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Abstract

In this thesis, we construct a family of exact functors from the category of Whit-
taker modules of the simple complex Lie algebra of type An to the category of
finite-dimensional modules of the graded affine Hecke algebra of type A`. Using
results of Backelin [3] and of Arakawa-Suzuki [1], we prove that these functors
map standard modules to standard modules (or zero) and simple modules to sim-
ple modules (or zero). Moreover, we show that each simple module of the graded
affine Hecke algebra appears as the image of a simple Whittaker module. Since the
Whittaker category contains the BGG category O as a full subcategory, our results
generalize results of Arakawa-Suzuki [1], which in turn generalize Schur-Weyl du-
ality between finite-dimensional representations of SLn(C) and representations of
the symmetric group Sn.
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Preface

The full historical (and mathematical) context of this thesis does not easily conform
to a linear narrative structure. It is unlikely that any document of finite length will
capture the multitude of individuals and events which gave representation theory
its modern form. However, the utility of the narrative form for the purposes of
communication is inescapable. We, therefore, find ourselves with the unfortunate
task of imposing a simple structure onto the complex and often incomprehensible
history of mathematics 1. To the casualties of our oversimplification, we apologize2.

The roots of this thesis, and representation theory more generally, can be traced
back to Joseph Fourier, a paper rejected for publication, and the advent of harmonic
analysis. While studying the diffusion of heat and the methodology of separation
of variables, Joseph Fourier invented a technique for representing a function f(x)

on the interval (−π, π) by a series of continuous multiplicative characters of the
circle group (group homomorphisms S1 → C×):

f(x) ∼
∞∑

n=−∞

cne
inx cn =

1

2π

∫ π

−π
f(x)e−inxdx.

In a single paper, submitted in 1807, Fourier derived the heat equation and studied
the representability of functions by trigonometric series3 [28]. The representabil-
ity of functions by multiplicative characters of groups became a central theme in
harmonic analysis, leading to the decomposition of complex-valued functions on

1The historical content of this section is drawn heavily from [26–31].
2We specifically refer readers to [28, 29] for a much more thorough historical account of repre-

sentation theory.
3The paper was blocked from publication due to objections concerning the incompatibility of

Fourier series with the prevailing intuition of the time. Fourier submitted an expanded and revised
version of the paper again in 1811, which was also rejected. Fourier’s analytic theory of heat was
eventually published as a book in 1822 [18].

ix
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finite abelian groups:

f(x) =
1

|G|
∑
ω

(∑
y∈G

f(y)ω(y)

)
ω(y)

whereω ranges over all multiplicative characters ofG (group homomorphismsG→
C×).

These fundamental results of harmonic analysis paved the way for a theory of
multiplicative characters of finite non-abelian groups. The theory of characters and
representations of finite groups was developed in the early 1900s, building on con-
tributions from Frobenius, Burnside, Schur, and Noether [29]. Frobenius initiated
the field in 1896 by developing a theory of characters for non-abelian finite groups.
Brunside [12] and I. Schur [42] then shifted the focus of study to homomorphisms
from a finite group into the group of invertible matrices. Noether then gave the
modern definition of a representation of a group: A representation of a finite group
G is a homomorphism π from G to the group of invertible linear transformations
GL(V ) of a finite-dimensional vector space V [2, page 528]. The corresponding
character of G is defined to be the trace of the matrix corresponding to each group
element:

χπ(g) = tr(π(g)).

The celebrated representation theory of compact connected Lie groups was pio-
neered by Cartan and Weyl. In 1913, Cartan introduced highest weight representa-
tions of complex semisimple Lie algebras [13]. Suppose g is a (finite-dimensional)
complex semisimple Lie algebra. Suppose h is a Cartan subalgebra of g (i.e. a nilpo-
tent self-normalizing subalgebra). Let ∆ = ∆(g, h) be the corresponding set of roots
and W = W (g, h) the corresponding Weyl group. Let Π ⊂ ∆+ ⊂ ∆ be a choice of
simple roots and positive roots, respectively. Cartan showed that there is a one-
to-one correspondence between dominant (with respect to Π) integral linear func-
tionals λ ∈ h∗ and irreducible finite-dimensional representations of g. Weyl then
developed an analytic theory for representations of compact connected Lie groups
from 1924 to 1926, resulting in the Weyl character formula in 1925 and the Peter-
Weyl theorem in 1926 [40, 48–51]. Let G be a compact connected Lie group with
complexified Lie algebra g. For ease of exposition, we will additionally assume
that G is simply connected. Let T be a maximal torus of G with complexified Lie
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algebra h. Let Vλ be an irreducible representation of g, corresponding to the domi-
nant integral weight λ ∈ h∗ by Cartan’s classification of irreducible representations
of g above. Let ρ =

∑
∆+

1
2
α ∈ h∗ denote the half sum of positive roots. The Weyl

character formula

χ(Vλ) =

∑
w∈W (−1)l(w)ew(λ+ρ)∏
α∈∆+

(
eα/2 − e−α/2

)
gives a continuous character of G corresponding to the representation Vλ in terms
of characters4

eν(H) = ν(h) for H = exp(h), h ∈ h

of the the maximal torus T . The Maximal Torus Theorem of Weyl states that each el-
ement ofG is conjugate to an element in T . This allows the characterχ(Vλ) of T to be
extended to a continuous character of G, resulting in a classification of continuous
characters of irreducible representations of compact connected (simply connected)
Lie groups.

The Peter-Weyl theorem completed the generalization of Fourier series to the
setting of compact connected Lie groups by decomposing L2(G)

L2(G) ∼=
⊕̂
π∈Ĝ

V ∗π ⊗ Vπ,

where Ĝ is the set of all finite-dimensional irreducible unitary representations ofG.
Additionally, the Peter-Weyl theorem shows that the linear span of all irreducible
characters of G is dense in the space of square-integrable functions which are con-
stant along G-conjugacy classes and the linear span of all matrix coefficients for all
finite-dimensional irreducible unitary representations of G is dense in L2(G).

In 1951, Harish-Chandra gave an algebraic classification of finite-dimensional
representations of compact Lie group [21]. Let b be a Borel subalgebra of g (i.e., a
maximal solvable subalgebra) containing h. Working with the universal enveloping
algebra U(g) of the complex semisimple Lie algebra g, we can define the Verma
module M(λ) by algebraic induction from the Borel subalgebra

M(λ) = U(g)⊗U(b) Cλ,

4More work is required to show for which ν ∈ h∗, eν extends uniquely to a well defined contin-
uous function on T . See [43, Chapter 7].
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where the nilradical of b acts trivially on Cλ and h acts by λ. Each Verma mod-
ule has a unique irreducible quotient, denoted L(λ), which is finite-dimensional
precisely when λ is a dominant integral weight. The family of such modules was
further studied by Verma in 1966 [46]. In 1971, Bernstein-Gelfand-Gelfand investi-
gated these modules further, introducing a category of U(g)-modules whose sim-
ple objects are given by the irreducible quotients L(λ), for general λ ∈ h∗ [5]. The
Bernstein-Gelfand-Gelfand categoryO is defined to be the category of finitely gen-
eratedU(g)-modules which are locallyU(b)-finite andU(h)-semisimple. A formula
for the characters of irreducible modules in category O then becomes a natural ex-
tension of the Weyl character formula and was conjecturally described by Kazhdan
and Lusztig in 1979.

The significance of the Kazhdan-Lusztig conjectures in representation theory
is hard to overstate. Since the publication of the seminal paper Representations of
Coxeter groups and Hecke algebras [24], multiple generations of mathematicians have
been captivated by the sublime relationships uncovered between the combinato-
rial theory of Hecke algebras, the representation theory of complex semisimple Lie
algebras, and the geometry of flag varieties. The eventual proof of the Kazhdan-
Lusztig conjectures draws from techniques developed long before the conjectures
were made, and ties together several seemingly unrelated branches of mathematics
spanning decades of work by many profoundly insightful mathematicians.

In [24], Kazhdan and Lusztig begin by studying the properties of a deformation
of the group algebra of a Coxeter group W , known as the Iwahori-Hecke algebra
Hq associated with W . The Iwahori-Hecke algebra appears in several contexts in
representation theory. One such realizations is as the convolution algebra of B-bi-
invariant functions onG, whereG is a split reductive linear algebraic group defined
over the finite fieldFq, andB is a Borel subgroup ofG. Kazhdan and Lusztig gave an
algorithm for computing the change of basis matrix corresponding to two natural
bases of Hq and conjectured that the algorithm would yield character formulas
for the irreducible representations in category O. These formulas provide the first
appearance of the famous Kazhdan-Lusztig polynomials.

The proof of the Kazhdan-Lusztig conjectures, due independently to Brylinski-
Kashiwara [11] and Beilinson-Bernstein [6], took only two years but required an
amazingly vast range of mathematical techniques which had been under develop-
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ment for the past century. We will follow the independent progression of three key
pieces, which came together in a wholly remarkable way.

The first key piece originated with a question concerning systems of differential
equations, posed by Riemann in 1857 [26]. If we are given a system of m first order
differential equations on U , a connected open subset of CP1, with regular singular-
ities u0, · · · , ul ∈ U , and a basis of the space of solutions, then we can construct a
representation of the fundamental group of the punctured domain

ϕ : π1(U − {u0, · · · , ul})→ GL(m,C)

called the monodromy of the system (herem is the size of the system of differential
equations). Riemann asked for the natural converse of this construction. Given a
connected open subset U ⊂ CP1, a set of points {u0, · · · , ul}, and a representation

ϕ : π1(U − {u0, · · · , ul})→ GL(m,C)

how many systems of first order differential equations with regular singularities
have monodromy ϕ? Riemann showed that there is a unique system when l =

m = 2, but the problem remained open in more general situations. In 1900, Hilbert
included Riemann’s question in his famous list of the twenty-three most impor-
tant mathematical problems for the twentieth century. Hilbert asked whether we
could find a system of differential equations with a prescribed set of (regular) sin-
gular points and fixed monodromy. This became known as Hilbert’s twenty-first
problem or the Riemann-Hilbert problem. The modern approach to this prob-
lem, known as the Riemann-Hilbert correspondence, was championed by Pierre
Deligne and replaces notions of monodromy with locally constant sheaves, and
systems of differential equations with holonomic D-modules [26]. From the per-
spective of sheaf theory, the Riemann-Hilbert correspondence is an equivalence of
categories between complexes of holonomic D-modules with regular singularities
on a smooth complex algebraic variety and a category of complexes of sheaves on
said variety. This geometric theory became a crucial tool for the eventual proof of
the Kazhdan-Lusztig conjectures.

