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Geodesics and Curvature in Metric Simplicial Complexes

Martin Robert Bridson, Ph.D.
Cornell University 1991

Groups which act cocompactly on simplicial trees were completely clas-
sified by the work of Bass and Serre. The elegance of this theory is such
that the prospect of extending it to higher dimensions is an extremely en-
ticing one. As a first step one must identify a suitable higher-dimensional
analogue of a tree. A strong candidate for this role is provided by the class
of non-positively curved piecewise Euclidean complexes (which are defined
below). The study of such complexes is not new, but has been brought to
the fore in recent years by Gromov, who made extensive use of these spaces

in his remarkable work on hyperbolic groups.

In his seminal article [17] Gromov (pp- 119-120) states several theorems
which are important to the understanding of the geometry of these complexes
— theorems which concern the existence of geodesics, and the relationship
between local and global definitions of non-positive curvature in simply
connected spaces. However, until now the validity of these results had only
been established for locally finite complexes. In the study of groups acting
on trees the spaces under consideration are not required to be locally finite,
and such a restriction would be very limiting in the higher-dimensional case.

Thus we are presented with a serious technical difficulty.



In the first three chapters of this thesis we remove this difficulty by
proving these theorems for a large class of spaces. This class includes any
piecewise Euclidean complex which admits a cocompact action by a group of
isometries. We also relate Gromov’s ideas to earlier work of others, notably
Bruhat and Tits, and Alexandrov, and establish the equivalence of a variety
of characterisations of non-positive curvature, both local and global.

These results allow us to analyse the structure of groups which act
cocompactly on a simplicial complex by using curvature to convert local
(combinatorial) information about the complex into global information which
relates to the group action. In Sections 4 and 5 we give a number of
examples to show how, in the presence of sufficient local information about
the complex, one can establish the existence, or non-existence, of a metric
of non-positive curvature. In particular, we prove that the Culler-Vogtmann

complex does not support an Qut(F,)-equivariant metric of non-positive

curvature for n > 3.
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Introduction

Groups which act cocompactly on simplicial trees were completely classified
by the work of Bass and Serre [24]. The elegance of this theory is such that
the prospect of extending it to higher dimensions is an extremely enticing one.
As a first step one must identify a suitable higher-dimensional analogue of a
tree. A strong candidate for this role is provided by the class of non-positively
curved piecewise Euclidean complexes (which are defined below). The study
of such complexes is not new, but has been brought to the fore in recent years
by Gromov, who made extensive use of these spaces in his remarkable work

on hyperbolic groups.

In his seminal article [17] Gromov (pp. 119-120) states several theorems
which are important to the understanding of the geometry of these complexes
— theorems which concern the existence of geodesics, and the relationship
between local and global definitions of non-positive curvature in simply con-
nected spaces. However, until now the validity of these results had only been
established for locally finite complexes. In the study of groups acting on trees
the spaces under consideration are not required to be locally finite, and such a
restriction would be very limiting in the higher-dimensional case. Thus we are

presented with a serious technical difficulty.

In Sections 1-3 of this paper we remove this difficulty by proving these
theorems for a large class of spaces. This class includes any piecewise Euclidean
complex which admits a cocompact action by a group of isometries. We also

relate Gromov’s ideas to earlier work of others, notably Bruhat and Tits [10],

and Alexandrov [2].
These results allow us to analyse the structure of groups which act cocom-

1



2
pactly on a simplicial complex by using curvature to convert local (combina-
torial) information about the complex into global information which relates to
the group action. In Sections 4 and 5 we give a number of examples to show
how, in the presence of sufficient local information about the complex, one can

establish the existence, or non-existence, of a metric of non-positive curvature.

In order to state our results we need the following definitions. A geodesic
metric space is a metric space in which every pair of points can be joined
by a geodesic segment — a topological arc which, with the induced metric,
is isometric to a closed interval of the real line. A large class of examples
is provided by piecewise Euclidean complexes: Given a simplicial complex
K one can metrize the cells of the geometric realisation of K so that each
cell is isometric to a Euclidean simplex, and if two cells intersect then the
induced metrics on their common face agree. There is a well defined notion of
piecewise linear (PL) paths in K and a consistent way of measuring their length.
The intrinsic pseudometric on K is defined by setting the distance between two

points equal to the greatest lower bound on the length of PL paths joining them.

If K is connected and locally finite then this pseudometric is actually
a metric, and if K is finite then this construction yields a geodesic metric
space. Moreover, this construction works equally well if one replaces Euclidean
simplices by hyperbolic or spherical ones, and we use the term metric simplicial

complex to refer to a complex which is piecewise-Euclidean, -spherical, or -

hyperbolic.

If the complex K is not locally finite then in general the intrinsic pseudo-
metric is not a metric. A simple example is the 1-complex with two vertices
joined by countably many edges (subdivided to make the complex simplicial),

the n—th of which has length 1 /n. To avoid the type of limiting behaviour
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present in this example we restrict our attention to metric simplicial complexes

with only finitely many isometry types of cells.

Theorem 1.1: If K is a metric simplicial complex with only finitely many

isometry types of cells then K is a complete geodesic metric space.

We say that K is of type B if it satisfies the hypothesis of Theorem 1.1. We
do not require spaces of type B to be locally compact. We shall also consider
(locally finite) metric simplicial complexes all of whose closed bounded subsets

are compact. Such complexes are said to be of type A.

Any finite-dimensional simplicial complex can be metrized as a piecewise
Euclidean complex of type B by metrizing each cell as a regular simplex of unit
edge length. It then satisfies the hypothesis of our Theorem 1.1 and hence is a
complete geodesic metric space. Any simplicial action on the space becomes
an action by isometries, and the potential exists for studying groups which act
in this way via the geometry of geodesics in the complex. This technique works

particularly well in the presence of non-positive curvature.

Our Main Theorem, which is stated below, establishes the equivalence of
various characterisations of non-positive curvature for M (x)—complexes of
type A or B, where « < 0 denotes the sectional curvature of the simplices in
the given complex. For clarity of exposition, we state and prove our results

for piecewise Euclidean complexes (Chapter 2) before generalising to the case

k£ < 0 (Chapter 3).

In Section 2.1 we study complexes for which there is a unique shortest path

between every pair of points, and obtain the following convexity result.

Theorem 2.1: If K is a piecewise Euclidean complex of type A or B which

has unique geodesic segments then any geodesic segments oy and oy Wwith



0{0(0) = 051(0) satisfy
d(ao (t),a1 (t)) S t'd(ao (1),0{1 (1)) Vit € [0, 1]

We then show, in Section 2.2, that K has unique geodesic segments if
and only if it has non-positive curvature as defined by the CAT(0) inequality of
Gromov [17], the CN inequality of Bruhat-Tits [10], and Alexandrov’s condition

on the excess of geodesic triangles:

Theorem 2.7: If K is a piecewise Euclidean complex of type A or B then the

Jollowing global characterisations of non-positive curvature are equivalent:

I) K has unique geodesic segments.
I) K satisfies CAT(0).
III) K satisfies CN.

IV) Every geodesic triangle in K has non-positive excess.

This leads to a fixed point theorem in the manner of Bruhat-Tits. In dimension
2 this fixed point theorem is due to Gersten [15] and plays a central role in his

work with Stallings on triangles of groups [26].

Fixed Point Theorem: If K satisfies any of the conditions 1 to IV given in
Theorem 2.7, and a group T acts on K by isometries, such that there is a bounded

orbit, then the fixed point set of T' is non-empty and contractible.

In Section 2.3 we describe the relationship between local definitions of

curvature and prove:

Theorem 2.8: If K is a piecewise Euclidean complex of type A or B then the

Jollowing local characterisations of non-positive curvature are equivalent;

D) K has unique geodesic segments locally.

II) The metric on K is convex locally.



II) K satisfies CAT(0) locally.

IV) K satisfies CN locally.

V) Every point of K has a neighbourhood such that any geodesic triangle in
that neighbourhood has non-positive excess.

VD) K satisfies the link condition.
Further, if K is of type B then each of the above conditions is equivalent to

VII) There exists €g > 0 such that for all = € K the ball B, (z) is geodesically

convex and has unique geodesic segments.

In Section 2.4 we prove the following theorem, which provides the vital
link between local and global definitions of non-positive curvature in a simply

connected space.

Theorem 2.12: If K is a piecewise Euclidean complex of type A or B which has
unique geodesic segments locally then for every pair of points ©,y € K there is

a unique shortest path in each homotopy class of paths from z to y in K.

This result, for a restricted class of locally-finite complexes, is due to Stone
[27]. The strategy of our argument is modelled on the proof of a similar result

for smooth manifolds, which can be found in Milnor’s book on Morse theory

[22].

In Chapter 3 we generalise the preceding results to M(x)—simplicial com-

plexes and obtain:

Main Theorem: If K is a simply connected M (x)-simplicial complex of type

A or B and k < 0 then the following 13 conditions are equivalent:



Global conditions:

I) K has unique geodesic segments.
I) K satisfies CAT(x) globally.
Il) K satisfies CAT(x) globally, for some X.
IV) K satisfies CN globally.
V) The metric on K is convex.

VI) Every geodesic triangle in K has non-positive excess.

Local conditions:

VII) K has unique geodesic segments locally.
VIII) X satisfies CAT(x) locally.
IX) K satisfies CAT(x) locally, for some .
X) K satisfies CN locally.
XI) The metric on K is convex locally.
XII) Every point of K has a neighbourhood such that any geodesic triangle in
that neighbourhood has non-positive excess.

XII) K satisfies the link condition.

The link condition listed as condition XIII) is essentially a condition on
the combinatorics of the links of vertices in K. Thus, if we have sufficient
local (combinatorial) information about the space K then we can deduce global
(topological and algebraic) information. (e.g. If K is a non-positively curved
complex of type A or B then its universal cover is contractible.) In Chapter 4
we give a number of examples where one can verify the link condition directly.
In particular we discuss the work of Gersten and Stallings on triangles of
groups. We also work through a specific example to show how the Fixed
Point Theorem can lead to a classification of finite subgroups in a group which

acts by isometries on a complex of non-positive curvature.



7
In Chapter S5 we describe a technique for deciding whether or not a complex
can be given a metric of non-positive curvature which is equivariant with respect

to a given group action. Using this technique we prove the following result.

Theorem 5.6: If n > 3 then there does not exist an Out(F, )—equivariant piece-

wise Euclidean (or piecewise hyperbolic) structure of non-positive curvature on

the Culler-Vogtmann complex K,,.

The Culler-Vogtmann complex is closely analogous to the Teichmiiller space
of a Riemann surface, and Theorem 5.6 provides an interesting analogue of

known results about the curvature of Teichmiiller space (see [21]).

The study of curvature in locally finite complexes, particularly PL. manifolds,
is not new. Work in this area was done by Banchoff and Stone in the sixties,
and more recently by Gromov and Thurston [18]. Aitchison and Rubinstein
1] have shown that this theory has powerful applications in the geometry of
3-manifolds. We should also note that in the case of locally finite complexes
Ballman ([16], Chapter 10) has given a lucid account of the theorems of Gromov

to which we referred at the beginning.

The role which non-positive curvature plays in the study of orbihedra
is highlighted by results of Gromov ([17], pp. 127-130), which have been
explained in detail by Haefliger ([16], Chapter 11). Recently Haefliger [19] has

generalised these results using the techniques which we introduce in this thesis.



1. The Existence of Geodesics in Metric Simplicial Complexes

In this chapter we prove the following theorem:

Theorem 1.1: If K is a metric simplicial complex with only finitely many

isometry types of cells then K is a complete geodesic metric space.

Notice that we do not require the underlying simplicial complex K to be
locally finite. In fact, if K is locally finite then we can weaken the condition
that K has only finitely many isometry types of cells, and instead require only
that in the intrinsic metric every closed bounded subset of K is compact. Then
one can prove that K is a geodesic metric space by using the Arzela-Ascoli
Theorem to show that the Birkhoff curve-shortening process converges (cf.
[16] Chapter 10). Alternatively, one can view the existence of geodesics in this
case as a formal consequence of the case where K has finitely many isometry
types of cells; since for any two points z,y € K with d(z,y) < N we need
only consider paths between them which lie in the minimal subcomplex of K

containing the ball of radius N about z, and this is a finite complex.

This chapter is organised as follows: In Section 1.1 we give a precise defi-
nition of a metric simplicial complex K, and define the intrinsic pseudometric d
in terms of m—chains (which provide a useful method for describing piecewise-
geodesic paths combinatorially). In Sections 1.2-1.5 we establish the existence
of geodesic segments in &, and in Section 1.6 we prove that the metric d is
complete. For 2—dimensional complexes our proof simplifies considerably, and
in Section 1.7 we give the details in this restricted setting to illustrate the ideas

involved in the proof of the general case.



1.1 Definitions

A geodesic segment in a metric space (X, d) is a topological arc which is
isometric to a closed interval of the real line. (So in particular the length of
a geodesic segment is equal to the distance between its endpoints.) (X,d) is
a geodesic metric space if every pair of points in X can be connected by a
geodesic segment.

An n—simplex in Euclidean n—space E® or hyperbolic n—space H" is the
convex hull of (n + 1) points in general position. An n—simplex in spherical
n—space S" is the intersection of S" with the positive cone spanned by n + 1

linearly independent vectors in R™*!,

An E (respectively S, H) simplicial complex consists of the following

information:

I) An (abstract) simplicial complex K.
I) A set Shapes(K) of Euclidean (respectively spherical, hyperbolic) sim-
plices o; C E™ (respectively S™, Hm),
III)  For every closed simplex B C K a simplicial isomorphism fgp : B — o(B)
where o(B) € Shapes(K) and

fo (fCl(BnC’))—l
is an isometry for all simplices B,C C K.

Similarly, for any value of «, we can define an M (k)—simplicial complex,
by requiring that Shapes(K) consist of simplices of constant curvature x. A
metric simplicial complex is an M (x)—simplicial complex, for some x. We say

that K is connected if it is connected in the weak topology.

Remark: 1t is purely for convenience that we work with simplicial com-

plexes rather than more general complexes in which the cells are metrized as
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convex polyhedra, and since any such polyhedral complex can be made simpli-

cial by subdivision this involves no loss of generality.

A line segment in K is the inverse image of a geodesic arc in f p(B) for
some simplex B. By a PL path in K we mean a path which is the concatenation
of finitely many such line segments. Notice that the maps fp induce metrics dp
on the individual simplices of K. These metrics agree on faces of intersection
and give a well defined notion of length for PL paths in K. To describe these
paths combinatorially we use the following definition:

An m-chain from z to y is an (m+1)—tuple C = (€0, 1, - - - » Tm) Of points
in K, such that £ = Zo, ¥ = Tm. and for each i there exists a simplex B(7)

containing z; and z;;. We call m the size of C, and define the length of

C to be:

m—1
)\(C) = Z dB(i) (.’Ei, .’B,’.H) .
1=0
Every m—chain determines a PL path in K, given by the concatenation of the

line segments [z;,%;11). We denote this path p(C).
If K is connected we can define a distance function:
d(z,y) = inf{A(C): C a chain from z to y} .

We call d the intrinsic pseudometric on K. The example given in the
introduction shows that in general d does not define a metric. However, in
Chapter 2 we show that if K is any connected metric simplicial complex with
Shapes(K), the set of isometry classes of cells of K, finite then this formula
does define a metric on K. We then refer to d as the intrinsic metric on K.

For the remainder of Chapter 1 we fix an arbitrary & and write M in place
of M(x). We always assume that K is a connected M —simplicial complex,

and that Shapes(K) is a finite set. The letter d always denotes the intrinsic

pseudometric on K.
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1.2 The Intrinsic Metric

We begin by proving that d(z,y) defines a metric on K. The fact that it is
a pseudometric is immediate, the only difficulty is in showing that the distance

between distinct points is nonzero.

Notation: For z € K we denote the open star of z (i.e., the union of the
interiors of the cells containing z) by st(z), and denote the closed star of z
by St(z).

Let e(z) = inf{dn(z, B — st(2)) : B a closed simplex in K,z ¢ BY.
Lemma 1.2: ¢(z) > 0forall z € K.

Proof: Fix z and let B, denote the unique simplex of & which contains T
in its interior. Define an equivalence relation on the closed simplices of K that
contain z by B ~ B' if and only if there is an isometry from B to B’ which

restricts to the identity on B,. Notice that dp(z,B — st(z)) is well-defined

on equivalence classes.

Because Shapes(K) is finite, there are only finitely many equivalence
classes under ~. Choose representatives {B;, ..., B,,} for these classes. Then
e(z) =inf {dg (z,B—st(z)): B aclosed simplexin K, z ¢ B }

=min{dp, (z,B; — st(z)): i = 1,...,m}

and hence ¢(z) > 0. O

The positivity of the metric now follows from Lemma 1.3, which also
shows that for every simplex B the metric d agrees with dg locally. However,
it should be noted that in general the metric which d induces on B is not equal
to the metric dp, but instead we have the inequality dg > d. But this difficulty
(which is illustrated by the following example) is a minor one, which can be
rectified by taking a suitable barycentric subdivision of the model simplices in

Shapes(K) and giving K the induced simplicial structure.
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Example: Consider the 1-complex K with vertices {z}, {y}, {2} and edges
{z,y}, {z,2},{y,z} of length 1, 1 and 4 respectively. If we let B = {y, 2z}
then dg(a,b) > d(a,b) whenever dp(a,b) > 3. However, for every simplex
B' in the first barycentric subdivision of K we have dp(a,b) = d(a,b), for
all a,b € B'.

Lemma 1.3: If € K and d(z,y) < e(z) then there exists a simplex B
containing both = and y such that dp(z,y) = d(z,y).

Proof: It is enough to show that there exists a simplex B such that z,y € B
and dp(z,y) < d(z, y). This follows immediately from the following assertion,
which we prove by induction on m, the size of the given chain:

If C = (zg,..-,Tm) is an m—chain in K and A(C) < e(zo) then z; €
st(z,) for all ¢, and for some (and hence any) simplex B(m) containing zo and
z., the inequality dB(m)(:Eg,:Em) < MC) holds.

- The case m = 1 follows immediately from the definition of e(zo). For
m > 1: Because C is a chain there is a simplex B(m) containing both zm—1
and z,,. Applying our inductive hypothesis to C' = (Zo,- - - , Tm—1), WE may
assume that z,_1 € st(zo). Hence zo € B(m), and

dB(m) (20, Tm) < dp(m) (%o, Tm-1) + dB(m) (Tm—1,Tm)
< MC") + dp(m) (Tm-1,Tm)
= X(C)
< €(zg).
It follows from the definition of €(xo) that z, € st(zo). This completes the

induction. [l

Note: The metric topology which we have constructed on K coincides with the

topology given by barycentric coordinates, and hence is strictly smaller than the
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weak topology except when K is locally finite. However, the identity map from
K equipped with the weak topology to K equipped with the metric topology is
a homotopy equivalence [14]. This latter observation is important because it
implies that if K is simply connected and has non-positive curvature then it is

contractible in both the metric topology and the weak topology.

1.3 The Existence of Shortest m-chains

Suppose that ¢ = (0, 21,...,%m) is an m—chain from z to y in K
satisfying A(C) = d(z,y). Then the PL path obtained by concatenation of
the line segments [z,, Zit1] is a geodesic segment. Therefore, to prove that K
is a geodesic metric space it is enough to show that for all z,y € K the infimum
in the definition of d(z,y) is attained. This we do in two stages. Firstly, in
this section, we show that if for a fixed integer m there exists some m—chain
from = to y in K then there exists an m~chain of minimal length from z to y
in K. Then, in Section 1.5, we show that there exists a linear function f such
that for every pair of points z,y € K

inf{A(C): C an m—chain from z to ¥y, m > 0}
=inf{\(C) : C an m—chain from z to ¥y, m < f(d(z,y))}.
It follows that the infimum in the definition of d(z,y) is attained, and hence

K is a geodesic metric space.

Lemma 1.4: (Moussong) If L is a Jinite M-simplicial complex, and two points
x and y can be joined by an m-chain in L, where m is a fixed integer, then there

is a shortest m-chain Jfrom z to y in L.

Proof: Let X C L™*! denote the set of m-chains from z to yin L. We
show that X is closed and hence compact. The length function )\ on m-chains

1S continuous on X , and therefore attains a minimum if X is closed.
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Notice that for any w,z € L, the set st(w) N st(z) 1s empty if and
only if there is no closed cell of L containing both w and z. Thus, if z
= (20,21,--- ,Zm) 1S not an m-chain then for some : between Oand m — 1
we have st(z;) N st(ziz1) = 0. Hence z has a neighbourhood disjoint from X,

namely (L x ...L x st(z) X st(zig1) X L x ... x L). S0 X is closed. [

Given K with Shapes(K) finite, and a positive integer m, one can build
a finite set of “models”. That is, connected complexes obtained by taking at
most m (not necessarily distinct) simplices from Shapes(K ) and identifiying
faces by isometries. Any subcomplex K, of K which can be expressed as the
union of at most m closed cells must be isometrically isomorphic to one of
these models. The existence of this finite set of models allows us to pass from
the case of compact complexes (Lemma 1.4) to the case of interest, complexes
with Shapes(K) finite (Lemma 1.5).

