to the metri spae Y " or \the �nitely generatedgroups �1 and �2 are quasi-isometri" are unambiguous.One may view the inlusion � ,! CA(�) in the following light: � ats byisometries on CA(�), the ation of 0 2 � sending the edge with label a 2 Aemanating from the vertex  to the edge labelled a emanating from the vertex0 , and � ,! CA(�) is the map  7!  � 1. This is a simple instane of theimportant observation that quasi-isometries arise naturally from group ations(see [22℄ page 140).Proposition A.1.4 (The �Svar-Milnor Lemma) If a group � ats properly andoompatly by isometries on a length spae X , then for every hoie of basepointx0 2 X the map  7! :x0 is a quasi-isometry.The fundamental group of any (loally simply-onneted) spae ats by dektransformations on the universal overing. If the spae is a ompat geodesispae and the universal overing is endowed with the indued length metri ([22℄page 42), then this ation is proper, oompat and by isometries. Thus we have:Corollary A.1.5 The fundamental group of any losed Riemannian manifoldM is quasi-isometri to the universal overing ~M .We note one other orollary of the �Svar-Milnor Lemma:Corollary A.1.6 If X1 and X2 are length spaes and there is a �nitely-generated group � that ats properly and oompatly by isometries on both X1and X2 , then X1 and X2 are quasi-isometri.Dehn funtions behave well with respet to quasi-isometries (see [4℄ and om-pare with Proposition 1.3.3 above and pages 143 and 415 of [22℄).Proposition A.1.7 If � is a �nitely presented group and �0 is a �nitely gen-erated group quasi-isometri to �, then �0 is also �nitely presented and the Dehnfuntions of � and �0 are ' equivalent.By ombining this proposition with the preeding orollaries and the FillingTheorem we obtain:



The geometry of the word problem 51Theorem A.1.8 If the universal overings of two losed, smooth, Rieman-nian manifolds M1 and M2 are quasi-isometri, then the isoperimetri funtionsFillM10 and FillM20 are ' equivalent.One an prove this result more diretly by following Alonso's proof of (A.1.7)using the ombinatorial approximation tehniques developed in Setion 5.A.2 Realising the Geometry of Finite PresentationsWe now fous on �nitely presented groups. The following ategory of omplexesand maps is more rigid than the CW ategory and lends itself well to argu-ments suh as those that we saw in the setion on Van Kampen's Lemma. Thedisussion here follows that of Appendix I.8.A in [22℄.A.2.1 Combinatorial Complexes These omplexes are topologial objetswith a spei�ed ombinatorial struture. They are de�ned by a reursion ondimension; the de�nition of an open ell is de�ned by a simultaneous reursion.If K1 and K2 are ombinatorial omplexes, then a ontinuous map K1 ! K2is said to be ombinatorial if its restrition to eah open ell of K1 is a homeo-morphism onto an open ell of K2 .A ombinatorial omplex of dimension 0 is simply a set with the disretetopology; eah point is an open ell. Having de�ned (n� 1)-dimensional ombi-natorial omplexes and their open ells, one onstruts n-dimensional ombina-torial omplexes as follows.Take the disjoint union of an (n � 1)-dimensional ombinatorial omplexK(n�1) and a family (e� j � 2 �) of opies of losed n-dimensional diss.Suppose that for eah � 2 � a homeomorphism is given from �e� (a sphere)to an (n� 1)-dimensional ombinatorial omplex S� , and that a ombinatorialmap S� ! K(n�1) is also given; let �� : �e� ! K(n�1) be the omposition ofthese maps. De�ne K to be the quotient of K(n�1) [`� e� by the equivalenerelation generated by t � ��(t) for all � 2 � and all t 2 �e� . Then K , with thequotient topology, is an n-dimensional ombinatorial omplex whose open ellsare the (images of) open ells in K(n�1) and the interiors of the e� .In the ase n = 2, if the irle S� has k 1-ells then e� is alled a k -gon.A.2.2 The Standard 2-Complex K(A :R) Assoiated to any group presen-tation hA j Ri one has a 2-omplex K = K(A :R) that is ompat if and onlyif the presentation is �nite. K has one vertex and it has one edge "a (orientedand labelled a) for eah generator a 2 A; thus edge loops in the 1-skeleton ofK are in 1{1 orrespondene with words in the alphabet A�1 : the letter a�1orresponds to traversing the edge "a in the diretion opposite to its orientation,and the word w = a1 : : : an orresponds to the loop that is the onatenation ofthe direted edges a1; : : : ; an ; one says that w labels this loop. The 2-ells erof K are indexed by the relations r 2 R; if r = a1 : : : an (as a redued word)then er is attahed along the loop labelled a1 : : : an . The map that sends thehomotopy lass of "a to a 2 � gives an isomorphism �1K(A :R) �= � (by theSeifert-van Kampen theorem).



