
1The geometry of the word problem
Martin R. BridsonIntrodu
tionThe study of de
ision problems in group theory is a subje
t that does not im-pinge on most geometers' lives { for many it remains an apparently ar
ane regionof mathemati
s near the borders of group theory and logi
, e
hoing with talkof 
omplexity and unde
idability, devoid of the light of geometry. The studyof minimal surfa
es, on the other hand, is an immediately engaging �eld that
ombines the shimmering appeal of soap �lms with intriguing analyti
al prob-lems; Plateau's problem has a parti
ularly intuitive appeal. The �rst purpose ofthis arti
le is to explain that despite this sharp 
ontrast in emotions, the studyof the large s
ale geometry of least-area dis
s in Riemannian manifolds is inti-mately 
onne
ted with the study of the 
omplexity of word problems in �nitelypresented groups.Joseph Antoine Ferdinand Plateau was a Belgian physi
ist who, in 1873, pub-lished a stimulating a

ount of his experiments with soap �lms [90℄. The questionof whether or not every re
ti�able Jordan loop in 3-dimensional Eu
lidean spa
ebounds a dis
 of minimal area subsequently be
ame known as Plateau's Problem.This problem was solved by Jesse Douglas [37℄ and Tibor Rad�o [91℄ (indepen-dently) around 1930. In 1948 C.B. Morrey [75℄ extended the results of Douglasand Rad�o to a 
lass of spa
es that in
ludes the universal 
overing of any 
losed,smooth Riemannian manifold M .On
e one knows that least-area dis
s exist in this generality, numerous ques-tions 
ome to mind 
on
erning their lo
al and global geometry (
f. [79℄, [86℄, and[71℄). The questions on whi
h we shall fo
us in this arti
le 
on
ern the large-s
alegeometry of these dis
s: Can one bound the area of least-area dis
s in M by afun
tion of the length of their boundaries? If so, what is the least su
h fun
tion?What happens to the asymptoti
 behaviour of this fun
tion when one perturbsthe metri
 or varies M within its homotopy type? What 
an one say about thediameter of least-area dis
s? et
.Remarkably, these questions turn out to be intimately 
onne
ted with thenature of the word problem in the fundamental group of M , i.e. the problem ofdetermining whi
h words in the generators of the group equal the identity. Themost important and striking 
onne
tion of this type is given by the Filling The-The author's resear
h is supported by an EPSRC Advan
ed Fellowship



2 M.R. Bridsonorem in Se
tion 2: the smallest fun
tion FillM0 (l) bounding the area of least-areadis
s in terms of their boundary length has qualitatively the same asymptoti
behaviour1 as the Dehn fun
tion Æ�1M (l) of the fundamental group of M .The Dehn fun
tion of a �nitely presented group � = hA j Ri measures the
omplexity of the word problem for � by giving the least upper bound on thenumber of de�ning relations r 2 R that must be applied in order to show thata word w in the letters A�1 is equal to 1 2 �; the bound is given as a fun
tionof the length of w (see Paragraph 1.2).The �rst purpose of this arti
le is to give a thorough a

ount of the FillingTheorem. The se
ond purpose of this arti
le is to sket
h the 
urrent state ofknowledge 
on
erning Dehn fun
tions. Thus, in Se
tion 3, I shall explain whatis known about the set of ' 
lasses of Dehn fun
tions (equivalently, isoperimetri
fun
tions FillM0 of 
losed Riemannian manifolds), and I shall also des
ribe what isknown about the Dehn fun
tions of various groups that are of geometri
 interest.In later se
tions we shall see a variety of methods for 
al
ulating Dehn fun
tions(some geometri
, some algebrai
, and some purely 
ombinatorial). Along theway we shall see examples of how the equivalen
e Æ�1M ' FillM0 
an inform inboth dire
tions (
f. (2.2) and Se
tion 6).Histori
al Ba
kground. The pre
ise equivalen
e between �lling fun
tions ofmanifolds and 
omplexity fun
tions for word problems is a modern observationdue to Mikhael Gromov, but this 
onne
tion sits 
omfortably with the geometri
origins of 
ombinatorial group theory.Topology and 
ombinatorial group theory emerged from the same 
ir
le ofideas at the end of the nineteenth 
entury. By 1910 Dehn had realized thatthe problems with whi
h he was wrestling in his attempts to understand low-dimensional manifolds were instan
es of more general group-theoreti
 problems.In 1912 he published the 
elebrated paper in whi
h he set forth the three basi
de
ision problems that remained the main fo
us for 
ombinatorial group theorythroughout the twentieth 
entury:\The general dis
ontinuous group is given by n generators andm relations between them. [. . . ℄ Here there are above all three fun-damental problems [. . . ℄1: [The Word Problem℄ An element of the group is given as a produ
tof generators. One is required to give a method whereby it may bede
ided in a �nite number of steps whether this element is the identityor not. [2: The Conjuga
y Problem. 3: The Isomorphism Problem℄One is already led to them by ne
essity with work in topology.Ea
h knotted spa
e 
urve, in order to be 
ompletely understood, de-mands the solution of the three above problems in a spe
ial 
ase.2"1More pre
isely, FillM0 is ' equivalent to Æ�1M in the sense of 1.3.2.2The spe
ial 
ases referred to here were not resolved fully until the early 1990s, and theirultimate solution rested on some of the deepest geometry and topology of the time, in parti
ularthe work of Thurston on the geometri
 nature of 3-manifolds.



The geometry of the word problem 3In the present arti
le I shall 
on
entrate almost ex
lusively on the word prob-lem, but in Se
tion 8 I shall explain 
onstru
tions that translate the 
omplexityof word problems into 
onjuga
y problems and isomorphism problems. Thesebasi
 de
ision problems are all unsolvable in the absen
e of further hypotheses(see [72℄ for a survey of these matters) and in the spirit of Dehn's 
omments Ishould note that this unde
idability has 
onsequen
es for the study of manifolds.For example, the unde
idability of the isomorphism problem for groups impliesthat there is no algorithm to re
ognise whether or not a 
losed 4-manifold (givenby a �nite triangulation, say) is homeomorphi
 to the 4-sphere [70℄.Despite Dehn's early in
uen
e, the geometri
 vein in 
ombinatorial group the-ory la
ked prominen
e for mu
h of the twentieth 
entury (see [30℄ for a historyup to 1980). A striking example of this negle
t 
on
erns a paper [61℄ writtenby E.R. van Kampen in 1931 whi
h seems to have gone essentially unnoti
eduntil redis
overed3 by C. Weinbaum in the 1960s, just after Roger Lyndon [65℄redis
overed the paper's main idea. This idea translates many questions 
on-
erning word problems into questions 
on
erning the geometry of 
ertain planar2-
omplexes 
alled van Kampen diagrams (see Se
tion 4). This translation a
tsas a link between Riemannian �lling problems and word problems. The work ofGromov [55℄, [56℄ gave full voi
e to the impli
ations of this link. In the de
adesin
e Gromov's foundational work there has been a great deal of a
tivity in thisarea and I hope that when the reader has �nished the present arti
le (s)he willhave absorbed a sense of this a
tivity and its a
hievements.Contents. I have written this arti
le with the intention that it should be a

es-sible to graduate students and 
olleagues working in other areas of mathemati
s.It is organised as follows. In Se
tion 1 we shall see how a naive head-on approa
hto the word problem leads to the de�nition of the Dehn fun
tion of a group. InSe
tion 2 we introdu
e the 2-dimensional, genus-0 isoperimetri
 fun
tion of a
losed Riemannian manifold M and state the theorem relating it to the Dehnfun
tion of �1M ; the proof of this theorem is postponed until Se
tion 5. Thistheorem is generally regarded as folklore { its validity has been assumed impli
-itly in many papers, but the absen
e of a detailed proof in the literature hasbeen the sour
e of 
omment and disquiet. The proof given here is self-
ontained.It is based on the notes from my le
tures at the 
onferen
es in Durham, Lyonand Champoussin in the spring and summer of 1994. Jos�e Burillo and JenniferTaba
k [26℄ have suggested an alternative proof, motivated by arguments in [42℄.Both proofs rely on van Kampen's Lemma, whi
h is proved in 
omplete detailin Se
tion 4.Se
tion 3 
ontains a brief survey des
ribing the 
urrent state of knowledgeabout the nature of Dehn fun
tions for groups in general as well as groups thatare of parti
ular geometri
 interest. We shall not prove the results in this se
tion,but several of the key ideas involved are explained in subsequent se
tions.3Van Kampen's arti
le was next to the one in whi
h he proved the Seifert-van KampenTheorem.



4 M.R. BridsonSe
tion 6 
ontains information about the 
lasses of groups whose Dehn fun
-tions are linear or quadrati
. We shall see that having a linear Dehn fun
tion isa manifestation of negative 
urvature. We shall also see that non-positive 
ur-vature is related to having a quadrati
 Dehn fun
tion, although the 
onne
tionis mu
h weaker than in the linear 
ase.The �nal se
tion of this paper 
ontains a brief dis
ussion of di�erent measuresof 
omplexity for the word problem, as well as 
onstru
tions relating the wordproblem to the other basi
 de
ision problems of group theory.There are three appendi
es to this paper. The �rst 
ontains a des
ription ofsome basi
 
on
epts in geometri
 group theory { this is in
luded to make thearguments in the main body of the paper a

essible to a wider audien
e. These
ond appendix des
ribes some of the basi
 vo
abulary of length spa
es. Thethird appendix 
ontains the proof of a te
hni
al result 
on
erning the geometryof 
ombinatorial dis
s; this result, whi
h is original, is needed in Se
tion 5.Exer
ises are s
attered throughout the text, some are routine veri�
ations,some lead the diligent reader through proofs, and others are 
hallenges intendedto enti
e the reader along fruitful tangents.This arti
le is dedi
ated with deep a�e
tion to my tutor and friend BrianSteer. Between 1983 and 1986 Brian transformed me into a budding mathemati-
ian and thereby determined the 
ourse of my adult life.
Se
tion 1: The Word ProblemSe
tion 2: The Isoperimetri
 Fun
tion FillM0 of a ManifoldSe
tion 3: Whi
h Fun
tions are Dehn Fun
tions?Se
tion 4: Van Kampen DiagramsSe
tion 5: The Equivalen
e FillM0 ' Æ�1MSe
tion 6: Linear and Quadrati
 Dehn Fun
tionsSe
tion 7: Te
hniques for Establishing Isoperimetri
 InequalitiesSe
tion 8: Other De
ision Problems and Measures of ComplexityAppendix A: Geometri
 Realisations of Finitely Presented GroupsAppendix B: Length Spa
esAppendix C: A Proof of the Cellulation Lemma



The geometry of the word problem 51 The Word ProblemThe purpose of this �rst se
tion is to indi
ate why Dehn fun
tions are funda-mental to the understanding of dis
rete groups.1.1 Presenting Groups that Arise in NatureSuppose that one wishes to understand a group � that arises as a group oftransformations of some mathemati
al obje
t, for example isometries of a metri
spa
e. Typi
ally, one might be interested in the group generated by 
ertain basi
transformations A = fa1; : : : ; ang. One then knows that arbitrary elements of �
an be expressed as words in these generators and their inverses, but in order togain a real understanding of the group one needs to know whi
h pairs of wordsw;w0 represent the same element of �, i.e. when w�1w0 = 1 in �. Words thatrepresent the identity are 
alled relations.Let us suppose that the 
ontext in whi
h our group arose is su
h that we 
anidentify at least a few relations R = fr1; : : : ; rmg. How might we use this list todedu
e that other words represent the identity?If a word w 
ontains r 2 R or its inverse as a subword, say4 w = w1r�1w2 ,then we 
an repla
e w by the shorter word w0 = w1w2 , knowing that w0 andw represent the same element of �. More generally, if r 
an be broken into(perhaps empty) subwords r � u1u2u3 and if w � w1u�12 w2 , then one knowsthat w0 � w1(u3u1)�1w2 equals w in �. Under these 
ir
umstan
es5 one saysw0 is obtained from w by applying the relator r .If we 
an redu
e w to the empty word by applying a sequen
e of relatorsr 2 R, then we will have dedu
ed that w = 1 in �. If su
h a sequen
e 
anbe found for every word w that represents the identity { in other words, everyrelation in the group 
an be dedu
ed from the set R { then the pair6 hA j Ri is
alled a presentation of �, and one writes7 � = hA j Ri.1.2 Atta
king the Word Problem Head-OnA solution to the word problem in � is an algorithm that will de
ide whi
helements of the group represent the identity and whi
h do not. If one 
an boundthe number of relators that must be applied to a word w in order to show thatw = 1, and this bound 
an be expressed as a 
omputable fun
tion of the lengthof w , then one has an e�e
tive solution to the word problem. In order to quantifythis idea pre
isely, one works with equalities in the free group F (A).Suppose that w0 = w1(u3u1)w2 has been obtained from w = w1u�12 w2 byapplying the relator r � (u1u2u3)�1 . In � we have w = w0 , while in the free4We write = for equality in the free group, and � when words are a
tually identi
al.5At this point we are viewing words as elements of the free group F (A), so impli
itly weallow the insertion and deletion of subwords of the form aa�1 .6 If R = fr1; r2; : : :g , one often writes hA j r1 = 1; r2 = 1; : : :i instead of hA j Ri , parti
-ularly when this 
reates a desirable emphasis. Likewise, one may write hA j u1 = v1; u2 =v2; : : :i , where ri � uiv�1i .7To assign a name to a presentation, P say, one writes P � hA j Ri .



6 M.R. Bridsongroup F (A) we have:w � w1u�12 w2 free= (x�11 rx1) w1u3u1w2 � (x�11 rx1) w0;where x1 := u�13 w�11 . If w00 is a word obtained from w0 by applying a furtherrelator r0 , then there is an equality of the form w free= (x�11 rx1) (x�12 r0x2) w00 .Pro
eeding in this manner, if we 
an redu
e w to the empty word by applyinga sequen
e of N relators from R, then we will have an equality8w free= NYi=1x�1i rixi; (1.2.1)where ri 2 R�1 and xi 2 F (A).Thus we see that when one atta
ks the word problem head-on by simplyapplying a list of relators to a word w , one is impli
itly expressing w as a produ
tof 
onjugates of those relators. The ease with whi
h one 
an expe
t to identifysu
h an expression for w will vary a

ording to the group under 
onsideration,and in parti
ular will depend very mu
h on the number N of fa
tors in a leastsu
h expression.De�nition 1.2.2 Given a �nite presentation P � hA j Ri de�ning a group �,we say that a word w in the letters A�1 is null-homotopi
 if w =� 1, i.e. wlies in the normal 
losure of R in the free group F (A). We de�ne the algebrai
area of su
h a word to beAreaa(w) := minfN j w free= NYi=1x�1i rixi with xi 2 F (A); ri 2 R�1g:The Dehn fun
tion of P is the fun
tion ÆP : N ! N de�ned byÆP (n) := maxfAreaa(w) j w =� 1; jwj 6 ng;where jwj denotes the length of the word w .1.3 The Dehn Fun
tion of a GroupSin
e we are really interested in groups rather than parti
ular �nite presenta-tions of them, we would like to talk about the Dehn fun
tion of � rather thanof P . The following exer
ise illustrates how the Dehn fun
tions of di�erentpresentations of a group may vary.Exer
ise 1.3.1 Show that the Dehn fun
tion of ha j ;i is Æ(n) � 0 and the Dehnfun
tion of ha; b j bi is Æ(n) = n . For ea
h positive integer k �nd a presentationof Z with Dehn fun
tion Æ(n) = kn .8This equality shows in parti
ular that � = hA j Ri i� the kernel of the natural mapF (A)! � is the normal 
losure of R .



The geometry of the word problem 7De�nition 1.3.2 Two fun
tions f; g : [0;1)! [0;1) are said to be ' equiv-alent if f � g and g � f , where f � g means that there exists a 
onstant C > 0su
h that f(l) 6 C g(Cl + C) + Cl + C for all l > 0.One extends this equivalen
e relation to fun
tions N ! [0;1) by assuming themto be 
onstant on ea
h interval [n; n+ 1).The relation ' preserves the asymptoti
 nature of a fun
tion. For example,if p > 1 then np 6' np logn, and np ' nq implies q = p; likewise, np 6' 2n and22n 6' 2n . But ' identi�es all polynomials of the same degree, and likewise allsingle exponentials (kn ' Kn for all 
onstants k;K > 1).Proposition 1.3.3 If the groups de�ned by two �nite presentations are iso-morphi
, the Dehn fun
tions of those presentations are ' equivalent.Proof First we 
onsider what happens when we add redundant relators R0 toa �nite presentation P � hA j Ri. Let P 0 � hA j R [ R0i. To say that thenew relators r 2 R0 are redundant means that ea
h 
an be expressed in the freegroup F (A) as a produ
t �r of (say mr ) 
onjugates of the old relators R�1 .Let m be the maximum of the mr .If a word w 2 F (A) is a produ
t of N 
onjugates of relators from R [ R0and their inverses, then by substituting �r for ea
h o

urren
e of r 2 R0 in thisprodu
t we 
an rewrite w (freely) as a produ
t of at most mN 
onjugates ofthe relators R�1 . Sin
e it is obvious that the area of w with respe
t to P 0 isnot greater than its area with respe
t to P , we have ÆP 0(n) 6 ÆP (n) 6 mÆP 0(n)for all n 2 N . Hen
e ÆP ' ÆP 0 .Next we 
onsider what happens when we add �nitely many generators andrelators to P . Suppose that we add generators B, and add one relator bu�1bfor ea
h b 2 B, where ub is a word in F (A) that equals b in the group beingpresented. Let P 00 be the resulting presentation. Let M be the maximum ofthe lengths of the words ub .Given a null-homotopi
 word w 2 F (A [B), we �rst apply the new relatorsto repla
e ea
h o

urren
e of ea
h letter b 2 B with the word ub . The result is aword in F (A) that has length at most M jwj, and this word may be redu
ed tothe empty word by applying at most ÆP (M jwj) relators from R. Thus ÆP 00 � ÆP .We 
laim that ÆP (n) 6 ÆP 00(n) for all n 2 N . To prove this 
laim we mustshow that if a word w 2 F (A) 
an be expressed in F (A[B) as a produ
t � of atmost N 
onjugates of the given relators, then it 
an also be expressed in F (A)as a produ
t of at most N 
onjugates of the relators R�1 . To see that this is the
ase, one simply looks at the image of � under the retra
tion F (A[B)! F (A)that sends ea
h b 2 B to ub .In general, given two �nite presentations P1 � hA j Ri and P2 � hB j R0i ofa group G, one 
onsiders the presentation of G that has generators A [B andrelators R;R0; fbu�1b j b 2 Bg and fav�1a j a 2 Ag, where ub (respe
tively va ) isa word in F (A) (respe
tively F (B)) that equals b (respe
tively a) in G. The



8 M.R. Bridson�rst two steps of the proof imply that the Dehn fun
tion of this presentation isequivalent to that of both P1 and P2 . �The �rst detailed proof of (1.3.3) in the literature is due to Steve Gersten[45℄. A more general result given in Appendix B (Proposition A.1.7) lends ageometri
 perspe
tive to the equivalen
e in (1.3.3).Isoperimetri
 Inequalities and Æ� . In the light of the pre
eding propositionwe may talk of \the" Dehn fun
tion of a �nitely presented group �, denoted Æ� ,with the understanding that this is only de�ned up to ' equivalen
e.One says that � satis�es a quadrati
 isoperimetri
 inequality if Æ�(n) � n2 .Linear (also polynomial, exponential, et
.) isoperimetri
 inequalities are de�nedsimilarly.A �nitely generated group is said to have a solvable word problem if there isan algorithm that de
ides whi
h words in the generators represent the identityand whi
h do not. Readers who are familiar with the rudiments of de
idabilityshould treat the following statement as an exer
ise, and those who are not maytreat it as a de�nition.Proposition 1.3.4 A �nitely presentable group � has a solvable word problemif and only if the Dehn fun
tion of every �nite presentation of � is 
omputable(i.e. is a re
ursive fun
tion).Exer
ise 1.3.5 Two groups are said to be 
ommensurable if they have iso-morphi
 subgroups of �nite index. Dedu
e from the Filling Theorem (Se
tion2) that the Dehn fun
tions of 
ommensurable �nitely-presented groups are 'equivalent. (Hint: Use 
overing spa
es.)The reader might �nd it instru
tive to investigate how awkward it is to provethis fa
t algebrai
ally.
2 The Isoperimetri
 Fun
tion FillM0 of a ManifoldLet M be a 
losed, smooth, Riemannian manifold. In this se
tion we shalldes
ribe the �lling fun
tion FillM0 and its relationship to the Dehn fun
tion ofthe fundamental group of M .2.1 The Filling TheoremLet D be a 2-dimensional dis
 and let S1 be its boundary 
ir
le. Let M be asmooth, 
omplete, Riemannian manifold. Let 
 : S1 !M be a null-homotopi
,re
ti�able loop and de�ne FArea(
) to be the in�mum of the areas9 of all Lip-s
hitz maps g : D ! X su
h that gj�D is a reparameterization10 of 
. If this9The situations that we shall be 
onsidering are suÆ
iently regular as to render all standardnotions of area equivalent; for de�niteness one 
ould take 2-dimensional Hausdor� measure, orthe notion of (Lebesgue) area in spa
es with upper 
urvature bounds introdu
ed by Alexandrov[1℄ and re�ned by Nikolaev (see [11℄ and [22℄ page 425).10When working with �lling problems it is usually better to 
onsider loops that are equivalentin the sense of Fre
het, but this te
hni
ality will have no bearing here.