Notice that K, with the induced metric from K is not in general isometric
to the model with its intrinsic metric. However, since the length of a chain
is defined in terms of the local metrics dg, a given m-chain in K, and the

corresponding m-chain in the model have the same length. This is the key to

the following lemma.

Lemma 1.5: If K is an M-simplicial complex with Shapes(K) finite, and two
points ¢ and y can be joined by an m-chain in K, where m is a fixed integer,

then there is a shortest m-chain from x to y in K.

Proof: For any fixed pair of elements z and y there are only finitely many
bipointed models, (K';2’, y"), for (Ko; z,y) as Ko runs over all subcomplexes
of K which contain both z and y and can be expressed as the union of at most
m closed cells. Thus, any m-chain from z to y in K corresponds to an m-

chain of the same length from z' to ' in one of the finitely many models under
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consideration, and vice versa. The present lemma now follows by application

of Lemma 1.4 to each of these models. []

Remark: Suppose that one were to weaken the condition that Shapes(K)
is finite, and require instead that there be uniform bounds on how small and
thin the simplices in Shapes(K') may be. Then a straightforward adaptation
of the arguments given in Section 1.2 shows that this weaker assumption is
sufficient to ensure that the intrinsic pseudometric on X is indeed a metric.
However, under this weaker hypothesis Lemma 1.5 is no longer true, and in

general if K is locally inifinite then it is not a geodesic metric space, as the

following example shows.

Example: We construct a Euclidean 2—complex L as follows: I, has a
subcomplex L' consisting of three vertices {z}, {y} and {2}, and two edges
ey = {z,y} and e, = {z, 2}, both of which are metrized to have unit length, For
every integer n > 2 we metrize a barycentrically subdivided 2—simplex o(n) as
an isosceles triangle with two sides of unit length meeting at an angle (3 4 I),
We then attach each o(n) to L' by identifying one of its edges of unit length
with e,, and the other with e;. The result is a Euclidean simplicial complex
L which is not a geodesic metric space. To see this notice that dly,z) =1
whereas every m~chain from Y to z has length strictly larger than 1. In fact,
there exist 2—chains C' from y to z with A\(C) arbitrarily close to 1 — d(y, ),

so the conclusion of Lemma 1.5 fails to hold in this case.

1.4 Taut Chains and Local Geodesics

In this section we introduce the notion of a taut chain. Intuitively speaking,
this is an m—chain whose length cannot be shortened by perturbation unless one

allows the integer m to increase. In Lemma 1.6 we show that the minimising
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chains yielded by Lemma 1.5 are taut. Then in Section 1.5 we formalise the
idea that the size of a taut chain is directly related to its length, and this leads to
the desired bound on the size of chains which one must consider when seeking

a geodesic segment between a given pair of points in K.

In the present section we also define what it means for an m—chain to be
a local geodesic. Local geodesics do not play an essential role in the proof of
Theorem 1.1, but they do (as the name suggests) describe the local behaviour
of geodesic segments, and the understanding which this description provides
proves to be important in later chapters. In fact, in Chapter 2 we show that
in simply-connected complexes of non-positive curvature there is a one-to-
one correspondence between geodesic segments and taut local geodesics. This
observation provides a link between the tesults presented here and the work of
Gersten and Stallings on non-positively curved 2—complexes [26], where they

proved the existence of geodesics using a local criterion.

Before defining what it means for an m—chain to be taut, we must make
some observations about small subcomplexes of K. Suppose that B and B'
are closed simplices in K which have non-empty intersection, and consider
[ = B U B' equipped with its intrinsic metric. (Notice that in general
the intrinsic metric on L is not equal to restriction of the intrinsic metric
on K.) Suppose that z and y lie in the same simplex of L. Then it
follows immediately from the triangle inequalities for dp and dp: that the line
segment [z,y] is a geodesic segment in L. (Here we are using the fact that
K is simplicial, and thus if z,y € B N B' then the line segments joining
¢ to y in B and B’ coincide.) From this it follows that if z € B and
y ¢ B then d(z,y) = inf{dp(z,2) + dp(z,y) : 2 € BN B'}. And since

z v dpl(z,2) +dp(z,y) is a continuous function on the compact set B N B
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it attains a minimum. Therefore [, is a geodesic metric space, and the minimal

m—chain associated to any geodesic segment has size at most 2.

Definition: An m-chain ¢ = (zo,z1,... yTm) in K is taut if it satisfies the
following two conditions for ; = 1,...,m — 1. Firstly, there is no simplex
containing {z;_;, z;, Tiy1}. Secondly, if Ti-1,%i € B()and z;, z;,, € B(i+1)
then the concatenation of the line segments [z;_;,z,] and [z,, z;41) is a geodesic
segment in L = B(i) U B(i + 1).

Notice that if a chain is taut then only its first and last entries can lie in the

~ interior of a top dimensional simplex of K,

Lemma 1.6: For a fixed integer m, if C' is an m-chain from z to y in K of
minimal length then p(C), the path in K determined by C, is the path determined

by some taut n-chain with n < m.

Proof: Let C = (zg,z1,... »Tm ). Suppose that for some i there exists a
simplex B containing z;_,, z; and Zit1, and let C* denote the (m — 1)—chain
obtained from C by deleting the entry z;. The triangle inequality for dp
gives dp(zi1,Tiy1) < dp(zi_1,z;) + dp(zi,ziy1 ), with equality if and only
if z; lies on the line segment [%i_1, Ziy1]. Thus A(C*) £ X(C). But AC) is
minimal, so in fact \(C") = A(C), and hence z; must lie on the line segment
[zi—1, Zi11]. This implies that determines the same path as C'. We can repeat
this procedure until no simplex of K contains three successive entries of the

resulting chain — the first condition for tautness.

We now show that C satisfies the second condition for tautness. Let B
and B' be any cells containing {zi1,2;} and {Zi, zig1} respectively. Every
geodesic segment in the complex L = B U B' can be expressed as the
concatenation of at most two line segments. So if the concatenation of the

line segments [zi_1, z;] and [z, zi11] were not a geodesic segment in I, then
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we could replace «; by some T, € BN B' to obtain an m—chain from zg 10 Tm
which would be strictly shorter than C, contradicting the minimality of M(C). O

As an immediate consequence of Lemma 1.6 we obtain:

Corollary 1.7: d(z,y) = inf{MC) : C a taut chain from z to y}.
We now turn our attention to local geodesics. In order t0 describe the local
behaviour of PL paths we need a precise notion of angle between line segments

in K. For this we introduce a spherical metric on the link of each point in K.

Let B be an n—simplex in M™ (the unique simply-connected, complete
n—manifold of constant sectional curvature ). Given z € B, the tangent
cone of B at z is defined to be T,B = {v € TM" : exp:(ev) € B,some
¢ > 0}. We identify g1 with the unit sphere in T, M*, and define LK (z, B)
to be T, BNS™1. This is a simplex in g1 if ¢ is a vertex of B, the whole of
Sl if ¢ is an interior point of B, and otherwise a closed convex subset of a
hemisphere in s,

Now suppose ¢ € B C K. We define T, B to be TfB(z)fB(B) and

LK(z, B) to be LK(f(2), fa(B)):
Definition: The geometric link LK (z, K) of « in K is defined to be the disjoint
union of the cells {LK(z,B):c € BC K 1, modulo the natural identifications.
Specifically, u € LK(z, B) is identified with v € LK(z,B') if and only if the
differential of fp/fz' maps u to v. T.K is defined similarly.

LK(z,K) is a spherical complex, which can be made simplicial by subdi-
vision. Further, since Shapes(K) is finite, so t00 is Shapes(LK(z,K)). In
particular we have an intrinsic metric on connected components of LK(z, K).
Definition: An m-chain ¢ = (L0, %1,- - - » Tm) N K is a local geodesic if
x; # ¢4 forall s, and for s = 1,...,m— 1 the distance between the points of

LK(z;, K) determined by the line segments [z;_1, =i and [z;, ;4] is at least
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7. (If these points lie in different path components of 7K (z, K) then we say

that they are an infinite distance apart.)

We now prove that if the path associated to an m—chain is a geodesic
segment then the chain is a local geodesic. Intuitively this is clear, since the
definition of a local geodesic is just a precise statement of the fact that the path
determined by the given chain has no sharp corners. If such a sharp corner did
exist then one could shorten the path by “cutting the corner”, The following
proof, which is due to Moussong [23], is simply a restatement of this fact in

more precise language.

Lemma 1.8: Let C = (2o, 21,..., Tm) be an m—chain in K, and suppose that

Ti # i1 for all i, If p(C), the path determined by C, is a geodesic segment

then C is a local geodesic.

Proof: Let u and v denote the points of the spherical complex LK(z;, K)
which are determined by the line segments [*i-1,z;] and (i, Zi11] respectively.

If d(u,v) < 7in LK (2;, K ) then there exists a sector S of the unit disc in
E2, and a local isometry ¢ : S — T, L which maps the circular arc component
of the boundary of .S, which we call o, to a piecewise geodesic path of length
< 7 joining u to v in LK(z;, K).

Consider the line in § which joins the endpoints of o. This has length
2 — 36 for some positive §. The map ¢ sends this line to a P, path from u
to v in T, K. The endpoints of the line segments in this path determine an
m—chain (ao,al,...,an) in T, L.

On each cell of T:;K we have the exponential map to the corresponding
cell of K, and where two cells meet this is well defined on their common face.
So for sufficiently small ¢ we have the following chain joining z, to z,, in

K: C' = (:I:O,...,:c,-,ea:pz(eao),...,expz(ean),xiﬂ,...,:cm). The map ¢ is
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a local isometry, and we can choose € SO that the exponential map restricted
to the e—neighbourhood of the origin increases distances by at most a factor
of 1/(1 — 6). Hence MC) < MC) — 6, contradicting the fact that p(C) is a

geodesic segment. O

Remark: Suppose that C = (Zo,. ..,Ty) is taut. Lemma 1.6, together
with the second condition for tautness, implies that fori=1,...,m—1 the
distance between the points of LK (z;, B(1)UB(i+1)) determined by the line
segments [z;_1, z;] and [€i, zi41] is at least 7. In fact, if z; is not a vertex of
B(i) N B(i + 1) then this distance is exactly =, and it follows that the image

of the concatenation of [i—1,zi] and [z:, zit1] under any local isometry into

M(k)" is a geodesic arc.

Example: Figure 1.1 illustrates the fact that a taut chain is not necessarily
a local geodesic. Here K is a planar 2—complex with three 2-simplices, and

the chain (a,b,¢) is taut but not a local geodesic.

Figure 1.1: A taut chain which is not a local geodesic
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1.5 The Growth of Taut Chains

In this section we prove that for large m the length of taut m—chains
grows at least linearly with respect to m (Theorem 1.11). Combining this with
Corollary 1.7, we see that the infimum in the definition of d(z,y) need only
be taken over m—chains with m less than a certain linear function of d(z,y).

This, as we explained at the beginning of Section 1.3, completes the proof that

K is a geodesic metric space.

We begin by noting a simple fact about spherical geometry. We shall use the
term “spherical” to describe complexes whose cells are modelled on a sphere

of some fixed radius, which may not be 1. The usage should be clear from

the context.

Claim: If P is the vertex of a (2—dimensional) geodesic triangle /\ in 8" and
S is the boundary of an e—neighbourhood of P in the usual (arclength) metric

on S", where ¢ is suitably small, then AN S is a geodesic arc on S.

Proof: The idea of the proof is to reduce to the case n = 9 where the result
is clear. Consider S™ as the unit sphere in R™1 centred at the origin O. Then §
is an (n — 1)-sphere of Euclidean radius sin(€) whose centre, which we denote
by @, lies on the line O P, Let V be the three dimensional subspace of R+!
determined by the vertices of A. The intersection of S® with V' is a 2—sphere
of unit radius centred at O. The line OP lies in V, so in particular @ does, and
SNV consists of those points on the unit 2—sphere in V which are a Euclidean

distance sin(e) from Q. Thus § N V is a great circle on S and since A n.s

is an arc of this circle we are done. []

Note that if in the above Claim we replace 8" by M(x)" (the unique com-

plete simply-connected n—manifold of constant curvature «) then the conclusion
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still holds. In the hyperbolic case this can be seen most easily by thinking of

P as the centre of the Poincaré disc model.

Lemma 1.9: Let K be an M -simplicial complex with Shapes(K) finite. Then
there exists a constant e, depending only on S hapes(K), such that for every
vertex P of K the set S(P) = {z € K : d(z,P) = €} is an S-simplicial

complex, whose dimension is one less than that of K.

Proof: We define € to be the minimum of the following finite set of positive

numbers:

{dy(v,T):0€ Shapes(K),v a vertex of g, and 7 a face of o with v ¢ 7}.

With this choice of e it follows from Lemma 1.3 that for every simplex
B C K the metric dp agrees with d, the intrinsic metric on K, in the
e—neighbourhood of each vertex of B. So S(P) is the union of the sets
{z € B : dp(P,z) = ¢, P € B}. And by the preceding claim these are

spherical simplices. U
Remark: Notice that there is a natural identification of LK (P, K) with S(P).

To complete the inductive step in our proof of Theorem 1.11 we shall need
the following notion of radial projection from a vertex in K. The crucial

property of this map is that it takes taut chains to taut chains (Lemma 1.10).

Suppose that z is a vertex of a simplex o in M", and that e < d(z,o—st(z))-
Then there is a well defined notion of radial projection from z, taking (¢ — )

onto the intersection of ¢ with the boundary of the e—ball about z.

Let P and € be as in Lemma 1.9. For every simplex B 2 P we let fe(B)
and fp(P) play the roles of o and g in the previous paragraph. We can then
pull back the radial projection map, by means of the map fp, to obtain a map

from B onto S(P)N B. The pull-backs obtained in this way agree on common
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faces, and so combine to give a radial projection map from St(P) to S(P).

We denote this map by p.

Lemma 1.10: Let K and P be as in Lemma 1.9. If C is a taut chain in st(P)
which does not pass through P then the image of C under radial projection p

from P to S(P) is a taut chain,
Proof: Let C = (Zo,--.,2m), and let C' = (P(z0), ..., p(zm)).

For every k£ > 0 the map p gives a 1-1 correspondence between the
k—simplices of S(P) and those (k +1)—simplices in St(P) which meet P. If
three sucessive entries P(Tiz1), p(zi), p(2i11) of C' were to lie in some simplex
of S(P) then the set {z;_,, i, Ziv+1} would be contained in the corresponding
simplex of St(P), contradicting the fact that C is taut. Thus ¢ satisfies the

first condition for tautness.

To see that C’ satisfies the second condition, consider simplices p(B(7)) and
p(B(i+1)) which contain the line segments [p(z;_1), p(z;)] and [p(x:), p(zig1)]
respectively. Then the simplices B(i) and B(i + 1) contain the line segments
[i-1,2;] and (i, Zig1] respectively. We can extend the line segments [P, z;_,]
and [P, z;] until they meet (B(%) — st(P)), and the resulting line segments form
two sides of a unique geodesic triangle in B(i). (Here we mean a 2—dimensional
triangle which is totally geodesic with respect to the metric dp()-) We denote
this triangle by A;. In the same way, the line segments [P, z;] and [P, z;,,]
determine a unique geodesic triangle A;y; in B(; + 1). These triangles have
a common edge, and we can map them into M (x)? by a local isometry ¢ to

obtain the planar 2—complex k(z;) shown in Figure 1.2.
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¢p(zi-1) po(zit1)

é(zi+1)

Figure 1.2: The complex k(x;)

Because C is taut, the path in L = B(:) U B(i + 1) determined by the
3—hain C; = (a:,-._l,:c;,a:.-+1) is a geodesic segment, SO its image under ¢ is
a geodesic arc in M ()?. Moreover, the angle 8., which this arc subtends
at ¢(P) must have length less than =, because otherwise the path in k(z;)
determined by the 3—chain ($(zi-1,¢(P), ¢(ziy1)) would pull back to a path
from z;_; to 41 in L of length less than X(C;), contradicting the fact that the

path determined by C; is a geodesic segment.

To prove that C satisfies the second condition for tautness we must show
that the path which the 3—hain C} = (p(zi_1), p(Ti), p(Tit1)) determines in the
spherical complex L' = p(BGE)Up(B(i + 1)) is a geodesic segment. The map
#, which we defined in the previous paragraph, sends this path isometrically
onto an arc of the circle of radius e about ¢(P), allowing us to eXpress MCY)
as a monotone function of the angle 6. If C} were not a geodesic segment in

I/ then there would be a shorter 3—chain (p(zi1), P(Y), p(Tis1)) from p(zi-1)
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to p(z;11) in I'. But then the vertex angle 6, in the corresponding planar
2—complex k(y) would be strictly smaller than 6., which in turn would imply
that the geodesic segment joining the images of Ti-1 and z;1y in k(y) would
pull back to a path from Ti-1 10 iy in L of length less than A(Ci). The
existence of such a path would contradict the fact that C; is a geodesic segment

in L. Hence C! must be a geodesic segment in I/, []

Remark: Using simliar methods one can show that the property of being a

local geodesic is also preserved under the radial projection map p,

We are now in a position to prove Theorem 1.11. The idea of the proof
is to use induction to show that a large taut chain cannot be contained in the
neighbourhood of any point. We first use a colouring argument to localise the
problem to the star of a single vertex, then we radially project from the vertex
to obtain a taut chain in a complex of lower dimension, and use our inductive

hypothesis to complete the proof,

Theorem 1.11: Let K be an M -simplicial complex with Shapes(K) finite.
Then there exist constants N and «, depending only on Shapes(K), such that

every taut chain of size at least N has length at least «.

Proof: We proceed by induction on the dimension of K. It is important to
the induction that the constants N and « depend only on Shapes(K) and not
on the global structure of K itself. For I-dimensional complexes the result is
clear, and the two dimensional case 18 included as an example in Section 1.7.

Assume that the result holds for dimension 7, — 1, and that K has dimension n.

In Lemma 1.9 we defined a constant e, depending only on Shapes(K),
such that the e—neighbourhood of any vertex P € K is contained in st(P).
We let 1y = ¢/3 and paint the 7,—neighbourhood of each vertex of K with

colour ~y. Then, for ; — L,2,...,n -2 we paint the 7; —neighbourhood of
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each i—simplex in K with colour ¥; (except that we do not paint over points

already coloured with a colour of lower index). The constants 7; (which we

define below) depend only on Shapes(K ).

We define the constants 7; inductively. At each stage we require that ; is
small enough to ensure that the ~;—regions corresponding to distinct i—cells
are disjoint. It then follows that each point z € K which is painted with colour
~; lies in the 7; —neighbourhood of a unigue i—simplex, and we make the
additional requirement that the distance from z to the link of the barycentre of
this unique s —simplex must be at least 7;. In the previous paragraph we defined
no so that these conditions hold in the case i = 0. Suppose now that we have
defined n;_, with the desired properties. Consider a simplex o € Shapes(K )
of dimension at least ¢ + 1, and let + be an i—dimensional face of o with
barycentre bo(7t). The complement in 7 of the open n,-_l—neighbourhood of
its (¢ — 1)—skeleton is compact, and we have chosen 7;_; so that this set is
non-empty. Let 7 denote the distance from this set to the link of bo(T) in o.

Then n; = imin{n, : 7° Co,0 € Shapes(K)} has the desired properties.

Notice that nip1 < n; for all 2. Thus if z € K is painted with colour 7;,
and by is the barycentre of the unique ;—simplex responsible for this colouring,

then 7,_p is a lower bound on the distance from z to (St(bo) — st(bo)), the
link of by in K.

After we have painted a neighbourhood of the (n — 2)—skeleton of K in

this way, we paint the remainder of K white, which we call colour .

Given an m—chain C = (%o, 21,. . .,%m) We shall refer to the open line
segments (z;,z;+1) as the intervals of C. If 1 0 or (m — 1) then we call
(z;,Tiy1) an interior interval. The colouring on K induces a colouring on the

intervals of any chain in K by the rule: paint each interval with the colour ~;
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where j = min{k : some point of [zi, ziy1] is coloured Y& }.

Every interval of C has the same length as a geodesic arc in some model
simplex ¢ € Shapes(K). If C is taut then only its initial and terminal entries
can lie in the open star of an adjacent entry, so for an interior interval the
corresponding geodesic segment in o must have its endpoints in distinct faces
of Jo. Moreover, if the interval is painted white then the corresponding geodesic
segment must be contained in the complement of the Nn—2 —heighbourhood of
the (n — 2)—skeleton of . There is a lower bound on the length of such
geodesic segments, and taking the minimum of these lower bounds as & ranges
over Shapes(K ) we obtain a lower bound, which we call ¢, on the length of

interior intervals of C' which are painted white.

If a taut m-chain (m > 3) is not entirely contained in the open star of
the barycentre of any simplex in K, then either it must contain an interior
interval which is painted white, or else it must contain a coloured interval and
a point which is not in the star of the barycentre of the cell responsible for that

colouring. Thus if we set o = min{l,mn_3, |2nx|} then Theorem 1.11 reduces

to the following Claim.