52 M.R. Bridson� ats on the universal overing eK of K(A :R) by dek transformations andthere is a natural �-equivariant identi�ation of the Cayley graph CA(�) withthe 1-skeleton of eK : �x a base vertex v0 2 eK(A :R), identify :v0 with  , andidentify the edge of CA(�) labelled a issuing from  with the (direted) edgeat :v0 in the pre-image of "a . This identi�ation is label-preserving: for allwords w and all  2 �, there is a unique edge-path labelled w beginning at 2 CA(�) and the image of this path in ~K is the lift at :v0 of the loop inK(A :R) labelled w .
Exerise A.2.3 Prove that if A is �nite and w is a redued word in whiha and a�1 both our exatly one, for every a 2 A , then K = K(A :w) isobtained from a losed surfae by gluing together a �nite set of points.

A.3 4-Manifolds Assoiated to Finite PresentationsProposition A.3.1 Every �nitely presented group is the fundamental group ofa losed 4-dimensional manifold.We indiate two proofs of this proposition, leaving the details to the reader.Exerises A.3.2 (i) Given a presentation ha1; : : : ; an j r1; : : : ; rmi , onsiderthe ompat 4-manifold obtained by taking the onneted sum W of n opiesof S1 � S3 and identify �1W with the free group on fa1; : : : ; ang . Removeopen tubular neighbourhoods about m disjoint embedded loops in W whosehomotopy lasses orrespond to the relators ri 2 �1W . Let W 0 be the resultingmanifold with boundary. Use the Seifert-van Kampen theorem to show that byattahing m opies of S2� D 2 to W 0 along �W 0 one obtains a losed manifoldwhose fundamental group is ha1; : : : ; an j r1; : : : ; rmi .(ii) Show that if n > 4 then one an embed any ompat ombinatorial 2-omplex in R4 by a pieewise linear map. Apply this onstrution to K(A :R)and onsider the boundary M of a regular neighbourhood. Argue that thenatural map �1M ! hA j Ri is an isomorphism if n > 5.By performing onstrutions of the above type more arefully one an forethe manifold to have additional struture. For example, in [52℄ Bob Gompfproves:Theorem A.3.3 Every �nitely presented group is the fundamental group of alosed sympleti 4-manifold.A.4 Obtaining Presentations from Group AtionsWhenever one realises a group as the fundamental group of a (semi-loallysimply-onneted) spae one has the ation of the group by dek transforma-tions on the universal overing of the spae. Thus the onstrutions of K(A :R)and the manifolds onsidered above may be viewed as means of onstruting



The geometry of the word problem 53group ations out of presentations. The following theorem shows that, on-versely, group ations give rise to presentations.Theorem A.4.1 Let X be a topologial spae, let � be a group ating on Xby homeomorphisms, and let U � X be an open subset suh that X = �:U .(1) If X is onneted, then the set S = f 2 � j :U \ U 6= ;g generates �.
(2) Let AS be a set of symbols as indexed by S . If X and U are both path-onneted and X is simply onneted, then � = hAS j Ri, whereR = fas1as2a�1s3 j si 2 S; U \ s1:U \ s3:U 6= ;; s1s2 = s3 in �g:

Corollary A.4.2 If a group � ats by isometries on a omplete Riemannianmanifold M , and if every point of M is a distane less than r from a ertainorbit ��p, then � an be presented as � = hA j Ri where A is the set of elementsa 2 � suh that d(p;  �p) < 2r and R is the set of words in the letters A�1 thathave length at most 3 and are equal to the identity in �.Proof Apply the theorem with U the open ball of radius r about p. �The above theorem has a long history. In this form it is due to MurrayMabeath [68℄. See [22℄ page 136 for a proof and further information.Exerises A.4.3 Establish the following geometri haraterisation of �nitelypresented groups: a group is �nitely presented if and only if it ats properlyand oompatly by isometries on a simply-onneted geodesi spae.Give an example to show that part (2) of the above theorem an fail if X isnot simply onneted.
B Length SpaesFor the bene�t of the reader unfamiliar with non-Riemannian length spaes welist some of the basi voabulary of the subjet.Length Metris.De�nition B.0.1 Let X be a metri spae. The length l() of a urve  :[a; b℄! X is l() = supa=t06t16:::6tn=b n�1Xi=0 d((ti); (ti+1));where the supremum is taken over all possible partitions (no bound on n) witha = t0 6 t1 6 : : : 6 tn = b.



54 M.R. Bridsonl() is either a non-negative number or it is in�nite. The urve  is said to bereti�able if its length is �nite, and it is alled a geodesi31 if its length is equalto the distane between its endpoints.A triangle � in a metri spae onsists of three points x; y; z (the verties)and a hoie of geodesi onneting eah pair of these points.A (onneted) length spae is a metri spae X in whih every pair of pointsx; y 2 X an be joined by a reti�able urve and d(x; y) is equal to the in�mumof the length of reti�able urves joining them; X is alled a geodesi spae ifthis in�mum is always attained, i.e. eah pair of points x; y 2 X an be joinedby a geodesi. A general form of the Hopf-Rinow Theorem (see [6℄ or [22℄) statesthat if a length spae is omplete, onneted and loally ompat, then it is ageodesi spae (and all losed balls in it are ompat).Upper Curvature Bounds. Let M2k denote the omplete simply-onneted2-manifold of onstant setional urvature k 2 R . (If k = 0 then M2k is theEulidean plane; if k < 0 then M2k is the hyperboli plane with the metrisaled by a fator of 1=p�k ; and if k > 0 then M2k is S2 with the metri saledby 1=pk .A triangle � in a metri spae onsists of three points x1; x2; x3 (the verties)and a hoie of geodesi onneting eah pair of these points.A geodesi spae X is said to have urvature 6 k if every point x 2 X hasa neighbourhood in whih all triangles � satisfy the following property: thedistane from eah vertex of � to the midpoint of the opposite side is no greaterthan the orresponding distane in a triangle � � M2k that has the same edgelengths as �. This de�nition is due to A.D. Alexandrov.We refer the reader to [22℄ for a omprehensive introdution to (singular)spaes with upper urvature bounds.Pull-Bak Length Metris. Let D be a topologial spae. Assoiated to anyontinuous map f : D ! X to a metri spae one has the length pseudo-metrion D : the length of eah urve in D is de�ned to be the length of its image underf , and the distane between two points of D is de�ned to be the in�mum of thelengths of paths onneting them. We write (D; df ) to denote the length spaeobtained by forming the quotient of this pseudo-metri spae by the relation thatidenti�es points that are a distane 0 apart. In general one an say little aboutthe underlying spae of (D; df ); it ertainly need not be homeomorphi to D .If X is a smooth Riemannian manifold and f : D ! X is a least-area diswith pieewise geodesi boundary, then (D; df ) will be a singular dis and itsurvature will be bounded above by the setional urvature of X ; if f j�D isinjetive, then (D; df ) will atually be a dis. It an also be that (D; df ) is adis when f is not injetive, for example if f is the map z 7! z2 from the unit31This di�ers from the standard usage in di�erential geometry, where being geodesi is aloal onept. For this reason, some authors use the term \length-minimizing geodesi" in theontext of length spaes.



