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Abstract. We consider finitely presented, residually finite groups G and finitely generated nor-
mal subgroups A such that the inclusion A ,! G induces an isomorphism from the profinite
completion of A to a direct factor of the profinite completion of G. We explain why A need
not be a direct factor of a subgroup of finite index in G; indeed G need not have a subgroup
of finite index that splits as a non-trivial direct product. We prove that there is no algorithm
that can determine whether A is a direct factor of a subgroup of finite index in G.

Let G be a finitely generated residually finite group. The inclusion A ,! G of any
finitely generated subgroup induces a morphism of profinite completions i : ÂA ! ĜG.
If A is a direct factor of G then i is injective and we can identify the closure A of iðAÞ
with ÂA. In [13] Nikolov and Segal answered a question of Goldstein and Guralnick
[11] by showing that the converse of the preceding observation is false: there exist
pairs of finitely generated residually finite groups A ,! G, with A normal in G, such
that i : ÂA ! A is an isomorphism, A is a direct factor of ĜG, but A is not a direct factor
of G, nor indeed of any subgroup of finite index in G.

Nikolov and Segal proved this by exhibiting an explicit group of the form
G ¼ Aza Z, where A is finitely generated and a, although not inner, induces an inner
automorphism on A=N for every a-invariant subgroup of finite index NHA.

The first purpose of the present note is to explain how pairs of residually finite
groups A ,! G settling the Goldstein–Guralnick question also arise from the con-
structions in [7]. As well as providing a broader range of examples, these construc-
tions allow one to impose extra conditions on A and G (see Subsection 1.2). For ex-
ample, one can require G to be finitely presented, indeed to be a direct product of
torsion-free hyperbolic groups and hence have a finite classifying space. If one drops
the requirement that A be normal, one can arrange for both A and G to be finitely
presented.

Our main construction also provides a large classes of examples of the Nikolov–
Segal type G ¼ Aza Z; see Subsection 1.3.
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The second part of this note concerns the decision problem associated to the
Goldstein–Guralnick question: a group G is given by a finite presentation
G ¼ hX UA jRi; it is guaranteed that G is residually finite and that the subgroup
AHG generated by A has the property that the inclusion map induces an isomor-

phism from ÂA to a direct factor of ĜG; is there an algorithm that, given this data, can
determine whether or not A is a direct factor of a subgroup of finite index in G?

Theorem 0.1. There does not exist an algorithm that, given the above data, can deter-

mine whether or not A is a direct factor of any subgroup of finite index in G.

Theorem 2.2 below provides a more precise formulation of this result.

1 Building examples

In [7] Bridson and Grunewald settled a question of Grothendieck [9] by constructing
pairs of finitely presented, residually finite groups j : P ,! G such that ĵj : P̂P ! ĜG is an
isomorphism but P is not isomorphic (or even quasi-isometric to) G. Pairs of finitely
generated groups with this property had been found earlier by Platonov and Tavkin
[14], Bass and Lubotzky [2], and Pyber [15]. A simplified form of the arguments given
in [7] provides a flexible technique for constructing finitely generated examples of a
di¤erent type. The purpose of this section is to explain these arguments and to apply
them to the study of direct factors of profinite groups.

1.1 The basic construction.

Theorem 1.1. If Q is a finitely presented group that is infinite but has no non-trivial

finite quotients, and if H2ðQ;ZÞ ¼ 0, then there is a short exact sequence

1 ! N ! G ! Q ! 1 of groups where G is finitely presented and residually finite,
N is finitely generated but not finitely presentable, and N ! G induces an isomor-

phism of profinite completions N̂N ! ĜG. Moreover there exists an algorithm that, given
a finite presentation of Q, will construct a finite presentation of G and a generating set

for N.

In order to make this theorem useful one needs a supply of suitable groups Q. This
presents no di‰culty since one can embed any finitely presented group H in a finitely
presented group H that has no finite quotients, matching the geometry and complex-
ity of H to that of H in various ways [5], and the universal central extension of H can
then serve as Q (see [7, §8]). Historically speaking, the first suitable group Q is Hig-
man’s famous example

J ¼ ha; b; c; d j aba�1 ¼ b2; bcb�1 ¼ c2; cdc�1 ¼ d 2; dad�1 ¼ d 2i:

Other small examples are constructed in [7].
Theorem 1.1 is a consequence of the following two results.
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Lemma 1.2. Let 1 ! N ! G ! Q ! 1 be a short exact sequence of finitely generated

groups. If Q has no non-trivial finite quotients and H2ðQ;ZÞ ¼ 0, then N ! G induces

an isomorphism N̂N ! ĜG.