The geometry of the word problem 9in�mum is attained by a (not ne
essarily inje
tive) map f : D !M then, blur-ring the question of reparameterization, we say that f is a least-area �lling ofthe loop 
 = f j�D , or simply that f is a least-area dis
.If M is the universal 
overing of a 
losed manifold, then the existen
e of least-area dis
s (for embedded loops) is guaranteed by Morrey's solution to Plateau'sproblem [75℄.De�nition 2.1.1 Let M be a smooth, 
omplete, Riemannian manifold. Thegenus zero, 2-dimensional, isoperimetri
 fun
tion of M is the fun
tion [0;1)![0;1) de�ned byFillM0 (l) := supfFArea(
) j 
 : S1 !M null-homotopi
, length(
) 6 lg:One of the main purposes of this arti
le is to provide a detailed proof of thefollowing fundamental equivalen
e:2.1.2 Filling Theorem. The genus zero, 2-dimensional isoperimetri
 fun
tionFillM0 of any smooth, 
losed, Riemannian manifold M is ' equivalent to theDehn fun
tion Æ�1M of the fundamental group of M .Remark 2.1.3 A similar statement holds with regard to isoperimetri
 fun
tionsof more general 
lasses of spa
es with upper 
urvature bounds (in the sense ofAlexandrov [22℄) but we shall not dwell on this point as we do not wish to obs
urethe main ideas with the te
hni
alities required to set-up the required de�nitions.Nevertheless, in our proof of the �lling theorem we shall make a point of iso-lating the key hypotheses so as to render these generalisations straightforward(
f. 5.2.2). In parti
ular we avoid using any fa
ts 
on
erning the regularity ofsolutions to Plateau's problem in the Riemannian setting.We postpone the proof of the Filling Theorem to Se
tion 5, but we take amoment now to remove a 
on
ern about the de�nition of FillM0 : a priori thesupremum in the de�nition of FillM0 (l) 
ould be in�nite for 
ertain values of leven if M is 
ompa
t, but in fa
t it is not.Lemma 2.1.4 If M is 
ompa
t, the sup in the de�nition of FillM0 (l) is �nitefor all l > 0.Proof If the se
tional 
urvature of M is bounded above by k > 0 then anynull-homotopi
 loop in M of length l < 2�=pk bounds a dis
 whose area is atmost the area A(k; l) of the dis
 en
losed by a 
ir
le of length l on the sphereof 
onstant 
urvature k . Indeed Reshetnyak [93℄ proved that this bound holdsin any 
omplete geodesi
 spa
e of 
urvature 6 k (
f. appendix to [71℄).Let � > 0 be less than the inje
tivity radius of M , �x a �nite set S so thatevery point of M lies in the �=3-neighbourhood of S and let ex;x0 : [0; 1℄! Mbe the 
onstant speed geodesi
 joining ea
h x; x0 2 S with d(x; x0) < �.Given any 
onstant-speed loop 
 : [0; 1℄ ! M , one 
an asso
iate to it the
on
atenation 
̂ = ex0;x1 : : : exn;x0 where n is the least integer greater than3l(
)=� and xi 2 S is su
h that d(xi; 
(i=n)) < �=3 (
f. �gure 5.1.2).



10 M.R. BridsonBy 
onstru
tion, jFArea(
)� FArea(
̂)j 6 nA(k; 2�) and l(
̂) 6 3l(
) + �. Itfollows that the ' 
lass FillM0 remains un
hanged if instead of quantifying overall re
ti�able loops 
 one quanti�es only over loops that are 
on
atenations ofthe loops ex;x0 . For all L > 0, there are only �nitely many su
h edge-loops oflength 6 L, so in parti
ular FillM0 (l) is �nite for all l . �Remark 2.1.5 The redu
tion to pie
ewise-geodesi
 loops in the above proofexempli�es the fa
t that if one is 
on
erned only with the ' 
lass of FillM0 thenthere is no harm in restri
ting one's attention to well-behaved sub-
lasses ofre
ti�able loops.2.2 Filling in Heisenberg GroupsThe results des
ribed in this paragraph are due to Mikhael Gromov. We presentthem here in order to give an immediate illustration of how one 
an exploit theequivalen
e FillM0 ' Æ�1M .Let n = 2m + 1. The n-dimensional Heisenberg group Hn is the group of(m+ 1)-by-(m+ 1) real matri
es of the form:0BBBBB�
1 x1 : : : xm�1 z0 1 0 0 y1... ... ...0 0 : : : 1 ym�10 0 : : : 0 1

1CCCCCA :
Hn is a nilpotent Lie group. Its Lie algebra L is generated by X1; : : : ; Xm�1 ,Y1; : : : ; Ym�1; Z = Xm = Ym with relations [Xi; Yj ℄ = [Xi; Xj ℄ = [Yi; Yj ℄ = 0for all i 6= j and [Xi; Yi℄ = Z for i = 1; : : : ;m � 1. There is a natural gradingL = L1 � L2 , where L2 is spanned by Z and L1 is spanned by the remainingXi and Yi .The translates of L1 by the left a
tion of Hn form a sub-bundle T1 of thetangent bundle of Hn . (This 
odimension-1 sub-bundle gives the standard 
on-ta
t stru
ture on Hn .) A 
urve or surfa
e mapped to Hn is said to be horizontalif it is di�erentiable almost everywhere and its tangent ve
tors lie in T1 . Everysmooth 
urve 
 in Hn 
an be approximated by a horizontal 
urve whose lengthis arbitrarily 
lose to that of 
. The question of whether every horizontal loopbounds a horizontal dis
 (\the horizontal �lling problem") is deli
ate, and it ishere that we �nd a 
onne
tion with Dehn fun
tions.The following result is an appli
ation of the theory developed by Gromov inSe
tion 2.3.8 of his book on partial di�erential relations [54℄ and is explained onpage 85 of [56℄.Proposition 2.2.1 If every horizontal loop in Hn 
an be �lled with a horizon-tal dis
, then FillHn0 (l) ' l2 .The idea of the proof is as follows. First one must argue that there is a
onstant C su
h that any 
urve of length 6 1 
an be �lled with a horizontal
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 of area at most C . Then one 
onsiders the 1-parameter family of maps ht =exp Æ�t Æ exp�1 : Hn ! Hn , where the Lie-algebra homomorphism �t : L ! Lis multipli
ation by t 2 [0; 1℄ on L1 and by t2 on L2 . Note that ht multipliesthe length of horizontal 
urves by t and the area of horizontal dis
s by t2 .Given a horizontal loop 
 : S1 ! Hn of length l > 1, we 
onsider h1=l Æ 
.One 
an �ll this horizontal loop of length 1 with a horizontal dis
 f0 : D ! Hnof area at most C and hen
e obtain a horizontal dis
 f := h�11=l Æf0 of area 6 Cl2that �lls 
. Sin
e arbitrary loops 
an be approximated by horizontal loops, itfollows that Hn satis�es a quadrati
 isoperimetri
 inequality.The integer Heisenberg group Hn 
onsists of those matri
es in Hn that haveinteger entries. The subgroup Hn � Hn is dis
rete, torsion-free and 
o
ompa
t,hen
e M := HnnHn is a 
ompa
t Riemannian manifold with universal 
overingHn , and ÆHn ' FillM0 = FillHn0 .Gromov proves that the horizontal �lling problem is solvable in Hn if andonly if n > 5. It therefore follows11 from the Filling Theorem and the aboveproposition that the integral Heisenberg group Hn has a quadrati
 Dehn fun
tionif n > 5. On the other hand, it is not hard to show by various 
ombinatorialmeans (see 3.1.4 and 3.3.1 below) that the Dehn fun
tion of H3 is 
ubi
, sofrom the Filling Theorem and the above proposition one gets a proof of theeasier \only if" impli
ation in Gromov's theorem: H3 
ontains horizontal loopsof �nite length that 
annot be �lled with a horizontal dis
.3 Whi
h Fun
tions are Dehn Fun
tions?The most fundamental question 
on
erning isoperimetri
 inequalities for �nitelypresented groups is that of determining whi
h ' equivalen
e 
lasses of fun
tionsarise as Dehn fun
tions. The struggle to solve this question was a major themein geometri
 group theory in the 1990s. In this se
tion I shall explain why thisstruggle is almost over. I shall also des
ribe what is known about the Dehnfun
tions of 
ertain groups that are of spe
ial interest in geometry and topology.Se
tion 7 
ontains a sample of the te
hniques that were developed to establishthe results quoted in the present se
tion.3.1 The Isoperimetri
 Spe
trumThe development of knowledge 
on
erning the nature of Dehn fun
tions is bestexplained in terms of how the set of numbersIP = f� 2 [1;1) j f(n) = n� is ' a Dehn fun
tiong
ame to be understood. This set is 
alled the isoperimetri
 spe
trum.Sin
e there are only 
ountably many �nite presentations of groups, Proposi-tion 1.3.3 implies that there are only 
ountably many ' 
lasses of Dehn fun
-11For a self-
ontained proof along these lines see All
o
k [2℄. More re
ently, a purely 
ombi-natorial proof has been dis
overed by Ol'shanskii and Sapir [83℄.



12 M.R. Bridsontions. Thus, intriguingly, IP is a naturally arising 
ountable set of positivenumbers.Integer Exponents. In Se
tion 6 we shall dis
uss the 
lass of groups that havelinear Dehn fun
tions. The following exer
ises des
ribe the simplest examplesfrom this 
lass.Exer
ises 3.1.1 (i) Finite groups and free groups have linear Dehn fun
tions.(ii) Let H 2 denote the hyperboli
 plane. There is a 
onstant C > 0 su
h thatfor all l > 1, ea
h loop in H 2 of length 6 l bounds a dis
 of area 6 Cl .(iii) Every �nitely generated group that a
ts properly by isometries on H 2 hasa linear Dehn fun
tion. (Hint: If the a
tion is 
o
ompa
t you 
an use (ii). Ifthe a
tion is not 
o
ompa
t, argue that the group must have a free subgroupof �nite index.)In Se
tion 6 we shall also des
ribe what is known about the 
lass of groupsthat have quadrati
 Dehn fun
tions. Finitely generated abelian groups providethe easiest examples in this 
lass.Example 3.1.2 The Dehn fun
tion of P � ha; b j [a; b℄i is quadrati
. Morepre
isely, (l2 � 2l � 3) 6 16 ÆP (l) 6 l2 , the upper bound being attained in the
ase of words of the form a�nb�nanbn .Exer
ise 3.1.3 Prove that the inequality in (3.1.2) holds for the natural presen-tation of any free abelian group Zr ; r > 2, and that it is optimal. (Hint: Givena word w that equals the identity in Zr , fo
us on a spe
i�
 generator a andmove all o

urren
es of a�1 to the left in w by applying the relators [a; b℄ = 1,freely redu
ing the resulting word whenever possible. Repeat for ea
h generatorand 
ount the total number of relators applied | 
f. Paragraph 1.2. If you havetrouble with the lower bound, look at Se
tion 7.)In about 1988 Bill Thurston [42℄ and Steve Gersten [45℄ proved that the 3-dimensional Heisenberg group H3 has a 
ubi
 Dehn fun
tion (see paragraph 2.2and Theorem 3.3.1).It now seems odd to report that there was a lull of a few years before peopledis
overed sequen
es of groups (�d)d2N su
h that the Dehn fun
tion of �d ispolynomial of degree d. Su
h sequen
es were des
ribed by a number authorsat about the same time { Gromov [56℄, Baumslag, Miller and Short [10℄, andBridson-Pittet [23℄. The following result, proved by Bridson and Gersten in [21℄,provides many su
h sequen
es, and the literature now 
ontains examples withall manner of additional properties (e.g. having Eilenberg-Ma
lane spa
es ofspe
i�ed dimension [16℄).Theorem 3.1.4 The Dehn fun
tion of ea
h semi-dire
t produ
t of the formZn o� Z is ' either a polynomial or an exponential fun
tion. It is polynomialif and only if all of the eigenvalues of � 2 GL(n;Z) are roots of unity, in whi
h
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ase the degree of the polynomial is 
 + 1, where 
 is the size of the largestelementary blo
k in the Jordan form of �.Noti
e that groups of the form Zn o� Z are pre
isely those that arise asfundamental groups of torus bundles over the 
ir
le, and hen
e the above theorem
lassi�es the isoperimetri
 fun
tions FillM0 of su
h bundles.The appearan
e of the Jordan form in the above theorem is 
onne
ted to thefollowing fa
ts (
f. 7.1.4).Exer
ises 3.1.5 (i) If a matrix � 2 GL(n;Z) does not have an eigenvalue ofabsolute value greater than 1, then all of its eigenvalues are N -th roots ofunity, where N depends only on n . (Hint, [21℄, page 7: Let P � Z[x℄ be theset of moni
 polynomials of degree n whose roots all lie on the unit 
ir
le. P is�nite. If the 
hara
teristi
 polynomial of � lies in P then so does that of ea
hpower �r .)(ii) Regard GL(n;Z) as a subset of Rn2 and �x a norm on Rn2 . Prove thatm 7! k�mk is ' equivalent to an exponential fun
tion or a polynomial of degree
� 1, where 
 is the size of the largest elementary blo
k in the Jordan form of� .Filling the Gaps in IP. The following theorem is due to Gromov [55℄. Detailedproofs were given by Ol'shanskii [81℄, Bowdit
h [14℄ (also [22℄ page 422) andPapasoglu [87℄.Theorem 3.1.6 If the Dehn fun
tion of a group is sub-quadrati
 (i.e. Æ�(n) =o(n2)) then it is linear (Æ�(n) ' n). Thus IP \ (1; 2) is empty.This theorem begs the question of what other gaps there may be in theisoperimetri
 spe
trum, or indeed whether there are any non-integral isoperi-metri
 exponents at all. This last question was settled by the dis
overy of theab
 groups [19℄. These groups are obtained by taking three torus bundles overthe 
ir
le (ea
h of a di�erent dimension) and amalgamating their fundamentalgroups along 
entral 
y
li
 subgroups.The basi
 building blo
k is G
 = Z
o�
 Z , where �
 2 GL(
;Z) is the unipo-tent matrix with ones on the diagonal and super-diagonal and zeros elsewhere.G
 has presentation:hx1; : : : ; x
; t j [xi; xj ℄ = 1 for all i; j; [x
; t℄ = 1; [xi; t℄ = xi+1 if i < 
i: (3.1.7)Noti
e that the 
entre of G
 is the in�nite 
y
li
 subgroup generated by x
 . Toemphasise this fa
t we write z
 in pla
e of x
 .The ab
 groups �(a; b; 
) are de�ned as follows: �rst we amalgamate Gawith Gb � Z by identifying the 
entre of Ga with that of Gb , then we formthe amalgamated free produ
t of the resulting group with G
 by identifying the
entre of the latter with the right-hand fa
tor of Gb � Z . In symbols:�(a; b; 
) = Ga �za=zb (Gb � h � i) ��=z
 G
:



14 M.R. BridsonTheorem 3.1.8 For all integers 1 6 b 6 a < 
, the Dehn fun
tion of �(a; b; 
)is ' n
+ ab .Variations on this 
onstru
tion yield other families of rational exponents [19℄.
By far the most 
omprehensive result 
on
erning the stru
ture of Dehn fun
-tions is due to Sapir, Birget and Rips. Their result, whi
h we shall des
ribe in amoment, essentially 
lassi�es the Dehn fun
tions � n4 . In parti
ular they showthat IP is dense in [4;1).Subsequently, Brady and Bridson [15℄ showed that Gromov's gap (1; 2) is theonly gap in the isoperimetri
 spe
trum:Theorem 3.1.9 For ea
h pair of positive integers p > q , there exist �nitelypresented groups whose Dehn fun
tions are ' n2� where � = log2(2p=q).Corollary 3.1.10 The 
losure of IP is f1g [ [2;1).Note that the exponents des
ribed in the above theorem are trans
endentalif they are not integers [80℄, Theorem 10.2. The easiest examples of groups asdes
ribed in the above theorem areGp;q = ha; b; s; t j [a; b℄ = 1; saqs�1 = apb; taqt�1 = apb�1i;whi
h we shall look at more 
losely in (7.2.12).The Sapir-Birget-Rips Theorem. In [95℄ Mark Sapir, Jean-Camille Birgetand Eliyahu Rips show that if a number � > 4 is su
h that there is a 
onstantC > 0 and a Turing ma
hine that 
al
ulates the �rst m digits of the de
imalexpansion of � in time 6 C22Cm , then � 2 IP. Conversely, they show that if� 2 IP then there is a Turing ma
hine that 
al
ulates the �rst m digits of � intime 6 C222Cm . (The dis
repan
y in the height of the two towers of exponentialsis 
onne
ted to the P = NP problem.) More generally they prove:Theorem 3.1.11 Let D4 be the set of ' equivalen
e 
lasses of Dehn fun
tionsÆ(n) � n4 . Let T4 be the set of ' 
lasses of time fun
tions t(n) � n4 of arbitraryTuring ma
hines. Let T4 be the set of ' 
lasses of super-additive12 fun
tionsthat are fourth powers of time fun
tions. Then T4 � D4 � T4 .It is unknown whether T4 
oin
ides with the ' 
lasses of all super-additivefun
tions in T4 . If it does, then the above theorem would 
ompletely 
lassifyDehn fun
tions � n4 . In the light of Theorem 3.1.9, one suspe
ts that Dehnfun
tions � n2 are similarly unrestri
ted in nature.As it stands, the above result already implies that any rational or otherreasonable number, for example � + e2 , is the exponent of a Dehn fun
tion.Likewise, the following are Dehn fun
tions: 2pn , en� , n2 log3(log7 n); : : :12 f(m+ n) > f(n) + f(m) for all n;m 2 N



The geometry of the word problem 15As one might guess from the statement, the theorem is proved by showingthat one 
an en
ode the workings of a 
ertain 
lass of ma
hines (\S-ma
hines")into group presentations.3.2 Examples of Large Dehn Fun
tionsThus far in this se
tion I have 
on
entrated on IP in order to explain the de-velopment of our understanding of Dehn fun
tions. Let me o�set this now bypointing out that many naturally o

urring groups do not have Dehn fun
tionsthat are bounded above by a polynomial fun
tion. We saw some su
h examplesin (3.1.4). Here are some more simple examples of this type.Consider the re
ursively-de�ned sequen
e of fun
tions "i(n) := 2"i�1(n) ,where "0(n) = n and "1(n) = 2n . LetBm = hx0; x1; : : : ; xm j x�1i xi�1xi = x2i�1 for i = 1; : : : ;mi: (3.2.1)The best known of these groups is B1 , whi
h has many manifestations, e.g. as agroup of aÆne transformations of the real line, where x0 a
ts as t 7! t+ 1 andx1 as t 7! 2t.Proposition 3.2.2 The Dehn fun
tion of Bm is ' "m(n).For the lower bound, see Exer
ise 7.2.11. The following exer
ises explain onemethod of establishing the upper bound.Exer
ises 3.2.3 (i) Let w be a word in the generators of B1 . Show that one 
antransform w into a word of the form xm1 xr0x�m01 with m;m0 > 0 by applyingthe de�ning relator x�11 x0x1x�20 at most 2n times. (Hint: Move ea
h o

ur-ren
e of x1 in w to the left by repla
ing subwords x0x1 with x1x20 , and x�10 x1with x1x�20 . Move all o

urren
es of x�11 to the right.)(ii) Prove that x0 2 B1 has in�nite order. (You 
ould 
onsider the representa-tion B1 ! A�(R) des
ribed above.13) Dedu
e that ÆBm(n) � 2n . (Hint: Bylooking at the map B1 ! hx1i that kills x0 and the map B1 ! Zq o Z thatkills xq0 (where q is an arbitrary odd prime), one 
an see that if w = 1 in �then the word obtained in (i) has m = m0 and r = 0.)A less ad ho
 proof of (ii) 
an be based on Britton's Lemma (see 7.2.4(ii) or[22℄, page 498):(iii) Dedu
e from Britton's Lemma that if a word in the generators of Bm rep-resents the identity and 
ontains at least one o

urren
e of x�1m then it 
ontainsa subword of the form w0 = xemw1x�em , where e = �1 and w1 is a word in theletters fxi j i < mg with w1 = xpm�1 in Bm�1 , where p is even if e = 1.Arguing by indu
tion on m , and a se
ondary indu
tion on the number of o
-
urren
es of x�1m in w0 , show that one 
an repla
e w0 by xp=2m�1 or x2pm�1 byapplying at most "m�1(2p) relators from the presentation of Bm�1 . Dedu
ethat ÆBm(n) 6 "m(n).