Claim: Let k denote the curvature of the model simplices for K. Suppose
that by is the barycentre of a simplex in K, and that C is a taut m—chain
contained in st(by). If < 0, or & > 0 and AMC) < 2k, then m < N, where
N is a constant depending only on Shapes(K).

Proof of claim: We wish to reduce to the case where b is a vertex of K. If
by is not a vertex then we change the underlying simplicial structure of K by
adding a vertex at b, and forming the simplicial join of by with its link. Then for
cach simplex B C st(by) we must add to Shapes(K) the simplices resulting

from the corresponding subdivision of o(B). (However, we do not delete o(B)
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from Shapes(K), since in general there will exist simplices B' € (K — st(B))
with o(B) = o(B'), and these simplices have not been subdivided.) Let K'(bo)
denote the resulting metric simplicial complex. Notice that as by varies there
are only finitely many possibilities for S hapes(K'(bo)), and the set of these

possibilities, which we denote {S4,.-.,5r}, depends only on Shapes(K).

Fix a barycentre by, and suppose that Shapes(K'(b)) = S;. Let € =
(:no,:cl,...,:zm) be a taut m—chain in K satisfying the hypotheses of the
Claim. Each of the line segments [z;, zi11] € K willbe a PL path in K'(bo).

Let C' = (zi,z},...,2),zit1) denote the unique chain of minimal length
representing this path, and let C = (o, Ths--->To 1Ty -+ - ,zhm . z,,). This a

taut m’—chain in K'(bo) with AE) = X(C) and m' = m. Suppose that the
Claim were true in the case where the barycentre in the statement is a vertex.
Then there would exist a constant N, depending only on S; = S hapes(K' (b)),
such that m' < N;. We would then have a constant N = maz{Ny,... ,N:}
depending only on Shapes(K) such that m < m' < N; < N as required. So

it is enough to consider the case where by is a vertex of K.

Assume that this is so, and let C be as in the statement of the Claim. If
p(C), the path determined by C, were to pass through b, then because by is a
vertex it would have to occur as an entry in €. The first condition for tautness
would then imply that C had size at most two. We are only interested in large
chains, so we assume C' = (2o, Z1,-- - , L) With m > 2 and hence p(C) does
not pass through b. If we radially project from by onto the spherical complex
S(by) (which we defined in Lemma 1.8) then, according to Lemma 1.9, the

image of C under this map is a taut m-chain. We denote this m—chain in
S(b) by C'.

Let B(%) be a simplex containing [zi, zi41)- We can extend the line segments
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[bo, 2] and [by, z;11] until they meet (B(5) — st(bo)), and the resulting line
segments form two sides of a unique geodesic triangle in B(7). (Here we mean
a 2—dimensional triangle which is totally geodesic with respect to the metric
dp(i).) We denote this triangle by A;. For each ; the triangles A; and JANITY
have a common edge and we can map these triangles isometrically into A/ (x)?
to obtain the complex shown in Figure 1.3, Notice that the in general the

triangles A; are not 2-simplices in the simplicial structure on K, and we do

not have a bound on the vertex angles.

Because the chain C is taut the image of p( C') under this map is a geodesic
arc in M(«)? of length A(C). Further, this map takes C’ isometrically onto an
arc of the circle of radius e about the image of b,. We are assuming that if x > 0
then A(C) < 27«, so the image of p(C) in M(x)? cannot be a closed geodesic,
and hence it subtends an angle < 27 at the image of b,. Thus the image
of C" in M(x)?, and hence C' itself, has length less than I,(S,), the length
of a circle of radius € in the plane of constant curvature . By induction on
n = dim(K) there exists an integer N(b,), depending only on Shapes(S(by)),
such that every taut chain in the (n — 1)—dimensional complex S(b) of size at

least N(by) has length at least L(S.). Hence size(C) = size(C") < N(bp).

There are only finitely many possibilities for Shapes(S(by)), and the set
of these possibilities depends only on Shapes(K). So setting N equal to the

minimum of the corresponding integers NV (bo) finishes the proof. [J



30

image of p(C')

image of p(C

image of bo

Figure 1.3. The image of the developing map

1.6 The Completeness of the Metric

Theorem 1.12:  If Shapes(K) is finite then d, the intrinsic metric on K, is

complete.

Proof: Let (z,,) be a Cauchy sequence in (K,d), and € > 0. Fix an integer
R such that d(z,,zm) < € for all m,n = R.

By Theorem 1.11, there is an upper bound, N say, on the size of taut chains
from zg to zm(m > R). It follows that any geodesic segment joining zg to

€, in K lies is some subcomplex Ko(m) which can be expressed as the union

of at most N closed simplices.

Because Shapes(K) is finite there are only finitely many pointed models
for (Ko(m),zr). Let (Kp,2g) be 2 model which occurs for infinitely many
m, and consider the image in Kj of the sequence (z.)- Because the model is

compact this has a convergent subsequence, which we denote (z!,), with limit
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z'. 'We shall prove that (z4,), the corresponding subsequence in K, converges

to a point in the preimage of z'.

We first describe the preimage of ' in K. In general K will have infinitely
many bipointed subcomplexes (K); z R, ) giving rise to the bipointed model
(Ky; 2'y, 2'). However, the pair (Bo, 2), where B, is the unique simplex of K
which contains z, in its interior, is well defined up to isometry type. Suppose
B € Shapes(K) has a face isometric to By. For each choice ¢ of isometry from
By to a face of B we can measure the distance from $(z2) to (B — st(¢(xy)).
(So if By is a top dimensional cell this is equal to d(z;, 0By).) Let a; be the
minimum of these distances over all choices of B and ¢, and let ay be the
minimum distance between distinct points in the orbit of z, under the action

of the isometry group of B,.

If we set € = tmin{a;,a,} then the e—balls about the z, are disjoint. In
fact the distance between distinct balls is at least e. Further, for every M\ the
closed ball B(z,) is contained in st(z), so by Lemma 1.3 the line segment
joining z, to any point in B.(z),) is a geodesic segment in K. The definition of
z' implies that the sequence (%) must lie in the union of the B.(z)) after some
finite stage, and since this sequence is Cauchy it must eventually be contained

in a single ball. Let z denote the z) corresponding to this ball. For large n

we have:

d(z,x,,) = length of the line segment [z, z,,]
= length of the line segment [:B', a:;]

=0 as n; - co.

Hence the subsequence (zn;) converges to z, and since the sequence (z,,) is

Cauchy it too converges to z. [J
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1.7 The Two Dimensional Case

To illustrate the ideas involved in the proof of Theorem 1.11 we now
restrict our attention to the 9—dimensional case where many of the details are
considerably easier. For simplicity we shall only consider Euclidean complexes

— the general case requires only that one consider pictures drawn in M (k)

rather than EZ.

Throughout this section K denotes a connected 9_dimensional E-simplicial
complex with S hapes(K) finite and d denotes its intrinsic metric.

We say that an m—chain C = (z9,...,Tm) IN K has property T if it
satisfies the following conditions: Firstly, there is no simplex in K containing
three successive entries of C. Secondly, if B and B' are 2-simplices in K
which contain the line segments [£i_1,i] and [z, zi41] Tespectively, and z;
lies in the interior of an edge common to B and B', then the images of z,-1,%i
and z;,; under any local isometry from B U B' into E? are colinear.

Property T is weaker than the property of being taut (which we definied

in Section 1.4).

In Section 1.3 we showed that for a fixed integer m there exists a shortest
m-chain joining any two points in K. Let C be such a chain. We can delete
entries of C until no three sucessive entries lie in the same simplex. The
resulting chain must then satisfy property 7, since otherwise we could perform
simple moves to produce a shorter chain of the same size and with the same

endpoints, as illustrated below.
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Do a <

Figure 1.4: Shortening a chain which does not have property .

The existence of geodesic segments in the 2~dimensional case now follows

from the following lemma.

Lemma 1.13: There exist constants N and « such that every chain in K which

has property T and size greater than N has length at least «.

Proof: Choose ¢ small enough to ensure that the e—neighbourhoods of
distinct vertices of K are disjoint. Colour these neighbourhoods black and the
remainder of K white. Note that there is a lower bound #; on the distance from
any black region to the link of the corresponding vertex, and a lower bound /4,
on the length of line segments which lie entirely in the white region of some

2—-simplex, and have endpoints in the boundary of that simplex.

Let C = (zo,...,zn) be an m—chain in K with propery 7. Suppose m > 3
and that p(C), the PL path determined by C, is not contained in the open star of
any vertex of K. Then either there exists some ¢ € {1,...,m—2} such that the
line segment [z;, z,,1] lies entirely in the white region of K, or else p(C') must
contain a point in a black region and a point in the link of the corresponding
vertex. In either case C' must have length at least &« = min{{;,4}. So it is
enough to show that if m is sufficiently large then p(C') cannot be contained

in the open star of any vertex.
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es that if p(C) were contained in st(bo
and map the resulting triangles

For this one simply observ ) then we

could join each line segment [.’B,;,:l:,'_H] to by

lex of the type shown in Figure 1.3.

isometrically into E? to obtain 2 cOmp

Because Shapes(K) is finite there
d at the vertex, SO taking N

is a lower bound, 6 say, on the angles

subtende = /6 + 2 we are done. U]



2. Non-Positive Curvature in Piecewise Euclidean Complexes

In this chapter we prove the following special case of the Main Theorem:

Theorem : If K is a simply connected piecewise Euclidean complex of type A

or B then the following 11 conditions are equivalent:

Global conditions:

I) K has unique geodesic segments.
II) K satisfies CAT(0) globally.
M) K satisfies CN globally.
IV) The metric on K is convex.

V) Every geodesic triangle in K has non-positive excess.

Local conditions:

VI) K has unique geodesic segments locally.
VID K satisfies CAT(0) locally.
VIID) K satisfies CN locally.
IX) The metric on K is convex locally.
X) Every point of K has a ﬁeighbourhood such that any geodesic triangle
contained in that neighbourhood has non-positive excess.

X1) K satisfies the link condition.

The proof of this theorem involves a number of auxillary results about the
geometry of piecewise Euclidean complexes, which are of interest in their own
right. These include not only the theorems stated in the introduction, but some
of the supporting lemmas aswell.

The most difficult step in the proof is in passing from the local to the global

situation. This we do in Section 2.4, modelling our argument on that used

35
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by Milnor in his book on Morse theory [22] to prove the Cartan-Hadamard
Theorem, and subsequently by Stone [27] to prove the corresponding result for
PL manifolds. Although the same strategy of proof works here, the details of
our proof have little in common with those of the original, due to the absence

of both local compactness and a smooth structure.
As a postscript we show in Section 2.5 that geodesic segments in a piecewise

Euclidean complex of non-positive curvature can be extended indefinitely,

provided that during the extension the endpoint of the extended geodesic does

not have a contractible link.

Terminology

We recall the definition of the regularity conditions A and B:

A) Every subset of K which is closed and bounded in the intrinsic pseudometric

is compact.

B) Shapes(K) is finite.

We do not require complexes of type A to be finite dimensional, nor do we
require complexes of type B to be locally compact. (In the literature spaces
satisfying condition A are sometimes called proper.)

As we explained in the introduction, our main interest is in complexes of
type B, but some of our proofs require knowledge of the corresponding result
for spaces of type A, and including spaces of type A into our development
requires only a minimal amount of extra work.

For the remainder of Chapter 2 the letter K, without further qualification,

shall denote a piecewise Euclidean complex of type A or B.

In Chapter 1 we descibed paths combinatorially using m—chains. In this

chapter we adopt a more analytic approach, and to do so we use the following

definitions.
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Definition: A geodesic segment joining z to y in K is a PL path o : [0,1] —» K
with «(0) = =, of 1) = y which is parameterised proportional to arc length, and
has length L(a) = d(z,y).

Definition: A PL path 3 : [0,1] — K is a local geodesic if it is parameterised
proportional to arc length and every ¢ € [0, 1] has a neighbourhood [s, '] such
that di (B(t'), B(t")) = L(B)|t' —¢"| for all ¢ ¢ ¢ [s, §'].

Our insistence that all paths under consideration are defined on [0,1] and
parameterised proportional to arc length can prove inconvenient, but it allows us

to describe convexity properties of the metric by means of inequalities involving

geodesic segments.

Any PL path « : [0,1] — K has a unique minimal expression as the
concatenation of line segments in K » and the endpoints of these line segments
form an m—chain. It is easy to check that « is a local geodesic if and only if
this n—chain is a local geodesic (as defined in Section 1.3). If « is a geodesic

segment then this chain is also taut.

2.1 The Convexity of the Metric in Spaces with Unique Geodesic Segments.

In this section we prove that if X has unique geodesic segments (i.e. every
pair of points can be joined by a unique geodesic segment in K) then every
local geodesic in K is a geodesic segment, and the intrinsic metric is convex
in the following sense: If q and A are geodesic segments in K then the
function f, 5 : [0,1] — K given by f(t) = d(a(t),8(t)) is convex. The
latter assertion follows easily from the following result, the proof of which

occupies the remainder of this section.
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Theorem 2.1: If K has unique geodesic segments, and oy and « are geodesic

segments in K with a(0) = a;(0) then
d(O[o (t) , (t)) S t- d(ao (1) s (1 (1)) Vit € [0, 1] .

The first step in the proof of Theorem 2.1 is to show that geodesic segments

in K vary continuously with their endpoints (this statement will be made precise
in Lemma 2.3). To prove this fact for complexes of type B we introduce the
notion of a corridor.
Definition: An M (x)—corridor is an M(x)—simplicial complex which can be
expressed as the union of finitely many closed simplices {01,...,0m} such that
the following conditions hold for ; =1, ... ym—1: Firstly, 7, =0, N0y,  is a
non-empty proper subface of both o; énd oi+1. Secondly ;N 7., (which may be
empty) is properly contained in both 7; and 7;,;. Thirdly, o; No;,, = ﬂ;;(l) Tit;
for all r > 0. We will denote such a corridor by T’ = (01,. ., 0m).

This third condition ensures that any path in T' which has one of its endpoints
in each of o, and o,, must intersect all of the closed simplices ¢;. Notice that
I' is compact and hence a geodesic metric space of type A.

We shall be concerned with corridors which arise in the following way:
Suppose that C' = (v, ..., zy,) is an m—chain in an M (x)—simplicial complex
K, and that no three sucessive entries of C lie in any closed simplex of K (we
shall call an m—chain with this property minimal). We let B(z) denote the
unique closed simplex of smallest dimension which contains the line segment
[zi-1,z;], and consider the disjoint union of the m (not necessarily distinct)
simplices o(B(i)) € Shapes(K), modulo the equivalence relation generated
by: fB@)(2) ~ fa(ir1)(z) whenever z € B(i) N B(¢+1). (The maps fp are
those defined in the definition of a metric simplicial complex in Section 1.1.)

It is easy to check that because C is minimal this is an M (k)—corridor. We
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denote this corridor I'c. If C is the unique taut chain associated to a geodesic
segment o then we denote this corridor by I'(a).

Definition: An M(x)—corridor T is said to occur in K if T' = I'¢ for some
minimal m~-chain C in K.

Remark: In general the map from I'¢ into K induced by fg(li) : 0(B(2)) —
B(¢) is not an injection.

If K is of type B then for every integer m there are only finitely many
isometry types of corridors of length m which can occur in K. As in Section
1.3, we represent these isometry types by model corridors, and according to
Theorem 1.11 any geodesic segment in K whose length is bounded by a certain
linear function of m is the image of a geodesic segment in one of these models.

If k < 0 then the corridor T' has unique geodesic segments. This follows

by application of the following lemma to T' and its sub-corridors.

Lemma 2.2: Suppose T' = (01,...0y) is an M(x)—corridor where £ < 0. If

T € 0, and y € o, then there is a unique geodesic segment from x to y in I'.

Proof: In Theorem 1.1 we proved that there exists a geodesic segment from
ztoyinT, So the only question is that of uniqueness. Suppose that there are two
geodesic segments from z to y, given by distinct m-chains C; = (ao, - - -, Q)
and C; = (by,...,bn), Where ap = by = ,am = b, =y and a;,b; € ;N0
Let ¢; be the midpoint of the line segment [a;, b;]. The simplex o; is isometric

to a convex subset of M(«)" for some n. Hence

1
do; (s Ciz1) S§ (do, (@i, aiv1) + do; (b3, big1))

with strict inequality in the case ¢ = min{j : a; # b;}. Summing over i shows
that C = (cg,...,Cn) is an m—chain from z to y in T' whose length satisfies

the inequality:
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1
AC) <35 (A(C1) + A (C2)) = dr (,Y)
which is a contrédi_ction. O

We now prove that if K has unique geodesic segments then they vary
continuously with their endpoints. For paths o, 8 : [0,1] — K we use the

notation ‘Ha — Bl = sup{d(a(t),B(t)) : t € [0,11}.

Lemma 2.3: Suppose that K has unique geodesic segments. Given z,y € K,
and sequences of points T; — T and y; — vy, let o denote the geodesic
segment from z to y and let a; denote the geodesic segment from x; to y;. Then

o — ail] — 0.asi — oo

Proof: First we prove the weaker statement that a;(t) — a(t) asi — o for
all ¢, an easy compactness argument then shows that the convergence is uniform.
Case 1: Suppose that K is of type A. Then the closed ball of radius 2d(z,y)
about z is compact. After some finite stage all the «o; must be contained
in this set. Suppose, for contradiction, that for some t it is not true that
d( i), a(t)) — 0 as ¢ — oo. Then by compactness (a;(t)) has a convergent
subsequence («;(t)) with limit 2 # a(t). So we have
d(zj,2) — d(zj, (1) =0
d(y;,7) — dlyj 05 () =0 as j—r oo
But on the other hand,
d(zj,a; (1) =td(zj,y;) = td(z,Y)
d(y;,0; (1) = (1 —1) d(zjy;) = (1 —1) d(ey)  as g =
So z satisfies |
d(z,z) = Jlixgd(mj,aj (1)) =t d(z,y) and
d(y,z) = lim d(yj,e; (1)) = (1= t) d(z,9)-
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But a(t) is the unique point of K which satisfies these equations. Hence
# = a(t), contrary to hypothesis.

Case 2: Now suppose that K is of type B. After some finite stage z; € st(z)
and y; € st(y). Hence there is an upper bound on the distances d(zi,y;), and
so by Theorem 1.11 there exists an integer N such that each a; is the path
determined by a taut chain of size at most N. Thus «@; is the image of a geodesic
segment &; in at least one of the finitely many bipointed model corridors
(%,9; 00,. .., on), where o, € Shapes(K) and & denotes the image of a point
w € K under the identification of a corridor in X with the corresponding

model corridor,

Suppose that 4 is a model which contains infinitely many of the model
geodesic segments &;, and let (a;) denote corresponding subsequence of (a;).
We proved in Lemma 2.2 that p satisfies the hypotheses of Case 1, so the &;
converge pointwise to the unique geodesic segment &* from 7 to y in p. Hence

I (25,95) = L(a;) = L(&) = d, (4;,9;)
—d, (£,§) = L") asj— oo.
But dg(zj,y;) — dx(z,y) as j — oo, so du(Z,§) = dy(z,y) and hence
&* models the unique geodesic segment o from z to y in K. In particular,
because a is unique, any occurence of the bipointed model 4 in K must
contain «. Also notice that the image in K of the geodesic segment from
@;(t) to & (¢) in p is a path of the same length from a;(t) to «ft) in K.
Hence du(@*(t),&;(t)) > dr(a(t), a;(t)) for all t.

There are only finitely many models H. 8o for sufficiently large integers R

we can decompose (ai)i>g into finitely many infinite subsequences, each of

which consists of geodesic segments which can be modelled in some fixed pu.

For each such subsequence (a%) and for every ¢ ¢ [0,1]

di (a (), () <d, (& (1),& @) >0 as j— oo.
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Hence the sequence (o) converges pointwise to a.
Uniform Convergence: Assume that i is sufficiently large so that L(a;) <

L(a) + 1. Given e and ¢ € [0,1], we have proved the existence of an integer

N(t) such that d(a(t),ei(t)) < € whenever i > N(t). Hence

d(a(t+96),ai(t+9))
< d(a(t+8) a(t) + d(a(t) () + d(a(?) ,ai(t+9))
< |8] L(a)+ e+ |6 L ()
< 2¢ “whenever |8] < —2—1-_1—-(—:7)—_‘—_7
The result now follows from the compactness of [0,1]. O
Remark: More generally, the conclusion of Lemma 2.3 holds in any open
subset of K with the property that any two points in that subset can be joined by
a unique geodesic segment, and that this geodesic segment lies entirely within
the given subset. The same remark applies to Lemma 2.4. This importance
of this observation is that it allows us t0 appeal to Lemmas 2.3 and 2.4 when
dealing with complexes which have unique geodesic segments locally. (See
Section 2.3.)
We shall use Lemma 2.3 to reduce the proof of Theorem 2.1 to the case

where the geodesic segments under consideration are uniformly close. We now

give the proof in this restricted setting.