The geometry of the word problem 55dis to the omplex plane, then (D; df ) is the metri ompletion of the onneted2-fold overing of the puntured unit dis.C A Proof of the Cellulation LemmaThis appendix ontains a proof of the following tehnial result that was neededin Setion 5. Reall that a singular dis is a spae homeomorphi to the under-lying spae of a singular dis diagram, as de�ned in (4.1).C.0.1 Cellulation Lemma. Let D be a length spae homeomorphi to a (per-haps singular) 2-dis, and suppose that D is "-�lled by a set � of ardinality N .Then there exists a ombinatorial 2-omplex �, homeomorphi to the standard2-dis, and a ontinuous map � : �! D suh that:(1) � has less than 8N faes (2-ells) and eah is a k -gon with k 6 12;(2) the restrition of � to eah 1-ell in � is a path of length at most 2";(3) �j�� is a monotone parameterisation of �D and �\�D lies in the imageof the 0-skeleton of ��.For onveniene we resale the metri on D and assume that " = 1. To avoidompliating the terminology, we also assume that D is a non-singular dis (theonerned reader will have little diÆulty in making the adjustments needed inthe general ase). We �x a set � of ardinality N that 1-�lls D and de�ne�0 = � \ �D and �1 = �r �0 .C.1 Reduing to the Case of Thin DissOur aim in the �rst stage of the proof is to redue to the ase where � = �0 .We shall do this by utting D open along a ertain graph whose vertex set hasardinality less than 2N and inludes �. To this end, we view �D as a graphG0 with vertex set �0 and 1-ells the losures of the onneted omponents of�D r �0 .Sine every point of the onneted spae D lies in the 1-neighbourhood of�, the open neighbourhoods of radius 1 about �0 and �1 annot be disjoint.Hene there exists s 2 �1 and s0 2 �0 with d(s; s0) < 2. Choose a geodesi[s; s0℄ and onsider a minimal subar [s; v℄ with v 2 G0 . We augment G0 (whihis �D subdivided) by adding s and v as verties and adding [s; v℄ as a new edge(if v is not a vertex of G0 then its introdution will also subdivide one of theexisting edges). Call the new graph G00 and de�ne �00 = �0 [ fsg.By repeating the above argument with �00 in plae of �0 , and G00 in plaeof G0 , we obtain a onneted graph with at most j�0j+ 4 verties inluding �0and two elements of �1 . We iterate this argument a further j�1j � 2 times toobtain a onneted graph G whose vertex set onsists of � and at most 2j�1jother verties; the important point is that this graph has less than 2N verties intotal, and less than 2N edges. Note that the edges of G all have length at most2, that E := D r G is homeomorphi to an open 2-dis, and that T := Gr �Dis a forest (i.e. it is simply-onneted, but not neessarily onneted).



56 M.R. BridsonWe now fous our attention on E , whih we endow with the indued pathmetri from D . Let � be the spae obtained by ompleting this metri. �is homeomorphi to a 2-dis; intuitively speaking, it is obtained by utting Dopen along the branhes of T (utting along eah edge of T forms two edgesin the boundary of �). The inlusion E ,! D extends ontinuously to a map� : � ! D that preserves the lengths of all urves and sends (a monotone pa-rameterization of) �� onto the boundary yle of E in G; we endow �� withthe ombinatorial struture indued from this identi�ation. Thus � is a topo-logial 2-dis endowed with a length metri suh that �� is the onatenationof less than 4N geodesi segments, eah of length at most 2. Moreover, everypoint of � is a distane at most 1 from ��. This ompletes the �rst stage ofthe proof.De�nition C.1.1 A singular dis of weight n onsists of a singular dis �and n distinguished points (verties) x1 = f(t1); : : : ; xn = f(tn) in yli orderon the boundary yle f : S1 ! ��; the restrition of f to the ar joining ti toti+1 (indies mod n) is required to be a geodesi of length at most 2; the imagesof these ars are alled faets. � is said to be thin if every point is a distaneless than 1 from ��.A partition of � is a ontinuous map � : � ! �, where � is a ombinatorial2-omplex that is homeomorphi to the standard dis and �j�� is a monotoneparameterisation of f sending verties to verties and edges to faets.� is alled a k -partition if eah of its 2-ells is an m-gon with m 6 k . And �is said to be admissible if the restrition of � to eah 1-ell in � is a path oflength at most 2. The area of � is the number of 2-ells in �.The �nal stage in the proof of the Cellulation Lemma is:Proposition C.1.2 If k > 12, then every thin singular dis of weight n admitsa k -partition of area at most 2n� 8.Before turning to the proof of this proposition, let us see how it implies theCellulation Lemma.End of the proof of the Cellulation Lemma. In the �rst stage of the proofwe showed that if a dis an be "-�lled with a set of ardinality N then one anonstrut in D a graph G with at most 2N verties so that the edges of thegraph have length less than 2" and the spae obtained by utting D open alongthe forest T = G r �D is a thin dis X of weight less than 4N . The naturalmap � : �! D is length-preserving.The above proposition furnishes a 12-partition �0 : �0 ! � of area at most8N � 8. De�ne � to be the ombinatorial omplex obtained by taking thequotient of �0 by the equivalene relation that identi�es the pair of edges inthe pre-image of eah edge of T in the obvious manner. � is a dis whose area(number of 2-ells) is the same that of �0 . The map � : � ! D indued by� Æ �0 : �0 ! D satis�es the requirements of the Cellulation Lemma. �



The geometry of the word problem 57C.2 Surgery on Thin DissWe shall prove Proposition C.1.2 by indution on n, the weight of the singulardis being �lled. In this indution we shall need the following surgery operation.Let � be a singular dis of weight n with boundary yle f : S1 ! ��.Given two verties x; y 2 �� one an ut � along a geodesi [x; y℄ to form twonew singular diss. To do this, �rst note that one an hoose [x; y℄ so that itsintersetion with eah faet of �� is a single ar, beause given the �rst andlast points of intersetion of an arbitrary geodesi [x; y℄0 with a faet, one anreplae the orresponding subar of [x; y℄0 with a subar of the faet. Havinghosen [x; y℄ in this way, express y as f(t) and proeed in the positive diretionaround S1 from t to the �rst value t0 suh that f(t0) = x; let � denote this arfrom t to t0 and all the omplementary ar �0 .The �rst of the two singular sub-diss into whih we ut � is that whoseboundary yle is the onatenation of f j� and [x; y℄. The boundary yle ofthe seond sub-dis is the onatenation of f j� and [y; x℄. We subdivide [x; y℄into the minimal possible number of sub-ars of length less than 2 and de�nethese sub-ars to be faets of our two new singular diss.The reader should have no diÆulty in verifying:Lemma C.2.1 In the notation of the preeding paragraph: if � is thin thenthe singular diss obtained by surgery are thin; and if d(x; y) < 4, then the sumof the weights of the new singular diss is at most n+ 4.In the ourse of the proof of Proposition C.1.2 we shall require the followingfat.Exerise C.2.2 Let X = U1 [ U2 [ U3 [ U4 be a metri spae. Assume thateah of the sets Ui is path-onneted, that d(Ui; Uj) > 0 when ji� jj = 2, andthat Ui \ Uj 6= ; otherwise. Construt a surjetive homomorphism �1X ! Z .(Hint: Consider the map to R=Z that is onstant on X r U2 and is given onU2 by x 7! d(x;U1)=(d(x;U1) + d(x;U3)).)
The Proof of Proposition C.1.2. Let � be a singular dis of weight n thatis thin. We proeed by indution on n. If n 6 k there is nothing to prove.Assuming n > 12, we express the boundary yle f : S1 ! � as the onate-nation of four subpaths, namely the �rst three faets taken together, the nextthree faets, then the next three, and then the remaining n � 9 faets. De�neU1; U2; U3; U4 to be the losed neighbourhoods of radius 1 about the images ofthese four ars. The union of these neighbourhoods is the whole of � (beauseit is assumed to be thin). The Ui annot satisfy the hypotheses of the preed-ing exerise beause � is simply onneted. Therefore Ui \ Uj 6= ; for somei� j = 2. (Here we need the fat that the metri on � is a path metri in orderto know that the Ui are path-onneted.)Sine Ui and Uj interset, one of the verties along our i-th ar, say x, isa distane at most 4 from one of the verties along our j -th ar, say y . We
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