Meanwhile, in the 1970s, Mark Goresky and Robert MacPherson were studying
homology of singular spaces. They developed a new homology theory based on co-
cycles which intersected strata of the singular space according to a given rule which
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they called a perversity [19,20]. They proved that for topological pseudomanifolds,
this new treatment of homology exhibits the holy grail of homology theories, the
existence of Poincare duality. They called this new theory intersection homology.
The next monumental step forward for intersection homology occurred at a Hal-
loween party near Paris in 1976 when Pierre Deligne conjectured the existence of a
complex of sheaves whose cohomology groups are equal to the intersection homol-
ogy groups of Gorskey and MacPherson [27]. This serendipitous encounter opened
the door for the modern machinery of derived categories and sheaf theory to be
used in the study of singular spaces. For the next decade, Gorskey, MacPherson,
and others worked on providing increasingly elegant treatments of intersection ho-
mology. Their work culminated in the realization of Deligne’s complexes of sheaves
as the irreducible objects in the category which was found to be equivalent to cer-
tain complexes of holonomic D-modules by the Riemann-Hilbert correspondence.
Thus, this new category which related the homology of singular spaces and the
monodromies of systems of differential equations became known as the category
of perverse sheaves.

The final piece in the puzzle is the localization theory of Beilinson-Bernstein,
published in the 1981 paper Localisation de g-modules [6]. This fundamental paper
ignited the field of geometric representation theory by building a bridge between
modules of a Lie algebra and holonomic D-modules on the corresponding flag va-
riety. These developments advanced the proof of the Kazhdan-Lusztig conjectures
by allowing the representation theoretic problem of computing irreducible charac-
ters to be phrased in terms of D-modules. The Riemann-Hilbert correspondence
then translates the character formulas to the language of perverse sheaves. Lastly,
the Kazhdan-Lusztig conjectures can be solved by using Kazhdan and Lusztig’s re-
alization of the coefficients of Kazhdan-Lusztig polynomials as the dimensions of
intersection homology groups on Schubert varieties.

In subsequent years, mathematicians in a variety of fields worked to emulate
and generalize applications of intersection homology and perverse sheaves in rep-
resentation theory. Two subsequent branches of development play a key role in this
thesis.

The first branch is concerned with the generalization of the Kazhdan-Lusztig
conjectures to a category of Whittaker modules. This category (studied in [3, 32,
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36, 38, 39]) contains category O as a full subcategory and exhibits subtle obstacles
when approached from the perspective of perverse sheaves. Namely, holonomic
D-modules obtained from localization can now have irregular singularities, pre-
venting us from using the classical Riemann-Hilbert correspondence. This hurdle
has been overcome through varying means. In [39] and [3], functors from category
O to blocks in the Whittaker category are constructed as a means of translating
Kazhdan-Lusztig theory for categoryO to the Whittaker category. This allows us to
calculate the multiplicities of irreducible Whittaker modules in the composition se-
ries of standard Whittaker modules by reducing the calculation to the well-known
case of highest weight modules. Recently, Romanov has developed a new proof of
the Kazhdan-Lusztig conjectures for the Whittaker category by developing an al-
gorithm for the computation of Whittaker Kazhdan-Lusztig polynomials directly
in the category of holonomic D-modules, rather than in the category of perverse
sheaves [41].

The second branch of research that concerns us was developed by Bernstein-
Zelevinsky, Zelevinsky, Kazhdan-Lusztig, and Lusztig [4, 25, 34, 35, 54]. Inspired
by the work of Kazhdan and Lusztig, Zelevinsky developed a p-adic anolog of
the Kazhdan-Lusztig conjectures for certain representations of GL(n,Qp). Kazh-
dan and Lusztig then refined Zelevinsky’s conjecture to include split reductive p-
adic Lie groups. However, instead of studying representations of p-adic groups
directly, Kazhdan-Lusztig and Lusztig reduced the problem to the study of rep-
resentations of the affine Hecke algebra by the Borel-Casselman correspondence,
and later to the setting of finite-dimensional modules of the graded affine Hecke
algebra by Lusztig [34]. In this setting, the graded affine Hecke algebra plays a role
loosely analogous to that of the Lie algebra in the complex setting. For this reason
(seeing as this thesis ultimately aims to draw connections to the Kazhdan-Lusztig
theory of the Whittaker category for sln), we will formulate the p-adic Kazhdan-
Lusztig conjectures in the setting of graded affine Hecke algebras (as was done
in [1]). This formulation of the p-adic Kazhdan-Lusztig conjectures was proved
in [35] by constructing an action of the graded affine Hecke algebra on certain ge-
ometric objects. Using Lusztig’s geometric realization of standard and irreducible
modules, the composition multiplicities of standard modules can then be directly
related to the dimensions of intersection homology groups on certain affine alge-
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braic varieties.
These two versions of the Kazhdan-Lusztig conjectures are related by a remark-

able geometric observation due (independently) to Lusztig and Zelevinsky. In [54],
Zelevinsky shows that for certain cases in type An, the p-adic Kazhdan-Lusztig
polynomials (defined by intersection homology groups of affine algebraic varieties)
match the original Kazhdan-Lusztig polynomials (defined by intersection homol-
ogy groups of projective algebraic varieties). This observation leads one to ask
whether there is a functorial relationship between category O and the category of
graded affine Hecke algebra modules. Such a relationship was developed in [1]
for the above setting, and in [16] for the setting of Harish-Chandra modules of
GL(n,R). Motivated by the results of Backelin [3] and Romanov [41], this thesis
constructs a categorical relationship between Whittaker modules and graded affine
Hecke algebra modules. In this way, the results of this thesis generalize the theory
developed in [1].



Chapter 1

Introduction

Motivated by the study of Whittaker models of representations, Kostant defined
a family of modules over the universal enveloping algebra, U(g), of a complex
semisimple Lie algebra, g, and classified the irreducible modules contained in the
family [32]. In [38], Miličić and Soergel give an axiomatic construction of a cat-
egory of Whittaker modules, denoted by N , which contains Kostant’s family of
U(g)-modules as well as the classical Bernstein-Gelfand-Gelfand category O. Sup-
pose b is a Borel subalgebra of g with Cartan decomposition b = h ⊕ n, and let
Z(g) denote the center of U(g). The category of Whittaker modules, denoted N , is
defined to be all U(g)-modules which are finitely generated over U(g), locally finite
over U(n), and locally finite over Z(g).

The graded affine Hecke algebra naturally arises from the study of representa-
tions of reductive algebraic groups over p-adic fields. Inspired by the work of Kazh-
dan and Lusztig, Zelevinsky developed a p-adic anolog of the Kazhdan-Lusztig
conjectures for smooth representations of GL(n,Qp) containing Iwahori fixed vec-
tors [53]. However, a p-adic analogue of the Kazhdan-Lusztig conjectures remained
open for groups outside of typeA. The full p-adic analogue of the Kazhdan-Lusztig
conjectures was pioneered by Lusztig, and relied on contributions from Borel and
Casselman. Borel and Casselman related smooth representations of reductive alge-
braic groups over p-adic fields containing Iwahori fixed vectors to representations
of the affine Hecke algebra, completing what we refer to as the Borel-Casselman
correspondence. Finally Lusztig constructed a reduction from the study of repre-
sentations of the affine Hecke algebra to finite-dimensional modules of the graded
affine Hecke algebra [34]. We will now define the graded affine Hecke algebra. Let
W be the Weyl group of a semisimple complex Lie algebra g, Π ⊂ ∆+ be the set of

1



2 Chapter 1. Introduction

simple and positive roots, respectively, corresponding to the choice of Borel sub-
algebra b ⊂ g. Let S(h) be the symmetric algebra of h. The graded affine Hecke
algebra H is the associative algebra generated by C[W ] and S(h) subject to the rela-
tions

sα · h− sα(h) · sα = 〈α, h〉 for all α ∈ Π and h ∈ h.

In this setting, the graded affine Hecke algebra plays a role loosely analogous to
that of the Lie algebra in the complex setting. To complete the p-adic analog of
the Kazhdan-Lusztig conjectures, Lusztig constructed algebra isomorphisms be-
tween graded affine Hecke algebras and higher endomorphism algebras of certain
perverse sheaves [35]. The multiplicity of irreducible representations in the com-
position series of standard representations is then directly related to the geometry
of orbits of a Levi subgroup Lσ on g1(σ) = {x ∈ g : ad(σ)x = x}, for σ ∈ h.
These discoveries illustrate the subtle relationships between the combinatorial rep-
resentation theory of Sn, the geometry of Lσ orbits on g1(σ), and the representation
theory of GLn(Qp).

Schur-Weyl duality relates finite-dimensional representations of G = GL(V ) to
finite-dimensional representations of the symmetric group Sn. These connections
can be interpreted as a functor, F (X) = HomG(1, X ⊗ V ⊗n), from the category of
finite-dimensional representations ofG to the category of finite-dimensional repre-
sentations of Sn. The Schur-Weyl duality ofG and Sn implies that this functor maps
irreducibleG-representations to irreducible Sn-representations (or zero). Arakawa
and Suzuki generalized the classical Schur-Weyl duality by constructing an action
of H on the tensor product representationX ⊗ V ⊗n, and then by defining a functor
for each Verma module M(λ) of highest weight λ ∈ h∗

Fλ(X) = HomU(g)(M(λ), X ⊗ V ⊗n)

which map irreducible objects in category O to irreducible H-modules [1] (under
certain assumptions on λ). The combinatorial and geometric classification of irre-
ducible Whittaker modules and irreducible graded affine Hecke algebra modules
provide a foundation for generalizing the functorial relationships described in [1].
This thesis uses techniques developed by Kostant [32], Backelin [3], and Miličić-
Soergel [38, 39], to construct a family of Arakawa-Suzuki type fuctors Fη,λ for the
category of Whittaker modules, completing the following diagram.
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finite-dimensional
G-representations

F

finite-dimensional
C[Sn]-modules

finite-dimensional
H-modules

category O

Fλ

Whittaker modules

Fη,λ

Moreover, each irreducible graded affine Hecke algebra module is obtained in this
way. We can thus view our result as an algebraic realization of the geometric obser-
vation of Lusztig and Zelevinsky and the corresponding implications on the Kazh-
dan Lusztig theories for each category.

1.1 Main results

Let g be a reductive complex Lie algebra and h ⊂ b be a Cartan subalgebra and Borel
subalgebra of g, respectively. Let n = [b, b] be the nilradical of b, and Π ⊂ ∆+ be the
set of simple and positive roots corresponding to b, respectively. For a root α ∈ h∗,
let gα = {x ∈ g : ad(h)x = α(h)x for all h ∈ h}, and let ρ = 1

2

∑
α∈∆+ α denote the

half sum of positive roots. Let U(g) be the universal enveloping algebra of g, and
Z(g) the center of U(g). Let Ng denote the category of Whittaker modules defined
above. For g = sl`(C), we define a family of exact functors from the category Ng to
the category of finite-dimensional modules for the graded affine Hecke algebra of
the Coxeter system associated with (g, b). We prove (under natural assumptions)
that standard objects are mapped to standard objects (or zero) and irreducible ob-
jects are mapped to irreducible objects (or zero). The categoryNg contains the BGG
category O as a full subcategory, and when we restrict to O we recover Arakawa-
Suzuki functors [1]. When we restrict to finite-dimensional sln(C)-modules, we re-
cover the classical Schur-Weyl duality between finite-dimensional representations
of SLn(C) and finite-dimensional representations of the symmetric group Sn.