Lemma 2.4: If K has unique geodesic segments and « is a geodesic segment in
K then there exists € > 0 such that any geodesic segment 3 with B(0) = a(0)

and ||a — B\ < e satisfies

d(a(t),B() <t-da(1),A(1) Vte[01].
Proof: Represent a and 3 by the taut chains (aq,...,am) and (bo,---»0r)

respectively. Choose 71 sufficiently small so that Byy(ai) C st(a;) and the



43
open balls By,(q;) are disjoint. Then choose ¢ < 1 so that for every i the
e—neighbourhood of each compact arc [a;, a;4,] — (Bay(a;) U By,(aity)) is

contained in st(a;) N st(aiz1). Decompose {bo,...,b.} into sets
S0 = {bo,b1,...,b,,},8, = {Onos bngt1s oy by}, .., S, = I

such that S; C st(a;). (With our choice of 7 and e this can be done for any

chain which determines a path in K uniformly e—close to a.)

Let B; be a closed simplex of K which contains the line segment (0;,841].
If b; € st(a;) then B; N st(b;) C B; N st(a;) is non-empty. In particular if
J = n; then there is a unique geodesic triangle (with respect to the metric d B,)in
B; with vertices {q;, @it1,ba,}. We can map this (possibly degenerate) triangle
isometrically into E2 to obtain the geodesic triangle A; shown in Figure 2.1.
Similarly, for every b; € S; we have a unique geodesic triangle A(b;, b4, a;)
in B;. We map each of these triangles isometrically into EZ?, as indicated in

Figure 2.1. Here z' denotes the image in E? of 1 ¢ K,

a,, = al)

m

Figure 2.1: Superlinear divergence of geodesics
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By barycentrically subdividing the simplices in S hapes(K) and giving K
the induced simplicial structure, we may assume that the restriction of the
intrinsic metric on K to each simplex B agrees with the local metric dp. Hence
a line segment joining z' to y in E2 lifts to a geodesic segment in K if ' and
y' lic in the same triangle, while in general the line segment joining z' to 3 in
EZ2 1ifts to a path from z to y in K of length > dx(z,y). Thus

dps (a (1) ,8(1)) = d (a(1),8(1)), and )
de (a(8) B (1)) 2 dx (a(t),8() Vte01].

The angles 6; and ¢; shown in Figure 2.1 are all > =, because a and 3
are geodesic segments. Therefore the derivative (which is defined almost ev-
erywhere) of the continuous piecewise linear function Pt dp2(alt), B(t))
is non-decreasing. It is also non-negative, so 1 is convex and since $(0) =0

we have the following inequality

dg= (a(t) ,B()) S t-dp (a(1),B(1)) Vtel0,1]. (2)
Combining (1) and (2) completes the proof. [J

Examining the proof of Lemma 2.4 we see that the essential use of the fact
that « and f are geodesic segments is to infer that a;_1 ¢ st(a;) for ¢ # 1,
and that the angles 6; and ¢; are all > . To ensure that these conditions hold,
one need only assume that a and 8 are local geodesics. Thus we obtain the

following strengthening of Lemma 2.4.

Lemma 2.4*: If K has unique geodesic segments and o is a local geodesic

in K then there exists ¢ > 0 such that any local geodesic B with |la — Bl < ¢
and B(0) = «(0) satisfies

d(a(t),B (1) <td(a(1),8(1) Vie[0,1].

An important consequence of this generalisation is the following result,

which is needed in the proof of Theorem 2.7.
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Corollary : If K has unique geodesic segments then every local geodesic in

K is a geodesic segment. Hence there is g unique local geodesic Jjoining any

two points in K.

Proof: Consider a local geodesic « : [0,1] — K and let ¢ be as in Lemma
2.4. We will prove that § — {s : d(¥(0), 7(s)) = length of Yljo,s} is the whole
of [0, 1]. The set S is defined by a closed condition and contains 0, so it suffices
to prove that it is open. Fix s € §. Lemma 2.3 implies that for sufficiently small
é the geodesic segment from Y(0) to (s +6) is uniformly e—close to the local
geodesic v'(t) = (t(s + 6 ))- So by Lemma 2.4* these paths must coincide. [

We now turn to the proof of Theorem 2.1, and then conclude this section

by giving two easy corollaries.

Theorem 2.1: If K has unique geodesic segments, and oy and oy are geodesic

segments in K with ay(0) = a;(0) then
d(ao (t),a1 (t)) St-d(ao(l),al (1)) Vte [0, 1]

Proof:Let ¢ denote the unique geodesic segment from (1) to ay(1) and let
a; denote the geodesic segment from @9(0) to o(s). We will prove that the set
= {s:d(ay(t), ay(t)) < td(a(1), a,(1))Vt € [0,1]} is the whole of [0,1].

¥ contains 0 and is closed by Lemma 2.3, because if for some t the
inequality d(ao(t), as(t)) > td(ao(1), (1)) holds at s then it holds in a
neighbourhood of s. To see that Y is open: Fix s € ¥. Then by Lemma

2.4 there exists ¢ > 0 such that if las — a1s| < € then
A0 (), s () St d(ay (1), 0006 (1)) Ve [0,1],

Lemma 2.3 implies that |as — 45l < e for sufficiently small 6. For such

0 we have the following inequality, which shows that (s + 6) € %
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d(00 (8) aers (1)) < o (1) 0 (1) + d (0 (1) s (1)
<t dlao (1), 0 (1) +1 - d(as (1), ases (1)
—t-d(ao (1), a8 (1) VEE[01].

Hence ¥ is open. [1°

Corollary : If K has unique geodesic segments then for any geodesic segments

a and B in K the function fap(t) = d(a(?), B(t)) is convex.

Proof: We show that for any vgeodesic segments « and § in K
d(a(t),ﬁ(t))Std(a(l),ﬁ(l))Jr(l—t)d(a(O),ﬂ(O)) vt € [0,1].

The result then follows by applying this inequality to the initial segments of
o and 8. Let v denote the geodesic segment from a(0) to B(1). Applying
Theorem 2.1 twice, once using «,7y and once using ~*, 5* (where the star

“denotes reverse orientation), yields
d(a(t),B(®) < d(a(t),7(®)+d(r (1),
<td(a(1),7 (1) +(1—1) d(v(0),8(0)
—td(a(1),B1) +(1—1) d(a(0),8(0) Vte0,1],
as required. [l
Another immediate consequence of Theorem 2.1 is the following.
Corollary : If K has unique geodesic segments and denotes the geodesic

segment from ¢ € K to a fixed point =, € K, then F:K xI— K given by

F(z,t) = a,(t) is a Lipschitz contraction of K to .

Proof: We have d(F(z,t),F(y,t)) = d(az(1), ag(t)) < td(z,y) for all
¢t € [0,1], hence result with Lipschitz constant 1. [






47
2.2 Global Characterisations of Non-Positive Curvature,

and the Fixed Point Theorem.

In this section we define three global criteria for non-positive curvature and
show that if K is a piecewise Euclidean complex of type A or B then each of
these criteria is equivalent to requiring that K has unique geodesic segments.
One of these criteria is the CN-inequality of Bruhat and Tits, and this leads
to the Fixed Point Theorem stated in the introduction. The other descriptions
of non-positive curvature which we consider in this section are the CAT(0)
inequality, as defined by Gromov, and Alexandrov’s condition on the excess of
geodesic triangles. We begin by describing this last condition and proving that

it is equivalent to the uniqueness of geodesic segments in K.

Definition: Given geodesic segments a and B in K with common initial point
z, the angle between ccand B at is the distance between the points determined
by « and 8 in the spherical complex LK (z, K).

Definition: A geodesic triangle T in K consists of three points in K (the

vertices of T) and a choice of geodesic segment between each pair of vertices
(the edges of T).

We use the notation T' = Ao, 21, 72), Where o, 21, Ly A€ the vertices
of T. But it should be noted that T' is not uniquely determined by its vertices

unless geodesic segments are unique in K.

Definition: Let T = A(zo,z1,22) be a geodesic triangle in K. A triangle
T = A(zh, o, o) in E? is called a comparison triangle for T if dp:(z}, ¢5) =
dx(zi,z;) for 1,j € {0,1,2}.

Alexandrov [2] defined curvature via the notion of the excess of a triangle,
relating the sum of the sup angles of a geodesic triangle in the space under

consideration to the sum of the angles in the comparison triangle. If K is
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a complex of type A or B and o and 8 are geodesic segments in K with a
common initial point z then the sup angle between o and B at z is the lesser of
= and the angle between o and B as defined above. Given a geodesic triangle

Ain K, let [A[ denote the sum of the sup angles at the vertices,
Definition: The excess of a geodesic triangle A in K is |A] — 7.

Alexandrov defined non-positive curvature in geodesic metric spaces by
the condition that cvery geodesic triangle in the given space has non-positive
excess. In order to prove that K satisfies this condition if and only if it has

unique geodesic Ségments we must first introduce some notation.

Suppose that K has unique geodesic Segments and consider geodesic seg-
ments o and 8 in K with a(0) = B(0) = z,a(l) =y, and B(1) = z. Let ©
denote the angle between o and 3 at z, and suppose that © < 7. For suffi-
ciently small ¢ the geodesic segment from «a(t) to B(¢) is contained in st(z).
We can form the join of this geodesic segment with z and map the resulting
2—complex isometrically into E2, as shown in Figure 2.2. Let 2/, ¢/ , 2’ be points
in E? with the property that dk(z,y) = dp=(2', y), dg(,z) = dp=(2', 2'), and
the angle between the line segments [z, /] and [, 2] (which we call o' and

B’ respectively) is @.
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Figure 2.2: Locally divergence is linear

Lemma 2.5: Ify, 2,y and 2’ are as above then dx(y,2) = de2(Y', 2.

Proof: If e is sufficiently small then dx(a(e), B(e)) = dp2(a'(€), B'(€)),
because Figure 2.2 is isometric to its preimage in K. By elementary Euclidean

geometry

dEz (a' (6) N ﬂ’ (6)) = €dE2 (Ot’ (1) 3 ,B’ (1)) = edEz (y’, z') .

And by Theorem 2.1

di (a(€),8() < edx (a(1),8 (1)) = edx (,2) -

Combining these inequalities finishes the proof. [

Remark: Tt is not difficult to show that Lemma 2.5 is equivalent to Theorem 2.1.
Gersten calls Lemma 2.5 the Topogonov inequality (cf. Theorem 3.1), and

in [15] he derives the CN-inequality directly from this result. He was concerned

only with the 2-dimensional case and used a local definition of geodesic, but

with the benefit of the corollary to Lemma 2.4* his argument would work

equally well in the present setting.

Proposition 2.6: K has unique geodesic segments if and only every geodesic

triangle in K has non-positive excess.
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Proof: Suppose that every geodesic triangle in K has non-positive excess,
and fix z,y € K. Consider a geodesic triangle formed by taking two geodesic
segments « and £ from z to y and adding a third vertex z at the midpoint of «.
Since « is a geodesic segment, the angle at z is > . Hence the angles at  and
y are zero and consequently « and B coincide near their endpoints. The same

argument shows that at no point can o and B diverge, and hence they coincide.

Conversely, suppose that K has unique geodesic segments and that 7" is a
geodesic triangle in K. If one of the edges of 7 is the concatenation of the
other two sides then the sup angles of T are «,0 and 0. If not then, because
every local geodesic in K is a geodesic segment, each vertex angle must be less
than 7. It then follows from Lemma 2.5 that each vertex angle is no greater
than the corresponding angle in a comparison triangle for 7', and hence the sum

of these angles is no greater than =. [J

Gromov [17] defines a geodesic metric space X to be non-positively curved

if it satisfies CAT(0), the comparison axiom of Alexandrov-Topogonov.,

CAT0): Let T = A(xo,xl,mz) be a geodesic triangle in X, and let ya
point on the side of T which has endpoints z; and z,. Choose a comparison
triangle 7" = A(zg, 7y, 25) in E? and let 3 denote the unique point on the
line segment [z}, 2] such that dpz(z},y') = dig(zi,y) for i = 1,2. Then

dE2($67yl) 2 dﬁ'(CUO’y)'
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T T

] dl 7

z y ——> To y
i

i) T2

Figure 2.3: CAT(0)

CN: A metric space X satisfies the CN-condition of Bruhat-Tits [10] if for
every pair of elements z;,%2 € X there exists a point m with d(z1,m) =

d(zz,m) such that for all zo € X
2 2 2, 1 2
d(ml, ZEQ) + d (:Bz, :B()) 2_ 2d (m, .’Eo) =+ —2'Cl($1, 1:2) . (CN)

The main result of this section is the following:

Theorem 2.7: If K is a piecewise Euclidean complex of type A or B then the

following global characterisations of non-positive curvature are equivalent:

I) K has unique geodesic segments.
1) K satisfies CAT(0).
) K satisfies CN.

IV) Every geodesic triangle in K has non-positive excess.

Proof: The equivalence of 1 and IV was proved in Proposition 2.6. We will

now show II =III =1 =-II. Most of the work is in the final implication.
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IT =III: Suppose that K satisfies CAT(0). Fix 7 = A(zo,z1,2,5) with
comparison triangle 7" = A(zy, z1,24). Let m denote the midpoint of the
edge of T which has endpoints z; and z,, and let 1/ denote its comparison
point. It is easy to check that E? satisfies the CN condition (in fact, by the
parallelogram law, one gets equality in all cases) so the inequality (C N ) holds
for zp, 2, o, m, Removing the primes the value of each term in (C'V) stays
the Same with the exception of the first tern; on the right hand side, for which
by CAT(0) we have dp=(zy,m') > dg (xo, m).

IIT =I: Suppose that there are two geodesic segments from Ty to z5 in K.
Shortening them if necessary, we may assume that their midpoints, which we
denote by m and z,, are distinct. Then d(z1,20)? + d(z,, zo)? = sd(z1,2,)2,
so (CNV) implies that d(m, z,) = 0, contrary to hypothesis.

I=II: Let T = A(zg,z1,72) C K, and let y be some point on the unique
geodesic segment from z1 to 5 (for which we adopt the notation [1, z3]). Let
6 denote the angle between [y, 2] and [y, o] at y, and let ¢ denote the angle
between [y, z,] and [y, o] at y.

First suppose that > 7, then it follows that the concatenation of [z1,9]
and [y, z4] is a local geodesic from z; to z,. Asa corollary to Lemma 2.4* we

showed that every local geodesic in K is a geodesic segment, Hence
dx (20,y) = di (2o, 21) — di (z1,y).

The triangle inequality applied to the comparison triangle 7" — A(zg, 2y, zh)
in E? yields
g2 (20,Y') 2 d= (2, 7) — de (z1,9")
= dx (20, 21) — di (21, 7).

Hence d(z,, y) < dp2(zp,y'), so we are done if @ > 7, and similarly if ¢ > 7.
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So we may assume that 6 and ¢ are both less than #. This enables us
to construct the planar 1-complex shown in Figure 2.4. Here dg(z;,y) =
dp=(2},y"), dx(22,9) = dp=(2},y"), dx(20,y) = dp=(l,y") and the angles
¢' and ¢' are equal to 6 and ¢ respectively. Notice that since [z, y] is a geodesic
segment ¢' + 6 > .

Figure 2.4: A comparison figure preserving angles

We now transform Figure 2.4 into a comparison triangle for 7' by motions

which do not decrease dg:(zl),y") = dk(zo,y), thus completing the proof of

the theorem.

By Lemma 2.5, dg(zo,2;) > dp2(z9,27) and dg(zo,z2) > dpz(zll, z).
Also, since § < 7 and geodesic segments are unique in K, we have dg (o, y)+
dk(y,z1) > di(zo, ;). So without changing the length of the edges incident
at " we can increase the angles ¢ and ¢' until the distances dg(xg,zY) and
dp2(zy, 23) reach dy(zg,21) and dy (z, z) respectively. This brings us to the
situation shown in Figure 2.5. We now increase the angle % until it is equal to
7. While doing so we keep all edge lengths constant, except that dg2(zy,y") is
allowed to increase. This completes the construction of the comparison triangle,

and with it the proof of Theorem 2.7. []
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Figure 2.5: Constructing a comparison triangle

Bruhat and Tits showed that if a metric space X is complete and satisfies the
CN condition then any group G which acts on X by isometries and has a non-
empty bounded orbit stabilises some point of X. An elegant proof of this, due
to Serre, can be found in [8] pp.157-158. Moreover, if X is a geodesic metric
space then there is a unique geodesic segment connecting any two points which
are fixed by G. Since G acts by isometries it must fix this geodesic segment
pointwise. It follows that the fixed point set of GG is contractible. So we have

the following consequence of Theorem 2.7.

Fixed Point Theorem: If K satisfies any of the conditions 1 to IV given in
Theorem 2.7, and a group T acts on K by isometries, such that there is a bounded

orbit, then the fixed point set of T is non-empty and contractible.

2.3 Local Charactérisations of Non-Positive Curvature.

One would like to define what it means for a Euclidean simplicial complex to
have non-positive curvature locally. The obvious way to do this is to select one

of the global characterisations of non-positive curvature given in Sections 2.1
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and 2.2 and require that every point of the given complex have a neighbourhood
in which this condition holds. Theorem 2.8 (which is stated below) shows that

this definition does not depend on which global charactersiation we choose.

Theorem 2.8 also relates local curvature to the structure of links in the
given complex by means of the link condition. It is this relationship which
enables us to determine whether or not certain simplicial complexes, whose local
(combinatorial) structure is sufficiently well understood, support a structure of
non-positive curvature (see Proposition 4.4 and Theorem 5.6).

We maintain the convention that the letter K, without further qualification,
denotes a piecewise Euclidean complex of type A or B.

Definition: K satisfies the link condition if for every = € K two points ¢/, 2’ in
the spherical simplicial complex LK (z, K) can be joined by a unique geodesic
segment in LK (z, K) whenever d(y',7) < .

Definition: An open set U in K is said to be geodesically convex if for all
z,y € U every geodesic segment joining z to y in K is contained in U.
Definition: X is said to satisfy a property locally if K can be covered by

geodesically convex open sets each of which satisfies the given property.

Theorem 2.8: For piecewise Euclidean complexes K of type A or B the

following local characterisations of non-positive curvature are equivalent:

I) K has unique geodesic segments locally.
II) The metric on K is convex locally.
) K satisfies C AT(0) locally.
IV) K satisfies CN locally.

V) Every point of K has a neighbourhood such that any geodesic triangle
contained in that neighbourhood has non-positive excess.

V1) K satisfies the link condition.
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Further, if K is of type B then each of the above conditions is equivalent to

VII) There exists ey > 0 such that Jor all © € K the ball B, (z) is geodesically

convex and has unique geodesic segments.

If K is of type A, then condition VII is strictly stronger than the other

conditions, as the following example shows.

Example: Let L be the 1-complex which has vertices v,, and which for
every integer n has three 1—cells {van—1,v2n}, {v2n—1,v2n41}, {v2n, V2n41}, €ach
of length 1/n. This is a Euclidean simplicial complex of type A which satisfies

conditions I to VI of Theorem 2.8, but does not satisfy condition VII.

Proof of Theorem 2.8: We begin by showing that conditions I to IV are
equivalent. Let U be a geodesically convex open subset of K » and suppose that
geodesic segments are unique in U. The Remark following the proof of Lemma
2.3 implies that the conclusions of Lemmas 2.3 and 2.4 are valid in I/, Theorem
2.1 follows from these results in an entirely formal way, hence the metric on
U is convex. Then, a formal translation of the arguments given in Section 2.2
proves that U satisfies CAT(0),CN and Alexandrov’s condition on the excess
of a geodesic triangle. The argument given in the proof of Proposition 2.6
shows that this last condition implies that geodesic segments are unique in U,

Hence conditions I to V are equivalent,

It is clear that VII=, so it suffices to show that I and VI are equivalent

and that if K is of type B then VI=-VIL This follows from the following three

results.

First we show that any E-simplicial complex of type A or B can be covered

with geodesically convex open sets. Here, as in Lemma 1.2, e(z) denotes the

distance from z to its link in K.
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Lemma 2.9; Givenz € K, the open ball B.(z) is geodesically convex whenever

e < 2e(z).

Proof: Fix y,z € Be(z) and notice that if « is a geodesic segment joining
y to z in K then its image is contained in B() C st(z)- If we form the join
of « with ¢ and map the resulting 2—complex isometrically into E? then we

obtain the situation illustrated in Figure 2.6. It follows that

d(a(t),z) < max{d(e,y),d(z,2)} <€
as required. [

Lemma 2.10: If K is of type B then there is a constant & > 0 such that for

every © € K there exists y with B, () € B%E(y)(y).

Proof: The idea of the proof is to construct a constant ¢ such that if
¢ € K™ lies in the 2¢,—neighbourhood of the (n — 1)—skeleton of K then
there exists y € K™V such that Be(z) Bi(y)(¥)-

Let & denote the disjoint union of {o : 0 € Shapes(K)}, and define
n: X — (0,00) by

n(s) =min{d(s,F):0 € Shapes (K) ,F a face of o, s € (0 —F)}.

Note that 7 is continuous on the interior of simplices.