16 M.R. BridsonExample 3.2.4 Steve Gersten [45℄ showed that the Dehn fun
tion of the groupS = hx; y j (yxy�1)�1x(yxy�1) = x2igrows faster than any iterated exponential. Spe
i�
ally, ÆS(n) ' "n(n). A
lassi
al theorem of Magnus states that all 1-relator groups have a solvable wordproblem. It is 
onje
tured that "n(n) is an upper bound on the Dehn fun
tionsof all 1-relator groups; in [46℄ Gersten established a weaker upper bound.
Exer
ise 3.2.5 Show that for every m > 0 there exists a monomorphism Bm !S . (Hint: Conjugate (yixy�i) by (yi+1xy�(i+1)).)

3.3 Groups of Classi
al InterestIn this subse
tion I shall des
ribe what is known about the Dehn fun
tions ofvarious groups that are of interest for geometri
 reasons.Low-Dimensional Topology. If S is a 
ompa
t 2-manifold, then �1S has alinear Dehn fun
tion unless S is a Torus or a Klein bottle, in whi
h 
ase �1Shas a quadrati
 Dehn fun
tion (see 3.1.1, 3.1.2, 1.3.5). The following theoremdes
ribes the situation for 3-dimensional manifolds { it follows easily from resultsof Epstein and Thurston [42℄ (
f. [17℄ and 7.1.4 below). Sin
e all �nitely presentedgroups arise as fundamental groups of 
losed n-manifolds for ea
h n > 4 (seeA.3.1), there 
an be no su
h general statement in higher dimensions.Theorem 3.3.1 Let M be a 
ompa
t 3-manifold. Suppose that M satis�esThurston's geometrization 
onje
ture14.The Dehn fun
tion of �1M is linear, quadrati
, 
ubi
, or exponential. It islinear if and only if �1M does not 
ontain Z2 . It is quadrati
 if and only if�1M 
ontains Z2 but does not 
ontain a subgroup Z2 o� Z with � 2 GL(2;Z)of in�nite order. Subgroups Z2 o� Z arise only if a �nite-sheeted 
overing ofM has a 
onne
ted summand that is a torus bundle over the 
ir
le, and theDehn fun
tion of �1M is 
ubi
 only if ea
h su
h summand is a quotient of theHeisenberg group (in whi
h 
ase � is unipotent)15.13More ambitiously, you 
ould try to prove the following result of Higman, Neumann andNeumann (see [97℄ for a geometri
 treatment). Given a group � = hA j Ri and an isomorphism� : S1 ! S2 between subgroups of �, one 
an form the HNN extension ��� = hA; t j R; �0(s) =t�1st; 8s0 2 Si , where t =2 A; S � F (A) is a set of words that maps bije
tively to S1 , and forea
h s 2 S the word �0(s) 2 F (A) maps to �(s) 2 S2 . Show that the map �! ��� indu
edby idA is an inje
tion.14 In the absen
e of this assumption it remains unknown whether every 
ompa
t 3-manifoldhas a solvable word problem.15 �1M has an exponential Dehn fun
tion if and only if M has a 
onne
ted summand thatis modelled on the geometry Sol { 
f. 3.1.4



The geometry of the word problem 17Remark 3.3.2 [Free-by-Cy
li
 Groups℄ If a 3-manifold M �bres over the 
ir
lethen one sees from the long exa
t sequen
e in homotopy that �2M = 0 and that�1M is a semi-dire
t produ
t �o� Z , where � is the fundamental group of thesurfa
e �bre. Sin
e �2M = 0, one knows that M does not split as a non-trivial
onne
ted sum, so the above theorem implies that if Z2 6� �, then the Dehnfun
tion of �1M is either linear or quadrati
.If M has boundary then � will be a �nitely generated free group. Not all free-group automorphisms arise from �brations of 3-manifolds, and it is has yet tobe proved that the Dehn fun
tions of arbitrary semi-dire
t produ
ts of the form� = � o� Z , with � free, are at most quadrati
, 
f. [69℄. In [12℄ Bestvina andFeighn show that the Dehn fun
tion of � is linear if and only if Z2 6� �.There are strong analogies between mapping 
lass groups of surfa
es, Braidgroups (more generally, Artin groups), and automorphism groups of free groups.These groups play important roles in low-dimensional topology. Bill Thurstonproved that the Braid groups are automati
, [42℄ Chapter 9 (see also Charney[31℄), and Lee Mosher proved that the mapping 
lass groups of all surfa
es of�nite type are automati
 [76℄. As a 
onsequen
e (see 6.3.2) we obtain:Theorem 3.3.3 The mapping 
lass group of any surfa
e of �nite type satis�esa quadrati
 isoperimetri
 inequality.Hat
her and Vogtmann [58℄ and Gersten (unpublished) proved that the Dehnfun
tion of the group of (outer) automorphisms of any �nitely generated freegroup is � 2n . Bridson and Vogtmann [24℄ proved that this bound is sharp inrank 3, and spe
ial 
onsiderations apply in rank 2.Theorem 3.3.4 Let Fr denote a free group of rank r . The Dehn fun
tion ofOut(F2) is linear. The Dehn fun
tion of Aut(F2) is quadrati
. The Dehn fun
-tions of Aut(F3) and Out(F3) are exponential. In general the Dehn fun
tionsof Aut(Fr) and Out(Fr) are � 2n .Latti
es in Semisimple Lie Groups. Let G be a 
onne
ted semisimple Liegroup with �nite 
entre and no 
ompa
t fa
tors. Asso
iated to G one has aRiemannian symmetri
 spa
e X = G=K , where K � G is a maximal 
ompa
tsubgroup. A dis
rete subgroup � � G is 
alled a latti
e if the quotient �nX has�nite volume; the latti
e is 
alled uniform (or 
o
ompa
t) if �nX is 
ompa
t.The rank of G is the dimension of the maximal isometri
ally embedded 
atsE r ,! X .If G has rank 1 then X has stri
tly negative 
urvature (e.g. G = SO(n; 1)and X = H n ) and in general (e.g. G = SL(n; R )) X has non-positive 
urvature(see, for example, [22℄ Chapter II.10). It follows that the Dehn fun
tions ofuniform latti
es are linear (in the rank 1 
ase) or quadrati
 (the higher rank
ase) { see Se
tion 6.Ea
h non-uniform latti
e in a rank 1 group 
ontains non-trivial subgroupsthat stabilize points at in�nity in the symmetri
 spa
e X ; these subgroups leave



18 M.R. Bridsoninvariant the horospheres 
entred at the �xed points at in�nity. We use theterm horospheri
al to des
ribe these subgroups. An example of a horospheri-
al subgroup is the fundamental group of the boundary torus in a hyperboli
knot 
omplement. Ea
h maximal horospheri
al subgroup 
ontains a nilpotentsubgroup of �nite index: in the 
ase G = SO(n; 1), this nilpotent subgroup isisomorphi
 to Zn�1 , and in the 
ase G = SU(n; 1) it is isomorphi
 to H2n�1 ,the integer Heisenberg group.Theorem 3.3.5 Let G be a semisimple Lie group of rank 1 and let � � G be alatti
e. If � is uniform then its Dehn fun
tion is linear. If � is non-uniform thenits Dehn fun
tion is equal to that of ea
h of its maximal horospheri
al subgroups.This result is due to Gromov [56℄.Example 3.3.6 It follows from our dis
ussion in 2.2 that non-uniform latti
es inSU(2; 1) have 
ubi
 Dehn fun
tions, whereas those in SU(n; 1) with n > 2 havequadrati
 Dehn fun
tions. More generally, it follows from the above theorem thata non-uniform latti
e in a rank 1 group G will have a quadrati
 Dehn fun
tionunless the symmetri
 spa
e for G is the hyperboli
 plane over the real, 
omplex,quaternioni
 or Cayley numbers. For the real hyperboli
 plane the Dehn fun
tionof non-uniform latti
es is linear (3.1.1), in the 
omplex 
ase (G = SU(2; 1)) it is
ubi
, and it is also believed to be 
ubi
 in the remaining 
ases.The following theorem of Leuzinger and Pittet [62℄, whi
h builds on the workof Gromov on solvable groups [56℄, 
ompletes the pi
ture of Dehn fun
tions forlatti
es in rank 2.Theorem 3.3.7 If G is a 
onne
ted semisimple Lie group with �nite 
entreand rank 2, then the Dehn fun
tion of any irredu
ible, non-uniform latti
e in Gis ' 2n .The situation for non-uniform latti
es in rank > 3 is more 
ompli
ated and isthe subje
t of a
tive resear
h. We refer the reader to Gromov [56℄ for an ex
itingglimpse of some of the issues that arise and to Drut�u [38℄ and Leuzinger-Pittet[63℄ for signi�
ant re
ent progress in this dire
tion. The following assertion of BillThurston illustrates some of the subtleties involved in higher rank: Dehn fun
tionof SL(3;Z) is exponential, but the Dehn fun
tion of SL(n;Z) is quadrati
 ifn > 3.See [42℄ page 230 for a proof of this statement in the 
ase n = 3 (
f. [38℄and [56℄ page 91). A 
omplete proof is not available in the 
ase n > 3. Drut�u'sre
ent work has helped to 
larify the situation, but there remains mu
h work tobe done in this dire
tion.Nilpotent Groups. We saw in (3.1.2) that abelian groups satisfy a quadrati
isoperimetri
 inequality. Using a modest amount of knowledge about the stru
-ture of nilpotent groups, it is not hard to show that all �nitely generated nilpotentgroups satisfy a polynomial isoperimetri
 inequality (see [56℄ for example). But



The geometry of the word problem 19determining the degree of the optimal bound on the Dehn fun
tion, both in gen-eral and for spe
i�
 examples, is a more deli
ate matter, as our earlier dis
ussionof the Heisenberg groups illustrates.Gromov, [56℄ Chapter 5, gives an enti
ing overview of this area. In parti
ularhe sket
hes a reason why nilpotent groups of 
lass 
 should have Dehn fun
tionsthat are polynomial of degree 6 
 + 1 and gives a proof of this inequality forgroups where the Lie algebra of the Mal
ev 
ompletion is graded. (For a detaileda

ount of this last result, and extensions, see Pittet [89℄.) A number of otherresear
hers have obtained related results using both geometri
 and 
ombinatorialmethods. In parti
ular, Hidber [59℄ gives a purely algebrai
 proof that the Dehnfun
tion of a nilpotent group of 
lass 
 is bounded above by a polynomial ofdegree 2
.Finally, I should mention that the study of Dehn fun
tions of non-nilpotentsolvable groups is also an a
tive area of resear
h. Indeed this is 
losely 
onne
tedto the study of Dehn fun
tions for higher-rank latti
es.Let me end this brief survey of our knowledge of Dehn fun
tions for spe
i�
groups by making it 
lear that I have omitted far more than I have in
luded.I apologise to the many 
olleagues whose ex
ellent work I have been for
ed toignore by reason of spa
e and time.3.4 Dehn Fun
tions of Produ
tsThe following exer
ises des
ribe how Dehn fun
tions behave under the formationof produ
ts. Their behaviour under more 
ompli
ated operations su
h as amal-gamated free produ
ts, HNN extensions, and 
entral extensions is less straight-forward.Exer
ises 3.4.1 (i) A subgroup H of a group G is 
alled a retra
t if there is ahomomorphism G ! H whose restri
tion to H is the identity. Show that ifH is a retra
t of the �nitely presented group G , then H is �nitely presentedand ÆH(n) � ÆG(n). (Hint: First note that H is �nitely generated. Take a�nite subset that generates H and argue that it 
an be extended to a �nitegenerating set for G by adding elements k of the kernel of G ! H . Arguethat one 
an take a �nite presentation for G with this generating set. Add therelations k = 1.)(ii) Let G1 and G2 be in�nite, �nitely presented groups. Show that the Dehnfun
tion of G1 � G2 is ' maxfn2; ÆG1(n); ÆG2(n)g , and that that of the freeprodu
t G1 �G2 is ' maxfÆG1(n); ÆG2(n)g . (Use (i) for the bounds � .)
4 Van Kampen DiagramsLet hA j Ri be a �nite presentation of a group � and let w be a word in theletters A�1 . Suppose that w = 1 in �. Roughly speaking, a van Kampendiagram for w is a planar CW 
omplex that portrays a s
heme for redu
ing wto the empty word by applying a sequen
e of relations r 2 R; the number of2-
ells in the diagram is the number of relations that one applies and is therefore



20 M.R. Bridsonat least as great as Areaa(w), as de�ned in (1.2.2). Conversely, we shall seethat one 
an always 
onstru
t a van Kampen diagram for w that has Areaa(w)2-
ells. It follows that the Dehn fun
tion of hA j Ri 
an be interpreted in termsof isoperimetri
 inequalities for planar diagrams.Max Dehn was the �rst to use planar diagrams in order to study word prob-lems [34℄, but his diagrams arose in 
on
rete settings (primarily as regions in atessellated hyperboli
 plane). The idea of using diagrams to study relations inarbitrary �nitely presented groups is due to E. van Kampen [61℄. The idea was re-dis
overed by Roger Lyndon in the 1960s. At about the same time C. Weinbaumbrought van Kampen's original paper to light and made interesting appli
ationsof it.There are a number of 
orre
t proofs of the 
elebrated van Kampen Lemmain the literature. The use of pi
tures in these proofs 
auses disquiet in some
ir
les, so I have tried to fashion the following proof in a manner that will allaysu
h misgivings.4.1 Singular Dis
 DiagramsFix an orientation on R 2 . A singular dis
 diagram D is a 
ompa
t, 
ontra
tiblesubset of the plane endowed with the stru
ture of a �nite 
ombinatorial 2-
omplex. (See Appendix A for basi
 de�nitions 
on
erning 
ombinatorial 
om-plexes.)We write Area
 D to denote the number of 2-
ells in D . And given a vertexp 2 D we write Diamp D to denote the maximum of the distan
e from p to theother verti
es v 2 D , where \distan
e" is the number of 1-
ells traversed by ashortest path joining p to v in the 1-skeleton of D .To avoid pathologies, we assume the 1-
ells e : [0; 1℄! D ,! R 2 are smoothlyembedded. Asso
iated to ea
h 1-
ell one has two dire
ted edges "(t) = e(t) and"(t) = e(1� t). Let AD denote the set of dire
ted edges. (By de�nition " = ".)The boundary 
y
le of D is the loop of dire
ted edges des
ribing the frontierof the metri
 
ompletion of R 2 rD in the positive (anti-
lo
kwise) dire
tion { it
onsists of a thin part, where the underlying 1-
ells do not lie in the boundary ofany 2-
ell, and a thi
k part; the boundary 
y
le traverses ea
h 1-
ell in the thi
kpart on
e and ea
h 1-
ell in the thin part twi
e.De�nition 4.1.1 [Labelled Diagrams℄ Let A be a set and let A�1 be the set ofsymbols fa�1 j a 2 Ag. A diagram over A 
onsists of a singular dis
 diagramD and a (labelling) map � : AD ! A [ A�1 su
h that �(") = �(")�1 for all" 2 AD .� extends to a map from the set of dire
ted edge-paths in D to the set of wordsin the letters A[A�1 . The fa
e labels of D are the words that this map assignsto the atta
hing loops of the 2-
ells of D (beginning at any vertex and pro
eedingwith either orientation).Proposition 4.1.2 Let A be a set, let D be a diagram over A and let R� bea set of words that 
ontains the fa
e labels of D . If a word w o

urs as the label
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y
le of D , read from some vertex p in the boundary of D , thenin the free group F (A) w = �Yi=1x�1i rixi;where � = Area
 D , the words xi have length jxij 6 Diamp D , and ri 2 R� .In parti
ular w = 1 in the group hA j R�i.Proof Fix D and p. In the 1-skeleton of D we 
hoose a geodesi
 spanning treeT rooted at p (see Exer
ise 4.1.3).Arguing by indu
tion (the base step is trivial) we may assume that the propo-sition has been proved for diagrams D0 with Area
D0 < Area
 D and for dia-grams with Area
 D0 = Area
D where D0 has fewer 1-
ells than D .We say that D has a dangling edge if it has a vertex other than p thathas only one edge in
ident at it. If D has su
h an edge then we may applyour indu
tive hypothesis to the diagram obtained by removing it { the resultingdiagram has the same area as D , its diameter is no greater than that of D , andits boundary label is obtained from that of D by free redu
tion. Thus we mayassume that D has no dangling edges.If D were a tree it would have dangling edges (or be a single point). ThusD 6= T . We follow the boundary 
y
le of D from p until we en
ounter the �rstdire
ted edge " that is not in T ; let a be the label on ", let w1 be the label onthe segment of the boundary 
y
le that pre
edes " and let w2 be the label onthe segment that follows it. The part of the boundary 
y
le labelled w1 is aninje
tive path, be
ause it lies entirely in the tree T and must be lo
ally inje
tivesin
e a ba
ktra
king would imply that D had a dangling edge. In parti
ular w1has length at most Diamp D .Sin
e T 
ontains all of the verti
es of D , we do not dis
onne
t D by removingthe open 1-
ell underlying ", and hen
e this 1-
ell must lie in the boundary ofsome 2-
ell E . Suppose that the atta
hing loop of E (read in the positivedire
tion from the initial vertex of ") has label r�1 := au�1 .Consider the sub
omplex D0 obtained from D by deleting the open 1-
elllabelled " and the interior of E . Note that D0 is again a diagram over A (itslabelling map is just the restri
tion of the labelling map of D), its set of fa
elabels is a subset of the fa
e labels of D , its diameter is the same as that ofD (be
ause the geodesi
 spanning tree T is entirely 
ontained in D0 ) and itsboundary 
y
le, read from p, is w0 := w1uw2 . In the free group F (A) we havew0 = (w1rw�11 )(w1aw2) = (w1rw�11 )w:We have argued that jw1j 6 Diamp D = Diamp D0 . And by indu
tion wemay assume that w0 
an be expressed as a produ
t of 
onjugates of at mostArea
 D0 = Area
 D�1 fa
e labels, with 
onjugating elements of length at mostDiamp D0 = Diamp D . This 
ompletes the indu
tion. �



22 M.R. BridsonOne 
an give a shorter proof of the above proposition if one ignores the lengthof the 
onjugating elements xi ; this weaker form of the result is more standard,e.g. [66℄.Exer
ise 4.1.3 Let G be a 
onne
ted graph (1-dimensional CW 
omplex). Letd be a length metri
 in whi
h ea
h edge has length 1. Fix a vertex p 2 G .Prove that G 
ontains a geodesi
 spanning tree rooted at p , i.e. a 1-
onne
tedsubgraph T that 
ontains a path of length d(p; v) from p to ea
h vertex v 2 G .
4.2 Van Kampen's LemmaDe�nition 4.2.1 [Van Kampen Diagrams℄ Let A be a set, let R be a set of wordsin the letters A�1 and let R� be the smallest set of words that 
ontains R and is
losed under the operations of taking 
y
li
 permutations and inverses of words.(Note that hA j Ri �= hA j R�i.)If w;D and p are as in the above proposition, then D is 
alled a van Kampen diagramfor w over hA j Ri with basepoint p.Theorem 4.2.2 (Van Kampen's Lemma) Let A be a set, let w be a word inthe letters A [A�1 , and let R be a set of words in these letters.(1) w = 1 in the group � = hA j Ri if and only if there exists a van Kampendiagram for w over hA j Ri.(2) If w = 1 in � thenAreaa(w) = minfArea
 D j D a van Kampen diagram for w over hA j Rig:In order to 
omplete the proof of this theorem we shall need two lemmas.In the �rst we 
onsider the following ordering on diagrams over A that have aninitial vertex16 spe
i�ed in the boundary 
y
le: D � D0 if D0 has fewer 1-
ellsthan D and the words labelling the boundary 
y
les of D and D0 , read fromtheir initial verti
es, are equal as elements of the free group F (A).Lemma 4.2.3 If D , with initial point p, is minimal in the ordering �, thenthe boundary label of D is a freely redu
ed word.Proof We shall assume that D is a diagram whose boundary label w is notfreely redu
ed and 
onstru
t a diagram � D .Sin
e w is not redu
ed, there is a pair of su

essive dire
ted edges "; "0 inthe boundary 
y
le that are labelled a; a�1 respe
tively, where a 2 A [A�1 . Ifthe initial vertex of " is equal to the terminal vertex of "0 then we 
an delete16A 
hoi
e of \initial vertex" in
ludes the spe
i�
ation of whi
h edge of the boundary 
y
le isto be traversed �rst. Nevertheless, when no 
onfusion is threatened, one talks as if the \initialvertex" is simply a vertex of D .



The geometry of the word problem 23from D these edges together with the 
ontra
tible region that they en
lose, thusobtaining a diagram � D .If the initial vertex of " is not equal to the terminal vertex of "0 then17 we
an 
onne
t the latter vertex to the former by a smooth ar
 
 : [�1; 1℄ ! R 2that interse
ts D only at its endpoints. Let T � R 2 be the open dis
 en
losedby the loop ""0
; we shall 
ollapse T in a 
ontrolled manner. Let � = f(x; y) j1 > y > jxj; jxj < 1g � R 2 and �x a di�eomorphism � : � ! T that has a
ontinuous extension to � with �j[�1;1℄�f1g = 
 and �(�t; t) = "0(1 � t) and�(t; t) = "(t) for all t 2 [0; 1℄. The map T ! f0g � R that sends z = �(x; y)to y has a 
ontinuous extension � : R 2 ! R 2 that is a di�eomorphism on the
omplement of the 
losure of T .
c

π

εε’

Figure 4.2.4 Redu
ing the boundary labelD = �(D) inherits a 
ombinatorial stru
ture from D as well as a 
hoi
eof initial point for its boundary 
y
le. D has fewer 1-
ells than D be
ause� Æ "�1 = � Æ "0 . The dire
ted edges � Æ "i of D inherit the labelling �("i)from D , and the label on the boundary 
y
le of D , read from its initial point,is obtained from w by deleting the subword aa�1 
orresponding to ""0 . ThusD � D . �Remark 4.2.5 If one employs a suitably natural pro
edure for 
hoosing the edge", then the proof given above a
tually 
onstitutes an algorithm for transforminga diagram D whose boundary label is not freely redu
ed into a diagram D0 � D .By repeated appli
ation of this algorithm one obtains a diagram D0 � D whoseboundary label is redu
ed. Moreover, the set of fa
e labels of D0 is 
ontainedin the set of fa
e labels of D , and Area
 D0 6 Area
 D .The following lemma is used to pass from diagrams whose boundary labelsare redu
ed to those whose labels are not.Lemma 4.2.6 Let A be a set, let w be a word in the letters A [A�1 and letw0 be the redu
ed word that is equal to w in F (A). Given a diagram D0 forw0 over A, one 
an 
onstru
t a diagram D for w with Area
 D0 = Area
 D sothat the set of fa
e labels of D is the same as that of D0 .17There are no hidden assumptions here: " and "0 may be in the thin part of the boundaryor in the thi
k part, and one of them might be a loop.
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Figure 4.2.7 Changing the boundary label from u1u2 to u1aa�1u2 .Proof w is obtained from w0 by repeatedly inserting pairs of letters aa�1 witha 2 A. To modify the boundary label of a diagram by su
h an insertion, one addsa new vertex v of valen
e 1 and an edge labelled a to v from the appropriatevertex of the boundary 
y
le (�gure 4.2.7).The Proof of Van Kampen's Lemma. If w = 1 in � = hA j Ri then in thefree group F (A) we have: w free= NYi=1x�1i rixiwhere ri 2 R�1 and N = Areaaw . The word W on the right of this equalityis the boundary label on the \lollipop" diagram D1 shown in �gure 4.2.8; notethat Area
 D1 = N .Let D0 � D1 be a �-minimal diagram. The boundary label of D0 is thefreely redu
ed word w0 that is equal to w in F (A), the fa
e labels of D0 are asubset of those of D1 , and Area
 D0 6 Area
D1 = Areaaw (Lemma 4.2.3 and(4.2.5)). By applying Lemma 4.2.6 to D0 we obtain a van Kampen diagram Dof area 6 N for w over hA j Ri. This proves the impli
ation \only if" in (1)and the inequality > in (2). Proposition 4.1.2 provides the 
omplementary \if"impli
ation and 6 inequality. �
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The geometry of the word problem 25Figure 4.2.8 The lollipop diagram4.3 Words and Van Kampen Diagrams as MapsIn this subse
tion I shall assume that the reader is familiar with the material inSe
tion A.2 (Appendix A).If D is a van Kampen diagram over hA j Ri with basepoint p, then thereis a unique label-preserving 
ombinatorial map from the 1-skeleton of D tothe Cayley graph CA(�) that sends p to the vertex 1 2 �. This extends toa 
ombinatorial map from D to the universal 
overing ~K of the standard 2-
omplex K(A :R).Let M be a 
losed, smooth Riemannian manifold and let � = hA j Ri bea �nite presentation of the fundamental group of M . Let ~K be the universal
overing of K(A :R). We �x a basepoint p 2 ~M , and for every a 2 A we 
hoosea geodesi
 
a joining p to a:p. These 
hoi
es give rise to a �-equivariant mapfrom CA(�) = ~K(1) to ~M : this map sends the 1-
ell labelled a emanating from
 homeomorphi
ally onto the segment 
:
a . Sin
e ~M is simply-
onne
ted, wemay extend this map a
ross the 2-
ells of ~K in a �-equivariant manner. We
hoose this extension so that on ea
h 2-
ell it is smooth almost everywhere andhas �nite area.If w is a word in the letters A [A�1 , then for ea
h 
 2 � there is a uniqueedge-path in CA(�) = ~K(1) that begins at 
 and is labelled w . We write ŵ
 todenote the image of this path in ~M (ex
ept that if 
 = 1 we write ŵ instead ofŵ1 ). Su
h paths in ~M are 
alled word-like.If D is a van Kampen diagram for w over hA j Ri, then by 
omposing theabove maps D ! ~K and ~K ! ~M we obtain a map hD : D ! ~M whoserestri
tion to the boundary 
y
le of D is a parameterization of the loop ŵ .5 The Equivalen
e FillM0 ' Æ�1MThis se
tion is devoted entirely to the proof of the Filling Theorem:Theorem 5.0.1 The 2-dimensional, genus-zero isoperimetri
 fun
tion FillM0of any smooth, 
losed Riemannian manifold M is ' equivalent to the Dehnfun
tion Æ�1M of the fundamental group of M .5.1 The Bound FillM0 � Æ�1MThis dire
tion of the proof is substantially easier than the other. In order tounderstand the proof, the reader will need to have absorbed the de�nition of avan Kampen diagram.Proposition 5.1.1 If M is a smooth, 
losed Riemannian manifold then � :=�1M is �nitely presented and FillM0 � Æ� .Proof Corollary A.4.2 of the Appendix shows that � is �nitely presented. We�x a �nite presentation for � and assume that the universal 
over ~K of thestandard 2-
omplex of this presentation has been mapped to ~M as explained in



26 M.R. Bridsonthe pre
eding subse
tion. We identify � (the 0-skeleton of ~K ) with its image in~M . We de�ne � to be the maximum distan
e of any point of ~M from �, wede�ne � to be the maximum of the lengths of the 1-
ells of ~K , as measured in~M , and we de�ne m = maxfd�(
; 
0) j d ~M (
; 
0) 6 2� + 1g, where d� is theword metri
 asso
iated to our 
hosen generators for �.The images in ~M of the 2-
ells of ~K are dis
s of �nite area; let � be themaximum of these areas.Let w be a word in the given generators that equals 1 2 � and 
onsider the
orresponding pie
ewise-geodesi
 loop ŵ in ~M . Choose a van Kampen diagramD for w with Areaa(w) 2-
ells, and 
onsider the asso
iated map hD : D ! ~M ,whi
h �lls ŵ . The area of this map is at most � times the number of 2-
ells inD , hen
e FArea(ŵ) 6 �Areaa(w) 6 � Æ�(jwj):Given a loop 
 : S1 ! ~M of �nite length l(
), parameterized by ar
 length,we 
hoose a set of n equally-spa
ed points �0; : : : ; �n�1 2 S1 , where n is the leastinteger greater than l(
). We then 
hoose a geodesi
 segment �i from ea
h 
(�i)to a nearest point 
i 2 � � ~M . The distan
e in ~M between su

essive 
i (indi
esmod n) is at most 2�+1 and hen
e 
i 
an be 
onne
ted to 
i+1 by a word-likepath ûi
i of length at most m�, where ui is a word of (algebrai
) length m.Sin
e ea
h of the loops18 �iû
ii �i+1
j[�i;�i+1℄ has length at most L := m�+1+2�,we have FArea(
) 6 FArea(Û
) + n FillM0 (L);where U
 is the 
on
atenation of the words ui (see �gure 5.1.2).
Uc

γ
i+1

γ
i

c i(θ )
σi

c(θ )0

γ
0

c

Figure 5.1.2 Approximating 
 by the word-like loop bU
18an overbar denotes reversed orientation
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 is arbitrary, the word U
 has (algebrai
) length at most nm�,and n 6 l(
) + 1. Thus, the two inequalities displayed above imply thatFillM0 (l) 6 �Æ��m(l + 1)�+ (l + 1) FillM0 (L):for all l > 0. In parti
ular, sin
e FillM0 (L) is a 
onstant, FillM0 � Æ� .5.2 The Bound Æ�1M � FillM0 .There are many subtleties 
on
erning the nature of solutions to Plateau's prob-lem in Riemannian manifolds, but the existen
e of least-area dis
s (althoughhighly non-trivial) has little to do with the �ne stru
ture of the spa
es 
on
erned.Indeed Igor Nikolaev [78℄ showed that one 
an solve Plateau's problem in any
omplete simply-
onne
ted geodesi
 spa
e with an upper 
urvature19 bound k .In this generality, when endowed with the pull-ba
k path metri
, a least-areaspanning dis
 will itself have 
urvature 6 k . (To get some intuition about whythis is true, observe that if a dis
 embedded in Eu
lidean 3-spa
e has a point ofpositive 
urvature, then there is an obvious lo
al pushing move that redu
es thearea of the dis
 without disturbing its boundary.)De�nition 5.2.1 Let D be a metri
 spa
e homeomorphi
 to a (perhaps singu-lar20) 2-dis
 and �x " > 0. A set � � D is said to "-�ll D if every point of Dis a distan
e less than " from � and every point of the boundary 
y
le �D 
anbe 
onne
ted to a point of �D \ � by an ar
 in �D that has length at most ".The only fa
t that we need 
on
erning the nature of solutions to Plateau'sproblem is that loops in the universal 
overing of a 
losed Riemannian mani-fold 
an be �lled by dis
s that exhibit the following 
rude 
onsequen
e of the
urvature bound des
ribed above.Proposition 5.2.2 If M is a 
omplete Riemannian manifold of 
urvature 6 k ,then the indu
ed metri
 on every least-area dis
 D ! ~M is su
h that D 
an be�k -�lled by a set of 
ardinality less than �k(Area(D) + j�Dj + 1), where j�Djdenotes the length of the boundary of D and the 
onstants �k and �k dependonly on k .Proof When equipped with the pull-ba
k metri
 D has 
urvature 6 k . In theRiemannian setting this means that if a metri
 ball of radius r < �=(2pk) is
ontained in the interior of D , then the area of that ball is at least as great asthe area of a dis
 of radius r in M2k . So if a(k; r) denotes the area of su
h adis
, then there 
an be at most Area(D)=a(k; r) disjoint balls of radius r in theinterior of D .19 In the sense of A.D. Alexandrov; see Appendix B for the de�nition. In Nikolaev's theoremthere is a natural restri
tion on the length of the loops being �lled if k > 0.20A singular dis
 is a spa
e homeomorphi
 to the underlying spa
e of a singular dis
 diagram,as de�ned in (4.1). In the Riemannian setting (dimension > 3) one 
an avoid the need todis
uss (topologi
ally) singular dis
s by 
onsidering �llings of embedded loops only (
f. 2.1.5).



28 M.R. BridsonWe set r = rk := �=(4pk) and 
hoose a maximal 
olle
tion of disjoint ballsof radius r in the interior of D . Let �0 denote the set of 
entres of theseballs. We also 
hoose a 
olle
tion �1 of no more than 1rk j�Dj + 1 points along�D so that every point of �D 
an be 
onne
ted to a point in �1 by an ar
of length less than rk . By 
onstru
tion, the balls of radius 2rk 
entred at thepoints �0 [ �1 
over D and the 
ardinality of �0 [ �1 is bounded above by1a(k;rk)Area(D) + 1rk j�Dj+ 1. Set �k = 2rk and �k = maxf 1a(k;rk) ; 1rk g. �In order to establish the reverse inequality in the Filling Theorem we shall usethe following te
hni
al tool for manufa
turing 
ombinatorial dis
s out of "-�llingsets.5.2.3 Cellulation Lemma. Let D be a length spa
e homeomorphi
 to a (per-haps singular) 2-dis
, and suppose that D is "-�lled by a set � of 
ardinality N .Then there exists a 
ombinatorial 2-
omplex �, homeomorphi
 to the standard2-dis
, and a 
ontinuous map � : �! D su
h that:(1) � has less than 8N fa
es (2-
ells) and ea
h is a k -gon with k 6 12;(2) the restri
tion of � to ea
h 1-
ell in � is a path of length at most 2";(3) �j�� is a monotone parameterisation of �D and �\�D lies in the imageof the 0-skeleton of ��.In the 
ase of the "-�llings yielded by Proposition 5.2.2 (whi
h are the fo
usof our 
on
ern), instead of using the de
omposition of D furnished by the Cel-lulation Lemma, one might use the dual to the Voronoi de
omposition for thegiven �lling | this dual will generi
ally be a triangulation (
f. [99℄ 5.58). Some
are is needed in pursuing this remark, but nevertheless we use it as a pretext21for relegating the proof of the Cellulation Lemma to Appendix C.The Remainder of the Proof of the Filling Theorem.It remains to show that Æ� � FillM0 , where � = �1M . Let k > 0 be an upperbound on the se
tional 
urvature of M .We �x a basepoint p 2 ~M and 
hoose a number � > 0 suÆ
iently largeto ensure that the balls of radius �=8 about f
:p j 
 2 �g 
over ~M and that� > 8�k (notation of 5.2.2). Let A be the set of a 2 � su
h that d(a:p; p) < �and let R be the set of words in the symbols A[A�1 that have length 6 12 andequal the identity in �. (Note that A 
ontains a letter that represents 1 2 �.)Corollary A.4.2 shows that hA j Ri is a presentation of �. We shall show thatevery null-homotopi
 word w over this presentation satis�esAreaa(w) 6 4�k �FillM0 (� jwj) + � jwj+ 1�:Given a word w with w = 1 in � we 
onsider the pie
ewise geodesi
 loopŵ in ~M (notation of 4.3). This loop has length less than �jwj and hen
e2221The honest reason for this deferral is that the proof is lengthy and inelegant.22 If one wants to quote Morrey dire
tly here one should perturb ŵ to ensure that it isembedded.
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an be �lled with a least-area dis
 f : D ! ~M of area at most FillM0 (� jwj).Using Proposition 5.2.2 we 
an �k -�ll D with a set � of 
ardinality less thanN := �k(FillM0 (� jwj) + � jwj + 1). In
reasing the 
ardinality of � by at mostjwj, we may assume that it 
ontains the verti
es of ŵ .Consider a 
ombinatorial 2-dis
 � and a map � : �! D as furnished by theCellulation Lemma. Our aim is to label � so that it be
omes a van Kampendiagram for w over hA j Ri. The 
omposition f Æ � : � ! ~M will guide usin this 
onstru
tion. Note that the restri
tion of f Æ � to �� is a monotoneparameterization of ŵ . The initial point of ŵ determines a basepoint for �.For ea
h vertex v in the interior of � we 
hoose a point 
v � p in the � orbitof p that is 
losest to f Æ�(v). If v and v0 are the verti
es of a 1-
ell in �, thenf Æ�(v) and f Æ�(v0) are a distan
e at most 2�k apart in ~M (the se
ond propertyof � in the Cellulation Lemma). It follows that d(
v �p; 
v0 �p) 6 2�k+�=4, whi
his less than �=2. Hen
e there exists a generator a 2 A su
h that a = 
�1v 
v0 in�. We introdu
e the label a on the edge in � joining v to v0 .Among the verti
es of �� we have a set of distinguished verti
es, namelythose mapping to the verti
es of ŵ . Call these x0; : : : ; xn�1 , 
orresponding tothe verti
es wi � p on ŵ , where wi is the i-th pre�x of w .If v 2 �r�� is the initial point of an edge whose endpoint v0 lies on the ar
joining xi�1 to xi in ��, then 
v is a distan
e less than �=8 + 2�k + �=2 fromeither wi�1 � p or wi � p, depending on whi
h side of the midpoint of the ar
 v0lies (where \midpoint" is measured in the ar
 length pulled ba
k from ~M ).For ea
h i = 1; : : : ; n we 
ollapse all but one of the edges along the ar
 of ��joining xi�1 to xi ; the edge 
ontaining the midpoint is not 
ollapsed23, and itsimage in the quotient dis
 � is labelled with the i-th letter of w . The image in �of the quotient of the edge [v; v0℄ dis
ussed in the previous paragraph is labelledeither 
�1v wi�1 or 
�1v wi , a

ording to the side of the midpoint on whi
h v0 lies.(This label will be an element of A be
ause �=8 + 2�k + �=2 < �.)At this stage we have 
onstru
ted a 
ombinatorial 2-dis
 � with a label fromA on ea
h dire
ted 1-
ell. The label on the boundary 
ir
le �� is our originalnull-homotopi
 word w . The label on the boundary 
y
le of ea
h 2-
ell is, by
onstru
tion, a word of length at most 12 in the letters A that represents theidentity in �, be
ause the fa
es of �, and hen
e �, are k -gons with k 6 12. Thus� is a van Kampen diagram for w over our 
hosen presentation of � = �1M .The Cellulation Lemma gave us � and told us that it had at most 8N fa
es,where N = �k(FillM0 (� jwj) + � jwj + 1). And � has the same number of fa
esas �. Thus we have established the desired upper bound on the algebrai
 areaof the arbitrary null-homotopi
 word w , and we dedu
e that Æ� � FillM0 . �6 Linear and Quadrati
 Dehn Fun
tionsIn this se
tion we shall see that the groups that have linear Dehn fun
tions arepre
isely those that are negatively 
urved on the large s
ale, i.e. hyperboli
 in23 this involves a 
hoi
e if the midpoint is a vertex