We will now briefly review the notation needed to define the functor. Let η ∈
chn := (n/[n, n])∗ be a character of n, Πη = {α ∈ Π : η|gα 6= 0}, and Wη be the Weyl
group generated by the reflections sα for α ∈ Πη. Let pη ⊂ g be the corresponding
parabolic subalgebra containing b with adh-stable Levi decomposition pη = lη⊕nη.
Let z be the center of the lη and s := [lη, lη]. Set bη = b∩ lη and let nη be its nilradical.
Let Z(lη) be the center of U(lη), and ξη : h∗ → MaxZ(lη) be induced by the relative
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Harish-Chandra homomorphism for U(lη). Let V = Cn be the standard represen-
tation of g. For a locally Z(g)-finite U(g)-module X , let X [λ] denote the subspace
consisting of vectors with generalized Z(g)-infinitesimal character corresponding
to λ ∈ h∗ via the Harish-Chandra homomorphism. Let

Ng(η) = {M ∈ Ng : ∀m ∈M and u ∈ n, ∃ k ∈ Z≥0 so that (u− η(u))km = 0}.

For a U(g)-module X ∈ Ng(η), let

Xλz = {x ∈ X : ∀z ∈ z, (z − λ(z))kx = 0}

denote the generalized z-weight space corresponding to λ ∈ h∗ restricted to z ⊂ h.
Given a U(g)-module X , define

H0
η (nη, X) := {x ∈ X : ux− η(u)x = 0 ∀u ∈ nη}.

A vector v ∈ H0
η (nη, X) is called a Whittaker vector. For a U(g)-module X ∈ N we

define the following functor

F`,η,λ(X) := H0
η

(
nη,
(
X ⊗ V ⊗`

)[λ]

λz

)
,

for ` ∈ N, η ∈ chn, and λ ∈ h∗. Following [1], in Section 3.4 we define an action of the
graded affine Hecke algebraH corresponding to the root datum forSL` on theU(g)-
module X ⊗ V ⊗`. The action of H commutes with the action of U(g), and induces
an H-module structure on H0

η

(
nη,
(
X ⊗ V ⊗`

)[λ]

λz

)
. We can therefore view F`,η,λ as

a functor from N to the category of H-modules. This family of functors posses a
number of nice properties that we will explore in this paper and elsewhere. Our
main result is the following (Theorem 5.2.4).

Theorem 1.1.1. For λ ∈ h∗ dominant, F`,η,λ is an exact functor fromNg(η) to the category
of finite-dimensional modules of the graded affine Hecke algebra corresponding to g. More-
over, if λ is a dominant integral weight such that Wη = {w ∈ W : w(λ+ ρ) = λ+ ρ}, and
X ∈ Ng(η) is irreducible with infinitesimal character corresponding to λ, then Fn,η,λ(X)

is irreducible or zero.

Chapter 6 describes ongoing research in collaboration with Anna Romanov.
There we give an algebraic classification of contravariant forms on standard Whit-
taker modules. We show that (in general) Whittaker modules admit multiple lin-
early independent contravariant forms (Corollary 6.0.14).
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Theorem 1.1.2. Let η ∈ chn, λ ∈ h∗, and Γ be the space of contravariant forms on the
standard Whittaker module stdN (λ, η). Then

dimΓ = |Wη|.
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Chapter 2

Whittaker modules

In this chapter we will introduce the theory of Whittaker modules, as well as prove
several results which will be needed in Chapter 5. We will begin by following the
Miličić-Soergel [38] construction of the category of Whittaker modules. For w ∈ W
and λ ∈ h∗ define the dot action of W on h∗ by

w • λ = w(λ+ ρ)− ρ where ρ =
1

2

∑
α∈∆+

α.

The Poincaré-Birkhoff-Witt basis theorem for U(g) relative to the triangular decom-
position g = n̄ ⊕ h ⊕ n gives us the vector space decomposition U(g) = U(h) ⊕
(n̄U(g) + U(g)n). The Harish-Chandra homomorphism

ξ] : Z(g)→ U(h)

is the projection map from Z(g) to U(h) by the above decomposition. This induces
a map

ξ : h∗ →MaxZ(g),

where λ ∈ h∗ maps to ker
(
λ ◦ ξ]

)
. It is well known that ξ(λ) = ξ(µ) if and only if

W •λ = W •µ. As in the introduction, suppose η ∈ chn := (n/[n, n])∗ is a character of
n with corresponding set of simple roots Πη = {α ∈ Π : η|gα 6= 0} and Weyl group
Wη generated by the reflections sα for α ∈ Πη. Let pη ⊂ g be the corresponding
parabolic subalgebra containing b with adh-stable Levi decomposition pη = lη⊕nη.
Let n̄η be the orthocomplement (with respect to the Killing form) of pη in g, so that
we have the decomposition g = n̄η ⊕ pη. We will use z to denote the center of lη.
Set bη = b ∩ lη and let nη be its nilradical. Let ξ]η : Z(lη) → S(h) be the Harish-
Chandra homomorphism of lη. That is, the projection Z(lη) to U(h) induced by the

7
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decomposition U(lη) = U(h) ⊕ (n̄ηU(lη) + U(lη)nη) given by the Poincaré-Birkhoff-
Witt basis theorem for U(lη). Let ξη : h∗ → MaxZ(lη) be the map induced from ξ]η.
We say that anA-module is locally finite if theA-span of any element of the module
is finite-dimensional.

We can now define the category of Whittaker modules, denoted by Ng, to be the
full subcategory of all U(g)-modules which are finitely generated over U(g), locally
finite over U(n), and locally finite over Z(g).

We have two decompositions for N . The action of Z(g) decomposes N into a
direct sum

N =
⊕

χ∈MaxZ(g)

N (χ),

where N (χ) denotes modules in N that are annihilated by a power of χ. In other
words, each object inN decomposes into a direct sum of modules with generalized
infinitesimal character (see Proposition 2.0.3). Similarly, the action of n gives us a
decomposition

N =
⊕
η∈chn

N (η),

whereN (η) = {M ∈ N : ∀m ∈M and u ∈ n, ∃ k ∈ Z≥0 so that (u− η(u))km = 0}.
Combining these decompositions, we have

N =
⊕
χ,η

N (χ, η),

where N (χ, η) = N (χ) ∩ N (η). For each choice χ ∈ MaxZ(g) and η ∈ chn, we see
that the categoryN (χ, η) contains the module U(g)/χU(g)⊗U(n)Cη. Therefore each
category N (χ, η) is non-empty. Moreover, each simple object L in N is contained
in N (χ, η) for some choice of χ and η depending on L.

Proposition 2.0.3. [38, Section 1] The categories N (χ, η) are closed under subquo-
tients and extensions in the category of U(g)-modules.

The following propositions will be useful when proving that the functors de-
fined in the introduction are exact.

Proposition 2.0.4. [38, Section 1] Every object X ∈ N admits a decomposition

X =
⊕
[λ]

X [λ],
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where X [λ] ∈ N (ξ(λ)) and λ ranges over coset representatives of W\h∗. Moreover,
the functor from N to N (ξ(λ)) which maps X to X [λ] is exact.

Theorem 2.0.5. [36], [39, Theorem 2.5] Every object X ∈ N has finite length.

Sketch of Proof. While McDowell proved this theorem algebraically in [36], this fact
follows easily from the geometric perspective of [39]. Miličić and Soergel show
that the Beilinson and Bernstein localization of an object X ∈ N with infinitesimal
character ξ(λ) is a holonomic Dλ-module. Since we are assuming that each object
inN is finitely generated and locally Z(g)-finite, it follows that each object inN has
finite length.

Remark. We will use the notation Ng when we want to emphasize the semisimple
complex Lie algebra g for which we are considering the category of Whittaker mod-
ules.

2.1 Classification of irreducible Whittaker modules

In this section we will review the classification of standard and irreducible Whit-
taker modules [36]. This algebraic classification generalizes the theory of Verma
modules, and uses induction to define standard objects which have unique irre-
ducible quotients. We will begin by defining the modules studied in [32] for the
Lie algebra lη. For any ideal I ⊂ Z(lη) define the U(lη)-module

Y (I, η) = U(lη)/IU(lη)⊗U(nη) Cη.

Building on work of Kostant, McDowell showed that Y (I, η) is irreducible for each
I ∈MaxZ(lη) [32,36]. When η = 0, lη = h andY (I, η) is a one dimensional h-module
with weight λ ∈ h∗ corresponding to the maximal ideal I ∈MaxS(h). Following the
classical theory of Verma modules, we define aU(g)-module stdN (λ, η) by algebraic
induction from lη to g. Recall that ξη(λ) ∈ MaxZ(lη) is induced from the relative
Harish-Chandra homomorphism on U(lη). Define the standard Whittaker module
corresponding to the pair (λ, η) by

stdN (λ, η) := U(g)⊗U(pη) Y (ξη(λ), η),

where we extend the lη action on Y to an action of pη by letting nη act trivially.
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Proposition 2.1.1. [38, Proposition 2.1]

(a) stdN (λ, η) ∼= stdN (µ, η) if and only if Wη • λ = Wη • µ,

(b) stdN (λ, η) has a unique simple quotient, denoted irrN (λ, η), and

(c) AnnU(g)stdN (λ, η) = ξ(λ)U(g).

Proposition 2.1.2. [38, Corollary 2.5] For all λ ∈ h∗ the module

U(g)/ξ(λ)U(g)⊗U(n) Cη ∈ N (ξ(λ), η)

admits a filtration with subquotients isomorphic to stdN (w • λ, η), where w ranges
over any choice of coset representatives of Wη\W .

We can conclude from Proposition 2.1.2 and Proposition 2.0.3 that stdN (λ, η)

is an object in N (ξ(λ), η). If η = 0, then stdN (λ, 0) is the usual Verma module
with highest weight λ, and N (ξ(λ), η = 0) contains the BGG category Oλ with
generalized infinitesimal character ξ(λ).

Theorem 2.1.3. [36, Proposition 2.4] As U(lη)-modules,

stdN (λ, η) ∼= U(n̄η)⊗C Y (ξη(λ), η).

Moreover, the center of lη (denoted z) acts semisimply on stdN (λ, η), and the z-weight spaces
U(n̄η)γz are finite-dimensional U(lη)-modules.

To avoid the unfortunate notational confusion between z-weight spaces and h-
weight spaces, we will reluctantly use double subscrits and denote the generalized
z-weight space of a module X by Xλz , for λ ∈ z∗. The generalized h-weight space
corresponding to γ ∈ h∗ will be denoted by the usual notation Xγ (where γ has
no subscript). The following theorem appears as Theorem 4.6 in [32], and will be
crucial to our understanding of the structure of Whittaker modules.