Let 7 be 1 of the minimum value attained by 7 on (0, the O-skeleton
of . Then inductively for n < D = dim(K) we define 7, to be % of the
minimum value attained by 7 on the compact set obtained by deleting the 7,1

neighbourhood of £(*~1 from %™, Notice that 47 < 7a—1. Set €g = nD-

Arguing by induction on n it is easy to see that if z € K® — K1 then

either 21, < €(z) or else there exists y € K (»=1) with By, (z) C Biy(y)- U
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Proposition 2.11;: g satisfies the link condition if and only if for everyz € K

geodesic segments are unique in Be(z) whenever ¢ < e(z)/2.

Proof: Fix z € K and let ¢ < €(z)/2. The exponential map allows us
to identify LK (z, K) with the boundary of the closed ball Be(z), by a map
which scales the metric by a factor of €. Given Y,2 € Be(z) let o', 2’ denote
the points in LK (z, K ) determined by the line segments [z,y], [z, z]. Lemma

1.2 shows that if y = 2 then [y, z] is the unique geodesic segment joining y

to zin K. So we may assume that Yy # 2.

Suppose that there exists a geodesic segment o joining ¥ to z in (Be(z)—2).
In Lemma 1.10 we showed that ', the image of « under radial projection, is
represented by a taut chain in LK (z,K), and L(a') < 7 (see Figure 1.3). On
the other hand, any piecewise geodesic path o' of length < 7 which joins
to 2 in LK(z,K) is the image of a path « from y o zin (B.(z) — z), as
illustrated in Figure 2.6.

0B (z) = [ T,
__0B() = IK(z, K)

Figure 2.6: Radial projection of a geodesic segment
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Let A = L(a) and X' = L(¢/) < 7. By the cosine rule we have
N =d(z,y)’ +d(z,2)" — 2d(z,y)d(z,z)cos N,

Hence minimising ) is equivalent to minimising X. So if d(y',2') < = then
there is a unique geodesic segment joining y' to 2z’ in LK (z, K) if and only if

there is a unique geodesic segment joining y to z in (B(z) — ).

To complete the proof we must show that if d(y',2') > = then there is a
unique geodesic segment from y to z in B.(z). But this is clear, because by the
arguments given above there is no local geodesic from y to z in (Be(z) — ),
and the line segment [z, w] is the unique geodesic segment from z to w for all
w € B.(z). Hence the concatenation of the line segments [y, z] and [z, z] is

the unique geodesic segment from y to z in B.(z). O

We now return to the proof of Theorem 2.8. If condition I holds, then
Lemma 2.9 implies that for every z € K there exists 6(z) > 0 such that B.(z)
is geodesically convex and has unique geodesic segments whenever e < 6(z).
It then follows from the “if” implication of Proposition 2.11 that K satisfies

the link condition. Conversely, the “only if” implication of Proposition 2.11
shows that VI=L

In fact, these arguments shows that if condition I holds then geodesic
segments are unique in B.,)/2(y) for every y € K. Moreover, the uniqueness
of geodesic segments implies that the restriction of the metric to each such ball
is convex. It follows that if Be,(z) C Bey)/2(y) then B, (z) is geodesically
convex and has unique geodesic segments. The equivalence of conditions I and

VII for complexes of type B now follows from Lemma 2.10. O
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2.4 Passing From the Local to the Global Situation.

We now turn to the the most difficult step in the proof of the Main Theorem.
Namely, that of relating local characterisations of non-positive curvature to

global characterisations.

Theorem 2.12: If K is a piecewise Euclidean complex of type A or B which
has unique geodesic segments locally then for all z,y € K there is a unique

shortest path in each homotopy class of paths from z to yin K.

Corollary : If K is simply connected and satisfies any of the local characteri-
sations of non-positive curvature given in Theorem 2.8 then it satisfies all of the

global characterisations of non-positive curvature given in Theorems 2.1 and 2.7,
Thus Theorem 2.12 completes the proof of the special case of the Main
Theorem which we stated at the beginning of Chapter 2, and shows that for
simply connected simplicial complexes the existence of a piecewise Euclidean
metric of non-positive curvature is, as one would expect, a local condition.

Throughout Section 2.4 we assume that K satisfies the hypotheses of Theorem
2.12, and that p,q € K are fixed.

Let @ denote the set of PL paths « : [0,1] — K such that a(0) = p
and o(1) = g, equipped with the metric topology given by |la — || =
sup{d(a(t),B(t)) : ¢t € [0,1]}. We continue to denote the length of « by
L(a), and denote the length of @lpg by L(a,t). Notice that L(a,t) is a

piecewise linear function of ¢ and hence is differentiable almost everywhere.

Definition: If o € Q) then the energy of o is E(a) = fol(% a,t))dt.

The Cauchy-Schwarz inequality implies that E(a) > L(«)?, with equality
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if and only if o is parameterised proportional to arc length.

Although E is not continuous on Q, it is continuous on the the following

subspace of “broken geodesics”.

g |
Q(n) = {GEQ:tHa (z—t—) is a geodesic segment forz=0,...,n—1}
n

On this subspace E is given by the formula

n—1 bl

B@=Y [ (gt.ua,t))z u = 5o dlaltin)a ()

f=0 ti I=0 1+1 !

—n Y d(a(tn),a(®))

1=0

where t; = i/n. To prove Theorem 2.12 we analyse the convexity properties

of E on the subspace

Q(n,c) = {a € (n) : E(a) S e}

Proof of Theorem 2.12

The strategy of our argument is as follows (cf. [22] Theorem 19.2, and
[27] Theorem 1). Fix a homotopy class of paths from p to ¢ in K and let oy
and a, be two shortest paths in this class. In Lemma 2.13 we show that there
exist constants n and e such that o, and oy lie in the same path component
of Q(n,e). Moreover, we can choose e so that every a € 9(n, ) is uniquely
determined by the sequence of points (a(t;))r=. This allows us to embed
Q(n,e) in K*1. We then extend E to a continuous function on the whole of
K"! and prove that it has strong convexity properties (Proposition 2.17). This
leads to the following result (see Lemmas 2.19 and 2.20):

The set of local minima of Elq(n) is discrete, and there is a strong

deformation retraction of Q(n, e) onto this set.
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This will complete the proof of Theorem 2.12, because the fact that a4 is a
shortest path 1n its homotopy class implies that £ restricted to the corresponding
component of §}(n, e) attains its minimum value at ap. The same is true of
@1. But E has a unique local minimum in each component of Q(n, ), hence

a9 and a; must coincide.

Lemma 2.13: Suppose that K is of type B, and let €, be such that forevery z €
K the ball By, (z) is geodesically convex and has unique geodesic segments.
If ag and oy are two shortest paths in the same path component of  then
there exists a positive integer n and a constant e > O such that oy and o
lie in the same path component of Q)(n,e). Moreover, if we let t; = i/n then

d(a(t;), a(tiy1)) < e for every a Q(n,e)andic {1,... n— 1}.

Proof: Let D : I'xI — K be a homotopy between the maps «q and o,
and denote D(s, ) by a,(7). Because D is uniformly continuous, we can find
an integer m such that if 7; = ¢/m then d(as(r,-),as(n+1)) <e¢gforallse
and : € {0,...,m —1}. We can then replace each o, by the path o, which is
defined to be the concatenation of the unique geodesic segments joining a(7;)
to ay(7i4y) in K,

More precisely, we reparameterise the geodesic segment joining a,(r;) to
as(Ti41) to obtain a path ot [m, Ti+1] — K which is parameterised proportional
to arc length, and define o/, : [0,1] — K by y]ir,msa] = 0}, Notice that o = o,
and a; = o} because o, and «; are shortest paths in their homotopy class and

B, (z) is simply connected (indeed contractible) for all z.

Geodesics vary continuously with their endpoints in B, (z)foreveryz € K,
and hence s — o' is a continuous path from aq to «; in (m). The energy

function E is continuous along this path and hence attains a maximum value,

which we denote by e.
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For every o, we have the following inequality

m—1 Ti41

B =y [ (fr@m) ar - mmz 4(6, (rapn) ety () S e

T
which implies that e < m?el.

Thus if we let n = m? and ¢; = i/n then for every a € {(n,e) and

i € {0,...,m — 1} we have

tit1

dlalt),a ) = | [ FL@n d

<l [ (Sr(an) a

<

S|

e <é.

Where the second line comes from the Cauchy-Schwarz inequality in L?[0,1]
applied to £ L(a,t) and the characteristic function of [tistia). O

Before proceeding we must dispense with an irksome technicality. Namely,
if K is of type A then in general the fact that K has unique geodesic segments
locally does not imply that there exists a constant € such that geodesic segments
are unique in B, (z) for every z € K. However, one can apply the method
of Proposition 2.11 to show that for every integer R there exists ¢(R) > 0
such that if d(z,p) < R then Bp)(z) is geodesically convex and has unique
geodesic segments. This allows us to modify the proof of Lemma 2.13 to obtain

an analogous result if K is of type A, as we now indicate.

For the purposes of this discussion we retain the notation which we intro-

duced in the proof of Lemma 2.13. Fix an integer R so that the image of the
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homotopy disc D is contained in the ball of radius R about p. We can choose
m so that d(e(7i), a,(ri41)) < €(R) for all s [0,1] and 7 = i/m where
i € {0,...,m —1}. As in the proof of Lemma 2.13, we replace each «, by
a, the concatenation of the geodesic segments joining a,(7;) t0 avg(7iy1). This
gives a continuous path from g to o, in (m). Let e denote the maximum

value which E attains on this path.

If « € 2 and F(a) < e then the image of « is contained in the ball of radius
/e about p. Fix an integer R’ so that R’ > Ve. The final inequality in Lemma
2.13 shows that if we take n sufficiently large then d(a(t;), a(tiz1)) < e(R')
for every a € Q(n,e) and 5 € {0,...,n — 1}, where ¢; = t/n.

Thus, if we write ¢ in place of ¢(R')/4 then the essential conclusion of
Lemma 2.13 remains valid if K is of type A. Namely, a path o € Q(n,e)
is determined by the sequence of points (a(t)), and for every z € K which
- we shall need to consider (i.e. those which lies in a small neighbourhood of

the set {a(?) : @ € Q(n,e)}) the ball B, (z) is geodesically convex and has

unique geodesic segments.

For the remainder of this section we assume that n and e are as in Lemma
2.13 or as in the preceding discussion, according to whether K is of type B or

of type A. We also retain the notation t; for i/n.

Lemma 2.14: The map & : Q(n, e) — K1 givenby a v {a(ty), ..., a(ty_y))

is an injection.

Proof: Elements of Q(n, ) are geodesic on the subintervals [¢;,¢;,,], and

we chose ¢ so that if d(a(t;), a(ti41)) < € then there is a unique geodesic

segment from a(t;) to «(t;,;) in K. [
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To complete the proof of Theorem 2.12 we study the image of Q(n,e)
under the map ®, which we defined in Lemma 2.14. We begin by describing
the metric structure of k™1, whose elements we denote by X = (z1,...,Zm).
Each closed cell £ ¢ K™! is the (n — 1)—fold Cartesian product of simplices
in K. The partial metric on & = o1 X ... X op—1 is given by d(X,Y)* =
S d(zi, )% and K™ is a piecewise Euclidean space of type A or B
according to the type of K.

Lemma 2.15: a(t) = {01(t),...,an_1(t)) is a geodesic segment in K"~ if

and only if a; is a geodesic segment in K for every 1.

Proof: According to the Cauchy-Schwarz inequality, a path « is a geodesic
segment if and only if it has minimal energy among all paths which have
the same endpoints as a. Therefore it is enough to consider paths which are
parameterised proportional arc length, and show that E(a) = X7 E(a).

Suppose that « is represented by the m—chain (a(7),...,a(mm)). Then
«; is represented by the m—chain (a;(m),. .., i("m)), and is parameterised

proportional to arc length on each subinterval [r;, 7;4;]. Hence

E(a)= mg: 7 (-%L(«x,zt))2 dt = Z:l d(o‘(::?_’ii(ﬁ))z
EE(%) = goj (%L(aj,t))z dt = gﬂg d(a (:Ll)—,? ()"

The last terms in each row are equal because of the definition of the metric on
the individual cells of K*~1. [

We have proved that the map ® : a — {a(t1),...,a(ty)) is injective, and
it is easy to see that it is continuous (d(®(a), ®(8)) < (n—1)7 ||a—A|]). In fact

¢ is a homeomorphism of €(n, e) onto its image, because in the region of K
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under consideration geodesic segments vary continuously with their endpoints
in balls of radius 4e;, and L(aly,4,,,]) < & for all & € Q(n,e).
We denote the image of & in K"~! by P,. We extend the map (Eod~1):

P, — [0,00) to a continuous function (which we shall also call E) defined on

the whole of K"~ by the formula

n—2
E(X)=n (d(P, 1)’ + Y d (@i, zi1)” + d(iﬂn—l,Q)Z) :

i=1

We shall prove (Proposition 2.17) that this extended function has a strong
convexity property which enables us to strong deformation retract P, (and hence
2(n, e)) onto a discrete set of local minima of E, thus completing the proof

of Theorem 2.12.

We shall need the following consequence of Theorem 2.8.

Lemma 2.16: Let =z € K, and suppose that Bs(z) is geodesically convex and
has unique geodesic segments. If a : [0,1] — Bs(z) is a geodesic segment
in Bs(z) such that (0) # a(1) and D = d(z,(0)) = d(z,a(1)) > 0 then
d(z,a(t)) < D for all t € (0,1).

Proof: By Theorem 2.8 CAT(0) holds in Bj(z), so it is enough to consider

the case K =E2, where the result is clear. [J
The proof of the following result is essentially due to Stone [27].

Proposition 2.17: If X, Y € K™! are distinct points in the ¢, —neighbourhood
of Pe and d(X,Y') < € then there is a unique geodesic segment from X toY

in K", and E is strictly convex along this geodesic segment.

Proof: Notice that d(X,Y") < ¢ implies that d(z;, y;) < € for all ;. Hence
there exists a unique geodesic segment from z; to y; in K, and we denote

this by ;. The uniqueness of the 3;, together with Lemma 2.15, implies that
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B(t) = (Bi(t),- .., Bni(t)) is the unique geodesic segment from X to Y in
K~

It remains to show that E is strictly convex along 8. We are assuming that

there exists Z € P, such that d(Z,X) < 1. Hence
d(zi, zis1) < d(@i, z) + d (2, 2i01) + A (Zi41, Tiwn) < 3er-

It follows that 8; and §;4; are both contained in By, (), which is geodesically
convex and has unique geodesic segments. Further, by the convexity of the

metric on By, (z;) we have
d(p, B (1)) < (1 —1) d(p,z1) +1d(p,y1)
d(Baer (t),9) € (1 — 1) d(2a-1,9) +1d(Yn-1,9)
d(Bi (1), Bix1 (1)) < (1 — 1) d(@i,zin) + (¥ Yier) -

By Lemma 2.15 the first of these inequalities is strict for ¢ € (0,1) unless
d(p,z1) # d(p,y1) or 21 = 1. And if z; = y; then by the same argument the
bottom inequality is strict for 7 = 1 and ¢ € (0, 1) unless d(z1,72) # d(y1,Y2)
or £, = y,. The points X ,Ye K n—1 are distinct, so proceeding iﬁ this way
we see that one of the inequalities given above is strict for all ¢ € (0,1), or else
there is some i for which d(z;, zit1) # d(¥i Yip1)- (Here we have adopted the
convention that z, = p and 2z, = ¢ for all Z € K*7)

Using the convexity of the function f (a) = a? one can show that for any
non-negative numbers a,b,c if a < (1 — )b + tc then a? < (1 — 1) +td,
with equality only if the original inequality was actually an equality, and either
¢t € {0,1}, or b = ¢ = a. Applying this observation to the inequalities given

above, and adding the resulting inequalities we obtain

E(B(t)<(1-t)EX)+tE(Y)

with strict inequality for all ¢ € (0,1). U
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By subdividing the simplices of K we may assume that every closed cell
in K™ ! which meets P, has diameter bounded above by €. Let L denote the
union of these closed cells, and notice that if two points in L are 4¢; —close then
they can be joined by a unique geodesic segment in L. It follows from Lemma
2.4* that if these points are elements of the same closed cell in L then the line
segment joining them in L (which is q priori only a local geodesic) is a geodesic
segement. In particular, by Proposition 2.17, E is strictly convex along this
line segment. Hence E |z attains its minimum value at a unique point Xy, € 3
for every closed cell ¥ in . Inductively, in order of increasing dimension, we

star each cell with this point to obtain a (simplicial) subdivision of .

More precisely, if ¥ is a 1-cell and 0% = {X,, X1} then we introduce
new edges {Xy, X5} and {Xs, X1} into the underlying cell structure of I..
Then inductively we assume that we have constructed the desired simplicial
subdivision on the (; — 1)—skeleton of L and consider an ;—cell ¥, For every
J—dimensional face 77 of 8X that does not contain Xy we introduce the union
of the line segments {[Xy,Y]:V ¢ 77} as a new (j + 1)—simplex in the cell
structure on L. Notice that we have not changed the metric structure on L,

only the underlying combinatorial Structure,

Let J denote the union of the closed cells in this subdivision which meet
P.. Notice that if C is a closed cell in .J then E is strictly convex along all of

the line segments in ¢ and E|c attains its unique minimum at a vertex.

Proposition 2.18: The set {E(v) : v is a vertex of J } is finite.

Proof: If K is of type A then the result is trivial because J is compact. So
we may assume that K is of type B. The vertices of J are of two types, those

which were vertices of L, and those which we introduced in the construction
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of J. First we show that {E(X) : X is a vertex of L} is a finite set.

Every vertex of K*! is of the form X = (v1,. .. ,Vn—1) Where each of
the coordinates v; is a vertex of K. If X € L then (as we showed in the
proof of Proposition 2.17) d(v;,vit1) < 3&t for all 5. By Theorem 1.11, there
exists an integer N such that any geodesic segment in K of length less than
3¢; can be modelled in one of the finitely many corridors which occur in K
and have length less than N. Let A denote the set of such corridors. Then
for i € {1,...,n — 2} we have d(vi,viy1) € {d(u,v) : u,v vertices of some
p € A}. This last set is finite, so d(vi,vi+1) takes on only finitely many values
as X varies over the vertices of L. A similar argument shows that d(p, v;) and
d(q,vi41) can only take on finitely many values, and since E(X) depends only

on these quantities the set {E(X) : X is a vertex of L} is finite.

It remains to show that the set of values which E can take at vertices which
were introduced in the construction of J is finite. This set can be written as
{infE|s : S aclosed cellin Land XN P, #£ 0}, and we will use this description
to show that the set is finite. The idea of the proof is to show that infE|s
depends only on the metric structure of a set of complexes which we obtain by
concatenating n—tuples of corridors in A. Because A is a finite set there are

only finitely many possible isometric models for such complexes.

Let = (By X...xBy1)bea closed cell in I, which meets P, and fix
X € 3. Because d(z;, zi+1) < 3¢ and geodesic segments are unique in By, ()
for all z € K, there is a unique geodesic segment from z; t0 ;4 in K for every
i € {0,...,n—1} (recall the convention that zo = p, T, = q). We parameterise
this geodesic segment proportional to arc length to obtain ~% : [ti, tit1] — K,
and denote the concatenation of the 7% by vx : [0,1] — K. Notice that

~x € (n) and E(X) = E(yx) (which is greater than e if X ¢ P.).
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Let T'; denote the model corridor T'() (here we are using the notation
which we introduced with the definition of a corridor at the beginning of Section
2.1), and let 4% denote the preimage of % in I';. We concatenate the corridors
I'; by identifying the unique face of I';; which contains &?1(1&”1) in its interior
with the unique face of T; which contains F%(ti41) in its interior. We denote
the resulting complex by C(X)=Ty*...%xT,_;, and identify I'; with its
image in C(X). Notice that the defining maps I'(vY) — K induce a map
¢ : C(X) — K which is length preserving.

The concatenation of the paths i ’form a path from 3%(0) = p to
% 1(1) = ¢ in C(X), and if we denote this path by 9x then ¢ o 9x = vx. In
particular, because ¢ is length preserving E(vx) = E(5x).

On the other hand, if 4 is any path in C(X) with the property 7(0) = p,
¥(1) = § and for every i the image of 4|y, ... is contained in T then
E(¥) 2 E(Y) for some ¥ € X. To see this notice that our construction
of C(X) was such that Iy N T4y is the unique simplex of C(X) which
contains ¥x(t;) in its interior. Hence for every ¢ the point ¢ o 4(¢;) lies in
the unique simplex of X which contains a; in its interior, and this implies that
(¢ 0F(t1),...,d 0 ¥(ta-1)) is an element of . Let ¥ denote this element.
If ¢ 0 ¥l 1., = 7 for every i then E(¥) = E(¢ 04) = E(yy), if not then
E(7) = E(05) > E(yy). |

Thus if we let e(C(X);5,§) denote the infimum of E(%) taken over all

such paths ¥, then the minimum value which E attains on ¥ is
inf{e(C(X);$,d) : X € 5}.