30 M.R. Bridsonthe sense of 6.1.3. This fundamental insight is due to Misha Gromov [55℄.We shall also dis
uss the weaker link between non-positive 
urvature and the
lass of groups that have a quadrati
 Dehn fun
tion.6.1 Hyperboli
ity: from Dehn to GromovGiven a �nite set of generators A for a group �, one would have a parti
ularlyeÆ
ient algorithm for solving the word problem if one 
ould 
onstru
t a �nitelist of words u1; v1; u2; v2; : : : ; un; vn; with ui =� vi and jvij < juij, su
h thatevery freely-redu
ed word in the letters A�1 that represents 1 2 � 
ontains atleast one of the ui as a subword.If su
h a list of words exists then one pro
eeds as follows: given an arbitraryredu
ed word w , look for subwords of the form ui ; if there is no su
h subword,stop and de
lare that w does not represent 1 2 �; if ui o

urs as a subword,repla
e ui with vi , freely redu
e the resulting word w0 and then repeat thesear
h for subwords of the form uj (noting that w = w0 in �). Pro
eeding inthis way, after at most jwj steps one will have either redu
ed w to the emptyword (in whi
h 
ase w = 1 in �) or else veri�ed that w 6= 1 in �.De�nition 6.1.1 When it exists, the above pro
edure for solving the word prob-lem is 
alled a Dehn algorithm for �; it is en
oded in hA j u1v�11 ; : : : ; unv�1n i,whi
h we 
all a Dehn presentation.Max Dehn proved that Fu
hsian groups admit Dehn presentations [35℄. JimCannon proved that the fundamental groups of all 
losed negatively 
urved man-ifolds admit Dehn presentations [27℄. The following small 
an
ellation 
onditionprovides many other examples (see [66℄ Chapter V).Example 6.1.2 Let hA j Ri be a �nite presentation in whi
h ea
h relator isfreely redu
ed. Assume that if r 2 R then r�1 and every 
y
li
 permutationof r is in R. And suppose that whenever there exist distin
t r; r0 2 R with a
ommon pre�x u (i.e. r � uv and r0 � uv0 ), the inequality juj < jrj=6 holds.Then hA j Ri is a Dehn presentation.It requires only a moment's 
lear thought to see that the existen
e of a Dehnalgorithm for a group � implies that � has a linear Dehn fun
tion (
f. paragraph1.2). A more profound observation is that the 
onverse is also true. The proof ofthis fa
t is indire
t, pro
eeding via Gromov's notion of a hyperboli
 group [55℄.Gromov made the following remarkable dis
overy: the simple geometri
 
on-dition given in (6.1.3) for
es a geodesi
 metri
 spa
e, regardless of its lo
al stru
-ture, to exhibit many of the large-s
ale features that one asso
iates with simply-
onne
ted manifolds of negative 
urvature. Thus he was able to extend the powerof negative 
urvature well beyond its traditional realm24 in Riemannian geome-try. This stripping away of extraneous stru
ture leads to a deeper understanding24The work of H. Busemann and, more parti
ularly, A.D. Alexandrov, had already expandedthe range of spa
es in whi
h one 
an dis
uss negative and non-positive 
urvature (see [22℄),but that work was based on lo
al de�nitions of 
urvature, whereas in Gromov's approa
h oneignores the lo
al stru
ture of the spa
e.
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losed negatively 
urved manifolds, and extendssu
h an understanding to mu
h wider 
lasses of groups.De�nition 6.1.3 A geodesi
 metri
 spa
e X is hyperboli
 (in the sense ofGromov) if there exists a 
onstant � > 0 su
h that for every geodesi
 triangle25� � X , ea
h edge of � lies in the � -neighbourhood of the union of the othertwo edges. (One writes \X is � -hyperboli
" when it is useful to spe
ify the
onstant.)A �nitely generated group � is said to be hyperboli
 if its Cayley graph26 is� -hyperboli
 for some � > 0.Exer
ises 6.1.4 (i) Prove that real hyperboli
 spa
e H n is hyperboli
 in theabove sense and �nd the optimal � . (Hint: There is a bound on the area ofsemi
ir
ular dis
s that 
an be ins
ribed in geodesi
 triangles in H 2 .)(ii) Dedu
e that the universal 
overing X of any 
losed manifold of negativese
tional 
urvature is hyperboli
 in the sense of Gromov. (Hint: If one s
alesthe metri
 so that the 
urvature of X is bounded above by �1, then everygeodesi
 triangle � � X is the image of a non-expanding map � : � ! �,where � is a triangle in H 2 and the restri
tion of � to ea
h edge of � is anisometry. This is 
alled the CAT(�1) inequality [22℄.)The following results are due to Gromov [55℄ (see also Cannon [28℄). Detailedreferen
es and proofs 
an be found in Chapter III.� of [22℄.Theorem 6.1.5 The following statements are equivalent for �nitely presentedgroups �:(1) � is a hyperboli
 group.(2) � has a �nite Dehn presentation.(3) � has a linear Dehn fun
tion.(4) The Dehn fun
tion of � is sub-quadrati
 (i.e. Æ�(n) = o(n2)).Pro
eeding in 
y
li
 order, the only non-trivial impli
ations are (4) ) (1)and (1) ) (2). We shall not dis
uss (4) ) (1) ex
ept to say that Cornelia Drut�u[38℄ re
ently dis
overed an elegant proof that uses asymptoti
 
ones (
f. 3.1.6).The proof that (1) ) (2) requires an understanding of the following typesof lo
ally-eÆ
ient paths. Let I � R be an interval and let X be a metri
 spa
e.A map 
 : I ! X is 
alled a k -lo
al geodesi
 if d(
(t); 
(t0)) = jt � t0j for allt; t0 2 I with jt� t0j 6 k . And 
 is 
alled a (�; ")-quasi-geodesi
 if1� jt� t0j � " 6 d(
(t); 
(t0)) 6 � jt� t0j+ "25See Appendix B for de�nitions su
h as that of a triangle in an arbitrary metri
 spa
e.26The ambiguity that arises from the fa
t that we have not spe
i�ed a generating set isremoved by Exer
ise 6.1.9(2).



32 M.R. Bridsonfor all t; t0 2 I .In hyperboli
 spa
es one has the following lo
al 
riterion for re
ognising 
er-tain quasi-geodesi
s (see [22℄ page 405).Lemma 6.1.6 If X is � -hyperboli
 then every 8� -lo
al geodesi
 in X is a(�; ")-quasi-geodesi
, where the 
onstant � > 0 depends only on � , and " is lessthan 8� .The impli
ation (1) ) (2) in Theorem 6.1.5 follows easily from this lemma:Exer
ise 6.1.7 Suppose that the Cayley graph of � with respe
t to the �nitegenerating set A is � -hyperboli
. Let R be the set of words uiv�1i , where uiruns over all words of length 6 8� in the letters A�1 for whi
h there existsa word vi with jvij < juij and ui = vi in �. Show that hA j Ri is a Dehnpresentation.The following stability property of quasi-geodesi
s marks an important dif-feren
e between spa
es of non-positive 
urvature and spa
es of stri
tly negative
urvature (see [22℄ page 401).Proposition 6.1.8 For all �; �; " > 0 there exists R(�; �; ") > 0 su
h that:if X is � -hyperboli
 and 
 : [a; b℄ ! X is (�; ")-quasi-geodesi
 with endpointsp and q , then the Hausdor� distan
e between the image of 
 and ea
h geodesi
segment joining p to q is less than R(�; �; ").This proposition provides a proof (independent of the Filling Theorem) thatthe fundamental groups of 
losed negatively 
urved manifolds have linear Dehnfun
tions { see 6.1.4(ii) and 6.1.9(iii).The following exer
ises require the reader to understand 
ertain items fromAppendix A, namely the de�nition of quasi-isometry, the �Svar
-Milnor Lemmaand A.1.3(ii).Exer
ise 6.1.9 (i) Let X be a geodesi
 spa
e. If X is quasi-isometri
 to a � -hyperboli
 spa
e, then X is �0 -hyperboli
 for some �0 > 0. (Hint: Considerquasi-geodesi
 triangles.)(ii) If the Cayley graph of a group with respe
t to one �nite generating set ishyperboli
, then so is the Cayley graph of that group with respe
t to any other�nite generating set.(iii) If a group a
ts properly and 
o
ompa
tly by isometries on a hyperboli
geodesi
 spa
e, then that group has a linear Dehn fun
tion.We refer the reader to Chapter III.� of [22℄ for an introdu
tion to the ri
htheory of hyperboli
 metri
 spa
es (the referen
es given therein will also pointthe reader to re
ent developments in this a
tive �eld). Here are a few of thebasi
 properties of hyperboli
 groups.Theorem 6.1.10 If a group � has a linear Dehn fun
tion then:
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ontain Z2 ;(2) � has a solvable 
onjuga
y problem;(3) � has only �nitely many 
onjuga
y 
lasses of �nite subgroups;(4) � a
ts on a 
ontra
tible simpli
ial 
omplex with 
ompa
t quotient and �nitestabilizers.(5) Let A be a �nite generating set for � and let d be the asso
iated wordmetri
. De�ne �(
) = limn!1 d(1; 
n)=n. Then there is an integer Nsu
h that fN �(
) j 
 2 �r f1gg is a set of positive integers.
6.2 Quadrati
 Dehn Fun
tions and Non-Positive CurvatureIf a geodesi
 metri
 spa
e X is 
omplete, 1-
onne
ted and non-positively 
urvedin the sense of A.D. Alexandrov (see Appendix B), then its metri
 is 
onvexin the sense that d(
(t); 
0(t)) 6 t d(
(1); 
0(1)) + (1 � t) d(
(0); 
0(0)) for allgeodesi
s 
; 
0 : [0; 1℄ ! X parameterized by ar
 length. This 
lass of spa
esin
ludes the universal 
overing ~M of any 
ompa
t Riemannian manifold whosese
tional 
urvatures are non-positive, and hen
e the following result applies tothe fundamental groups of su
h manifolds (a
ting by de
k transformation on~M ). It also applies to 
o
ompa
t latti
es in semisimple Lie groups (
f. 3.3.7).Theorem 6.2.1 Let X be a 
omplete geodesi
 spa
e whose metri
 is 
onvex.If the group � a
ts properly by isometries on X and the quotient of this a
tionis 
ompa
t, then � is �nitely presented and its Dehn fun
tion is either linear orquadrati
.The following proof is adapted from [5℄ and [22℄, and has earlier origins, e.g.[42℄.Proof The point of the proof is to 
onstru
t the diagram shown in �gure 6.2.3.Let d be the metri
 on X . Fix p 2 X and let � > 1 be su
h that the ballsof radius � about the �-orbit of p 
over X . Let 

 be the ar
-length parame-terization of the unique geodesi
 segment joining p to 
:p. Let A � � be theset of 
 2 � su
h that d(p; 
:p) 6 3�. Given 
 2 �, let m be the least integergreater than d(p; 
:p)=� and for ea
h positive integer t < m 
hoose 
t 2 � withd(

(�t); 
t:p) 6 �. De�ne 
0 = 1 and 
m = 
 .Consider the word �
 := a1 : : : am where ai := 
�1i�1
i 2 A for i = 1; : : : ;m.With an eye on future generalisations, we write �
(i) instead of 
i to denotethe image in � of the i-th pre�x of �
 ; by de�nition �
(i) = 
 if i > m. (Ingeneral we write w(i) for the image in � of the i-th pre�x of any word w .)It follows from the 
onvexity of the metri
 on X that in the word metri
 dAon � one has dA(�
(i); �
0(i)) 6 3 dA(
; 
0) (6.2.2)for all 
; 
0 2 � and all integers i > 0 (see Exer
ise 6.2.4(i)). We shall use thisinequality to 
onstru
t eÆ
ient diagrams for null-homotopi
 words.



34 M.R. BridsonLet w be a null-homotopi
 word, of length n say. We draw an oriented
ir
le in R 2 , mark verti
es v0; : : : ; vn�1 (in 
y
li
 order) on the 
ir
le and labelthe oriented ar
 (vi�1; vi) with the i-th letter of w (indi
es mod n). We then
onne
t v0 to ea
h of the verti
es vi with a line segment [v0; vi℄ divided intoj�w(i)j 1-
ells; these 1-
ells are oriented and labelled by the letters of �w(i) in theobvious manner. De�ne �w(0) = �w(n) to be the empty word, and for j > j�w(i)jde�ne \the j -th vertex of [v0; vi℄" to be vi . Let J(i) = maxfj�w(i)j; j�w(i+1)jg.We 
omplete the 
onstru
tion of our diagram for w by introdu
ing an edgefrom the j -th vertex of [v0; vi℄ to the j -th vertex of [v0; vi+1℄ for i = 0; : : : ; n�1and j = 1; : : : ; J(i); this edge is labelled by a word of minimal length that equals�w(i)(j)�1�w(i+1)(j) 2 �; a

ording to (6.2.2) this word has length at most 3.We have 
onstru
ted a diagram over A with boundary label w , where wis an arbitrary null-homotopi
 word. The fa
e labels are null-homotopi
 wordsof length 6 8; let R be the set of all su
h words. Lemma 4.1.2 tells us that� = hA j Ri and that Areaa(w) is at most the number of fa
es in the diagram.Thus Areaa(w) 6 jwj maxfj�w(i)j : i 6 jwjg. And sin
e dA(1; w(i)) 6 jwj=2 forall i, Exer
ise 6.2.4(ii) tells us that Areaa(w) 6 (3=2)jwj2 . �

w

σw(i+1)

w(i)σ

v

v

i+1

i

ov

Figure 6.2.3 Using the 
ombing �
 to 
onstru
t a van Kampen diagram
Exer
ises 6.2.4 (i) Establish the inequality 6.2.2. (Hint: If m = dA(
; 
0) thend(
:p; 
0:p) 6 3m� . Hen
e, by the 
onvexity of the metri
, d(

(�t); 

0(�t) 63m� for all t > 0. Re
all that, by de�nition, �g(t) = gt . Divide the geodesi
[

(�t); 

0(�t)℄ into 3m segments of equal length, and asso
iate to ea
h divisionpoint a 
losest point of �:p , with 
t and 
0t asso
iated to the endpoints.)(ii) Dedu
e that for all 
 2 � the length of the word �
 in the above proof isat most 3 dA(1; 
).
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 GroupsThe intensive study of isoperimetri
 inequalities for �nitely presented groupsbegan in the late 1980s. It emerged primarily from the work of Gromov [55℄, buta 
ertain impetus also 
ame from the theory of automati
 groups. This theorysprang from 
onversations between Jim Cannon and Bill Thurston and grew intoa ri
h theory due to a team e�ort or
hestrated by David Epstein { see [42℄.Roughly speaking, a group � with �nite generating set A is automati
 if one
an 
onstru
t its Cayley graph by 
omputations on �nite state automata: theremust exist a set of words L = f�
 j 
 2 �g in the letters A�1 , with �
 = 
 in�, su
h that membership of L 
an be determined by a �nite state automaton(FSA); and for ea
h a 2 A there must exist a FSA that re
ognises those pairsof words (�
 ; �
0) for whi
h 
0 = 
a.The �niteness of these FSA for
es the existen
e of 
onstants k;K > 0 su
hthat j�
 j 6 k dA(1; 
) anddA(�
(i); �
0(i)) 6 K dA(
; 
0) (6.3.1)for all 
; 
0 2 �. By using the normal form L in pla
e of the words �
 
on-stru
ted in the proof of (6.2.1) we obtain:Theorem 6.3.2 If � is automati
 then it is �nitely presented and its Dehnfun
tion is linear or quadrati
.Automati
 groups form a large 
lass. This 
lass in
ludes many groups thatdo not arise in the setting of Theorem 6.2.1, for example 
entral extensions ofhyperboli
 groups [77℄.In Chapter 9 of [42℄ Epstein and Thurston determine whi
h geometrizable 3-manifolds have automati
 fundamental groups, and Theorem 3.3.1 follows fromthis work. All mapping 
lass groups are automati
 [76℄.6.4 The Link with Non-Positive Curvature is LimitedIn analogy with the theory of hyperboli
 groups, one 
an develop a theory ofsemihyperboli
 groups, de�ned by a 
oarse geometri
 
onstraint that for
es su
hgroups to satisfy most of the useful properties enjoyed by the fundamental groupsof 
ompa
t non-positively 
urved manifolds (
f. Alonso and Bridson [5℄ andGromov [56℄).With Theorems 3.1.6 and 6.1.10 in mind, one might hope that requiring agroup to satisfy a quadrati
 isoperimetri
 inequality would for
e it to behave ina \semihyperboli
" manner, satisfying a list of properties analogous to (6.1.10).The examples that we have seen thus far support this hope to some extent |abelian groups, hyperboli
 groups, automati
 groups, fundamental groups of
ompa
t non-positively 
urved spa
es, SL(n;Z) for n > 4, various nilpotentgroups N , and those non-uniform latti
es in rank 1 Lie groups that have theseN as 
usp groups. But the examples dis
overed more re
ently indi
ate that the
lass of groups that have a quadrati
 Dehn fun
tion is wilder than this list wouldsuggest, but quite how wild is not 
lear. For example, it is unknown if a group �



36 M.R. Bridsonthat has a quadrati
27 Dehn fun
tion 
an have an unsolvable 
onjuga
y problem(it is 
onje
tured that if su
h a group exists, it should not have a 2-dimensionalK(�; 1)).Besides the property that de�nes them, the most signi�
ant property thatis known to be enjoyed by groups with quadrati
 Dehn fun
tions is the fa
tthat their asymptoti
 
ones are all simply-
onne
ted [88℄. This property is notenjoyed by all groups with polynomial Dehn fun
tions [18℄.7 Te
hniques for Estimating Isoperimetri
 Fun
tionsThis se
tion 
ontains a sample of the methods that have been developed to
al
ulate Dehn fun
tions. The te
hniques that I shall des
ribe have been usedwidely, but I must emphasise that this is only a sample, not a thorough survey.This sample is biased in favour of the methods that I have found most useful inmy own work.7.1 Upper BoundsIn general it is easier to obtain upper bounds on Dehn fun
tions than it is toobtain lower bounds. Indeed whenever one has an expli
it solution to the wordproblem in a �nitely presented group, one 
an look for an upper bound on theDehn fun
tion by analysing the use of relations in that solution (
f. paragraph1.1). Thus there are many dire
t methods for obtaining upper bounds, ea
hadapted to the groups at hand. We have already seen examples of su
h methodsin (3.1.2), (2.2), (6.1.1), and (3.2.3). One might also think of results su
h as3.4.1 in this light. Dire
t methods of a geometri
 nature are to be found in manyof the papers listed in the bibliography, e.g. [19℄, [15℄, [95℄ and [18℄.The following general method for obtaining upper bounds on Dehn fun
tionshas been used in many 
ontexts.Using Combings to Get Upper Bounds. Let � be a group with �nitegenerating set A and let d be the asso
iated word metri
. A 
ombing (normalform) for � is a set of words f�
 j 
 2 �g in the letters A�1 su
h that �
 = 
 in�. Whenever one 
an �nd a geometri
ally-eÆ
ient 
ombing for a group � one
an estimate the Dehn fun
tion Æ� by modifying the proof of Theorem 6.2.1. The
ontrol that one needs in order to get non-trivial bounds is remarkably weak [16℄.We 
ontent ourselves with one of the simplest and most widely used methodsof 
ontrol, wherein one weakens the fellow-traveller property (6.3.1) by allowingreparameterizations of the words �
 (thought of as paths in the Cayley graphof �).De�nition 7.1.1 LetR = �� : N ! N j �(0) = 0; �(n+ 1) 2 f�(n); �(n) + 1g 8n; � unbounded	:27There do exist examples with 
ubi
 Dehn fun
tions, [20℄ Example 2.9.