Theorem 2.1.4. [32, Theorem 4.6] Let F be a finite-dimensional U(g)-module. Assume η
is nondegenerate (i.e. lη = g), and let Y be an irreducible Whittaker module inN (ξ(λ), η).
Let T = F ⊗ Y be the tensor product U(g)-module. Then T is an object in N (η) and
composition series length equal to dimF . In particular,

dimH0
η (n, T ) = dimF.
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Suppose dim F = k. Then there is a composition series 0 = T0 ⊂ T1 ⊂ · · · ⊂ Tk = T

such that Ti/Ti−1
∼= Y (ξ(λ+νi), η), where νi are the weights of F (counting multiplicities)

ordered corresponding to a b̄-invariant flag of F .

Observe that the above filtration is induced by a b̄-invariant flag of F , rather
than a b-invariant flag, as would be the case for category O.

Corollary 2.1.5. [38, Lemma 5.12] Let F be a finite-dimensional U(g)-module. Let η
be any character of n. Let T = F⊗stdN (λ, η) for some λ ∈ h∗. Then T has a filtration
with subquotients stdN (λ+ ν, η) for weights ν of F (counting multiplicity).

Proof. We begin with the definition of standard Whittaker modules

T = F ⊗ stdN (λ, η) = F ⊗
(
U(g)⊗pη Ylη(ξη(λ), η)

)
.

The Mackey isomorphism gives us the isomorphism of U(g)-modules

T ∼= U(g)⊗pη

(
F ⊗ Ylη(ξη(λ), η)

)
.

Now we can apply Theorem 2.1.4 to F ⊗ Ylη(ξη(λ), η). Since parabolic induction
is an exact functor, it descends to the level of Grothendieck groups. Therefore the
composition factors of T are of the form U(g)⊗pη Ylη(ξη(λ + ν), η) = stdN (λ + ν, η)

for weights ν of F (counting multiplicity).

The following theorem concludes the classification of simple objects in N .

Theorem 2.1.6. [36], [38, Theorem 2.6] Each simple U(g)-module contained in N is
isomorphic to irrN (λ, η) for some choice of η ∈ chn and λ ∈ h∗.

Proof. Each simple object L in N has an infinitesimal character and is contained in
N (ξ(λ), η) for some λ ∈ h∗ and η ∈ chn. Therefore L is a subquotient of

U(g)/ξ(λ)U(g)⊗U(n) Cη.

Proposition 2.1.2 implies that L is a subquotient of stdN (w • λ, η) for some w ∈
W . Any simple subquotient of stdN (w • λ, η) must have a z-weight µ ∈ z∗ so that
Lµz 6= 0 and nηLµz = 0. There exists I ∈ Max Z(lη) so that Homlη(Y (I, η), Lµz) 6= 0.
Therefore Homg(stdN (ν, η), L) 6= 0 for ν ∈ h∗ such that ξη(ν) = I . This proves that
L ∼= irrN (ν, η) since L is simple.
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Remark. It follows from Proposition 2.1.1 and Theorem 2.1.6 that the irreducible
objects of N (ξ(λ), η) are parametrized by double cosets Wη\W/Wλ, where Wλ =

{w ∈ W : w • λ = λ}.

2.2 Whittaker vectors and z-weight vectors of Whittaker modules

For a U(g)-module X , let

Xn = {x ∈ X|ux− η(u)x = 0 for all u ∈ n}

be the subspace of n-invariant vectors for the η-twisted action of n on X . Let

H•η (n, X)

denote η-twisted n-Lie algebra cohomology of X , i.e. the right derived functor of
the n-invariants functorX 7→ Xn (for the η-twisted action of n onX). An η-Whittaker
vector (or Whittaker vector if the context is clear) ofX ∈ N is a vector v ∈ X so that
nv = η(n)v for all n ∈ n. Equivalently, an η-Whittaker vector of X ∈ N is a vector
contained in H0

η (n, X).

Lemma 2.2.1. [39, Lemma 5.8] For g semisimple and η nondegenerate (lη = g), the
functor H0

η (n, ·) from the category N (η) to the category of Z(g)-modules is exact.

Sketch. First we prove that H i
η(n, V ) = 0 when i ≥ 1 and V is an irreducible Whit-

taker module. Let N be a connected algebraic group with Lie algebra n, equipped
with a morphism of N into the group of inner automorphisms of g such that its
differential induces an injection of n into g. In [39], Miličić and Soergel show that
an irreducible Whittaker module viewed as a U(n)-module with η-twisted action
of n, for nondegenerate η, is isomorphic to the differential of the natural action ofN
on the algebra of regular functionsR(C(w0)) on the open cellC(w0) of the flag vari-
ety of g. Under this isomorphism, the Whittaker vector generating the irreducible
Whittaker module is mapped to the spherical vector 1 ∈ R(C(w0)). Notice that
C(w0) is a singleN orbit on the flag variety of g. Since,N and C(w0) are connected,
N acts transitively on C(w0), and dimN = dimC(w0), we can conclude that N and
C(w0) are isomorphic as varieties. We can therefore consider the corresponding
action of n on the algebra of regular functions on N . We will proceed by induction
on the dimension of n, following the proof of Lemma 1.9 in [37]. If dimn = 1, then
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n is abelian. Since N is an affine space, it follows that R(N) is a polynomial alge-
bra, and H i(n, R(N)) is the cohomology of the Koszul complex with coefficients in
R(N). By the Poincaré lemma, we have thatH i(n, R(N)) = 0 for i ≥ 1. If dimn > 1,
we consider the commutator subgroup N ′ = (N,N), with Lie algebra n′ ( n. By
the induction hypothesis, the Hochschild-Serre spectral sequence of Lie algebra co-
homology collapses, giving us the equality

Hp(n/n′, R(N/N ′)) = Hp(n, R(N)).

for p ≥ 0. Since n/n′ is abelian, we can conclude (by the first part of the proof)
that Hp(n/n′, R(N/N ′)) is zero for p > 0. Therefore H i

η(n, V ) = 0 for all i ≥ 1

and irreducible Whittaker modules V . To complete the proof we will now consider
an arbitrary Whittaker module V . Since V has finite length, we will proceed by
induction on the length of V . Suppose V has length n, and consider the short exact
sequence

0→ S → V → I → 0,

where S is a submodule with length n− 1 and I is an irreducible quotient. By the
strong induction assumption, H i

η(n, S) = 0 for i ≥ 1. The long exact sequence of
Lie algebra cohomology shows that H i(n, V ) = H i(n, I) for i ≥ 1. By induction on
the length of V we see that H i(n, V ) = 0 for i ≥ 1.

Recall the Cartan decomposition lη = n̄η ⊕ h⊕ nη for the Levi subalgebra lη, and
the decomposition of g given by considering the subalgebra pη and its orthocom-
plement n̄η (with respect to the Killing form):

g = n̄η ⊕ pη = n̄η ⊕ lη ⊕ nη.

Let s := [lη, lη] be the semisimple part of the Levi subalgebra lη. For γ ∈ z∗, let

Xγz := {x ∈ X : ∀z ∈ z (z − γz(z))kx = 0}.

Proposition 2.2.2. Objects in Ng are locally U(z)-finite. Moreover, for any γ ∈ z∗, the
functor

Ng(η) → Ns(ηs)

X 7→ Xγz
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is exact. Here we use the notation ηs to denote the restriction of η (viewed as a
function on n) to nη = n ∩ s.

Proof. We will begin by showing that the functor described above is well defined.
Our first step is to show that objects in Ng(η) are locally U(z)-finite. Since every
object X ∈ N (η) has finite length, we will argue by induction on the length of X .
Consider a Jordan-Holder filtration of X :

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = X

where Vi/Vi−1 is irreducible. Assume X is irreducible. Then there exists λ so
that the unique irreducible quotient of stdN (λ, η) is isomorphic to X . Since z acts
semisimply on stdN (λ, η), it will act semisimply on the quotient irrN (λ, η), which
is isomorphic to X . It follows that U(z) acts locally finitely on X . Now we will
proceed with the inductive step. Assume that Vn−1 is locally U(z)-finite. Then

0→ Vn−1 → Vn → Vn/Vn−1 → 0

is an exact sequence of U(z)-modules. We aim to show that dimU(z)v <∞ for any
v ∈ Vn. The above exact sequence restricts to

0→ K → U(z)v → I → 0

where K =Ker: U(z)v → Vn/Vn−1 and I =Im: U(z)v → Vn/Vn−1. Since U(z)v is
clearly finitely generated as a U(z)-module, and the category of finitely generated
U(z)-modules is closed under extensions, we can conclude thatK and I are finitely
generated. Since K and I are both finitely U(z)-generated U(z) submodules of lo-
cally finite U(z)-modules, they are finite-dimensional. Therefore dimU(z)v < ∞.
Therefore any object X ∈ N (η) is locally U(z)-finite.

Since z is a nilpotent Lie algebra that acts locally finitely on modules in N (η),
given an exact sequence of Whittaker modules 0 → A → B → C → 0, we get an
exact sequence of U(z)-modules by taking generalized weight spaces

0→ Aγz → Bγz → Cγz → 0

Here the morphisms are obtained by restricting the maps in the above exact se-
quence to the subspaces of generalized weight vectors.
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We now turn our attention to showing that these generalized weight spaces are
in fact Whittaker modules for the semisimple part of the Levi subalgebra. Again,
for X ∈ N (η), consider a Jordan-Holder filtration of X :

0 = V0 ⊂ V1 ⊂ · · · ⊂ VN = X

where Vi/Vi−1 is irreducible. We will showXγz ∈ Ns(ηs) by induction on the length
of X . Assume N = 1. Then X is irreducible. We aim to show Xγz ∈ Ns(ηs).
There exists λ so that the unique irreducible quotient of stdN (λ, η) is isomorphic
to X . Theorem 2.1.3 implies that stdN (λ, η)γz

∼= F ⊗ Ys(ξs(λ), ηs) as U(s)-modules,
where F is a finite-dimensional U(s)-module. Since F is finite-dimensional, we can
apply Theorem 4.6 of [32] and conclude that stdN (λ, η)γz has finite length as a U(s)-
module, and has compositions factors contained in Ns(ηs). Since Ns(ηs) is closed
under extensions and stdN (λ, η)γz has finite length, we can further conclude that
stdN (λ, η)γz is an object in Ns(ηs). Since z acts semisimply on stdN (λ, η), we get the
following exact sequence of U(s)-modules:

stdN (λ, η)γz → Xγz → 0.

SinceNs(ηs) is closed under quotients, we can conclude thatXγz ∈ Ns(ηs). Now we
will proceed with the inductive step. Assume that (Vn−1)γz ∈ Ns(ηs). Then

0→ (Vn−1)γz → (Vn)γz → (Vn/Vn−1)γz → 0

is an exact sequence of U(s)-modules. SinceNs(ηs) is closed under extensions, and
Vn/Vn−1 is irreducible, we can conclude that (Vn)γz ∈ Ns(ηs). In summary, we have
the following exact sequence of U(z)-modules

0→ Aγz → Bγz → Cγz → 0

where the morphisms are restrictions of U(g)-module morphisms, and the objects
are naturally U(s)-modules contained inNs(ηs). Therefore this is an exact sequence
in Ns(ηs).