Proof. The surjectivity of N̂N ! ĜG is an immediate consequence of the observation
that since Q has no finite quotients, if f : G ! F is a homomorphism onto a finite
group then f ðNÞ ¼ F . For injectivity, it is enough to consider finite index subgroups
I HN that are normal in G and to find a finite index subgroup HHG that intersects
N in I . The action of G by conjugation on N induces a map to the automorphism
group of N=I , with kernel M say. Since M has finite index in G, it maps onto Q

and we have a central extension

1 ! ðN=IÞV ðM=IÞ ! M=I ! Q ! 1:

Since Q is super-perfect (that is, H1Q ¼ H2Q ¼ 0), this extension splits (see [12,
pp. 43–47]. Setting H equal to the kernel of the resulting homomorphism
M ! M=I ! ðN=IÞV ðM=IÞ completes the proof. r

The second ingredient in the proof of Theorem 1.1 is Wise’s variation on the Rips
construction (see [16], [17]).

Theorem 1.3. There exists an algorithm that, given a finite presentation of a group

Q ¼ hX jRi, constructs a finite presentation hX U fn1; n2; n3g jSi for a torsion-free, re-
sidually finite group G, of cohomological dimension 2, that is hyperbolic in the sense of

Gromov. The subgroup NHG generated by fn1; n2; n3g is normal but not free, and
G=NGQ.

The Rips–Wise algorithm, which is based on small-cancellation theory, is ex-
tremely explicit—see [7, §7].

The only assertion of Theorem 1.1 that does not follow immediately from Lemma
1.2 and Theorem 1.3 is the fact that N is not finitely presentable. This is a special case
of Bieri’s theorem that a finitely presentable normal subgroup of a group of cohomo-
logical dimension 2 is either free or of finite index [4].

1.2 Answer to the Goldstein–Guralnick question. The following examples A ,! G

provide a negative answer to the question of Goldstein and Guralnick described in
the introduction. This question arose from a desire to weaken the hypotheses in their
generalisation [11] of Ayoub’s splitting theorem [1].

Example 1.4. Let N and G be as in Theorem 1.1 and let B be any finitely presented
residually finite group. Let G ¼ G� B and let A ¼ N � f1g. Then A ! G induces an
isomorphism ÂA ! A and ĜG ¼ ĜG� B̂B ¼ A� B̂B. But A is not (isomorphic to) a direct
factor of G or any subgroup of finite index in G, since such direct factors are finitely
presentable.
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Example 1.5. To obtain an example where G and its subgroups of finite index have
no non-trivial direct product decompositions whatsoever, one takes B ¼ G in the
above construction and instead of defining G to be G� G one takes it to be the
fibre product PHG� G of the map p : G ! Q in Theorem 1.1. More explicitly,
P ¼ fðg1; g2Þ j pðg1Þ ¼ pðg2Þg. It is proved in [3] that if Q has an Eilenberg–Maclane
space KðQ; 1Þ with a finite 3-skeleton (as Higman’s group J does, for example), then
P will be finitely presented. And it is proved in [7] that P ! G� G induces an isomor-
phism of profinite completions. By examining centralizers one can see that P does
not virtually split as a direct product (see [7, §6]). It follows that the inclusion of
A ¼ N � f1g into P maps ÂA isomorphically onto the first factor of P̂P ¼ ĜG� ĜG, but
neither P nor any of its subgroups of finite index decomposes as a non-trivial direct
product.

Example 1.6. With P and G as in the preceding example, P� f1g ,! ðG� GÞ � G
provides us with a pair of finitely presented groups A ,! G with ÂAGA a direct factor
of ĜG but A not a direct factor of any subgroup of finite index in G. But in this exam-
ple A is not normal in G.