The geometry of the word problem 37Given words w1; w2 in the letters A�1 , de�neD(w1; w2) = min�;�02R�maxt2N fd(w1(�(t)); w2(�0(t))g	:A 
ombing 
 7! �
 is said to satisfy the asyn
hronous fellow-traveller propertyif there is a 
onstant K > 0 su
h thatD(�
 ; �
0) 6 K dA(
; 
0)for all 
; 
0 2 �. The length of � is a fun
tion N ! N :L�(n) := max fj�
 j j dA(1; 
) � ng:
Proposition 7.1.2 If a �nitely generated group � admits a 
ombing � thatsatis�es the asyn
hronous fellow-traveller property, then � is �nitely presentedand its Dehn fun
tion satis�es Æ�(n) � nL�(n). And regardless of the length ofthe 
ombing, Æ�(n) � 2n .

Exer
ise 7.1.3 Prove the assertions in the �rst senten
e of the above proposition.(Hint: Follow the 
onstru
tion of Figure 5 in the proof of Theorem 6.2.1, butinstead of 
onne
ting �w(i)(j) to �w(i+1)(j) with a 1-
ell, 
onne
t �w(i)(�(j))to �w(i+1)(�0(j)), where � and �0 are reparameterizations as in the de�nitionof the asyn
hronous fellow-traveller property.)
Examples 7.1.4 (i) The upper bound des
ribed in Theorem 3.1.4 was estab-lished in [23℄ using the 
ombings 
onstru
ted in [17℄. Given � = Zm o� hti one
an write ea
h 
 2 � uniquely in the form tnx with x 2 Zm . One �xes a basisfor Zm and represents x by a word lx that (viewed as a path in the latti
e Zm )stays 
losest to the Eu
lidean segment [0; x℄ in Rm = Zm 
R . One then de�nes�
 = tnlx , 
he
ks that � satis�es the asyn
hronous fellow-traveller property and
al
ulates that L�(n) ' n k�nk (see [23℄ page 215).(ii) I proved in [17℄ that if a 
ompa
t 3-manifold M satis�es the geometrization
onje
ture, then �1M admits a 
ombing that satis�es the asyn
hronous fellow-traveller property, when
e the exponential upper bound in Theorem 3.3.1.7.2 Lower Boundst-
orridors and t-rings. t-
orridors and t-rings are parti
ular types of sub-diagrams that one gets in van Kampen diagrams over presentations hA; t j R iwhere the group presented retra
ts onto hti. We refer to [21℄ for a 
arefultreatment, but point out that although this is where t-
orridors were namedand systematised, they were in use mu
h earlier, e.g. in Rips's geometri
 proofof the unsolvability of the word problem (see the inside 
over of [94℄).



38 M.R. BridsonConsider the presentation � = hA; t1; : : : ; tn j Ri, where the symbols tjare not elements of A and the only relators involving any tj are of the formtjuit�1j vi 2 R, where ui; vi 2 F (A). Consider a van Kampen diagram Dover su
h a presentation and fo
us on an edge " in the boundary labelledt 2 ft1; : : : ; tng. If this edge lies in the boundary of a 2-
ell, then the boundary
y
le of this 2-
ell (read with suitable orientation from ") has the form tut�1vwith u; v 2 F (A). In parti
ular, there is a unique edge other than " in theboundary of the 2-
ell that is labelled t; 
rossing this edge we enter another2-
ell with a similar boundary label; by iterating the argument we get a 
hainof 2-
ells running a
ross the diagram; this 
hain terminates at an edge of �Dwhi
h (following the orientation of �D in the dire
tion of our original edge ") islabelled t�1 . This 
hain of 2-
ells is 
alled a t-
orridor.Topologi
ally, a t-
orridor is a map [0; 1℄ � [0; 1℄ ! D that is inje
tiveon [0; 1℄ � (0; 1). We make this map a morphism of labelled 
ombinatorial 2-
omplexes by pulling ba
k the 
ell stru
ture and labelling from D . The labels onthe 1-
ells in [0; 1℄�f0; 1g (the top and bottom of the 
orridor) are letters fromA�1 ; the remaining 1-
ells are of the form fsg � [0; 1℄, and these are labelled t.A t-ring is de�ned similarly: it 
onsists of a 
hain of 2-
ells giving a 
ombi-natorial map � : S1� [0; 1℄! D that is inje
tive on S1� (0; 1); in S1� [0; 1℄ the1-
ells of the form f�g� [0; 1℄ are labelled t; the remaining 1-
ells are 
ontainedin S1�f0; 1g and are labelled by letters from A�1 ; the map � is label-preserving.Mu
h of the utility of t-
orridors and t-rings rests on the following observa-tions:Exer
ise 7.2.1 Let ti; ui; vi;� and D by as in the pre
eding dis
ussion. Prove:(i) Distin
t t-
orridors and t-rings have disjoint interiors.(ii) If P is the edge-path in D running along the top or bottom of a t-
orridor,then P is labelled by a word in the letters A�1 that is equal in � to the wordslabelling the subar
s of �D whi
h share the endpoints of P (given appropriateorientations),(iii) and if k = minfmaxi juij;maxi jvijg , then the number of 2-
ells in the t-
orridor is at least 1=k times the length of P .(iv) The words labelling the inner and outer boundary 
y
les of a t-ring arenull-homotopi
.(v) If D 
ontains a 2-
ell that has an edge labelled t in its boundary, then D
ontains either a t-
orridor or a t-ring.Instead of indulging in a general dis
ussion, let me give one proposition toillustrate the utility of t-
orridors and one to illustrate the utility of t-rings.Proposition 7.2.2 Let � be an automorphism of the �nitely presented groupB = hA j Si. For ea
h a 2 A, 
hoose a word va 2 F (A) representing �(a) 2 B .Let R = S[ ft�1j atj = va j a 2 A; j = 1; 2g and de�ne � := hA; t1; t2 j Ri. Thenthe Dehn fun
tion of � is ' bounded below byn 7! nmaxb fdA(1; �n(b)) j dA(1; b) 6 ng:



The geometry of the word problem 39Proof For ea
h positive integer n, we 
hoose a word � of length at most n inthe generators A�1 so as to maximize dA(1; �n(b)), where b is the image of � in�. Let un := t�n1 �tn1 and let wn := un(t2t�11 )nu�1n (t2t�11 )�n , a word of lengthat most 10n. Note that wn = 1 in �. Note also that no proper subword of wnis equal to 1 2 � (one sees this easily using the natural retra
tion �! F (t1; t2)and the fa
t that t�ij �tij 6= 1 for all i). It follows that any van Kampen diagramfor wn is a dis
, in parti
ular every edge of �D lies in the 
losure of some 2-
ell, and therefore a tj -
orridor emanates from ea
h edge of �D labelled tj , forj = 1; 2.The simple fa
t that distin
t tj -
orridors 
annot 
ross (fa
t 7.2.1(i)) impliesthat the pattern of t2 -
orridors in any van Kampen diagram for wn must beas shown in �gure 7.2.3. The words in the letters A�1 labelling the bottom ofea
h of ea
h t2 -
orridor is equal in � to un . Hen
e (fa
t 7.2.1(iii)) ea
h of these
orridors 
ontains at least 1k dA(1; �n(b)) 2-
ells, where k is the length of thelongest of the words va . And there are n su
h 
orridors. �

n

t1 t1
nn

t1
n

t
1

n

β

β

2 1
−1(t t   ) 2(t t  )1

−1 n

Figure 7.2.3 The pattern of tj -
orridors
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Exer
ises 7.2.4 (i) Let � 2 GL(n;Z) be a unipotent matrix and let � = Zm oF (t1; t2), where the generators t1 and t2 of the free group F (t1; t2) both a
t onZm as � . Dedu
e from the above proposition and your proof of (3.1.5) that theDehn fun
tion of � is bounded below by a polynomial of degree 
 + 1, where
 is the size of the largest elementary blo
k in the Jordan form of � . Adapt7.1.4(i) to dedu
e that in fa
t Æ�(n) ' n
+1 . (If you get stu
k, refer to [18℄.)(ii) Britton's Lemma states that, given an HNN extension G�� = (G; t j t�1st =�(s);8s 2 S), and a generating set A for G , every null-homotopi
 word in theletters (A [ ftg)�1 either 
ontains no o

urren
es of t�1 , or else 
ontains asubword t"ut�" , where " = �1 and u is a word in the letters A�1 that lies inhSi if " = �1 and lies in h�(S)i if " = 1.Use t-
orridors to prove Britton's Lemma.

Proposition 7.2.5 Let G be a �nitely presented group, let L;L0 � G be �nitelygenerated subgroups that are free, let � : L ! L0 be an isomorphism, and let� = G�� be the asso
iated HNN extension. Then Æ� � ÆG .
Exer
ises 7.2.6 (i) Let D be a van Kampen diagram for a null-homotopi
 wordw over a presentation hA j Ri , and let u be the label on a simple 
losed loop
 in the 1-skeleton of D . Prove that if Area
 D = Areaaw , then the numberof 2-
ells in the sub-diagram en
losed by 
 is Areaau . Extend this result tonon-
rossing loops28.(ii) Prove Proposition 7.2.5. (Hint: � = hA; t j R; t�1lt = �(l); l 2 Si whereG = hA j Ri and S � A is a basis for L . Given a word w 2 F (A) with w = 1in �, take a van Kampen diagram D with Area
 D = Areaaw . Use (i) and thefa
t that L is free to argue that D 
ontains no t-rings and hen
e is a diagramover hA j Ri .)

Cohomologi
al Methods. Both Gersten and Gromov have developed 
oho-mologi
al methods for obtaining lower bounds on Dehn fun
tions. In parti
ular,Gersten [48℄ developed an `1 -
ohomology theory whi
h, among other things,allows one to re
over results obtained using t-
orridors in a more elegant andsystemati
 manner. It would take too long to explain these ideas here, so werefer the reader to [48℄. We 
ontent ourselves with a more simple-minded resultthat uses de Rham 
ohomology. (We give this result in part be
ause it resonateswith ideas in Se
tion 5).The statement of the following lemma is phrased in the vo
abulary introdu
edin (4.3). The 
onstant A! is de�ned to be the maximum of the integrals RE !where E is a 2-
ell mapped into ~M by ~K(A : R)! ~M .Lemma 7.2.7 Let M be a smooth, 
losed Riemannian manifold with funda-mental group � = hA j Ri and let ! be a �-invariant 
losed 2-form on ~M . If D28A non-
rossing loop is the restri
tion to S1�f1g of a map S1�[0; 1℄! R2 that is inje
tiveon S1 � [0; 1).



The geometry of the word problem 41is a van Kampen diagram with boundary label w , and hD is the map des
ribedin (4.3), then ZD h�D! 6 A! Areaa(w):Proof The integral RD h�D! is well-de�ned be
ause hD is di�erentiable ex
epton a set of measure zero. If D0 is a se
ond van Kampen diagram for w , thenone 
an regard �hD [ hD0 as a 2-
y
le in ~M , and hen
e RD h�D! = RD0 h�D0! .And when Area
 D = Areaa(w) the inequality is 
lear. �The utility of this lemma stems from the fa
t that one does not need tounderstand the nature of least-area van Kampen diagrams in order to get alower bound on their area: if one 
an lo
ate any van Kampen diagram D fora given word w , then one gets a lower bound on Areaa(w) by integrating h�D!over D . Moreover, by Stokes Theorem, if the 2-form ! is exa
t, say ! = d� ,then one 
an simply 
al
ulate Rŵ � , thus avoiding the 
onstru
tion of diagramsaltogether.Example 7.2.8 In the 
ase where � 2 Sp(m;Z), Bridson and Pittet [23℄ es-tablished the lower bound in Theorem 3.1.4 by applying Lemma 7.2.7 to thestandard symple
ti
 form on Rm .Exploiting Aspheri
ity. A group presentation hA j Ri is 
alled aspheri
alif the asso
iated 2-
omplex K(A;R) is aspheri
al (i.e. its universal 
overing is
ontra
tible). One of the great joys of working with aspheri
al presentations isthat when one �nds an embedded van Kampen diagram one knows that it is ofminimal area:Lemma 7.2.9 Suppose that X = K(A;R) is aspheri
al. Let D be a vanKampen diagram for w . If the asso
iated map D ! eX is inje
tive on the
omplement of the 1-skeleton D(1) , then the number of 2-
ells in D is Areaa(w).Proof Let D0 be a se
ond van Kampen diagram for w . One 
an regard D[D0as a 2-
y
le in the 
ellular 
hain 
omplex of ~X . Sin
e there are no 3-
ells andH2 ~X is trivial (by Hurewi
z), this 2-
y
le must be zero. And sin
e the 2-
ells inthe image of D are all distin
t, ea
h must 
an
el with some 2-
ell in D0 . Hen
eArea
D 6 Area
D0 . And sin
e D0 was arbitrary, Areaa(w) = Area
 D . �Examples 7.2.10 (i) Z2 = ha; b j [a; b℄i is aspheri
al. Hen
e the area of theobvious (square) diagram for wn = a�nb�nanbn equals Areaa(wn) (
f. 3.1.2).(ii) The presentation of Bm des
ribed in (3.2.1) is aspheri
al. Expli
it dis
diagrams show that ÆBm(n) � "m(n) | see Exer
ise 7.2.11.(iii) A 
elebrated theorem of Roger Lyndon shows that 1-relator presentationsare aspheri
al if the relation is not a proper power [66℄.(iv) The natural presentations of free-by-free groups are aspheri
al and provideinteresting examples of Dehn fun
tions [20℄.
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Exer
ises 7.2.11 (i) Let X denote the universal 
overing of the standard 2-
omplex of the presentation of Bm des
ribed in (3.2.1). The 1-skeleton X(1) isidenti�ed with the Cayley graph of Bm . Show that the loop in X(1) labelledx�n1 x0xn1x�2n0 bounds an embedded dis
 �n(x0; x1) that has (2n�1) fa
es (2-
ells). By juxtaposing two 
opies of �n(x0; x1), 
onstru
t a dis
 D1 showingthat x�n1 x0xn1x0x�n1 x�10 xn1x�10 is a null-homotopi
 word of area 2(2n � 1).

(ii) Now suppose that n = 2r . By atta
hing four 
opies of a dis
 diagram�r(x1; x2) to the segments of �D1 labelled xn1 , 
onstru
t a dis
 diagramfor (x�r2 x�11 xr2)x0(x�r2 x1xr2)x0(x�r2 x�11 xr2)x�10 (x�r2 x1xr2)x�10 that has more than22r fa
es (2-
ells).Iterate this 
onstru
tion and use Lemma 7.2.9 to dedu
e that ÆBm(n) � "m(n).Reprove this inequality using t-
orridors instead of aspheri
ity.

The following exer
ises lead the reader through the proof that the Dehnfun
tion of the group Gp;q des
ribed in 3.1.10 is � n2 log2 2p=q . If you get stu
kduring these exer
ises, refer to [15℄.
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Exer
ises 7.2.12 (i) Let f; g : [0;1) ! [0;1) be non-de
reasing fun
tionsand let (ni) be an in
reasing sequen
e of positive integers with n0 = 0 andni+1 6 Cni for all i , where C > 0 is 
onstant. Show that if f(ni) 6 g(ni)for all i , then f 4 g . (Thus we see that to establish lower bounds on Dehnfun
tions Æ(n), it is only ne
essary to look at fairly sparse sequen
es of integers(ni).)(ii) Consider the presentation of Gp;q given in (3.1.10). Prove that this presen-tation is aspheri
al. (Hint: One 
an build the 2-
omplex of the presentation asfollows. Start with a torus 
orresponding to the subgroup gpfa; bg � Gp;q and�x a basepoint on it. Atta
h two 
ylinders (annuli) to the torus along simple
urves through the basepoint { one end of ea
h 
ylinder tra
es out a 
urve inthe homotopy 
lass aq and the other ends tra
e out apb�1 . The Seifert-vanKampen theorem shows that this 
omplex has fundamental group Gp;q . Theuniversal 
over ~X of this 2-
omplex is a 
ontra
tible 
omplex obtained by glu-ing planes indexed by the 
osets of gpfa; bg � Gp;q along strips (
opies of theline 
ross an interval) 
overing the annuli in the quotient.)(iii) Complete the following outline to a proof that the Dehn fun
tion of Gp;qis � n� where � = 2 log2 2p=q .Let w0 = aq and let w1 = saqs�1taqt�1: De�ne words wk =swk�1a�k�1s�1twk�1a�k�1 t�1 with 0 � �k�1 � q� 1 so that wk�1a�k�1 repre-sents a power of a that is divisible by q . Show that 4(2k) � jwkj � (4q)2k andthat wk = amk in Gp;q , where mk > q(2p=q)k .Show that one 
an �nd embedded in ~X a van Kampen diagram portrayingthe equality wk = amk . (See �gure 7.2.13 { the large fa
es in this �gure arediagrams over the sub-presentation ha; b j [a; b℄i .)Let Wk = [swk�1a�k�1s�1 ; twk�1a�k�1 t�1℄: Show that Wk represents theidentity in Gp;q and des
ribe a van Kampen diagram for Wk that embeds in~X . Dedu
e that there is a 
onstant C > 0 su
h thatAreaa(Wk) � Cm2k � Cq2(2p=q)2k:Use (i) to 
on
lude that the Dehn fun
tion of Gp;q is bounded below by n 7!n2 log2 2p=q .
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44 M.R. BridsonFigure 7.2.13 The diagram portraying wk = amk
Cal
ulating in Abelian Quotients. Let � = hA j Ri and let K be thesubgroup of F = F (A) generated by the set of elements C = fx�1rx j x 2F (A); r 2 Rg. By de�nition, Areaaw is the least number N for whi
h thereis an equality w = 
1 : : : 
N with 
i 2 C�1 . One anti
ipates that the task ofestimating N would be easier if one were working with sums in abelian groupsrather produ
ts in free groups. With this in mind (and motivated by results ofGersten [45℄) Baumslag, Miller and Short [10℄ look at the proje
tion of equalitiessu
h as the one above into the abelianization of K , i.e. the relation module29 ofthe presentation hA j Ri. They also 
onsider what happens when one proje
tsfurther, onto K=[K;F ℄.Thus they de�ne the abelianized isoperimetri
 fun
tion �ab� by analogy withthe Dehn fun
tion (1.2.2), repla
ing Areaaw by Areaaba w , whi
h is de�ned tobe the least integer N for whi
h there is an equality

w = NXi=1 x�1i rixi
in K=[K;K℄, with ri 2 R�1 and xi 2 F . And they de�ne the 
entralizedisoperimetri
 fun
tion �
ent� by 
ounting the minimum number of summandsrequired to express w in K=[K;F ℄. Baumslag et al. prove that ea
h of thesefun
tions is ' independent of the 
hosen �nite presentation of �.Note the obvious inequalities�
ent� � �ab� � Æ�:From the Hopf formula ([25℄ page 41) one sees that K=[K;F ℄ is a dire
t sumof a free abelian group and H2(�;Z), and there is a well-developed te
hnology for
al
ulating in H2(�;Z) { in parti
ular one has Fox's free di�erential 
al
ulus. Byusing this 
al
ulus Baumslag et al. obtain bounds on �
ent� for various groups.In 
ertain 
ases they are also able to show that �
ent� ' Æ� . In this way they wereable to 
al
ulate the Dehn fun
tions of free nilpotent groups, thus exemplifyingthe merits of the aphorism that the homologi
al approa
h works best for groupsthat 
ontain a lot of 
ommutivity.Exer
ise 7.2.14 Observe that the argument given in (7.2.9) a
tually shows thatif D =PNi=1 
i in the 
ellular 
hain 
omplex of ~X then N > Areaa(w) (wherethe 
i are 2-
ells). Dedu
e from (7.2.12) that �abGp;q (n) is � n2 log2 2pq .
29The 
onjugation a
tion of F on K indu
es an a
tion of � on K=[K;K℄ , hen
e the modulestru
ture.