2.3 The category of highest weight modules

If we specialize to the case when η = 0, we recover the category of highest weight
modules. The standard objects stdN (λ, η = 0) in this category are the usual Verma
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modules, with corresponding unique irreducible quotients. Instead of retaining
the cumbersome notation stdN (λ, 0), we will use the standard notation M(λ) =

U(g) ⊗U(b) Cλ to denote a Verma module with highest weight λ ∈ h∗, and L(λ) to
denote the unique irreducible quotient of M(λ). We will also use the abbreviated
notation O′ to denote the highest weight category (O′ := N (η = 0)). Notice that
the BGG category O is a full subcategory of O′. In this section we will review the
Kazhdan-Lusztig theory for highest weight modules.

Suppose Π ⊂ ∆+ is a set of simple and positive roots (respectively) of a root
system ∆ ⊂ h∗. Let SΠ ⊂ W be the set of reflections in h∗ through hyperplanes
orthogonal to simple roots Π. We will use the notation [X] for a U(g)-module X in
O′ to denote the representative of X in the integral Grothendieck group of O′.

We define the Iwahori-Hecke algebra H of a Coxeter system (W,S) to be the
algebra over the ring of Laurent polynomials with integral coefficients and indeter-
minate q1/2, with basis Tw for H , indexed by w ∈ W , subject to the relations:

TwTy = Twy if l(wy) = l(w) + l(y)

(Ts + 1)(Ts − q) = 0 if s ∈ S

As Z[q−1/2, q1/2]-modules, we have H ∼=
⊕

w∈W Z[q−1/2, q1/2]Tw. We can further
define an involution x 7→ x̄ of H by∑

w∈W

pwTw =
∑
w∈W

p̄wT
−1
w−1

where pw ∈ Z[q−1/2, q1/2], q1/2 = q−1/2, and T−1
w is the inverse of Tw in H .

Theorem 2.3.1. [24, Theorem 1.1] For any w ∈ W , there is a unique element Cw ∈ H

such that

Cw = Cw

Cw =
∑
y≤w

(−1)l(w)−l(y)q(l(w)−l(y))/2Py,wTy

where y ≤ w is the Bruhat order onW , Py,w is a polynomial in q of degree less than or equal
to 1

2
(l(w)− l(y)− 1) for y < w and Pw,w = 1.

We can give an alternative geometric description of the Kazhdan-Lusztig poly-
nomials Py,w using the intersection cohomology complex on the flag variety B (see
[26] for an introduction to intersection cohomology complexes).
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Theorem 2.3.2. [24] For y, w ∈ W , such that C(y) ⊂ C(w), let ICx(C(w)) denote the
stalk at a point x ∈ C(y) ⊂ C(w) of the intersection cohomology complex supported on the
closure of the Bruhat cell C(w) ⊂ B. Then

Py,w =
∑
i

qi dimH2i(ICx(C(w)))

for a chosen point x ∈ C(y). The polynomial Py,w is independent of the choice of point
x ∈ C(y), since various choices will yield stalks with equal dimension.

The following is the famous Kazhdan-Lusztig conjecture for categoryO, proved
independently by Beilinson-Bernstein in [6] and Brylinski-Kashiwara in [11].

Theorem 2.3.3. [6] [11] Suppose λ ∈ h∗ is regular, integral, and dominant. Let

M(w • λ) = U(g)⊗U(b) Cw•λ

be the Verma module of highest weight w • λ. Let w0 be the longest element in W . In the
Grothendieck group of Oλ, we have the following equalities

[M(w • λ)] =
∑
w≤y

Pw,y(1)[L(y • λ)]

[L(w • λ)] =
∑
w≤y

(−1)l(ww0)−l(yw0)Pyw0,ww0(1)[M(y • λ)]

where l(w) is the length ofw ∈ W andPw,y are the Kazhdan-Lusztig polynomials associated
with the Coxeter system (W,SΠ).

Corollary 2.3.4. Suppose µ ∈ h∗ is integral and dominant. In the Grothendieck
group of Oµ we have the following equality

[M(w • µ)] =
∑
y∈I

Pw,y(1)[L(y • µ)]

where I = {y ≥ w : y is the longest element in the coset yWµ}.

Proof. We will begin by restating Theorem 2.3.3 for λ = 0:

[M(w • 0)] =
∑
y≥w

Pw,y(1)[L(y • 0)].

Now we will apply the translation functor T µ0 which maps X ∈ O0 to (X ⊗ Fµ)[µ],
where Fµ is the finite-dimensional U(g)-module with highest weight µ. It is well



18 Chapter 2. Whittaker modules

known ( [22, Chapter 7]) that T µ0 (M(w • 0)) = M(w • µ) for all w ∈ W . Notice that
if w and y are in the same coset yWµ = wWµ, then T µ0 (M(w • 0)) = T µ0 (M(y • 0)).

If there exists y ∈ wWµ such that l(y) ≥ l(w), then there exists a simple reflection
sα ∈ Wµ so that L(w • 0) is a subquotient of M(w • 0)/M(wsα • 0). However, T µ0
maps both M(w • 0) and M(wsα • 0) to M(w • µ). Therefore T µ0 (L(w • 0)) = 0.

Since T µ0 is an exact functor which maps M(w • 0) to M(w • µ), exactly one of
the composition factors of M(w • 0) must be mapped to L(w • µ). Suppose L(y • 0)

is mapped to L(w • µ) for some y /∈ wWµ. Since M(y • 0) is mapped to M(y • µ),
and L(y • 0) is a composition factor of M(y • 0), we can conclude that L(w • µ) is a
composition factor of M(y • µ), which is a contradiction. Therefore we can assume
that L(wx • 0) is mapped to L(w • µ) for some x ∈ Wµ. But we have already shown
that T µ0 (L(wx • µ)) = 0 if wx is not the longest element in wWµ. Therefore the only
option left is that T µ0 (L(w •0)) = L(w •µ) for w the longest element in wWµ. Finally,
we have the equality

[T µ0 (M(w • 0))] =
∑
y≥w

Pw,y(1)[T µ0 (L(y • 0))]

[M(w • µ)] =
∑
y∈I

Pw,y(1)[L(y • µ)]

where I = {y ≥ w : y is the longest element in yWµ}.

2.4 Backelin functors

The following functor developed by Backelin in [3] will be crucial to our proof that
standard objects in the Whittaker category are mapped (by the functor described
in the introduction) to standard objects (or zero) in the category of graded affine
Hecke algebra modules.

The following construction is inspired by ideas in [32], and is developed in [3].
For γ ∈ h∗, letXγ denote the generalized γ-weight space ofX . Let P (V ) denote the
set of nonzero generalized weights of a U(g)-module V .

Definition. Let X be a U(g)-module contained in O′. The completion module of X ,
denoted X , is the direct product

X =
∏

γ∈P (X)

Xγ
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An element of X is a formal infinite sum

v =
∑

γ∈P (X)

vγ ∈ X

where vγ ∈ Xγ . We can extend the U(g)-module structure of X to the completion
by defining

uνv :=
∑

γ∈P (X)

uνvγ−ν

where uν ∈ U(g)ν (the ν-weight space of U(g) viewed as a h module with that ad
action of h), and uνvγ−ν = 0 if γ − ν /∈ P (X).

Remark. If we consider duality inO′, we can give an alternate description ofX . Let
Y ′ = HomC(Y,C) be the linear dual of a vector space, and X∗ =

⊕
λX

′
λ where

Xλ is a generalized weight space of X . The U(g)-module structure on X defines a
U(g)-module structure onX ′ andX∗. We have thatX ∼= (X∗)′ as U(g)-modules [3].

Lemma 2.4.1. Let F be a finite-dimensional U(g)-module, and X an object in O′.
Then F ⊗C X = F ⊗C X .

Proof. Any element of F ⊗X is a formal infinite sum
∑
tτ , where tτ is a weight

vector of F ⊗ X with weight τ . Each weight vector tτ can be written as a sum of
simple tensors of weight vectors of F and X :

tτ =
∑

α+β=τ

fα ⊗ xβ.

Therefore, we can write elements of F ⊗X as
∑

J fα⊗xβ , where J = P (F )×P (X),
fα ∈ F is a weight vector of F , and xβ ∈ X is a weight vector of X . Let {vi : i ∈ I}
be a basis of F . We can write each element fα as fα =

∑
I ai(α)vi, where ai(α) ∈ C.

Therefore,∑
J

fα ⊗ xβ =
∑
J

∑
I

ai(α)vi ⊗ xβ =
∑
I

∑
J

ai(α)vi ⊗ xβ =
∑
I

vi ⊗
(∑

J

ai(α)xβ

)
.

We can rewrite the sum
∑

J ai(α)xβ as an formal infinite sum of generalized weight
vectors of X (for each i), since each xβ is already a generalized weight vector, and
since there are only finitely many (α, β) ∈ J for a fixed β. This shows that∑

I

vi ⊗
(∑

J

ai(α)xβ
)
∈ F ⊗X
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since I is a finite set. Therefore F ⊗X ⊆ F ⊗X . The reverse inclusion is straight-
forward.

Definition. We will define the subspace of η-finite vectors

Xη = {x ∈ X : Uη(n)kx = 0 for some k ∈ Z≥0}

where Uη(n) is the kernel of η : U(n)→ C.

Definition. Let Γη be the functor from the highest weight category O′ to the cate-
gory of Whittaker modules N (η) defined as follows:

Γη : O′ → N (η)

X 7→
(
X
)
η

Theorem 2.4.2. [3, Proposition 6.9] Γη is an exact functor with the following properties

(a) Γη(M(λ)) = stdN (λ, η) for all λ ∈ h∗,

(b) Γη(L(λ)) = irrN (λ, η) if λ is nη-antidominant, and

(c) Γη(L(λ)) = 0 if λ is not nη-antidominant.

The following lemma will be crucial to the proof of Theorem 2.4.2.

Lemma 2.4.3. [3, Lemma 6.5] For each Verma module M(λ), we have the following
equality of U(g)-modules:

Γη(M(λ)) = U(g) ·H0
η (n,Γη(M(λ))).

In other words, Γη(M(λ)) is generated (as a U(g)-module) by Whittaker vectors.

Proof. The proof follows directly from Theorem 3.8, Lemma 3.9, and Theorem 4.4
of [32].