1.3 Examples of Nikolov–Segal type GFAzZ. We continue with the notation es-
tablished in the proof of Lemma 1.2, insisting now that Q be infinite. Since Q has no
finite quotients, the image of G in the automorphism group of N=I must coincide
with that of N, in other words G must act on N=I by inner automorphisms. Suppose
that G is torsion-free and hyperbolic, and note that N cannot be cyclic as it has infi-
nite index in its normalizer [8]. In this case, no element g A GnN can act on N (by
conjugation in G) as an inner automorphism, for if it acted as conjugation by n A N,
say, then n�1g would centralize N, whereas non-cyclic subgroups of torsion-free hy-
perbolic groups have trivial centralizers [8].

Thus, if Q is torsion-free (Higman’s group, for example) and G is constructed as in
Theorem 1.3, then for every g A GnN we have hN; gi ¼ Nz hgiGNza Z where no
power of a is inner but a acts as an inner automorphism on N=I for every character-
istic subgroup of finite index I HN (and hence every a-invariant subgroup of finite
index K , as one sees by considering the intersection I of all subgroups of index
jN=Kj).

2 The recognition problem for direct factors

In this section we shall prove (a more precise version of ) Theorem 0.1. The seed of
undecidability that we shall exploit in order to prove Theorem 0.1 comes from the
following theorem, which is proved in [6].

Theorem 2.1. There exists a finitely generated free group F ¼ FðXÞ and a recursive se-

quence of finite subsets Rn HF so that there is no algorithm to determine which of the

groups Qn ¼ F=5Rn6 is trivial, but each of the groups has the following properties:

(1) H1ðQn;ZÞ ¼ H2ðQn;ZÞ ¼ 0;
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(2) Qn has no non-trivial finite quotients.

(If Qn 0 1 then Qn is infinite.)

This theorem is proved in three stages. First one constructs a sequence of finite
group-presentations Pn 1hY jSni so that the groups presented are torsion-free and
there is no algorithm that can determine which are trivial. Secondly, one modifies
these presentations in an algorithmic manner so as to ensure that none of the groups
presented has any proper subgroups of finite index. Finally, an additional algo-
rithm is implemented that replaces P 0

n, the modified Pn, with a finite presentation
~PPn 1hX jRni for the universal central extension of the group presented by P 0

n. See
[6] for details.

2.1 The proof of Theorem 0.1. Consider the sequence of pairs of groups Nn ,! Gn

obtained by applying the Rips–Wise algorithm (Theorem 1.3) to the presentations
hX jRni from Theorem 2.1. The output of the algorithm is a recursive sequence of
finite presentations Pn 1hX t fn1; n2; n3g jSni for Gn, with Nn HGn given as the
subgroup generated by fn1; n2; n3g. Augmenting Pn with an additional generator t

and the relations ½t; x� ¼ 1 for all x A X U fn1; n2; n3g gives a recursive sequence of pre-
sentations Pþ

n , for Gn :¼ Gn � Z with An :¼ Nn � f1g the subgroup generated by
fn1; n2; n3g.

If Qn ¼ 1 then Nn ¼ Gn. If Qn 0 1 then Theorem 1.1 assures us that the inclusion
Nn ,! Gn still induces an isomorphism N̂Nn ! ĜGn, but Nn is not finitely presentable.
Thus An ,! Gn always maps ÂAn isomorphically to the first factor of ĜGn ¼ ĜGn � ẐZ,
but An is a direct factor of Gn (equivalently, some subgroup of finite index in Gn) if
and only if Qn 0 1. And there is no algorithm that can determine for which n the
group Qn is trivial. r

The version of Theorem 0.1 stated in the introduction was crafted so as to be
immediately comprehensible and free of technical jargon. We close with a more tech-
nical statement that has greater precision. This is what is actually proved by the pre-
ceding argument.

Theorem 2.2. There exists a finite set Y ¼ X t fn1; n2; n3; tg and a recursive sequence

ðSnÞ of finite sets of words in the letters YG1 so that the groups Gn :¼ F ðYÞ=5Sn6, the
subgroup An HGn generated by the image of fn1; n2; n3g, and the subgroup Bn HGn

generated by the image of ftg, have the following properties:

(1) each Gn :¼ FðY Þ=5Sn6 is residually-finite and torsion-free;

(2) each Bn is infinite and ĜG ¼ An � Bn;

(3) the inclusion An ,! Gn induces an isomorphism ÂAn ! An;

(4) the set fnjAn is a direct factor of GngHN is not recursive;

(5) if An is not a direct factor of Gn then neither is it a direct factor of any subgroup of

finite index in Gn.
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