The geometry of the word problem 458 Other De
ision Problems and Measures of Complexity8.1 Alternative Analyses of the Word ProblemWe saw in Se
tion 1 that the Dehn fun
tion measures one's likelihood of su

esswhen one mounts a dire
t atta
k on the word problem for a �nitely presentedgroup. But there are other interesting ways to measure the 
omplexity of theword problem. For example, instead of fo
using on the area of van Kampendiagrams one might fo
us on some other aspe
t of their geometry, su
h as theirdiameter or the radius of the largest ball in the interior of the diagram. Onemight also bound the length of the intermediate words that arise during thepro
ess of applying relations to redu
e a null-homotopi
 word to the emptyword { \�lling length". In Chapters 4 and 5 of [56℄ Gromov dis
usses manymeasures of 
omplexity su
h as these, and there has been some interesting workon their interdependen
y (e.g. [46℄, [18℄, and [50℄). Let me des
ribe the mostwidely studied of these alternatives, whi
h relates to the diameter of �lling-dis
sin Riemannian manifolds.De�nition 8.1.1 Let hA j Ri be a �nite presentation for the group �. Let wbe a word that equals 1 in � and let D be a van Kampen diagram for w . Letp be the basepoint of D . Endow the 1-skeleton of D with a path metri
 � thatgives ea
h edge length 1. The diameter of w is de�ned bydiam(w) := minD maxq f�(p; q) j q a vertex of Dg:The (unredu
ed) isodiametri
 fun
tion of hA j Ri is	(n) := maxjwj6n diam(w):The ' equivalen
e 
lass of 	 depends only on � (see [46℄) and is denoted 	� .Isodiametri
 fun
tions turn out to be as un
onstrained in nature as Dehnfun
tions (3.1.11), see [95℄. They 
an be interpreted in the following purelyalgebrai
 manner.Proposition 8.1.2 diam(w) = min�max jxij, where the minimum is takenover all free equalities of the formw = NYi=1x�1i rxi:
Exer
ises 8.1.3 (i) Dedu
e this proposition from the 
onstru
tions in Se
tion 4.(ii) Use the diagrams 
onstru
ted in (7.1.3) to show that if a group � admits a
ombing with the asyn
hronous fellow-traveller property, then 	�(n) ' n .(iii) Prove that 	� � Æ� for all �nitely presented groups.



46 M.R. BridsonSteve Gersten and Daniel Cohen (independently) proved that for any groupone 
an �nd 
onstants A;B > 0 su
h that Æ�(n) 6 AB	(n) , and it is 
onje
turedthat in reality there is a single exponential bound. The relationship between 	�and Æ� is 
ompli
ated by the fa
t that in general the minima in the de�nitionsof these fun
tions will not be attained on the same family of diagrams: if onepro
eeds as in De�nition 8.1.1 but quanti�es only over least-area diagrams, thenone obtains a fun
tion 	ma� that in general is � 	� .8.1.4 Extrinsi
 Solutions to the Word Problem. In general, invariantsbased entirely on the geometry of van Kampen diagrams 
annot give a full anda

urate measure of the 
omplexity of the word problem in a group be
ause theremight exist algorithms that require extrinsi
 stru
ture that 
annot be seen in apresentation. For example, one 
an solve the word problem for B1 = hx0; x1 jx�11 x0x1 = x21i in polynomial time by looking at the orbit of 13 2 R under thea
tion B1 ! A�(R ) des
ribed following (3.2.1), and yet ÆB1(n) ' 2n .If there is an embedding � ,! �̂ into a group whose Dehn fun
tion is smallerthan that of � then one 
an apply the solution to the word problem in �̂ to solvethe word problem in �. Examples of this phenomena are des
ribed in [8℄, [47℄and [22℄ page 487. Remarkably, in [13℄ Birget, Ol'shanskii, Rips and Sapir provethat su
h embeddings take full a

ount of the 
omplexity of the word problemin a pre
ise sense that in
ludes the following statement: the word problem of a�nitely generated group G is an NP problem if and only if G is a subgroup of a�nitely presented group that has a polynomial Dehn fun
tion.8.2 Other De
ision ProblemsIn this arti
le we are 
on
entrating on the word problem, but I should say a fewwords about the 
omplexity of the other basi
 de
ision problems in group theory.We �x a group � with a �nite generating set A. In order to solve the wordproblem one must de
ide whi
h words in the letters A�1 equal 1 2 �. Twonatural generalisations of this problem are:(1) The Membership Problem (Relative Word Problem). Instead of determiningwhi
h words represent elements of the trivial subgroup, one is asked for an al-gorithm that de
ides whi
h words represent elements of the subgroup H � �generated by a spe
i�ed �nite subset of �.(2) The Conjuga
y Problem. Instead of determining whi
h words represent ele-ments 
onjugate to the identity, one is asked for an algorithm that de
ides whi
hpairs of words represent 
onjugate elements of �.Just as solving the word problem in � amounts to �nding dis
s with a spe
-i�ed boundary loop in a 
losed manifold M with �1M = �, so the 
onjuga
yproblem amounts to �nding annuli whose boundary is a spe
i�ed pair of loops(minimizing the thi
kness of the annulus 
orresponds to bounding the lengthof the 
onjugating element). In the same vein, the membership problem 
or-responds to determining whi
h paths 
an be homotoped (rel endpoints) into agiven subspa
e of M .



The geometry of the word problem 47There are various 
onstru
tions 
onne
ting the word, 
onjuga
y and mem-bership problems | see [73℄ and [9℄. The following �bre produ
t 
onstru
tionprovides a parti
ularly ni
e example as it 
an be modelled readily in geometri
settings.Exer
ise 8.2.1 Let � = hA j Ri be a �nitely presented group and let D �F (A) � F (A) be the subgroup f(w;w0) j w = w0 in �g . Show that D is�nitely generated. Explain why solving the word problem for � is equivalent tosolving the membership problem for D . Show that if one 
annot solve the wordproblem in � then one 
annot solve the 
onjuga
y problem in D . (Hint: Fixr 2 R . Given a word w in the generators of F (A) � f1g , express the elementw�1(r; r)w as a word in your 
hosen generators of D . When is the word youhave 
reated 
onjugate to (r; r) in D?)
If � is in�nite then the group D in the above exer
ise is not �nitely pre-sentable (see [57℄). For �nitely presented examples and variations of a moregeometri
 nature, see [9℄.Remark 8.2.2 The 
onjuga
y problem is 
onsiderably more deli
ate than theword problem in general. For example, in 
ontrast to the fa
t that the 
om-plexity of the word problem for a group remains essentially un
hanged when onepasses to a subgroup or overgroup of �nite index (1.3.5), Collins and Miller [32℄
onstru
ted pairs of �nitely presented groups H � G su
h that jG=Hj = 2 butH has a solvable 
onjuga
y problem while G does not. They also show that one
an arrange for G to have a solvable 
onjuga
y problem when H does not.

The Isomorphism Problem. Roughly speaking, the isomorphism problemasks for an algorithm that will de
ide whi
h �nite presentations drawn from aspe
i�ed list de�ne isomorphi
 groups. The diÆ
ulty of this problem dependsvery mu
h on the nature of the groups being presented. For example, Zlil Sela [96℄proved that if one is given the knowledge that all of the groups being presentedare the fundamental groups of 
losed negatively 
urved manifolds, then there isan algorithm that one 
an run to de
ide whi
h of the groups are isomorphi
. In
ontrast, it is unknown if there exists su
h an algorithm when one weakens the
urvature 
ondition to allow non-positively 
urved manifolds. Indeed there arevery few natural 
ontexts in whi
h the isomorphism problem has been solved.(Note that in order to solve the isomorphism problem in a given 
lass of groups itis not enough to have an algorithm that determines whi
h presentations give thetrivial group; for example, there is an algorithm to de
ide whether presentationsof automati
 groups determine the trivial group (
hapter 5 of [42℄) but this doesnot lead to a solution of the isomorphism problem in this 
lass of groups.)The following 
onstru
tion illustrates how HNN extensions 
an be used totranslate word problems into other sorts of de
ision problems.
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Exer
ise 8.2.3 Let � = hA j Ri be a �nitely presented group that is not free.Suppose that A = fa1; : : : ; ang where ea
h ai has in�nite order in � (this 
anbe arranged by repla
ing � with � � Z if ne
essary). Consider the followingsequen
e of �nite presentations indexed by words w 2 F (A):Gw = ha1; t1; : : : ; an; tn j R; t�1i aiti = w for i = 1; : : : ; ng:Show that �w is a free group if and only if w = 1 in �.Assuming that there exists a group with an unsolvable word problem, use this
onstru
tion (or a variation on it) to show that there exist (re
ursive) 
lassesof �nite presentations su
h that there are no algorithms to de
ide whi
h of thegroups presented are free, are torsion-free, 
ontain Z2 (or any other spe
i�edsubgroup), 
an be generated by 3 elements, or admit a faithful representationinto SL(n;Z).

8.3 Subgroup DistortionFollowing Gromov [56℄, we de�ne the distortion of a pair of �nitely generatedgroups H � � to be the fun
tion � : N ! N , where �(n) is the radius of theset of verti
es in the Cayley graph of H that are a distan
e at most n fromthe identity in �. (One shows that, up to ' equivalen
e, this fun
tion does notdepend on the 
hoi
e of generating sets.)If � has a solvable word problem, then the membership problem for H � �is solvable if and only if the distortion of H in � is a re
ursive fun
tion.Examples 8.3.1 (i) If � 2 GL(r;Z) has an eigenvalue of absolute value greaterthan 1, then Zr is exponentially distorted in Zr o� Z .(ii) Let G
 be as in (3.1.7). In [19℄ I proved that for all positive integers a > bthe distortion of Gb in Ga �hzi Gb , the group formed by amalgamating Ga andGb along their 
entres, is ' n ab . In [85℄ Osin proves that one 
an also obtainarbitrary positive rational exponents a=b by 
onsidering subgroups of �nitelygenerated nilpotent groups.(iii) Let Gp;q be as in (3.1.10). In [15℄ Brady and I proved that the distortionfun
tion of the torus subgroup ha; bi in Gp;q is equivalent to n� , where � =log2(2p=q).Ol'shanskii and Sapir have established 
omprehensive results, analogous toTheorem 3.1.11, 
on
erning the possible distortion fun
tions of �nitely presentedsubgroups | see [82℄, [84℄.See [22℄ page 507 for an interpretation of subgroup distortion in terms ofRiemannian geometry as well as a 
onne
tion between subgroup distortion andDehn fun
tions. See [43℄ for a dis
ussion of relative Dehn fun
tions.A Geometri
 Realisations of Finitely Presented GroupsThis appendix 
ontains a brief des
ription of some of the basi
 
onstru
tions ofgeometri
 group theory. There are two main (inter-related) strands in geomet-
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 group theory: one seeks to understand groups by studying their a
tions onappropriate spa
es, and one seeks understanding from the intrinsi
 geometry of(dis
rete, �nitely generated) groups endowed with word metri
s. We begin byintrodu
ing the latter approa
h.A.1 Finitely Generated Groups and Quasi-IsometriesThe following 
onstru
tions allow one to regard �nitely generated groups asgeometri
 obje
ts.A.1.1 Word Metri
s and Cayley Graphs Given a group � with generatingset A, the �rst step towards realizing the intrinsi
 geometry of the group is togive � the word metri
 asso
iated to A: this is the metri
 obtained by de�ningdA(
1; 
2) to be the shortest word in the letters A�1 that equals 
�11 
2 in �. Thea
tion of � on itself by left multipli
ation gives an embedding �! Isom(�; dA).(The a
tion of 
0 2 G by right multipli
ation 
 7! 

0 is an isometry only if 
0lies in the 
entre of �.)The Cayley graph30 of � with respe
t to A, denoted CA(�), has vertex set �and has an edge 
onne
ting 
 to 
a for every 
 2 � and a 2 A. The edgesof CA(�) are endowed with lo
al metri
s in whi
h they have unit length, andCA(�) is turned into a geodesi
 spa
e by de�ning the distan
e between ea
h pairof points to be equal to the length of the shortest path joining them.The word metri
s asso
iated to di�erent �nite generating sets A and A0of � are Lips
hitz equivalent, i.e. there exists ` > 1 su
h that 1̀dA(
1; 
2) 6dA0(
1; 
2) 6 ` dA(
1; 
2) for all 
1; 
2 2 �. One sees this by expressing theelements of A as words in the generators A0 and vi
e versa { the 
onstant ` isthe length of the longest word in the di
tionary of translation.The Cayley graphs asso
iated to di�erent �nite generating sets are not home-omorphi
 in general, but they are quasi-isometri
 in the following sense.De�nition A.1.2 A (not ne
essarily 
ontinuous) map f : X ! X 0 betweenmetri
 spa
es is 
alled a quasi-isometry if there exist 
onstants � > 1; � > 0; C >0 su
h that every point of X 0 lies in the C -neighbourhood of f(X) and1�d(x; y)� � 6 d(f(x); f(y)) 6 �d(x; y) + �
for all x; y 2 X .
30This graph was introdu
ed by Arthur Cayley in 1878 to study \the quasi-geometri
al"nature of (in his 
ase, �nite) groups. It played an important role in the seminal work of MaxDehn (1910) who gave it the name Gruppenbild.
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Exer
ises A.1.3 (i) If there exists a quasi-isometry X ! X 0 then X and X 0 aresaid to be quasi-isometri
. Prove that being quasi-isometri
 is an equivalen
erelation on any set of metri
 spa
es.(ii) Show that if A and A0 are �nite generating sets for �, then (�; dA); CA(�)and CA0(�) are quasi-isometri
.(iii) When is a homomorphism between �nitely generated groups a quasi-isometry?Sin
e the quasi-isometry type of a �nitely generated group does not dependon a spe
i�
 
hoi
e of generators, statements su
h as \the �nitely generatedgroup � is quasi-isometri
 to the metri
 spa
e Y " or \the �nitely generatedgroups �1 and �2 are quasi-isometri
" are unambiguous.One may view the in
lusion � ,! CA(�) in the following light: � a
ts byisometries on CA(�), the a
tion of 
0 2 � sending the edge with label a 2 Aemanating from the vertex 
 to the edge labelled a emanating from the vertex
0
 , and � ,! CA(�) is the map 
 7! 
 � 1. This is a simple instan
e of theimportant observation that quasi-isometries arise naturally from group a
tions(see [22℄ page 140).Proposition A.1.4 (The �Svar
-Milnor Lemma) If a group � a
ts properly and
o
ompa
tly by isometries on a length spa
e X , then for every 
hoi
e of basepointx0 2 X the map 
 7! 
:x0 is a quasi-isometry.The fundamental group of any (lo
ally simply-
onne
ted) spa
e a
ts by de
ktransformations on the universal 
overing. If the spa
e is a 
ompa
t geodesi
spa
e and the universal 
overing is endowed with the indu
ed length metri
 ([22℄page 42), then this a
tion is proper, 
o
ompa
t and by isometries. Thus we have:Corollary A.1.5 The fundamental group of any 
losed Riemannian manifoldM is quasi-isometri
 to the universal 
overing ~M .We note one other 
orollary of the �Svar
-Milnor Lemma:Corollary A.1.6 If X1 and X2 are length spa
es and there is a �nitely-generated group � that a
ts properly and 
o
ompa
tly by isometries on both X1and X2 , then X1 and X2 are quasi-isometri
.Dehn fun
tions behave well with respe
t to quasi-isometries (see [4℄ and 
om-pare with Proposition 1.3.3 above and pages 143 and 415 of [22℄).Proposition A.1.7 If � is a �nitely presented group and �0 is a �nitely gen-erated group quasi-isometri
 to �, then �0 is also �nitely presented and the Dehnfun
tions of � and �0 are ' equivalent.By 
ombining this proposition with the pre
eding 
orollaries and the FillingTheorem we obtain:
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overings of two 
losed, smooth, Rieman-nian manifolds M1 and M2 are quasi-isometri
, then the isoperimetri
 fun
tionsFillM10 and FillM20 are ' equivalent.One 
an prove this result more dire
tly by following Alonso's proof of (A.1.7)using the 
ombinatorial approximation te
hniques developed in Se
tion 5.A.2 Realising the Geometry of Finite PresentationsWe now fo
us on �nitely presented groups. The following 
ategory of 
omplexesand maps is more rigid than the CW 
ategory and lends itself well to argu-ments su
h as those that we saw in the se
tion on Van Kampen's Lemma. Thedis
ussion here follows that of Appendix I.8.A in [22℄.A.2.1 Combinatorial Complexes These 
omplexes are topologi
al obje
tswith a spe
i�ed 
ombinatorial stru
ture. They are de�ned by a re
ursion ondimension; the de�nition of an open 
ell is de�ned by a simultaneous re
ursion.If K1 and K2 are 
ombinatorial 
omplexes, then a 
ontinuous map K1 ! K2is said to be 
ombinatorial if its restri
tion to ea
h open 
ell of K1 is a homeo-morphism onto an open 
ell of K2 .A 
ombinatorial 
omplex of dimension 0 is simply a set with the dis
retetopology; ea
h point is an open 
ell. Having de�ned (n� 1)-dimensional 
ombi-natorial 
omplexes and their open 
ells, one 
onstru
ts n-dimensional 
ombina-torial 
omplexes as follows.Take the disjoint union of an (n � 1)-dimensional 
ombinatorial 
omplexK(n�1) and a family (e� j � 2 �) of 
opies of 
losed n-dimensional dis
s.Suppose that for ea
h � 2 � a homeomorphism is given from �e� (a sphere)to an (n� 1)-dimensional 
ombinatorial 
omplex S� , and that a 
ombinatorialmap S� ! K(n�1) is also given; let �� : �e� ! K(n�1) be the 
omposition ofthese maps. De�ne K to be the quotient of K(n�1) [`� e� by the equivalen
erelation generated by t � ��(t) for all � 2 � and all t 2 �e� . Then K , with thequotient topology, is an n-dimensional 
ombinatorial 
omplex whose open 
ellsare the (images of) open 
ells in K(n�1) and the interiors of the e� .In the 
ase n = 2, if the 
ir
le S� has k 1-
ells then e� is 
alled a k -gon.A.2.2 The Standard 2-Complex K(A :R) Asso
iated to any group presen-tation hA j Ri one has a 2-
omplex K = K(A :R) that is 
ompa
t if and onlyif the presentation is �nite. K has one vertex and it has one edge "a (orientedand labelled a) for ea
h generator a 2 A; thus edge loops in the 1-skeleton ofK are in 1{1 
orresponden
e with words in the alphabet A�1 : the letter a�1
orresponds to traversing the edge "a in the dire
tion opposite to its orientation,and the word w = a1 : : : an 
orresponds to the loop that is the 
on
atenation ofthe dire
ted edges a1; : : : ; an ; one says that w labels this loop. The 2-
ells erof K are indexed by the relations r 2 R; if r = a1 : : : an (as a redu
ed word)then er is atta
hed along the loop labelled a1 : : : an . The map that sends thehomotopy 
lass of "a to a 2 � gives an isomorphism �1K(A :R) �= � (by theSeifert-van Kampen theorem).
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ts on the universal 
overing eK of K(A :R) by de
k transformations andthere is a natural �-equivariant identi�
ation of the Cayley graph CA(�) withthe 1-skeleton of eK : �x a base vertex v0 2 eK(A :R), identify 
:v0 with 
 , andidentify the edge of CA(�) labelled a issuing from 
 with the (dire
ted) edgeat 
:v0 in the pre-image of "a . This identi�
ation is label-preserving: for allwords w and all 
 2 �, there is a unique edge-path labelled w beginning at
 2 CA(�) and the image of this path in ~K is the lift at 
:v0 of the loop inK(A :R) labelled w .
Exer
ise A.2.3 Prove that if A is �nite and w is a redu
ed word in whi
ha and a�1 both o

ur exa
tly on
e, for every a 2 A , then K = K(A :w) isobtained from a 
losed surfa
e by gluing together a �nite set of points.