Proposition 2.4.4. Let F be a finite-dimensional U(g)-module and λ ∈ h∗. Then

Γη(M(λ)⊗ F ) = Γη(M(λ))⊗ F.
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Proof. By Lemma 2.4.1, we have that M(λ)⊗ F = M(λ) ⊗ F . If v ∈ M(λ)η, then
Uη(n)k(v⊗f) = 0 for any f ∈ F and some k >> 0. Therefore, we have the inclusion
M(λ)η ⊗ F ⊆ M(λ)⊗ F η. From Corollary 2.1.5 and Theorem 2.4.2, we know that
M(λ)η⊗F has a standard filtration with quotients stdN (λ+ τ, η) for each τ ∈ P (F )

(including multiplicity). Similarly, we have that M(λ)⊗ F has a standard filtration
with quotients M(λ + τ) for τ ∈ P (F ). Since Γη is exact, and maps M(λ + τ) to
stdN (λ + τ, η), we can conclude that M(λ)η ⊗ F and M(λ)⊗ F η have isomorphic
standard filtrations.

2.5 Composition series of Whittaker modules

We can now use Theorem 2.4.2 to calculate the multiplicity of irreducible Whittaker
modules in the composition series of standard Whittaker modules. Although Back-
elin’s results apply to nonintegral weights, we will focus on the setting of integral
weights.

Theorem 2.5.1. [38], [3, Theorem 6.2] Assume λ ∈ h∗ is dominant and integral. In the
integral Grothendieck group of N (ξ(λ), η), we have

[stdN (w • λ, η)] =
∑
y∈I

Pw,y(1)[irrN (y • λ, η)]

where the sum is taken over I = {y ≥ w : y is the longest element of WηyWλ} and Pw,y
are the Kazhdan-Lusztig polynomials of the Coxeter system (W,SΠ).

Proof. We can apply Corollary 2.3.4 to get an equality in the Grothendieck group
of O′:

[M(w • λ)] =
∑
y∈J

Pw,y(1)[L(y • λ)],

where J = {y ≥ w : y is the longest element in yWλ}.

Lemma 2.5.2. Suppose λ ∈ h∗ is integral and dominant, let yλ be the longest element
in the coset yWλ, and ηyλ be the longest element in the double coset WηyWλ. Then
yλ = ηyλ if and only if y • λ is nη-antidominant.

By Lemma 2.5.2 and Theorem 2.4.2, we get the following equalities in the inte-
gral Grothendieck group of N (ξ(λ), η):

[stdN (w • λ, η)] =
∑
y∈I

Pw,y(1)[irrN (y • λ, η)],
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where I = {y ≥ w : y = yλ = ηyλ} = {y ≥ w : y is the longest element in WηyWλ}.

Corollary 2.5.3. We can give an alternative description of the multiplicity formulas
in terms of the geometry of the flag variety as follows.

[stdN (w • λ, η) : irrN (y • λ, η)] =
∑
i

dimH i(ICx(C(ηyλ)))

for x ∈ C(w).



Chapter 3

Graded affine Hecke algebra modules

Hecke algebras appear naturally in the representation theory of algebraic groups
over p-adic fields. Notably, affine Hecke algebras were used in the proof of the
Deligne-Langlands conjecture for irreducible representations of p-adic groups in
[25]. As motivation for the study of graded affine Hecke algebra, we will briefly re-
view (following [47]) the local Langlands conjecture for split reductive groups over
a non-archimedean local field F of characteristic 0, as well as the corresponding
Deligne-Langlands conjecture.

Suppose (X,R, Y,R∨) is the root datum of a split connected reductive group
G(F ) over F . Let ∨G denote the complex reductive dual group, Γ = Gal(F/F )

the absolute Galois group, k = resF the residue field of F with |k| = qF , and
Fr ∈ Gal(k/k) the Frobenius endomorphism. Consider the short exact sequence

1→ IF → Γ→ Gal(k/k)→ 1

where IF is the inertia subgroup of Γ. Define the Weil group WF to be the inverse
image of the group generated by the Frobenius endomorphism, so that

1→ IF → WF
p−→ Z→ 1.

Define the Weil-Deligne group byW ′
F = CoWF where wzw−1 = q

p(w)
F z for w ∈ WF

and z ∈ C. A Langlands parameter is a continuous homomorphism φ : W ′
F → ∨G

such that φ(w) is semisimple forw ∈ WF and φ(z) is unipotent for z ∈ C. Two Lang-
lands parameters are equivalent if they are conjugate by the natural action of ∨G.
We say that φ is unramified if φ|IF is trivial. Notice that the unramified Langlands
parameters are determined by pairs (s,N) with s = φ(Fr) ∈ ∨G semisimple and
N ∈ ∨g nilpotent such that Ad(s)(N) = qFN . Alternatively, if ∨G(s) denotes the

23
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centralizer of s in ∨G, the equivalence classes of unramified Langlands parameters
are determined by ∨G(s) orbits on ∨gqF (s) = {x ∈ ∨g : Ad(s)(x) = qFx}.

In this setting the local Langlands conjecture asserts that for each equivalence
class of Langlands parameters, denoted φ, there is an associated finite subset of ir-
reducible admissible representations of G(F ), called the L-packet of φ. Moreover,
these L-packets partition the set of equivalence classes of irreducible admissible
representations of G(F ). The Deligne-Langlands conjecture, reformulated in this
setting by Lusztig, further refines this association by identifying the irreducible
unramified representations in each L-packet Πφ. Let Z∨G(φ) be the centralizer of
a Langlands parameter φ in ∨G. Let A∨G(φ) be the component group of Z∨G(φ).
Then the Deligne-Langlands conjecture shows that the unramified representations
contained in Πφ are parametrized by irreducible representations of A∨G(φ) which
appear in the equivariant K-theory of Bφ, the variety of Borel subgroups of ∨G con-
taining s and eN .

Borel and Casselman developed a categorical equivalence between unramified
admissible representations of G(Qp) and finite-dimensional modules of the convo-
lution algebra of compactly supported smooth functions on G(Qp) which are I-bi-
invariant for a fixed Iwahori subgroup I of G(Qp). In [25], Kazhdan and Lusztig
used the Borel-Casselman equivalence to prove the Deligne-Langlands conjecture
in the setting of affine Hecke algebras.

A further reduction we will use is due to Lusztig [34]. By introducing a filtration
on the affine Hecke algebra, Lusztig constructs a corresponding graded algebra,
whose representation theory is closely related that of the affine Hecke algebra. The
representation theory of the graded affine Hecke aglebra is in many ways easier to
study and can be thought of as analogous to the Lie algebra of a Lie group. Specifi-
cally, the graded affine Hecke algebra can be studied using methods of equivariant
homology. With these tools available, Lusztig was able to construct standard and
irreducible modules for the graded affine Hecke algebra, as well as compute the
composition series of standard modules in terms of intersection homology [35].

In this section, we will review an algebraic construction of standard and irre-
ducible graded affine Hecke algebra modules due to Evens [17], as well as the cor-
responding composition series in terms of the geometric parametrization of stan-
dard modules due to Lusztig. Finally, we will discuss a useful parametrization of
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standard and irreducible modules in terms of combinatorial data due to Zelevinsky
in the case where G is of type An [54].

3.1 Graded affine Hecke algebras

We will now define the graded affine Hecke algbera introduced by Lusztig [34]. Let
(X,R, Y,R∨,Π) be a based root datum, with V ∗ = C⊗Z X and V = C⊗Z Y . Let W
be the reflection group generated by simple reflections sα for α ∈ Π.

Definition. The graded (degenerate) affine Hecke algebra H of the based root da-
tum (X,R, Y,R∨,Π) is the unital associative algebra over C generated by {tw : w ∈
W} and {th : h ∈ V } (with unit te, e the identity element of W ), subject to the
relations:

(a) The map w 7→ tw from C[W ] to H is an algebra injection,

(b) the map h 7→ th from S(V ) to H is an algebra injection, and

(c) the generators satisfy the following commutation relation

tsαth − tsα(h)tsα = 〈α, h〉 for all α ∈ Π and h ∈ V .

For notational convenience we will write w instead of tw and h instead of th.
Rewriting the commutation relations in condition (c), we get

sαh− sα(h)sα = α(h) for all α ∈ Π and h ∈ V .

Remark. As vector spaces, H ∼= C[W ]⊗ S(V ).

Let

a∗ = {x ∈ V ∗ : x(α∨) = 0 ∀α ∈ Π} and a = {x ∈ V : α(x) = 0 ∀α ∈ Π}.

We will define the based root datum (Xss, R, Yss, R
∨,Π) by considering the subsets

of X and Y which are perpendicular to a∗ and a respectively. Let

Xss = {x ∈ X : x(a) = 0 ∀a ∈ a} and Yss = {y ∈ Y : a′(y) = 0 ∀a′ ∈ a∗}.

Then S(a) is in the center of H and we have the decomposition

H ∼= Hss ⊗ S(a)
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where Hss is the graded affine Hecke algebra associated to the root datum

(Xss, R, Yss, R
∨,Π).

Lemma 3.1.1. [34, Lemma 4.5] The center Z(H) of H is

Z(H) = S(V )W .

Moreover, central characters of H (and maximal ideals of S(V )W ) are parametrized
by W orbits of λ ∈ V ∗ (with the usual action wλ of W on V ∗). Let χλ denote the
maximal ideal in S(V )W corresponding to λ ∈ V ∗.

Let H denote the category of finite-dimensional H-modules and Hλ denote the
subcategory of finite-dimensionalH-modules with central character corresponding
to the maximal ideal χλ.

3.2 Classification of irreducible modules

In this section, we will review three types of classifications of (finite-dimensional)
simple H-modules. First, we review the geometric construction of standard H-
modules, following [35]. These H-modules have unique irreducible quotients and
parametrize isomorphism classes of simple H-modules. We will then review the
algebraic approach of [17], parametrizing simple modules by pairs (Hp, U), where
Hp is a parabolic subalgebra of H and U is a tempered representation of Hp. Finally,
we will consider the combinatorial parametrization developed in [4] for the case
when H corresponds to root datum of type An.

3.2.1 Geometric classification

Let G be the connected complex reductive group with root datum (X,R, Y,R∨,Π),
with Lie algebra g, and flag variety B. For σ ∈ V , let Lσ = {g ∈ G : Ad(g)(σ) = σ}
and g1(σ) = {x ∈ g : ad(x)(σ) = σ}. Let N := {x ∈ g : ad(x) is nilpotent} denote
the nilpotent cone in g. Consider the Springer resolution of the nilpotent cone

Ñ := {(x, b) ∈ N × B : x ∈ b} µ−→ N

(x, b) 7→ x
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LetN σ denote the subvariety ofN fixed by ad(σ), Ñ σ = {(x, b) ∈ N σ×B : x, σ ∈ b},
and µσ denote the restriction of µ to Ñ σ. Let CÑσ denote the constant perverse sheaf
on Ñ σ. Let PgH(σ) denote the set of pairs (O, E) such that O is an Lσ orbit in g1(σ)

and E is an Lσ-equivariant local system on O such that IC(O, E) appears in the
decomposition of µσ∗CÑσ . In [35] (cf. [14]), Lusztig constructs an action of H on the
vector space H•(i!x(µσ∗ (CÑσ)))χ, where ix : {x} ↪→ g with x ∈ g1(σ), and χ is a
representation of the component group of ZG(σ, x), the simultaneous centralizer of
σ and x inG, corresponding to the local system E . Since µσ is a proper map, we can
identify the above vector space with the homology of the fiber of µσ at x. Let Ñ σ

x

denote the fiber of µσ at x ∈ g1(σ) ⊂ N σ. As (non-graded) vector spaces, we have

H•(Ñ σ
x )χ ∼= H•(i!x(µ

σ
∗ (CÑσ)))χ.