The value of this expression depends only on the metric structure of the

bipointed complex (C(X); p, q), and since C(X) was obtained by concatenating
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corridors from the finite set A, there are only finitely many possible isometric

models for (C(X);p,§)- U

We regard V = {E(v) : v € P is a vertex of J} as the set of critical
values of E|;. Proposition 2.18 implies that this set is finite, and we write
V = {e1,...,em} Where 0 < e; <... < e, < e. Notice that J was constructed

<o that V contains all the local minima of Elp,.

We consider the following subcomplexes of J:
H; =U{0’C P, : E(W) < e Vwvertices Weo}l, 1S15m.

The strict convexity of E|; along geodesic segments implies that H; is a full
subcomplex of J and that Hy C (X € J: EX) < e}l = P.. Tt also
implies that no two adjacent vertices (i.e., vertices that cobound a 1—cell in

J) correspond to the same e;. In particular, Hy is a discrete set consisting of

global minima for E|p,.
The following two lemmas complete the proof of Theorem 2.12.

Lemma 2.19: P, strong deformation retracts onto H,,.

Proof: We constructed J as a simplicial subdivision of a neighbourhood of
P. in L. So any closed simplex o of J which is not contained in P, can be
written ﬁniquely as a join (o' x o") where ¢’ C Hn and ¢" is disjoint from
P,. The straight line retraction of (¢ — ¢") onto o' takes (P, N o) into itself
because E is strictly decreasing along each of the line segments from ¢ to o'
These straight line retractions of individual simplices agree on common faces,

and hence combine to give the desired retraction of P, onto H,,. O

Lemma 2.20: H; strong deformation retracts onto the union of H;_y with a

discrete set of vertices at which E has a local minimum.
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Proof: Consider a vertex W with E(W) = e;. If W is an isolated point

of H; then the value of E at all of the adjacent vertices of J is greater than e;

and hence E has a local minimum at W.

H; is a full subcomplex of J, so if W is not an isolated point of H; then
St(W,J) N H; is the cone W « (link(W, J) N H;_;), i.e. it is the union of
the line segments {[X,W]: X ¢ link(W, J) with E(X) < ¢;}. We use this
cone structure to define a strong deformation retraction D of St(W, J) N H;
onto link(W,J) N H,;_; as follows:

Fix a point X, € link(W,J) N H;_, and let « - [0,1] — S¢(W, J) denote
the line segment [W, X,]. We define D by requiring that at time ¢ the map
Y — D(Y,t) sends the line segment [X, W] linearly onto the unique geodesic
segment from X to a(t) in J, for every X ¢ (link(W; J)NH;_;)and t € [0, 1].
Lemma 2.3 ensures that the homotopy is continuous. And the convexity of E|;
implies that [X, a(?)] is contained in H; for all ¢ ¢ [0,1], and is contained in
H;_; for t = 1. (In general the image of D may not be contained in St(W),
but this is not important.) [

2.5 Extending Geodesics

In Chapter 1 we showed that if K is a complex of type A or B then its
intrinsic metric is complete. One would like to deduce from this that if X is
simply connected and has non-positive curvature then any isometric embedding
of an interval of the real line can be extended to an isometric embedding of the
whole line (i.e., geodesic segments in K can be extended indefinitely). This is
not true as stated, but to make it true we need only make an exclusion analogous
to that which one would make for boundary points in a complete Riemannian

manifold of non-positive sectional curvature.
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Proposition 2.21: Suppose that K is a simply connected piecewise Euclidean
complex of type A or B which satisfies any of the characterisations of non-
positive curvature given in Theorems 2.7 and 2.8. Then any isometric map from
an interval of the real line into K can be extended to an isometric embedding of

the whole real line, or to an embedding of a closed interval the image of whose

endpoints lie in the set
Y={z€K: LK (z,K) is contractible}.

Proof: K is complete, so any isometric map of an interval of the real line
into K can be extended to the closure of that interval. So it is enough to prove
that we can extend any isometry o : I — K where I has a finite endpoint a
with z = a(a) ¢ %.

We are assuming that K satisfies the link condition, so there must exist
Q € LK(=z,K) with d(P,Q) > =. For if this were not the case then there
would be a unique geodesic segment from P to every point of LK (z, K),
implying that LK(z, K) is contractible, contrary to hypothesis.

Let ¢ be the image of @ under the natural identification of LK (z, K) with
the sphere S(;)/5(z). The angle between the geodesic segments « and [z,q] at
z i d(P,Q), and hence is at least 7. So extending « by [z, q] we get a local

geodesic. But any local geodesic in K is a geodesic segment. []



3. M(x)-Complexes of Non-positive Curvature

All of the results which we proved for piecewise Euclidean complexes in
Chapter 2 have analogues in the world of piecewise hyperbolic complexes.
Indeed, it was only for clarity of exposition that we did not give a unified
treatment of these results in the previous chapter. This we do now, by

considering M (x)—simplicial complexes with £ < 0.

3.1 The Proof of The Main Theorem

The following definitions are needed for the statement of the Main Theorem.

If ¥ > 0 then we say that a geodesic triangle is x—small if the sum of the
lengths of its sides is no greater than 27/,/x. (If x < 0 then the condition of

being x—small is vacuous.)

Following Gromov [17] we say that a geodesic metric space X has curvature

< x if it satisfies the following condition locally.

CAT(x): Let T = A(zg,z1,z2) be a x—small geodesic triangle in X, and let y
be a point on the side of T" which has endpoints z; and z,. Choose a comparison
triangle 7' = A(z),z},z)) in M(x)* (the plane of constant curvature r)
and let 3 denote the unique point on the geodesic segment [z}, =] such that

dM(K)z(.’B'i,y’) = dK(:E,',y) for : = 1,2. Then dM(K)z(:U{),y') > dK(:DO,y).

74
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The Main Theorem: If K is a simply connected M(x)—simplicial complex of

type A or B and k < 0 then the following 13 conditions are equivalent:

Global conditions:

I) K has unique geodesic segments.
II) K satisfies CAT(x) globally.
) K satisfies CAT(x) globally, for some x.
IV) K satisfies CN globally.
V) The metric on K is convex.

VI) Every geodesic triangle in K has non-positive excess.

Local conditions:

VII) K has unique geodesic segments locally.
VIII) K satisfies CAT(x) locally.
IX) K satisfies CAT(x) locally, for some x.
X) K satisfies CN locally.
XI) The metric on K is convex locally.
XII) Every point of K has a neighbourhood such that any geodesic triangle
contained in that neighbourhood has non-positive excess.

XIII) K satisfies the link condition.

In Chapter 2 we proved a special case of the Main Theorem, and for the
most part the proofs which we gave there are equally valid (mutatis mutandis)
in the present setting. When this is the case we do not repeat the details of the

argument, or the accompanying motivation.

Remark: At first glance it may seem strange that in this class of spaces
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CAT(k) is equivalent to CAT(x), where y is arbitrary. However this merely
reflects the fact that if we metrize the simplices of a given complex to have
constant negative curvature, then in doing so we redistribute the natural curva-
ture of the complex, and concentrate it in the skeleton of codimension 2. In
particular, if the given complex does not support a structure of negative cur-
vature (e.g. if it is not aspherical) then forcing the simplices to be negatively
curved concentrates an infinite amount of positive curvature at certain points in
the complex, and thus any condition which gives a bound on the local curvature
of the space, such as CAT(y), fails in the neighbourhood of such a point.

For the remainder of Chapter 3 the letter K » Without further qualification
denotes an M (k)—simplicial complex of type A or B.

Intuitively speaking, a geodesic metric space X has curvature < gk if
geodesic segments in X diverge more quickly than geodesics in M (k)?. To

make this notion precise We introduce the following “divergence function”.
Given 6 € [0,7] and a,b € [0,00) we can choose geodesic segments
@B : [0,1] — M(«)? with lengths I(a) = a and L(B) = b, which have

a common initial point and meet at an angle 6. We then define
D(6,a,b) =d(a(1),8(1)).
The homogeneity of M (x)? ensures that this definition is independent of the

choices of « and §.

In the proof of Theorem 3.1 we shall need the fact that for fixed a and
b the funct'ion ¢ — D(0,a,b) is monotone increasing. This follows from the
cosine rule in M(«)2. We shall also need the fact that for all a,b,c > 0, and
all 6,¢',¢" € [0,7] such that § = ¢' + ¢,

D(8,a,¢) <D (6',a,b)+ D (6", c).
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This is simply a restatement of the triangle inequality in M (x)?.
The following comparison theorem is closely analoguous to the Topogonov

inequality for manifolds of non-positive curvature [5].

Theorem 3.1: Suppose that K has unique geodesic segments, and let oy and
a; be geodesic segments in K with common initial point ao(0) = a1(0) = z. If

the angle between oy and oy at = (which we denote by 6, 1) is less than  then
D (61, L (), L (1)) < d(ao(1),e1(1)).

Our proof of Theorem 3.1 relies on the following lemma, which can be

proved using the construction given in Lemma 2.4. (See Figure 2.1.)

Lemma 3.2: If K has unique geodesic segments then for every n > 0 and every
local geodesic a in K, there exists a constant € > 0 with the following property:
If B is a local geodesic in K for which $(0) = a(0) and ||a — B|| < € then ©,

the angle between a and § at o(0), is less than n and

D(©,L(a),L(B)) < d(a(1),5(1)).

Corollary : If K has unique geodesic segments then every local geodesic in

K is a geodesic segment. Hence there is a unique local geodesic joining any

two points in K.

Proof of Theorem 3.1: Let o denote the unique geodesic segment from (1)
to a1(1). We denote the geodesic segment from ag(0) to o(s) by as, and the

angle between a, and a; at « by §,,. It follows from the preceding corollary

that 6,; < = for all s,¢t € [0,1).

We shall prove that the set

Y ={s : D(bos,L(a),L(a,)) < di(ao(1),a,(1))}

is the whole of [0,1].
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Lemma 3.2 implies that 6, , and L(«,) vary continuously with s, and hence
Y. is closed. To see that it is open, fix s < 1 with s € . In Lemma 2.3 we
proved that geodesic segements vary continuously with their endpoints, so it
follows from Lemma 3.2 that if § > 0 is small enough then 6, .5 < ™ — 6y
and
D (8015, L (@), L (@e4)) < d (@ (1), 045 (1)).

The following inequality shows that s + 6§ € .
d(ao (1), asts (1)) = d (a0 (1), @5 (1)) + d(a, (1), 0545 (1))

> D (80, L(c0), L)) + D (Buprs, L (), L (cnss)
2D (90,3 + 93,3+5, L (ao) ’ L (a8+5))

2 D (60,546, L (0) , L (0s45)).
Here we have used the triangle inequality in LK (z, K) to deduce that 6, s <

90,3 + 93,3+6- U

Lemma 3.3: If a geodesic metric space X satifies CAT(0) then the metric on
X is convex.

Proof: Fix t € [0,1]. Given geodesic segments o and 8 in X with
a(0) = B(0), and s € [0,1], we consider the geodesic triangles A, C X
which have vertices {a(0), (1), 8(s)}. Let A’ C E? be a comparison triangle
for A,. We denote the image of » € A, in A’ by z,, and the vertex angle
at a(0); by 4.

CAT(0) applied to A, yields d(8(t),a(1)) < d(B(t)}, a(1)}). And since
d(B(t);, e(1);) = d(B(t), (1)), this implies that ¢; < ¢,. Hence

d(a(®),B(t)) <d(a(t),B@)).
CAT(0) applied to A, yields d(a(t), A(t)) < d(A(t),, a(t),). Hence

d(a(t),B(t) < d(a(t);,B(t);).
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Finally, from elementary Euclidean geometry, we have

d(a(),, 8 =t d(a@),B1)) =t d«(1),8(1).
Hence
d(a(t),B(t) <t d(a(1),8(1)).

The fact that the function ¢ — d(a(t), 8(t)) is a convex function for any
geodesics segments « and B in K follows easily from the case «(0) = 5(0),

as we showed in Section 2.1. [

Proof of The Main Theorem:

I=>VI : Theorem 3.1 implies that if geodesic segments are unique in K
then each of the vertex angles of a geodesic triangle in K is no larger than the
corresponding angle of a comparison triangle in M ()%

I=11 : In the proof of Theorem 2.7 we used a special case of the Topogonov
inequality (Lemma 2.5) to show that a piecewise Euclidean complex with unique
geodesic segments satisfies CAT(0). A direct translation of that argument,

employing Theorem 3.2 in place of Lemma 2.5, proves the present implication.

II=IV : If X is any geodesic metric space which satisfies CAT(«) then it
satisfies C AT (x) for all x > «. And in the proof of Theorem 2.5 we proved
that if X satisfies CAT(0) then it satisfies CV.

II=-V: This is the content of Lemma 3.3.

IV, V, VI=I: These implications follow easily from the definition of the

given conditions, as we verified in Section 2.3.

Local versions of the preceding arguments prove the equivalence of condi-

tions VII, VIII, XI, X and XII.
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XIII<-VII: For the case « = 0 this is the content of Proposition 2.11. In the
proof of that proposition the only point at which we used the hypothesis that
K was piecewise Euclidean was to employ the cosine rule when comparing the
length of a chain in s#(z, K) to the length of the projected chain in LK (z, K).
The cosine rule in hyperbolic geometry serves the desired purpose equally well.
Hence the conclusion of Proposition 2.11 is valid for piecewise hyperbolic
complexes.

H=II=IX: Trivial.

IX=VII: Immediate from the definition.

As in the case s = 0 we pass from the local to the global situation by proving
VII=I (which completes the proof of the theorem). To do so we observe that the
results presented in Section 2.4 depend only on the local convexity properties
of the metric on K, and hence are equally valid for piecewise hyperbolic
complexes. One might be concerned by the fact that in the hyperbolic case
the n—fold Cartesian product K™ is not itself piecewise hyperbolic, but this is
of no consequence since our results concerning the geometry of K™ relied only
on the fact that a path in K* is a geodesic segment if and only if its projection
onto each coordinate is a geodesic segment. And this observation remains valid

in the piecewise hyperbolic case. [

3.2 Alternative Forms of the Link Condition

The link condition, which we defined in Section 2.3, is a condition which
bounds the curvature of the spherical simplicial complexes which occur as links
in some given complex K. It seems natural to ask whether one can prove a
result, analogous to the Main Theorem, which would relate this condition to

other characterisations of bounded curvature in spherical simplicial complexes.
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Such a result might then yield alternative ways of verifying the link condition

for a given complex.

In fact the Main Theorem does not have a direct analogue in the world of
spherical simplicial complexes, but in this section we outline the proof of a
partial analogue (Lemma 3.4) which gives two alternative characterisations of
bounded curvature in the link complexes of an M(«x)—simplicial complex of
type A or B. Each of these conditions is equivalent to the link condition, and
in Proposition 4.5 we use one of these characterisations to show that a certain

class of 3—complexes are non-positively curved.

Using the techniques of Chapter 2 one can show that if L is a spherical
simplicial complex of type A or B then it satisfies Gromov’s C AT(1) condition
if and only if there is a unique geodesic segment from z to y in L whenever
d(z,y) < . Similarly, one can show that L has unique geodesics segments
locally if and only if it satisfies CAT(1) locally. However, if L is simply
connected and satisfies CAT'(1) locally then it does not follow that L satisfies

CAT(1) globally, as the following example shows.

Example: Consider a geodesic triangulation of the standard 2—sphere cut
open along a 1-simplex of length less than x. Let L denote the spherical
2—complex obtained by identifying two copies of this space along the boundary
loop 7. L is (topologically) a 2—sphere, and satisfies C AT'(1) locally. However,

it does not satisfy C AT'(1) globally, because the image of v in L is a geodesic
circle of length strictly less than .

This example highlights the difficulty which arises when trying to relate local
descriptions of bounded curvature in spherical simplicial complexes to global
descriptions. Namely, that one must take account of the possible occurence of

short geodesic circles (i.e., isometric embeddings of a circle of length < 27).
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This motivates the following definition. The systole of L, which we denote
sys(L), is the infimum of the lengths of geodesic circles in L. We wish to relate
sys(L) to inj(L), the injectivity radius of L, which is defined to be sup{r :
there is a unique geodesic segment from z to y in L whenever d(z,y) < r}.

The argument given by Charney and Davis in Lemma 1.3 of [11], shows
that if L is a finite spherical simplicial complex with ¢nj(L) > O then it fails
to satisfy CAT(1) if and only if Zsys(L) = inj(L) < n. The hypothesis that
the complex is finite is only used to ensure that L has the following property:
If inj(L) € (0, 00) then there is a (non-degenerate) geodesic bigon in L whose
sides have length exactly inj(L).

By employing the method of finite models (which we used in Lemmas 1.5
and 2.3) it is easy to show that complexes of type B also have this property.
Moreover, if L is of type B then Lemma 2.10 implies that inj(L) > 0 if and

only if I has unique geodesics locally. Hence we obtain the following result
(cf. [17], p.120).

Lemma 3.4: If K is an M(x)—simplicial complex of type A or B (where & is
arbitrary) then the following are equivalent:

1) K satisfies the link condition. (i.e., inj(LK(z,K)) 2 for every « € K).
M) For everyz € K the complex LK (z,K) has unique geodesic segments

locally and sys(LK(z,K)) 2 2.
1) Foreveryz € K the complex LK(z, K ) satisfies CAT(1) globally.



4. Examples

In this chapter we describe some examples of complexes of non-positive
curvature. In particular we are interested in complexes which are not locally
finite. Interesting examples of this type arise in the work of Gersten and
Stallings on triangles of groups, and in Section 3.1 we describe their results
in the context of the work presented here. Then in Section 3.2 we discuss non-
positively curved 3—¢omplexes which have planar links. A particular example
of such a complex arises in the study of the group GL,(Zw)), where w is
a primitive sixth root of unity. We use this example to illustrate how the
Fixed Point Theorem proved in Section 2.2 can be used to classify the finite
subgroups of a group which acts ona complex of non-positive curvature. Before

proceeding to Section 2.1 we briefly mention two other classes of examples.

A particularly rich source of non-positively curved complexes is provided by
Euclidean buildings. The theory of buildings is extensive and well-documented
(see for example [8], [9], [10], [28], and [29]). So too is the role of non-
positive curvature in understanding the geometry of buildings of Euclidean type.
We do not attempt to develop anything of this theory here, but merely note

that Euclidean buildings provide interesting examples of piecewise Euclidean

complexes of type B.

Another class of examples which is well-understood is that of metric
simplicial trees. Any metric simplicial tree satisfies C AT (&) for all £, and hence
“a non-positively curved simply connected 1—dimensional Euclidean simplicial
complex of type B” is just another name for a metric simplicial tree in which
the set of edge lengths is finite. Groups which act on such complexes were

completely classified by the work of Bass and Serre [24].
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4.1 Simplices of Groups.

The simplest example of a group which acts cocompactly (but not freely)
on a tree is an amalgamated free product. So it seems reasonable that as a first
step towards generalising Bass-Serre theory to higher dimensions one should
look for a 2-dimensional analogue of an amalgamated free product. This is the
starting point for the work of Gersten and Stallings on triangles of groups.
Definition: An n-simplex of groups is a contravariant functor from the poset
of faces of an n—simplex ordered by inclusion, into the category of groups
and monomorphisms.

We think of such a functor T as a diagram of groups, and refer to the image
under T of a vertex as a vertex group, the image of a 1-simplex as an edge
group, and so on. We denote the direct limit (or generalised pushout) of this
diagram in the category of groups by I'(T).

Definition: An n—simplex of groups T' is said to be realisable if the canonical
map from each vertex group of 7T into I'(T') is an injection.

There is an obvious paradigm in this situation. Namely, if a group acts with-
out inversions on a simplicial complex, and the quotient is a single n—simplex
then the diagram of stabilisers and inclusions in a fundamental domain is a
realisable n—simplex of groups. (A group is said to act without inversions if
the fixed point set of any element is a simplicial subcomplex.)

Definition: We say that an n—simplex of groups is geometric if it arises as the
diagram of stabilisers and inclusions for the fundamental domain of the action
of a group of isometries on a piecewise Euclidean complex of non-positive
curvature. (Since the quotient is compact the complex will necessarily be of

type B.)

Remark: This use of the term “geometric” is not a standard one.
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If T is a 1-simplex of groups then I'(T') is the amalgamated free product of
the vertex groups over the edge group. It is well-known that every 1-simplex
of groups is realisable and geometric [24]. This is far from true in dimension
2, but a sufficient condition for a triangle of groups to be both realisable and
geometric has been given by Gersten and Stallings, using the idea of the angle

between subgroups of an arbitrary group.

Consider a group G and subgroups A, B,C with C € AN B. Fix a set
of coset representatives {g;}ier for G/C. Let Lg(A, B;C) be the (unoriented)
graph with vertex set G/A ] G/B and 1-simplices {{g:A,¢:B} | i € I}.
Definition: The angle in G between A and B as measured over C is 2x[n,

where n is the length of the shortest reduced circuit in Lg(A, B; C).

Definition: Given a triangle of groups T' one associates to each vertex the
angle between the incident edge groups as measured over the 2—cell group.