A.3 4-Manifolds Asso
iated to Finite PresentationsProposition A.3.1 Every �nitely presented group is the fundamental group ofa 
losed 4-dimensional manifold.We indi
ate two proofs of this proposition, leaving the details to the reader.Exer
ises A.3.2 (i) Given a presentation ha1; : : : ; an j r1; : : : ; rmi , 
onsiderthe 
ompa
t 4-manifold obtained by taking the 
onne
ted sum W of n 
opiesof S1 � S3 and identify �1W with the free group on fa1; : : : ; ang . Removeopen tubular neighbourhoods about m disjoint embedded loops in W whosehomotopy 
lasses 
orrespond to the relators ri 2 �1W . Let W 0 be the resultingmanifold with boundary. Use the Seifert-van Kampen theorem to show that byatta
hing m 
opies of S2� D 2 to W 0 along �W 0 one obtains a 
losed manifoldwhose fundamental group is ha1; : : : ; an j r1; : : : ; rmi .(ii) Show that if n > 4 then one 
an embed any 
ompa
t 
ombinatorial 2-
omplex in R4 by a pie
ewise linear map. Apply this 
onstru
tion to K(A :R)and 
onsider the boundary M of a regular neighbourhood. Argue that thenatural map �1M ! hA j Ri is an isomorphism if n > 5.By performing 
onstru
tions of the above type more 
arefully one 
an for
ethe manifold to have additional stru
ture. For example, in [52℄ Bob Gompfproves:Theorem A.3.3 Every �nitely presented group is the fundamental group of a
losed symple
ti
 4-manifold.A.4 Obtaining Presentations from Group A
tionsWhenever one realises a group as the fundamental group of a (semi-lo
allysimply-
onne
ted) spa
e one has the a
tion of the group by de
k transforma-tions on the universal 
overing of the spa
e. Thus the 
onstru
tions of K(A :R)and the manifolds 
onsidered above may be viewed as means of 
onstru
ting
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tions out of presentations. The following theorem shows that, 
on-versely, group a
tions give rise to presentations.Theorem A.4.1 Let X be a topologi
al spa
e, let � be a group a
ting on Xby homeomorphisms, and let U � X be an open subset su
h that X = �:U .(1) If X is 
onne
ted, then the set S = f
 2 � j 
:U \ U 6= ;g generates �.
(2) Let AS be a set of symbols as indexed by S . If X and U are both path-
onne
ted and X is simply 
onne
ted, then � = hAS j Ri, whereR = fas1as2a�1s3 j si 2 S; U \ s1:U \ s3:U 6= ;; s1s2 = s3 in �g:

Corollary A.4.2 If a group � a
ts by isometries on a 
omplete Riemannianmanifold M , and if every point of M is a distan
e less than r from a 
ertainorbit ��p, then � 
an be presented as � = hA j Ri where A is the set of elementsa 2 � su
h that d(p; 
 �p) < 2r and R is the set of words in the letters A�1 thathave length at most 3 and are equal to the identity in �.Proof Apply the theorem with U the open ball of radius r about p. �The above theorem has a long history. In this form it is due to MurrayMa
beath [68℄. See [22℄ page 136 for a proof and further information.Exer
ises A.4.3 Establish the following geometri
 
hara
terisation of �nitelypresented groups: a group is �nitely presented if and only if it a
ts properlyand 
o
ompa
tly by isometries on a simply-
onne
ted geodesi
 spa
e.Give an example to show that part (2) of the above theorem 
an fail if X isnot simply 
onne
ted.
B Length Spa
esFor the bene�t of the reader unfamiliar with non-Riemannian length spa
es welist some of the basi
 vo
abulary of the subje
t.Length Metri
s.De�nition B.0.1 Let X be a metri
 spa
e. The length l(
) of a 
urve 
 :[a; b℄! X is l(
) = supa=t06t16:::6tn=b n�1Xi=0 d(
(ti); 
(ti+1));where the supremum is taken over all possible partitions (no bound on n) witha = t0 6 t1 6 : : : 6 tn = b.
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) is either a non-negative number or it is in�nite. The 
urve 
 is said to bere
ti�able if its length is �nite, and it is 
alled a geodesi
31 if its length is equalto the distan
e between its endpoints.A triangle � in a metri
 spa
e 
onsists of three points x; y; z (the verti
es)and a 
hoi
e of geodesi
 
onne
ting ea
h pair of these points.A (
onne
ted) length spa
e is a metri
 spa
e X in whi
h every pair of pointsx; y 2 X 
an be joined by a re
ti�able 
urve and d(x; y) is equal to the in�mumof the length of re
ti�able 
urves joining them; X is 
alled a geodesi
 spa
e ifthis in�mum is always attained, i.e. ea
h pair of points x; y 2 X 
an be joinedby a geodesi
. A general form of the Hopf-Rinow Theorem (see [6℄ or [22℄) statesthat if a length spa
e is 
omplete, 
onne
ted and lo
ally 
ompa
t, then it is ageodesi
 spa
e (and all 
losed balls in it are 
ompa
t).Upper Curvature Bounds. Let M2k denote the 
omplete simply-
onne
ted2-manifold of 
onstant se
tional 
urvature k 2 R . (If k = 0 then M2k is theEu
lidean plane; if k < 0 then M2k is the hyperboli
 plane with the metri
s
aled by a fa
tor of 1=p�k ; and if k > 0 then M2k is S2 with the metri
 s
aledby 1=pk .A triangle � in a metri
 spa
e 
onsists of three points x1; x2; x3 (the verti
es)and a 
hoi
e of geodesi
 
onne
ting ea
h pair of these points.A geodesi
 spa
e X is said to have 
urvature 6 k if every point x 2 X hasa neighbourhood in whi
h all triangles � satisfy the following property: thedistan
e from ea
h vertex of � to the midpoint of the opposite side is no greaterthan the 
orresponding distan
e in a triangle � � M2k that has the same edgelengths as �. This de�nition is due to A.D. Alexandrov.We refer the reader to [22℄ for a 
omprehensive introdu
tion to (singular)spa
es with upper 
urvature bounds.Pull-Ba
k Length Metri
s. Let D be a topologi
al spa
e. Asso
iated to any
ontinuous map f : D ! X to a metri
 spa
e one has the length pseudo-metri
on D : the length of ea
h 
urve in D is de�ned to be the length of its image underf , and the distan
e between two points of D is de�ned to be the in�mum of thelengths of paths 
onne
ting them. We write (D; df ) to denote the length spa
eobtained by forming the quotient of this pseudo-metri
 spa
e by the relation thatidenti�es points that are a distan
e 0 apart. In general one 
an say little aboutthe underlying spa
e of (D; df ); it 
ertainly need not be homeomorphi
 to D .If X is a smooth Riemannian manifold and f : D ! X is a least-area dis
with pie
ewise geodesi
 boundary, then (D; df ) will be a singular dis
 and its
urvature will be bounded above by the se
tional 
urvature of X ; if f j�D isinje
tive, then (D; df ) will a
tually be a dis
. It 
an also be that (D; df ) is adis
 when f is not inje
tive, for example if f is the map z 7! z2 from the unit31This di�ers from the standard usage in di�erential geometry, where being geodesi
 is alo
al 
on
ept. For this reason, some authors use the term \length-minimizing geodesi
" in the
ontext of length spa
es.
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 to the 
omplex plane, then (D; df ) is the metri
 
ompletion of the 
onne
ted2-fold 
overing of the pun
tured unit dis
.C A Proof of the Cellulation LemmaThis appendix 
ontains a proof of the following te
hni
al result that was neededin Se
tion 5. Re
all that a singular dis
 is a spa
e homeomorphi
 to the under-lying spa
e of a singular dis
 diagram, as de�ned in (4.1).C.0.1 Cellulation Lemma. Let D be a length spa
e homeomorphi
 to a (per-haps singular) 2-dis
, and suppose that D is "-�lled by a set � of 
ardinality N .Then there exists a 
ombinatorial 2-
omplex �, homeomorphi
 to the standard2-dis
, and a 
ontinuous map � : �! D su
h that:(1) � has less than 8N fa
es (2-
ells) and ea
h is a k -gon with k 6 12;(2) the restri
tion of � to ea
h 1-
ell in � is a path of length at most 2";(3) �j�� is a monotone parameterisation of �D and �\�D lies in the imageof the 0-skeleton of ��.For 
onvenien
e we res
ale the metri
 on D and assume that " = 1. To avoid
ompli
ating the terminology, we also assume that D is a non-singular dis
 (the
on
erned reader will have little diÆ
ulty in making the adjustments needed inthe general 
ase). We �x a set � of 
ardinality N that 1-�lls D and de�ne�0 = � \ �D and �1 = �r �0 .C.1 Redu
ing to the Case of Thin Dis
sOur aim in the �rst stage of the proof is to redu
e to the 
ase where � = �0 .We shall do this by 
utting D open along a 
ertain graph whose vertex set has
ardinality less than 2N and in
ludes �. To this end, we view �D as a graphG0 with vertex set �0 and 1-
ells the 
losures of the 
onne
ted 
omponents of�D r �0 .Sin
e every point of the 
onne
ted spa
e D lies in the 1-neighbourhood of�, the open neighbourhoods of radius 1 about �0 and �1 
annot be disjoint.Hen
e there exists s 2 �1 and s0 2 �0 with d(s; s0) < 2. Choose a geodesi
[s; s0℄ and 
onsider a minimal subar
 [s; v℄ with v 2 G0 . We augment G0 (whi
his �D subdivided) by adding s and v as verti
es and adding [s; v℄ as a new edge(if v is not a vertex of G0 then its introdu
tion will also subdivide one of theexisting edges). Call the new graph G00 and de�ne �00 = �0 [ fsg.By repeating the above argument with �00 in pla
e of �0 , and G00 in pla
eof G0 , we obtain a 
onne
ted graph with at most j�0j+ 4 verti
es in
luding �0and two elements of �1 . We iterate this argument a further j�1j � 2 times toobtain a 
onne
ted graph G whose vertex set 
onsists of � and at most 2j�1jother verti
es; the important point is that this graph has less than 2N verti
es intotal, and less than 2N edges. Note that the edges of G all have length at most2, that E := D r G is homeomorphi
 to an open 2-dis
, and that T := Gr �Dis a forest (i.e. it is simply-
onne
ted, but not ne
essarily 
onne
ted).
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us our attention on E , whi
h we endow with the indu
ed pathmetri
 from D . Let � be the spa
e obtained by 
ompleting this metri
. �is homeomorphi
 to a 2-dis
; intuitively speaking, it is obtained by 
utting Dopen along the bran
hes of T (
utting along ea
h edge of T forms two edgesin the boundary of �). The in
lusion E ,! D extends 
ontinuously to a map� : � ! D that preserves the lengths of all 
urves and sends (a monotone pa-rameterization of) �� onto the boundary 
y
le of E in G; we endow �� withthe 
ombinatorial stru
ture indu
ed from this identi�
ation. Thus � is a topo-logi
al 2-dis
 endowed with a length metri
 su
h that �� is the 
on
atenationof less than 4N geodesi
 segments, ea
h of length at most 2. Moreover, everypoint of � is a distan
e at most 1 from ��. This 
ompletes the �rst stage ofthe proof.De�nition C.1.1 A singular dis
 of weight n 
onsists of a singular dis
 �and n distinguished points (verti
es) x1 = f(t1); : : : ; xn = f(tn) in 
y
li
 orderon the boundary 
y
le f : S1 ! ��; the restri
tion of f to the ar
 joining ti toti+1 (indi
es mod n) is required to be a geodesi
 of length at most 2; the imagesof these ar
s are 
alled fa
ets. � is said to be thin if every point is a distan
eless than 1 from ��.A partition of � is a 
ontinuous map � : � ! �, where � is a 
ombinatorial2-
omplex that is homeomorphi
 to the standard dis
 and �j�� is a monotoneparameterisation of f sending verti
es to verti
es and edges to fa
ets.� is 
alled a k -partition if ea
h of its 2-
ells is an m-gon with m 6 k . And �is said to be admissible if the restri
tion of � to ea
h 1-
ell in � is a path oflength at most 2. The area of � is the number of 2-
ells in �.The �nal stage in the proof of the Cellulation Lemma is:Proposition C.1.2 If k > 12, then every thin singular dis
 of weight n admitsa k -partition of area at most 2n� 8.Before turning to the proof of this proposition, let us see how it implies theCellulation Lemma.End of the proof of the Cellulation Lemma. In the �rst stage of the proofwe showed that if a dis
 
an be "-�lled with a set of 
ardinality N then one 
an
onstru
t in D a graph G with at most 2N verti
es so that the edges of thegraph have length less than 2" and the spa
e obtained by 
utting D open alongthe forest T = G r �D is a thin dis
 X of weight less than 4N . The naturalmap � : �! D is length-preserving.The above proposition furnishes a 12-partition �0 : �0 ! � of area at most8N � 8. De�ne � to be the 
ombinatorial 
omplex obtained by taking thequotient of �0 by the equivalen
e relation that identi�es the pair of edges inthe pre-image of ea
h edge of T in the obvious manner. � is a dis
 whose area(number of 2-
ells) is the same that of �0 . The map � : � ! D indu
ed by� Æ �0 : �0 ! D satis�es the requirements of the Cellulation Lemma. �
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sWe shall prove Proposition C.1.2 by indu
tion on n, the weight of the singulardis
 being �lled. In this indu
tion we shall need the following surgery operation.Let � be a singular dis
 of weight n with boundary 
y
le f : S1 ! ��.Given two verti
es x; y 2 �� one 
an 
ut � along a geodesi
 [x; y℄ to form twonew singular dis
s. To do this, �rst note that one 
an 
hoose [x; y℄ so that itsinterse
tion with ea
h fa
et of �� is a single ar
, be
ause given the �rst andlast points of interse
tion of an arbitrary geodesi
 [x; y℄0 with a fa
et, one 
anrepla
e the 
orresponding subar
 of [x; y℄0 with a subar
 of the fa
et. Having
hosen [x; y℄ in this way, express y as f(t) and pro
eed in the positive dire
tionaround S1 from t to the �rst value t0 su
h that f(t0) = x; let � denote this ar
from t to t0 and 
all the 
omplementary ar
 �0 .The �rst of the two singular sub-dis
s into whi
h we 
ut � is that whoseboundary 
y
le is the 
on
atenation of f j� and [x; y℄. The boundary 
y
le ofthe se
ond sub-dis
 is the 
on
atenation of f j� and [y; x℄. We subdivide [x; y℄into the minimal possible number of sub-ar
s of length less than 2 and de�nethese sub-ar
s to be fa
ets of our two new singular dis
s.The reader should have no diÆ
ulty in verifying:Lemma C.2.1 In the notation of the pre
eding paragraph: if � is thin thenthe singular dis
s obtained by surgery are thin; and if d(x; y) < 4, then the sumof the weights of the new singular dis
s is at most n+ 4.In the 
ourse of the proof of Proposition C.1.2 we shall require the followingfa
t.Exer
ise C.2.2 Let X = U1 [ U2 [ U3 [ U4 be a metri
 spa
e. Assume thatea
h of the sets Ui is path-
onne
ted, that d(Ui; Uj) > 0 when ji� jj = 2, andthat Ui \ Uj 6= ; otherwise. Constru
t a surje
tive homomorphism �1X ! Z .(Hint: Consider the map to R=Z that is 
onstant on X r U2 and is given onU2 by x 7! d(x;U1)=(d(x;U1) + d(x;U3)).)
The Proof of Proposition C.1.2. Let � be a singular dis
 of weight n thatis thin. We pro
eed by indu
tion on n. If n 6 k there is nothing to prove.Assuming n > 12, we express the boundary 
y
le f : S1 ! � as the 
on
ate-nation of four subpaths, namely the �rst three fa
ets taken together, the nextthree fa
ets, then the next three, and then the remaining n � 9 fa
ets. De�neU1; U2; U3; U4 to be the 
losed neighbourhoods of radius 1 about the images ofthese four ar
s. The union of these neighbourhoods is the whole of � (be
auseit is assumed to be thin). The Ui 
annot satisfy the hypotheses of the pre
ed-ing exer
ise be
ause � is simply 
onne
ted. Therefore Ui \ Uj 6= ; for somei� j = 2. (Here we need the fa
t that the metri
 on � is a path metri
 in orderto know that the Ui are path-
onne
ted.)Sin
e Ui and Uj interse
t, one of the verti
es along our i-th ar
, say x, isa distan
e at most 4 from one of the verti
es along our j -th ar
, say y . We



58 M.R. Bridsonseparate � by surgery along [x; y℄. Be
ause all four of our sub-ar
s 
ontained atleast 3 fa
ets, and be
ause we need only divide [x; y℄ into two fa
ets, the weightsn0 and n00 of the new singular dis
s �0 and �00 obtained by surgery are bothstri
tly less than n. Also (see the lemma) n0 + n00 6 n+ 4.By indu
tion, there exist admissible k -partitions �0 ! �0 and �00 ! �00whose areas are at most 2n0 � 8 and 2n00 � 8 respe
tively. Let � be the 
ombi-natorial dis
 obtained by gluing �0 and �00 along the pre-images of [x; y℄ in theobvious manner. The given maps �0 ! �0 and �00 ! �00 de�ne an admissiblek -partition �! � whose area is the sum of the areas of �0 and �00 . In parti
-ular the area of � is at most 2(n0 + n00)� 16 6 2(n+ 4)� 16 = 2n � 8, so theindu
tion is 
omplete. �The bound k > 12 in Proposition C.1.2 
an be improved at the expense of
ompli
ating the proof.A
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