The H-module H•(Ñ σ
x )χ only depends on the Lσ orbit of x and the local system E .

Therefore, we will denote this module by stdH(O, E), and refer to it as a standard
H-module corresponding to the geometric parameters (O, E) ∈ PgH(σ).

Theorem 3.2.1. [33] Each simple H-module is isomorphic to the quotient of a standard
H-module.

Theorem 3.2.2. [35, Corollary 8.18] Let λ ∈ h∗ be dual to σ ∈ h by the trace form on g.
The set of isomorphism classes of simple H-modules with central character χλ is naturally
in 1 to 1 correspondence with PgH(σ).

We will therefore use the notation irrH(O, E) to denote the irreducible module
corresponding to parameter (O, E) ∈ PgH(σ).

3.2.2 Algebraic classification

Consider a subset Πp of Π, and the corresponding roots (coroots) Rp (resp. R∨p )
generated by α (resp. α∨) for α ∈ Πp. Then (X,Rp, Y, R

∨
p ,Πp) is a root datum. Let Hp

be the graded affine Hecke algebra associated to the root datum (X,Rp, Y, R
∨
p ,Πp).

Let a be as in 3.1, and Hs denote corresponding subalgebra in the decomposition

Hp = Hs ⊗ S(a).

Theorem 3.2.3. [17, Theorem 2.1]
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(a) Let V be an irreducible H-module. Then V is a quotient of H⊗HpU , where U = Ũ�Cν

is such that Ũ is a tempered Hs-module and Cν is a character of S(a) with ν ∈ a∗ and
Re〈ν, α〉 > 0 for all α ∈ Π − Πp. We will refer to H ⊗Hp U a standard module, and
denote it by stdH(Hp, U).

(b) If U is as in (a), then H⊗Hp U has a unique irreducible quotient, which we will denote
by irrH(Hp, U).

(c) If irrH(Hp, U) ∼= irrH(Hp′ , U
′), then Πp = Πp′ and U ∼= U ′.

3.2.3 Combinatorial classification

Let g = sl`(C). For convenience, let h be the Cartan subalgebra consisting of di-
agonal matrices in g, and b be the Borel subalgebra consisting of upper triangular
matrices in g. It is occasionally useful to represent elements in h using the standard
basis εi of t, where t is the space of diagonal matrices in gl`(C), and εi is the matrix
with 1 in the ith diagonal entry, and 0 elsewhere. Let H be the graded affine Hecke
algebra of a root datum associated with (g, b).

Remark. When we want to emphasize that we are considering the graded affine
Hecke algebra corresponding to the root datum of slk(C) for some k, we will use
the notation Hk.

Finite-dimensional irreducible H-modules are parametrized by combinatorial
objects which we will refer to as multisegments. Define a segment to be a finite
sequence of complex numbers {an}, such that any two consecutive terms differ by 1,
i.e. an−an−1 = 1 for all n. A multisegment is a finite ordered collection of segments.
Define the support τ of a multisegment τ to be the multiset of all elements (so as
to keep track of multiplicity) of all segements of the multisegment τ . Since we are
considering sl`, we will only require multisegments with zero trace. More precisely,
let MS be the set of multisegments τ such that

∑
x∈τ x = 0. For λ ∈ h∗, let λ′ ∈ h be

the image of λ when we identify h∗ with h using the trace form. For λ ∈ h∗, set

MS(λ) = {τ ∈MS|τ = λ}

where we view λ as a multiset consisting of the diagonal entries of λ′ ∈ h. If
τ, σ ∈ MS(λ), then define an equivalence relation by τ ∼ σ if τ and σ have the
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same segments (with a possibly different ordering). Let MS◦(λ) denote the set
of equivalence classes of MS(λ). We will proceed by building a standard object
in H from a class of multisegments τ̃ ∈ MS◦(λ). Let τ̃ be represented by τ =

{{a1, a1+1, a1+2, · · · , a1+(l1−1)}, · · · , {ar, ar+1, ar+2, · · · , ar+(lr−1)}} ∈MS(λ)

where Re(ai+
1
2
(li−1)) ≥ Re(ai+1 + 1

2
(li+1−1)) for all i. Consider sl(l1)⊕· · ·⊕ sl(lr)

as a block diagonal subalgebra of g. Let Rl, R∨l , and Πl be the set of roots, co-
roots, and simple roots for sl(l1) ⊕ · · · ⊕ sl(lr), respectively, chosen so that Πl ⊂ Π.
Then the graded affine Hecke algebra (denoted Hp) associated with the root datum
(X,Rl, Y, R

∨
l ,Πl) decomposes as

Hp = Hss ⊗ S(a)

where Hss
∼= Hl1 ⊗ · · ·⊗Hlr is isomorphic to the graded affine Hecke algebra of the

root datum associated with sl(l1)⊕ · · · ⊕ sl(lr) and S(a) is as in Section 3.1.

Let γi =
∑li

k=1(ai + k − 1)εk ∈ t∗ be viewed as an element in h∗li , the dual of the
Cartan subalgebra of diagonal matrices intersected with the sl(li) block of g. Define
the discrete series representation δτ̃ of Hss to be

δτ̃ = δ1 � · · ·� δr

where δi = Cγi is the one dimensional representation ofHli (the graded affine Hecke
algebra of the root datum associated with the algebra sl(li)) where hli acts by weight
γi and Wli acts by the sign representation. We will denote the standard H`-module
corresponding to τ̃ by

stdH(τ̃) = H` ⊗Hp (δτ̃ � Cγ)

where Cγ is the character of S(a) given by γ =
∑
γi ∈ h∗ restricted to a. Notice that

the module stdH(τ̃) is generated as a C[W ]-module by the vector

1 = e⊗ 11 ⊗ · · · ⊗ 1r ⊗ 1ν

where e ∈ H is the identity element, 1i ∈ δi is the identity in Cγi , and 1ν is the
identity in Cν . Additionally 1 is an h-weight vector with weight ζτ̃ given by:

ζτ̃ (e
∨
j ) = ai + j −

i−1∑
k=1

lk − 1 for
i−1∑
k=1

lk < j ≤
i∑

k=1

lk.
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Here it is notationally easiest to define ζτ̃ as an element of t∗, but we will only con-
sider the restriction of ζτ̃ to h.

Proposition 3.2.4. The standard H`-module stdH(τ̃) has a unique simple quotient
denoted irrH(τ̃).

Proof. This follows directly from Theorem 3.2.3, which states that stdH(τ̃) has a
unique irreducible quotient if γ =

∑
γi satisfies

Re(γ(α∨)) ≥ 0 ∀α ∈ Π− Πl.

This is guaranteed by our choice of multisegment representative of τ̃ chose to satisfy
the condition

Re(ai +
1

2

(
li − 1)

)
≥ Re(ai+1 +

1

2

(
li+1 − 1)

)
for all i.

Theorem 3.2.5. [4] Suppose that λ ∈ h∗ corresponds to σ ∈ h by the trace form on g. There
is a one-to-one correspondence between multisgements MS◦(λ) and geometric parameters
PgH(σ).

Now we will construct anH`-module from a pairλ, µ ∈ h∗withλ−µ ∈ P (V ⊗`) =

{γ ∈ h∗ : (V ⊗`)γ 6= 0}. There exists (`1, · · · , `n) ∈ Zn≥0 so that ` =
∑

i `i and

λ− µ ≡
n∑
i=1

`iεi mod C
( n∑

i=1

εi

)
(3.1)

We will now define the following multisegment corresponding to the pair λ, µ ∈ h∗,
with λ dominant.

δλ,µ = {{(µ+ρ)(ε∨1 ), · · · , (µ+ρ)(ε∨1 )+`1−1}, · · · , {(µ+ρ)(ε∨n), · · · , (µ+ρ)(ε∨n)+`n−1}}

and set stdH(λ, µ) := stdH(δ̃λ,µ). The standard module stdH(λ, µ) is a cyclic module
with a cyclic weight vector 1, whose weight ζλ,µ is given by

ζλ,µ(ε∨j ) = (µ+ ρ)(ε∨i ) + j −
i−1∑
r=1

`r − 1 for
i−1∑
r=1

`r < j ≤
i∑

r=1

`r.

Since λ is dominant, stdH(λ, µ) has a unique simple quotient denoted irrH(λ, µ).
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Lemma 3.2.6. [1, Lemma 3.3.2] Let P (V ⊗`) be the set of non-trivial weights of V ⊗`.
If λ and µ are integral weights such that λ− µ ∈ P (V ⊗`), then

dim stdH(λ, µ) = dim
(
V ⊗`

)
λ−µ.

Remark. Notice that the multisegment δλ,w◦λ is an element of MS(λ + ρ), and the
H`-module stdH(λ,w • λ) has central character χλ+ρ.

3.3 The composition series of standard modules

We will now review the p-adic analogue of the Kazhdan-Lusztig conjectures. Us-
ing Lusztig’s geometric realization of H-modules [35](cf. Section 3.2.1), we can re-
late the multiplicity of simple H-modules in the composition series of standard H-
modules to stalks of intersection cohomology complexes.

Theorem 3.3.1. [35, Corollary 10.7] Suppose we have two geometric parameters

(O, E), (O′, E ′) ∈ PgH(σ)

such that O ⊂ O′. Let ICy(O′, E ′) denote the stalk at y ∈ O ⊂ O′ of the intersection co-
homology complex onO′ corresponding to the local system E ′. LetH i(ICy(O′, E ′))E denote
the E isotypic component of H i(ICy(O′, E ′)), where we view E as a representation of the
component group of ZG(σ, x) (where σ and x are as in Section 3.2.1). Then

[stdH(O, E) : irrH(O′, E ′)] =
∑
i

dimH i(ICy(O′, E ′))E .

When H is a graded affine Hecke algebra corresponding to a root datum of type
An, then we can reformulate the multiplicity formula in terms of the combinatorial
parametrization of [4], thus proving a conjecture of Zelevinsky [54]. We will thus
proceed with the notation of Section 3.2.3. Suppose τ ∈ MS◦(λ) is a multisegment
consisting of segments of size l1 through lr. Let σ ∈ h correspond to λ ∈ h∗ by the
trace form. Let xτ ∈ g1(σ) denote the nilpotent matrix in g with a nonzero entry in
the ith row and (i + 1)th column for each

∑k
j=1 lj ≤ i <

∑k+1
j=1 lj , and zero entries

elsewhere. Let Xτ be the Lσ orbit of xτ . This gives us a bijection between MS◦(λ)

and Lσ orbits on g1(σ) (cf. [53], [16, Equation 4.2])

MS◦(λ) ←→ Lσ\g1(σ)

τ 7→ Xτ .
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ForG = SLn, we have that the component group ofZG(σ, x) is non trivial. However,
the only irreducible Lσ-equivariant local system which appears in the decomposi-
tion of µσ! CÑσ is the trivial local system. So the multisegment τ ∈ MS◦(λ) corre-
sponds to geometric parameter (Xτ ,CXτ ) ∈ P

g
H(σ).