The triangle is said to be non-spherical if the sum of the vertex angles is no

greater than 7.

The following theorem is proved in [26]. (An alternative proof is given

in [7].)

Theorem 4.1: (Gersten-Stallings) Every non-spherical triangle of groups is

realisable.

Gersten and Stallings also proved that a non-spherical triangle of groups
is geometric. We shall now outline a proof of this fact. The proof which we

give here is somewhat different to that which was originally given by Gersten

and Stallings.

Fix a non-spherical triangle of groups T, and let " denote the direct limit of
the corresponding diagram of groups. We assume that each of the vertex angles

is non-zero. (If one of the vertex angles is zero, then the triangle degenerates
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to an amalgamated free product.) We denote the edge groups by E,, E,, E;
and the vertex group with incident edge groups E; and E; by V; ;. The 2—cell
group shall be denoted C.
We define an (abstract) simplicial 2—complex K(T) as follows: (For con-
venience we write all indices mod 3)
K(T) = ]1/v;
i<y

3
K(T) = L[ {{e\Viis1, €iViio1} | € coset reps for I'/E;}

K(T) = {{lc,,Vm,c,,Vz,g,c,,Vg,l} | ¢ coset reps for T'/C'} .

There is a natural action of I'(T) on K, given by left multiplication of
cosets. The quotient space for this action is a single 2-simplex, and the cosets
containing the identity element form a fundamental domain. Moreover, the
pattern of stabilisers in this fundamental domain is precisely the original triangle
of groups 7. One can also show that the geometric realisation of K(T) is
simply connected [7].

Notice that K(T") has a natural labelling, for example a vertex corresponding
to a coset of Vi, in I' is thought of as being labelled {1,2}, a 1-simplex
corresponding to a coset of F; in T is thought of as having label {3}, and so
on. If we fix a (hyperbolic or Euclidean) triangle A with vertices indexed 1 to
3, and each vertex angle equal to the group theoretic angle at the corresponding
vertex of 7', then this labelling of K (T') induces a simplicial isomorphism from
each 2—simplex in K(T) to A. The collection of these maps satisfies the axioms

given in Section 1.1, and hence we obtain a metric simplicial complex of type B.
The labelling on K (T) also gives a graph isomorphism from the link of
any vertex v which is labelled {7, j} to the graph Ly, (E;, E;; C). The metric

on the link of a vertex in a 2~dimensional complex is given by the angular
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measure at the vertex. Thus each edge of the metric graph LK (v, K(T')) has
length 7 /n. But n was defined to be the length of the shortest reduced circuit in
Ly, ,(E;, Ej; C). Thus for every vertex v € K the graph LK (v, K(T')) contains
no geodesic circles of length less than 27, and hence K(T') satisfies the link

condition. Thus we have proved:

Theorem 4.2: (Gersten-Stallings) Every non-spherical triangle of groups is
geometric.

The following result now follows immediately from the Fixed Point Theo-

rem, which we proved at the end of Section 2.2.

Theorem 4.3: (Gersten-Stallings) If T is a non-spherical triangle of groups
then every bounded (e.g. finite) subgroup of I'(T) is conjugate to a subgroup
of one of the vertex groups.

Recently, Haefliger [19] has shown that any non-positively curved orbihe-
dron which has only finitely many isometry types of cells arises as the quotient
of a non-positively curved piecewise Euclidean complex by a group of isome-

tries. This generalises Theorems 4.1 and 4.2.

4.2 3-Complexes With Planar Links.

The link of a vertex in a 2—-dimensional metric simplicial complex is a graph,
with edge lengths given by the angular measure at the vertex. Thus to verify
the link condition it is enough to calculate the lengths of reduced circuits in
each such graph. In higher dimensions things are much more delicate, because
it is difficult to identify geodesics in the link complexes. However, if one
has sufficiently explicit knowledge about the structure of the links then it may
still be possible to decide whether a given complex satisfies the link condition.

(See for example [23], [11] and Chapter 5 below.) One can also prove more
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general results for classes of complexes in which the structure of the links is

sufficiently simple. For example:

Proposition 4.4: Suppose that K is an (abstract) simplicial 3—complex such that
the link of each vertex is simplicially isomorphic to a triangulation of the plane
in which every vertex has valence at least 6. Fix a regular tetrahedron T in
M((&)3 (the unique simply connected 3—manifold of constant sectional curvature

k < 0). If we metrize each 3—simplex in K by means of a simplicial isomorphism

to T then K satisfies the link condition.

Our proof of Proposition 4.4 requires the following simple fact from spher-
ical geometry: Suppose that the paths a, 8 : [0,1] — S? satisfy a(0) = B(0)
and a(1) = B(1), and that they cobound an embedded disc D C S2. We say
that D is good if § is an arc of a great circle, and « is a piecewise geodesic
path of length strictly less than 7 with the property that the angle between its

sucessive geodesic subarcs, as measured in D, is at least .

Lemma 4.5: Every good disc in S? contains an equilateral spherical triangle
of side n/2.

Proof: We may assume that «(0) = B(0) is the north pole, that the initial
segment of 3 follows the line of longitude 0°W, and that the longitudinal

coordinate of a(t) is a(t)°W, where « is an increasing function of .

Notice that a(t) > 180 for some ¢ € (0,1]. Hence o does not meet the
equator between 0°W and 90°W. For if a(t) did lie on this arc then the paths
e, and al ;) would both have length at least r/2, contradicting the fact that

the length of « is strictly less than . Therefore the south-west octant of the

sphere is contained in D. O
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Corollary : If T is a 2—dimensional S-corridor whose cells are equilateral

spherical triangles of side | < = [2, then there is a unique local geodesic from

z toy for all z,y € T.

Proof: By Theorem 1.1 there is a geodesic segment « from z to y in
I. Any geodesic segment is a local geodesic, so the only issue is that of
uniqueness. Suppose that v is another local geodesic from z to y. Restricting
to subpaths if necessary we may assume that o and -y cobound an embedded
disc D c T. If we orient D then for every x € D we have a well-defined
notion of the clockwise and anticlockwise directions in the spherical complex

LK(z,T) (which is a circle or an arc of a circle).

Because o and « are local geodesics, the paths in LK(a(?),I') and
LK(4(t),T) determined by D each have length at least , for every ¢ € [0,1].
In fact, we may assume that the path which D determines in LK (v(t),I") has
length exactly . For if this is not the case then we can replace v by the unique
local geodesic B which has the same initial segment and for which the distance
in LK(B(t),T) from the point determined by the forward direction of 8 to
that determined by the backward direction is exactly =, when measured in the
anticlockwise direction. We can then replace « by an initial segment so that

the disc D' cobounded by « and £ is non-singular.

However, if such a disc D' C T were to exist then it would be isometric
to a good disc in S?, and Lemma 4.5 would then give an isometry from an

equilateral spherical triangle of side 7/2 into I". No such map exists. []

Proof of Proposition4.4: Fix z € K, and write L = LK(z,K). The 2—cells
of L are equilateral spherical triangles with vertex angles strictly between 7 /3

and 7/2, so the link of a point p € L is a circle of length > 27 if p is a vertex



%0
of L, and of length 27 if p is not a vertex. Thus I satisfies the link condition
and has unique geodesic segments locally. So by LcMa 3.4 it is enough to
prove that there are no geodesic circles of length less than 2 in L.
We use the phrase a tesselation line in L to describe a locally isometric
embedding of the real line into L whose image lies in the 1-skeleton. Notice
that every edge can be extended to a tesselation line, and that if a geodesic

circle in L crosses a tesselation line then it must cross it at least twice.

Suppose that ¢ C L is a geodesic circle of length less than 27, Because L is
homeomorphic to the plane, ¢ bounds an open disc in L. Consider a tesselation
line which meets this disc in an arc 4 which is outermost among all tesselation
lines which intersect the disc. Let o denote the (short) arc of o which has the
same endpoints as 4. Because v is outermost, there is a corridor in I, which
contains both a and . But these paths are both local geodesics, and the length
of « is strictly less than 7. This contradicts the preceding corollary, [

Remark: The 3—dimensional nature of Proposition 4.4 is something of an
illusion, because any complex K which satisfies the given hypotheses strong
deformation retracts onto the following 2-dimensional subcomplex of its first

barycentric subdivision.
L=K — U {st(v,K") :va vertex of K}

L can be metrized as a Euclidean simplicial complex of non-positive
curvature in such a way that any simplicial isomorphism of L is an isometry. To
do this one first observes that for every vertex v € K the complex link(v, K')
is simplicially isomorphic to the first barycentric subdivision of a tesselation
of the plane in which every vertex has valence at least 6. Let T, denote this
tesselation. We metrize each 2—simplex in T, as a Euclidean equilateral triangle

of side 1, and give link(v, K') the induced metric. This defines a Euclidean
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simplicial structure on L which is of both type A and type B, and it is easy to

check that it also satisfies the link condition.

Notice that if G is a group which acts on K by simplicial isomorphisms
then the retraction of X onto L can be done G —equivariantly, and the induced
action is by isometries. In particular, if the vertex stabilisers for this induced

action are finite then G is (equi-)semihyperbolic in the sense of [3].

A complex for GL2(Z[w))

An example of a simplicial complex which satisfies the hypotheses of

Proposition 4.4 is the following complex which was studied by Roger Alperin
[4].

Let R be a ring, and consider the set A of free direct summands for R, We
say that I,,L, € A are independent if Ly + Ly = L; @ L, = R?. Let K(R)
be the (abstract) simplicial complex whose vertices are the elements of A and
whose g—simplices are those subsets of A of the form {Lq,...,L,} for which
L;, L; are independent for 0 < i # j < ¢. The action of GL,(R) on A preserves

the relation of independence, and hence gives an induced action on K(R).

Let w be a primitive sixth oot of unity. In the case R = G L,(Z[w}]) one can
show that K(R) is a simply connected 3—complex, and that the link of every
vertex is simplicially isomorphic to the standard tesselation of the Euclidean
plane by equilateral triangles. It follows from Proposition 4.4 that K(R) can be
metrized as a piecewise hyperbolic complex of negative curvature. In particular
K(R) is contractible. In [4] Alperin showed that K(R) was contractible by
studying a filtration of the space by subcomplexes. He then calculated the

Euler charcteristic and homology of SI.(Z[w]) by studying its action on the
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2—dimensional retract of K (R) which we described in the preceding remark.

According to our Fixed Point Theorem any finite subgroup of GL,(Z[w))
stabilises a point of K'(R). We shall show that this leads to a classification of
the finite subgroups in GL,(Z[w]).

The centre of GLy(Z[w]) acts trivially on K (R), so we get an induced
action of PG Ly(Z[w}]). It is this action which we study. For convenience we

write I' in place of PGLy(Z[w)).

If a finite subgroup H C GL,(Z[w]) fixes a vertex in K (R) then it acts by
simplicial isomorphisms on the link of that vertex. If we metrize this link as a
Euclidean plane in the standard way then H acts by isometries, and hence has
a fixed point. Thus any finite subgroup of I" stabilises the barycentre b, (o) of
some simplex ¢ C K(R) of dimension at least 1. The complex link(by, K)

is finite, and hence its full group of symmetries, which we denote sym(by),

is also finite.

It is easy to see that no non-trivial element of I" fixes a 2-simplex in K(R)
pointwise. It follows that if & is a simplex of dimension at least 1 and by(o)
is its barycentre then stabr(by(c)) injects into sym(by(o)).

[’ acts transitively on the set of simplices in K (R) in each dimen-
sion. Thus if we choose simplices 1,05, 03 of dimension 1, 2 and 3 re-
spectively, then every finite subgroup of I' is conjugate to a subgroup of

stabr(bo(o1)), stabr(by(o3)), or stabr(bo(o3)). We now give explicit descrip-

tions of these stabilisers,

The complex link(by(os), K(R)) is the suspension of the triangle Oc,.
Thus sym(by(o;)) is isomorphic to S5 xZ,. Because no non-trivial element of
I' fixes oy pointwise, stabr(by(oy)) must be contained in the S3 factor. In fact

it is isomorphic to S5. To see this notice that if we let o, be the 2-simplex with
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vertices (1,0),(0,1) and (1,1) then stabr(by(o2)) contains a 3—cycle a and a

transposition b given by the following matrices.

(50 -G

The complex link(by(c;), K(R)) is the suspension of a hexagonal 1-com-
plex, and hence sym(by(c1)) is isomorphic to Dys xZ2. Because no non-trivial
element of T fixes a 2-simplex in K(R) pointwise, stabr(bo(o1)) does not con-
tain the unique symmetry of the link which interchanges the suspension points
and leaves the other vertices fixed. Hence stabr(bo(o1)) is isomorphic to a

subgroup of D,,, the dihedral group of order 12.

Finally, the complex link(bo(03), K(R)) is the boundary of a tetrahedron,
and hence sym(by(o3)) is isomorphic to S;. One can show that no v € I' acts
transitively on the vertices of a 3-simplex in K (R), so stabr(by(o3)) contains
no 4—cycles. Hence it is isomorphic to a subgroup of A,, the alternating group
on four letters.

At this stage we have shown that stabr(by(02)) = Ss, stabr(b(os)) — A4
and stabr(by(o1)) < Dip. Thus if we can exhibit subgroups of T' which are
isomorphic to D;, and A, then these groups must occur as the stabilisers of a
1-simplex and a 3—simplex in K(R) respectively.

Let ¢ and d denote the elements of T' determined by the matrices C' and D
(which are given below). These elements generate the subgroup G.q = (¢, d |

& = b = (cd)? = 1), which is a dihedral group of order 12.

w 0 0 1
C = _D —
0 1 1 0
On the other hand, the elements d,e € T' determined by the matrices D

and E generate the subgroup G s = {e,f | € = f2 = (e7'f)* = 1), which
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is isomorphic to A,.

0 1 0 w
E - F =
-1 1 w? 0
Thus any finite subgroup of PGLy(Z[w]) is conjugate to a subgroup of

one of the groups Gap, Gea Or G 5. It follows that any finite subgroup of

G Ly(Z[w]) is conjugate to a subgroup in the preimage of one of these three
groups.



5. The Curvature of the Culler-Vogtmann Complex

In this chapter we exemplify a method for deciding if a given complex can
be given a piecewise Euclidean structure of non-positive curvature. The idea
is to develop a good understanding of the local (combinatorial) structure of the

space, and use this to decide whether or not the given complex can satisfy the

link condition.

More specifically: let G be a group which acts on a simplicial complex K
with finite quotient, and suppose that the quotient space, the local structure of
K, and the G —stabilisers of the vertices of K can be described explicitly. One
would like to know whether or not the space K can be given a G—equivariant
piecewise Euclidean structure of non-positive curvature. We assume (for the
sake of argument) that K/G has been metrized as a piecewise Euclidean
complex such that the induced structure on K has non-positive curvature. In
Chapter 1 we described the induced spherical simplicial structure on the links
of points in K. By analysing the symmetries of these spherical complexes we
can identify “conjugate points”, i.e., pairs of points which cannot be joined
by a unique geodesic segment in the link complex. We are supposing that
K satisfies the link condition, so any path joining a pair of conjugate points
must have length at least 7. Thus from each each choice of such a path we
obtain an inequality involving the angles of the cells in the quotient space.
The aim is to gather sufficient information to determine these angles, or else
to obtain contradictory bounds and hence deduce that K does not support a
G —equivariant. piecewise Euclidean structure of non-positive curvature. The

same method can of course be applied when dealing with piecewise hyperbolic

structures.
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In Section 5.1 we shall describe the action of Out(F,), the group of
outer automorphisms of the free group of rank n, on the Culler-Vogtmann
complex K,. It has been proved ([12], [13], [20]) that K, is contractible and
that the fixed point set of any finite subgroup of Out(F,) is non-empty and
contractible. We saw in Chapter 2 that these properties are indicative of non-
positive curvature, so it seems reasonable to ask whether or not k&, supports an
Out( F,)—equivariant piecewise Euclidean structure of non-positive curvature.
The answer to this question is yes in the case n = 2, where it is known that
Out(Fy) is isomorphic to SL,(Z), and that its action on K is the usual action of
SLy(Z) on the Serre tree (see [13]). For n > 3 we shall prove that K, does not
support an Out(F;, )—equivariant piecewise Euclidean (or piecewise hyperbolic)

structure of non-positive curvature, by using the technique described above.

5.1 The Culler-Vogtmann Complex K,

In this section we describe the Culler-Vogtmann complex K, as the geomet-
ric realisation of a certain poset consisting of marked graphs. We then describe
the natural action of Out(Fy,) on this poset. This action is order preserving and

hence induces a simplicial action of Out(F}) on K,.

Definitions

A graph G is a connected 1-dimensional CW-complex. G is said to be
admissible if it is not homotopy equivalent to any proper subgraph, all of
its vertices have valence at least three, and the complement of every edge
is connected. Henceforth all graphs are required to be admissible. A graph R

is called a rose if it has a single vertex, which we denote v(R).
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Fix arose Ry and identify F, with m;( Ry, v(Ry)). We call this the standard
rose. A marking is a homotopy equivalence ¢ : Ry — G, where G is an
admissible graph. Two markings ¢; : Ry — Gy and g, : Ry — G, are said
to be equivalent if there is a graph isomorphism i : G; — G, such that the

following diagram commutes up to free homotopy.
Ry & G
| i
Ry & G,
A marked graph is an equivalence class of markings, and the class containing
g : Ry — G is denoted (g¢,G).
Let e be an edge of the graph G. We say that (¢',G') is obtained from

(9, G) by blowing down the edge e if there is a cellular homotopy equivalence

d : G — G' which collapses e, is one-to-one on the complement of e, and

satisfies do g ~ ¢'.

Description of K,

We define a partial ordering on the set of marked graphs by (¢',G') =< (g, G)
if and only if (¢',G') is obtained from (g, G) by blowing down finitely many
edges. K, is defined to be the geometric realisation of this partially ordered
set. It is easy to prove that an admissible graph whose fundamenal group is free
of rank n has at most (3n — 3) edges, hence K, has dimension (2n — 3). An

example of a maximal dimensional cell in the case n» = 3 is shown in Figure 5.2.

Labelled graphs

We wish to represent a given vertex (¢, G) of K, pictorially, in such a way

that both the graph G and the marking ¢ are determined by the picture. To do
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this we choose a maximal tree T in G and a homotopy inverse to g which sends
T to the vertex v(R,). This map sends each oriented edge of (G — T') to a loop
in R, based at v(R,), and we label the edge with the corresponding word in
F, = m1(Ro,v(Ry)). It is important to notice that the representation of a given
(9, G) by a labelled graph is not unique. Different choices of maximal tree and
homotopy inverse will give rise to different markings; in particular, altering
the labels on a given labelled graph by the action of an inner automorpism of
F, produces a labelled graph representing the same marked graph. Figure 5.1

shows four different labelled graphs representing the same point in KX,,.

O €
T T N

-1 T

Figure 5.1: Four equivalent labelled graphs

\Y
AP YA &
s A4

Figure 5.2: A 3-simplex in Kj Figure 5.3: A 3-simplex in K3/Out(F3)
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The action of Out(F,)

There is a natural left action of Qut(F;,) on the complex K,, which for
our purposes is best described in terms of marked graphs. Given ¢ € Aut(F,)
and a vertex (¢,G) € K, determined by a labelled graph with edge labels
{wi,...,w,} we define ¢.(g,G) to be the vertex represented by the same
graph with edge labels {¢(w1),...,¢(w,)}.

It can be shown that this action is well-defined and preserves the partial
ordering =, hence it is simplicial. Further, the penultimate sentence of the

paragraph on labelled graphs implies that the action of Inn(F,) is trivial, so

we get an induced action of OQut(F,) on K.

The Out(F,)—stabiliser of a vertex in K, is isomorphic to its group of graph
automorphisms. This follows from the definition of equivalence for marked
graphs, as is proved in [25]. For example, in the case n = 3 the isotropy
group of a rose is isomorphic to 3, the semi-direct product of Z,xZ;xZ,

with S3, which occurs naturally as the full group of isometries of a cube in

Euclidean 3-space.
We shall represent cells in the quotient complex K, /Out(F,) by omitting

the edge labels but continuing to draw the edges which are to be blown down

in boldface. For example the image of the cell shown in Figure 5.2 will be

drawn as in Figure 5.3.

5.2 The Link of a Rose in K;

In order to carry out the programme of proof outlined in the introduction
to this chapter it is essential that we have explicit knowledge of the links of

vertices in Kj3. The most complicated link which we need to consider is that
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of a rose. The Gertrude Stein lemma of [13] shows that the links of any two
roses are isomorphic via the action of some element of Out(F,). Moreover,
since we are assuming that Out(F,) acts by isometries, it follows that they
are isometric as spherical simplicial complexes. For notational convenience we
 shall study the link of the standard rose po = (id, Ry) and represent all vertices
of the link by graphs with labels {a, b, c}, where {a, b, c} is the standard basis
for 71 (Ry,v(Ry)).

Note: In this section we are only concerned with the combinatorial structure

of the link, not the metric structure.

As we remarked earlier, the stabiliser of a rose is Q3 the full group of
symmetries of a cube in Euclidean 3—space. Our explicit description of [ k(RO)
~ distinguishes a triangulated 2—sphere embedded in the link. This can be viewed
as a cube in a natural way, and the action of Q; = stab(po) on lk(po) is
entirely determined by its usual action on this cube. This description of the
action of stab(p,) exhibits the symmetries of | k(po) with sufficient clarity for
us to identify conjugate points, i.e. pairs of points in LK (pe) which cannot be
joined by a unique geodesic segment, If K, satisfies the link condition then
any path joining a pair of conjugate points must have length at least 7. We use

 this fact to obtain the inequalities given in Section 5.3.

Notation: The ordered triple (a', ¥, ¢ ) denotes the automorphism of F,
given by (a,b,¢) — (d',¥,d), and [, ¥, ¢ ] denotes the corresponding outer

automorphism class.

A vertex of K3 lies in st(po) if and only if it can be represented by a
labelled graph with labels {a, b, c}. To list all such vertices one could first
list those which have six (the maximal number) of edges and then blow down

edges to obtain all the other vertices. Alternatively, one could start at po and
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“blow up” edges (see [13] for details). In any case, the process of assembling
and validating such a list is an exhausting one, and for the sake of brevity is
omitted. Instead, we simply describe all the 2—cells in {k(py) (of which there
are 408), grouped into convenient subcomplexes, and assemble lk(pp) from

these subcomplexes in a suggestive way.

Figure 5.4 shows 32 two-cells which fit together to form a subcom-
plex of lk(py) which we call “the face A(+)”. Changing the labels
on all the vertex graphs of A(4) by the action of the automorphims
(a1, b,¢),(b,a,c), (b7, a,c),(c,b,a) and (a1, b, c) respectively, we obtain 5
more “face” subcomplexes A(—), B(+), B(—), C(+) and C(—), each consisit-
ing of 32 two-cells. Making all possible identifications between these faces we
obtain the subcomplex shown in Figure 5.5. Here we see the cube referred to
earlier, and the action of stab(py) in permuting the labels {a*!,d*!, ¢*'} on

the graphs corresponds to the usual action of §2; on the cube.

Figure 5.6 shows a further subcomplex consisting of 36 two-cells, which
we call “the hexagon H(c)”. The letter ¢ in this notation denotes the fact that
this is the label on the edge that is “against the flow” on the central graph.
Permuting the labels on all graphs by the automorphisms (¢, b, ), (a, ¢, b) and
(a,b,c™1) respectively we obtain “hexagonal” subcomplexes H(a), H(b) and
H(0) (in H(0) the arrows associated to the edges labelled a, b, c on the central

graph are all confluent).

Notice that there are no edge identifications between the hexagons, and that
their boundary edges correspond to all marked graphs in {k(py) which are of the
type shown in Figure 5.7. These edges also occur as cells in the 1-skeleton of
the cube shown in Figure 5.5, and making the necessary identifications defines

gluing maps from the boundary of each hexagon into the cube. This fits the
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hexagons into our previous picture beautifully, as shown in Figure 5.8.

The remaining 72 two-cells in lk(po) can be grouped together so as to
form six discs, corresponding to the six possible pairings of distinct hexagons
from {H(c), H(a), H(b), H(0)}. One of these discs, S(0,¢), is shown in
Figure 5.9. The other five discs are obtained from S(0,¢) by permut-
ing the labels on all of the graphs by the action of the automorphisms
(a7, b,¢),(c,b,a),(a,c,b),(a,c,b), and (1,5, a). Figure 5.10 illustrates
how these discs fit into the subcomplex of lk(po) which we have so far con-

structed. This completes the description of the link of a rose in K.

Remark: Our analysis of the link differs from that of Culler and Vogtmann,
who described it as “a torus with ten discs attached, having the homotopy type
of a wedge of eleven 2—spheres” (see [6] for details). In our construction we
obtained Ik(py) (topologically) by taking a 2—sphere and attaching ten 2—discs
by injective maps on their boundaries, so the above description of the homotopy

type is clear. The torus desribed in [13] is shown in Figure 5.11.
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Figure 5.4: The face A(+)
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a

t H(o) H(a)
b J

H() H()

H(0) in the cube The top face

Figure 5.7: Fitting the hexagons into the cube

a, B,7 € {a*!, b, ct1}

Figure 5.8: The graphs in 1-to—1 correspondence

with the edges of the hexagons
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Figure 5.9: S(o,c), twelve of the remaining seventy two 2—cells



A o
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Figure 5.10: Attaching the disc S(o,c)

H(c)
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Figure 5.11: The torus
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5.3 The Curvature of K3

Theorem 5.1: There does not exist an Qut(Fs)—equivariant piecewise Eu-
clidean (or piecewise hyperbolic) structure of non-positive curvature on Ks.

The strategy of the proof was described in the introduction to this chapter.
We assume that the cells of K3/Out(Fy) have been metrized as Euclidean sim-
plices so that the induced piecewise E uclidean structure on K3 has non-positive
curvature. Then, by studying the links of vertices we obtain contradictory
bounds on the angles of the cells in K3/Out(F3). Our arguments centre on
three 2—cells in K3/Out(F;), which are shown in Figure 5.12. We shall prove
the following lemmas under the hypothesis that K3 is non-positively curved

(the greek letters denote the angles defined in Figure 5.12).

Lemma 5.2:

B v
= > —
2+7+6_2

Lemma 5.3:
™
> =
V2 2
Lemma 5.4:
Atpt+nzm.
Lemma 5.5:
6+o2>m.

Summing these inequalities we get

B+y+8)+p+(A+n+u)+(0+¢) 237

contradicting the fact that these are the angles of three Euclidean triangles. Thus

Lemmas 5.2-5.5 together constitute a proof of Theorem 5.1.
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Figure 5.12: Three 2—cells in K3/Out(F 3)
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Since all of our arguments involve bounding the length of paths in links
of vertices, it is worth recalling that the lengths of the 1-simplices in each of
the spherical simplicial complexes LK ((g,G)) are given by the angles in the
2—simplices of the quotient space K 3/Out(F3). It is by bounding the lengths
of paths in the link complexes LK ((g,G)) that we obtain bounds on the angles

of the 2-simplices in the quotient space.

Before proceeding to the proof of Lemma 5.2 we make a simple (yet
crucial) observation about the action of Out(F,). Adjacent vertices in K, have
underlying graphs which are not homeomorphic. So if an element of Out(F,)
fixes a point in the interior of a simplex in K, then it fixes the whole simplex
pointwise. It follows that if w is a vertex in lk(v), and ' C stab(v) fixes w but
none of the adjacent vertices in {k(v), then T' acts freely on lk(w) N lk(v). In

particular there is no I'—invariant topolgical arc in lk(v) which has an endpoint

at w.

Lemma 5.2

N

+y+462>

ol A

Proof: The proof is based on the structure of lk(p,). Let vy, v, be
the vertices of the spherical simplicial complex LK (po) represented by
the graphs shown in Figure 5.13. Each is fixed by the action of both
[a™,b,¢],[a™?,¢™,67] € stab(p). (The action of [a=,b,c] on the cube
shown in Figure 5.5 is by reflection in the (b,c)—plane. The action of
[a=',¢71, 671 is by rotation through 7 about the axis (v1,v3)). The link of
vz in LK (po) has four vertices, represented by the graphs vy, vs, Vg, U7 In Fig-
ure 5.13. None of these vertices is fixed by the action of [a~!, ¢!, b71], so

neither is any topological arc in LK (py) with an endpoint at v,.
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If there were a unique geodesic segment from v; to v, in LK(p,) it would
be a topological arc fixed by any automorphism fixing both v; and v,. Therefore
such a segment does not exist and, since we are assuming that K satisfies the
link axiom, it follows that dyg(,,)(v1,v;) > w. Consider P, the path shown

in Figure 5.14. This joins v; to v, in LK(py), and hence must have length at

least 7. But its actual length is (8 + 2y + 26). O

Lemma 5.3:

R

Proof: Let (go,Go) be as in Figure 5.15. To prove the lemma we analyse
1k(g0, Go). (Notice that (go, Go) is the central vertex of the face B(+) of the

cube shown in Figure 5.5.)

Given a vertex u in the geometric realisation of any poset, its link can be
described as the join of its link in the subcomplex spanned by vertices greater
than v (its upper link) and its link in the subcomplex spanned by vertices less
than w (its lower link). This makes the calculation of 1k((g0,Go)) a simple
matter, since its upper link is a subcomplex of [k(py), which we have already

caclulated, and its lower link consists only of the roses po and p1 shown in

Figure 5.16.
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a a
22
b ¢ e/ b ¢
V] v2 U3
V4 3
1k(v2) N Th(po) =
Vg Vg
o
o a a
ve=(p ) vs={ b ] U he TS

Figure 5.13: The vertices considered in Lemma 5.2

R S

Figure 5.14: The path P; of Lemma 5.2




115

bag‘
(gﬂa GO) = L = b%
| <

(4

Figure 5.15: The marked graph (go,Go)

bab'
£0 . Pl =
b b ¢

Figure 5.16: The roses in the link of (go,Go)

]

Po

(o

Figure 5.17: The path P, of Lemma 5.3

P1
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We shall prove that there does not exist a unique geodesic segment from
po to p1 in Lk((go,Go)). The group stab(pe) N stab(py) N stabd((go, Go)) is
isomorphic to the dihedral group Ds, which is the stabiliser of the face B(+) of
the cube in Figure 5.5 under the action of Q3 = stab( po). No point in the upper
link of (g0, Go) (= lk(po) N 1k((go, Go))) is fixed by this action. Therefore, as
in Lemma 5.2, we deduce that drx((s,G0))(P0>P1) 2 T and hence the path P,
which is shown in Figure 5.17, is no shorter than . The actual length of P,
in LK((go,Go)) is 2¢p. O

Remark: The dihedral group referred to in the proof of Lemma 5.3 1is:
{[a’:hl b} b’ C], [ail 9 b7 c_1]7 [c:l:l ) b_l7 a’]‘) [ci17 b—l b a—l]}‘

Lemma 54:

Atpt+n2m.

Proof: For this lemma we need to understand lk((g1,G1)), which is
described in Figure 5.18. We prove that there is not a unique geodesic segment

from the vertex p to the vertex v’ in LK ((¢1,G1))-

The automorpism [a~, b, ¢] € stab((g1, G1)) interchanges the two elements
of the upper link of (g1, G1) and fixes the lower link pointwise, so if there were
a unique geodesic segment from po to v' in LK((41, G1)) then it would have
to be contained in the lower link. But, every path from pg t0 v’ in the lower
link has length at least A + p -+ 7, and there are two paths of precisely this
Jength. Hence the required inequality. ll
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a
(91,G1) — —
[ cb—l
( a a )
Upper link of (¢,,Gy) —  { | b bl
\ ¢ ¢ 7

Lower link of (g;,Gy) ¢

- .

C a
b c

Figure 5.18: The graph (g1,G;) and its link
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Lemma 5.5:

0+o2>m.

Proof: Let (g2, G2) be as in Figure 5.19. In Section 5.2 we saw this graph
as the midpoint of an edge of the cube in Figure 5.6, and calculated its upper
link. Its lower link consists of the roses pg, p2, and p; shown in Figure 5.19.
The action of [a~1,b,¢] € stab((g2,G2)) fixes each of these roses, aswell as
three vertices of the upper link of (g2, G2). Figure 5.20 shows the 1-dimensional
subcomplex of LK ((gz,G-)) fixed by [a™, b, c]. We call this complex L. Each
of the edges which is drawn as a solid line has length ¢ and each of the edges

which is drawn as a broken liné has length 6.

Let p and g be the midpoints of distinct solid edges. If there were a unique
geodesic segment from p to ¢ in LK ((g2,G>)) then it would be contained in
L. But, all paths from p to ¢ in L have length at least (6 4 ¢) and there are
twb paths joining them which are of precis_ely this length. Hence there is not

a unique geodesic segment from p to ¢ in LK ((g2,G2)), which imples that
@+¢) >= O
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(g2,G2) =

o
n e O
b C

a

Pt

Figure 5.19: The vertices considered in Lemma 5.5

N P2
¢ P3

Figure 5.20: The 1-complex L
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5.4 The Curvature of K,

The complexity of the links of vertices in K; (particularly that of a rose)
makes the prospect of explicitly calculating the links of vertices in K, forn > 3
seem daunting, if not impossible. However, we circumvent this difficulty by
restricting our attention to the fixed point set of I',, a particular finite subgroup
of Out(F,). The links of vertices in this set are 2~dimensional, and admit an
easy description in terms of the links of vertices in Kj3. We use this description

to obtain a contradiction in the manner of Section 5.3.

Theorem 5.6: If n > 3 then there does not exist an Out(F, )—equivariant piece-
wise Euclidean (or piecewise hyperbolic) structure of non-positive curvature on
K,.

Notation: Fix a basis{ay, ..., an_2,b,c} for the free group of rank n.

Let T, denote the subgroup of Qut(F,) generated by the n — 2 involu-
tions [a[', a2, .. .,0n_2,0,¢],...,[a1,02,...,a;2,,b,c] together with the outer
automorphism classes of those automorphisms which fix & and ¢ and act by
permutations on the set {a;,...,a,—2}. Thus T, is a semidirect product of
Zax...xZy (n — 2 factors) with the symmetric group on n — 2 letters.

Lemma 5.7 describes the fixed point set of T',,. Before stating this lemma
we need to make some observations about the geometry of embedded circles in
a marked graph and their relationship to cyclic words in the free group.

In the paragraph on labelled graphs we noted that there were certain
ambiguities in the choice of labels. However, it is important to notice that
the marking ¢ assigns unique labels to reduced circuits in G in the following
sense: If we join the endpoints of a labelled edge by the unique topological
arc between them in the chosen maximal tree then we obtain an embedded

circle in G. This oriented circle corresponds, via the marking g, to a unique
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conjugacy class of words in F, (i.e., a cyclic word). Moreover, this conjugacy
class, which contains the given edge label, does not depend on the choice of
maximal tree. Because the graph under consideration is assumed to have no
separating edges it is the union of the circles obtained from the labelled edges by

this construction. Further, any two of these circles meet in a (possibly empty)

subarc of our chosen maximal tree,

If & denotes the isometry of G induced by ¢ € stab((g, G)) then the image
under & of an embedded oriented circle which corresponds to a given cyclic
word w is the embedded oriented circle corresponding to the cyclic word d(w).
In particular, if #¢(w) = w then the embedded circle is mapped to itself by an
orientation preserving homeomorphism, and if #(w) = w1 then it is mapped

to itself by an orientation reversing homeomorphism.

Lemma 5.7: Suppose that the vertex (9,G) € K, can be represented
by a labelled graph with the Jollowing properties: it has edge labels
{ay,... »An_2,W1,Wws } for some words w, and wy involving only the letters b
and c, and contains a bouguet of n — 2 circles with labels {a1,...,a,_2} based
at some vertex. Then T, stabilises a vertex (h,H) € lk((9,G)) if and only if
(h, H) can be represented by a labelled graph with the same properties.

Proof: Sufficiency is immediate from the definition of the action of Oui(F,)
on K,. To prove that the given condition on (h,H) is necessary we first
observe that any vertex in the lower link of (g,G) can be represented by a
labelled graph with the desired properties. To see this, consider blowing down
an edge of (G, g): The labelling of G by {al,...,an_g,wl,wz} arises from
choosing a particular maximal wee, If we wish to blow down an edge which

iS not in this tree, then we must rechoose the tree. Since the new tree must
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lie in the complement of the loops labelled {ai,. .., an—2} these labels remain

unchanged, while the labels w; and w; may be multiplied by words in b and

¢ (see Figure 5.1).

On the other hand, any vertex (h,H) in the upper link of (9,G) can
be represented by a labelled graph with edge labels {ay,...,an_2,w1,ws}
Suppose that the automorphism [a7!, a2, . ., Qn-2,b,] (which for brevity we
call ¢) stabilises (h, H). If the edge labelled a; were not a loop, then the
embedded circle obtained by joining its endpoints by the unique arc between
them in the chosen maximal tree would intersect the circle determined by some
other labelled edge in a non-trivial arc. But this is impossible, because the
isometry ® sends the circle determined by the edge labelled a; to itself by an
orientation reversing homeomorphism, and sends the circle determined by any

other labelled edge to itself by an orientation preserving homeomorphism.

Repeating this argument with q; in place of a; shows that if the graph
(h, H) is fixed by the action of T, then the edge labelled a; is a loop, for all
i € {2,...,n —2}. The action of the symmetric group Sp—», which occurs in
the semi-direct product structure of I',, permutes these loops, hence they must

all be based at the same vertex. [l

Definition: Suppose (g,G) € K; can be represented by a labelled graph with
edge labels {a, b, c}, such that the edge labelled a is a loop. We define (g, G)(n)
to be the vertex of K, represented by the labelled graph obtained from (g,G)
by replacing the edge labelled a with a bouquet of circles based at the same
vertex, and labelled a1, ..., an_o. (It is easy to check that (9,G)(n) depends

only on (g,G) and not on the particular labelling chosen.)
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The following is an immediate consequence of Lemma 5.7.

Corollary : The map (h,H) — (h, H)(n) is a simplicial isomorphism from
the fixed point set of [a™",b, ¢] acting on lk((g, G)) to the fixed point set of T,
acting on lk((g, G)(n)).

Proof of Theorem 5.6: The proof centres on the three 2—cells of K nf Out(F,)
which correspond to the three 2—cells shown in Figure 5.12. More precisely,
for each of the 2—cells in Figure 5.12 we choose a 2—cell in K 3 which lies in
its preimage and for which each of the vertex graphs has a loop labelled a. We
then take the image in K, of this 2—cell under the map (H,h) — (H,h)(n),
and project this down into K, /Out(F,). We retain the names used for the

corresponding angles in the rank 3 case.

Suppose that K, /Out(F,) can be metrized so that K,,, with the induced
structure, is non-positively curved. If this were the case then the sum of the
angles shown in Figure 5.12 would be 3. However, by virtue of the preceding

corollary, the arguments given in Section 5.3 apply (mutatis mutandis) in the

present setting to yield
(Brr+8)+¥+ (A +n+p)+(6+¢) 2 3.

We rephrase Lemmas 5.1-5.4 to clarify this remark.

If K,/Out(F,) can be metrized so that K,,, with the induced structure, is

non-positively curved then the following assertions hold:

Lemma 5.2 (The case n=3): Let v1 and vy be as shown in figure 5S.13. These
vertices are fixed by both [a™',b,c] and [a™!, ¢!, b7Y), whereas no point of

Ik(v) N lk(py) is. Hence
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Lemma 5.2' (The general case): Let v; and v, be as shown in fig-
ure 5.13. The vertices vi(n) and vy(n) are fixed by the action of T'y X

{1,[a1,-.-,an—a,c 1,671}, whereas no point of lk(vi(n)) N lk(po(n)) is.

Hence

Lemma 5.3 (The case n=3): The only points of LK((go,Go)) fixed by both

[a=1,b,c] and [a, b7, c] are the roses py and p; shown in figure 5.16. Hence

P2

Nl

Lemma 5.3' (The general case): The only points of LK ((go, Go)(n)) fixed by
the action of T, x {1,[a1,...,an_2,b71,c71]} are the roses py(n) and pi(n).

Where py and p, are as shown in figure 5.16. Hence

T
> —.
7’Z)_Z

Lemma 5.4 (The case n=3): The automorpism [a™},b,c] € stab((g1,G1))
interchanges the two elements of the upper link of (g1, G1) and fixes the lower
link pointwise. Let v' be as shown in figure 5.18. Every path from py to v' in

the lower link of (g1, G1) has length at least A + p +n, and there are two paths
of precisely this length. Hence

Adp+n>m.
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Lemma 5.4' (The general case): The group T', C stab((g1,G1)) has no fixed
points in the upper link of (g, G1)(n), and fixes the lower link pointwise. Let '
be as shown in figure 5.18. Every path from py(n) to ' (n) in the lower link of

(91, G1)(n) has length at least ) + ¢ +n, and there are two paths of precisely
this length. Hence

Adp+np>7.

Lemma 5.5 (The case n=3): The fixed point set for the action of [a=',b, ¢] on
LK((g2,G>)) is isomorphic to the graph L shown in figure 5.20, with vertices
P0s P2, P3, U1, Uz, U3 as defined in figure 5.19. If L is metrized so that the solid
edges have length ¢ and the broken edges have length 6, then any path from

P to q in L has length at least 6 + ¢ and there are two paths of precisely this
length. Hence

0+d>x.

Lemma 5.5' (The general case): The fixed point set for the action of T,
on LK ((gs,G,)(n)) is isomorphic to the graph L shown in figure 5.20, with
vertices po(n), pz(n), ps(n), u1(n), up(n), us(n), where pq, p,, P3, U1, Uz, U3 are
as shown in figure 5.19. If L is metrized so that the solid edges have length ¢
and the broken edges have length 6, then any path Jrom p to q in L has length

at least 6 + ¢ and there are two paths of precisely this length. Hence

O+d>m.

This concludes the proof of Theorem 5.6. O
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