Corollary 3.3.2. For τ, γ ∈MS◦(λ), we have that

[stdH(τ) : irrH(γ)] =
∑
i≥0

dimH i(ICy(Xγ,CXγ ))

for y ∈ Xτ .

3.4 Action of the graded affine Hecke algebra on X ⊗ V ⊗`

Throughout this section, let X be a U(g)-module. Let B = {Ei} be an orthonormal
basis of g with respect to the trace form. For notational convenience, let

τr(x) = 1⊗r−1 ⊗ x⊗ 1⊗`−r+1 ∈ U(g)⊗`+1,

τr,s(y, z) = 1⊗r−1 ⊗ y ⊗ 1⊗s−r−1 ⊗ z ⊗ 1⊗`−s+1 ∈ U(g)⊗`+1, and

τr,s,t(x, y, z) = 1⊗r−1 ⊗ x⊗ 1⊗s−r−1 ⊗ y ⊗ 1⊗t−s−1 ⊗ z ⊗ 1⊗`−t+1 ∈ U(g)⊗`+1.

We will define an operator Ωi,j ∈ End(X ⊗ V ⊗`) by

Ωi,j :=
∑
E∈B

τi,j(E,E).

Consider the map Θ from H` to End(X ⊗ V ⊗`) defined by

Θ(si) = −Ωi,i+1 for 1 ≤ i < `,

Θ(εk) =
n− 1

2
+
∑

0≤j<k

Ωj,k for 1 ≤ k ≤ `,

where εk is as in Section 3.2.3 and si is the simple reflection defined by si(εi) = εi+1.

Lemma 3.4.1. [1] As operators on X ⊗ V ⊗`, we have the following equalities

[Θ(εi),Θ(εj)] = 0, and

Θ(si)Θ(εj)−Θ(si(εj))Θ(si) = αi(ε
∨
j ) for 1 ≤ i < ` and 1 ≤ j ≤ `.
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Proof. Let κ(·, ·) denote the Killing form on g. We will begin with the following
relations:

[Ωij,Ωjk] =
∑
E∈B

τi,j(E,E
∗)
∑
E∈B

τj,k(E,E
∗)−

∑
E∈B

τj,k(E,E
∗)
∑
E∈B

τi,j(E,E
∗)

=
∑

E1,E2∈B×B

τi,j,k(E1, E
∗
1E2, E

∗
2)−

∑
E1,E2∈B×B

τi,j,k(E1, E2E
∗
1 , E

∗
2)

=
∑

E1,E2∈B×B

τi,j,k(E1, [E
∗
1 , E2], E∗2)

=
∑

E1,E2∈B×B

τi,j,k
(
E1,
∑
El

κ([E∗1 , E2], El)E
∗
l , E

∗
2

)
=

∑
E1,E2∈B×B

∑
El

B([E∗1 , E2], El)τi,j,k(E1, E
∗
l , E

∗
2)

=
∑

E1,E2,E3∈B3

κ([E∗1 , E3], E2)τi,j,k(E1, E
∗
2 , E

∗
3)

= −
∑

E1,E2,E3∈B3

κ([E2, E3], E∗1)τi,j,k(E1, E
∗
2 , E

∗
3).

[Ωij,Ωik] =
∑
E∈B

τi,j(E,E
∗)
∑
E∈B

τi,k(E,E
∗)−

∑
E∈B

τi,k(E,E
∗)
∑
E∈B

τi,j(E,E
∗)

=
∑

E1,E2∈B×B

τi,j,k(E1E2, E
∗
1 , E

∗
2)−

∑
E1,E2∈B×B

τi,j,k(E2E1, E
∗
1 , E

∗
2)

=
∑

E1,E2∈B×B

τi,j,k

(∑
El

κ([E1, E2], E∗l )El, E
∗
1 , E

∗
2

)
=

∑
E1,E2∈B×B

∑
El

κ([E1, E2], E∗l )τi,j,k(El, E
∗
1 , E

∗
2)

=
∑

E1,E2,E3∈B3

κ([E2, E3], E∗1)τi,j,k(E1, E
∗
2 , E

∗
3).

Therefore, we have that

[Ωij,Ωik] + [Ωij,Ωjk] = 0 (3.2)

for i, j, k distinct. If i, j, k, l are distinct, then clearly

[Ωij,Ωkl] = 0.

This implies
[Θ(εi),Θ(εj)] = 0
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and

Θ(si)Θ(εj)−Θ(εsi(j))Θ(si) = −Ωi(i+1)

(
n− 1

2
+
∑

0≤k<j

Ωkj

)
+

(
n− 1

2
+

∑
0≤k<si(j)

Ωksi(j)

)
Ωi(i+1)

= −
∑

0≤k<j

Ωi(i+1)Ωkj +
∑

0≤k<si(j)

Ωksi(j)Ωi(i+1)

= 0 if j 6= i, i+ 1 by Equation 3.2.

Suppose j = i. Then

Θ(si)Θ(εj)−Θ(εsi(j))Θ(si) = −
∑

0≤k<i

Ωi(i+1)Ωki

+
∑

0≤k<i+1

Ωk(i+1)Ωi(i+1)

= Ω2
i(i+1) −

∑
0≤k<i

Ωi(i+1)Ωki + Ωk(i+1)Ωi(i+1)

= Ω2
i(i+1)

= 1.

Now suppose j = i+ 1. Then

Θ(si)Θ(εj)−Θ(εsi(j))Θ(si) = −
∑

0≤k<i+1

Ωi(i+1)Ωk(i+1) +
∑

0≤k<i

ΩkiΩi(i+1)

= −Ω2
i(i+1) −

∑
0≤k<i

Ωi(i+1)Ωk(i+1) − ΩkiΩi(i+1)

= −1.

Therefore, we have

siΘ(εj)−Θ(si(εj))si = αi(ε
∨
j ) for 1 ≤ i < ` and 1 ≤ j ≤ `.

Proposition 3.4.2. [1], [15] For any U(g)-module X , X ⊗ V ⊗` is an H`-module (with
the action ofH` defined by Θ). Moreover, the action ofH` commutes with the action
of g.
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Proof. We will prove that the action of g on X ⊗ V ⊗` commutes with the action of
Ωr,s for all r, s. The action of g on X ⊗ V ⊗` is given by

z.x⊗ v1 ⊗ · · · ⊗ v` =

(∑̀
r=0

τr(z)

)
.x⊗ v1 ⊗ · · · ⊗ v`.

For notational convenience, let

τ(z) =
∑̀
r=0

τr(z).

We will calculate [τ(z),Ωr,s] as elements of T (g), the tensor algebra of g. Let κ(·, ·)
denote the Killing form on g.

[τ(z),Ωr,s] = [τr(z) + τs(z),
∑
i

τr,s(Ei, E
∗
i )]

=
∑
i

τr,s(zEi, E
∗
i ) + τr,s(Ei, zE

∗
i )− τr,s(Eiz, E∗i )− τr,s(Ei, E∗i z)

=
∑
i

τr,s([z, Ei], E
∗
i ) + τr,s(Ei, [z, E

∗
i ])

=
∑
i

τr,s
(∑

j

κ([z, Ei], E
∗
j )Ej, E

∗
i

)
+ τr,s

(
Ei,
∑
j

κ([z, E∗i ], Ej)E
∗
j

)
=

∑
i

(∑
j

κ([z, Ei], E
∗
j )

)
τr,s(Ej, E

∗
i )

+

(∑
j

κ([z, E∗i ], Ej)

)
τr,s(Ei, E

∗
j )

=

(∑
i,j

κ([z, Ei], E
∗
j )

)
τr,s(Ej, E

∗
i ) +

(∑
i,j

κ([z, E∗j ], Ei)

)
τr,s(Ej, E

∗
i )

=

(∑
i,j

κ(z, [Ei, E
∗
j ])

)
τr,s(Ej, E

∗
i ) +

(∑
i,j

−κ(z, [Ei, E
∗
j ])

)
τr,s(Ej, E

∗
i )

= 0.

Since the action of g commutes with Ωr,s for all r and s, the action of H` onX ⊗V ⊗`

commutes with g.
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Chapter 4

Equivariant maps between geometric
parameters

In this chapter, we will illuminate the relationship between the multiplicities of ir-
reducible modules in the composition series of standard objects in N and H for
type An. Theorem 4.0.3 shows that there is a natural correspondence between our
parametrizations of irreducible objects in each category. This correspondence al-
lows us to compare the multiplicity formulas given by the Kazhdan-Lusztig poly-
nomials in each category. Theorem 4.0.6, which is the geometric core of our main
result, shows that the multiplicity formulas agree under the correspondence in The-
orem 4.0.3.

Let V = Cn, G = SL(V ), and g = Lie(G). Let σ be a semisimple element of g,
and gi be the i-eigenspace of ad(σ). For convenience, we will assume σ is diagonal.
Let

l = g0, u =
⊕
i>0

gi, p = l⊕ u.

There is a decomposition V = V1 ⊕ · · · ⊕ Vk such that

l = {x ∈ g|x(Vi) ⊂ Vi}

u = {x ∈ g|x(Vi) ⊂
⊕
j<i

Vj}.

Finally, let L ⊂ G and P ⊂ G be such that Lie(L) = l and Lie(P ) = p. Consider the
action of L on g1 defined by

g.x = (gt)−1xgt,

where gt denotes the transpose of g ∈ L.

Definition. An orbit of L on g1 is called a graded nilpotent class [54].

37
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Theorem 4.0.3. [54] LetF (V ) be the variety of conjugates of p (which we will later identify
with the partial flag variety G/P ). Let N t denote the transpose of N ∈ g1 and consider the
following map

ϕ : g1 → F (V )

N 7→ (1 +N t) • p := (1 +N t)p(1 +N t)−1.

We have that

(a) ϕ is equivariant for the action of L, and

(b) ϕ(L •N) = L(1 +N t) • p is dense in P (1 +N t) • p.

Proof. We have that ϕ is equivariant because conjugation by L fixes p, and

(1 + (g.N)t) • p = (1 + gN tg−1)p(1 + gN tg−1)−1 = g(1 +N t)g−1pg(1 +N t)−1g−1

= g(1 +N t) • p

FixN ∈ g1. Let l′ = (1+N t)•l, p′ = (1+N t)•p, V ′i = (1+N t)Vi, andW = (1+N t)u ⊂
End(V ). We will reduce the proof of the theorem to the following lemma.

Lemma 4.0.4. The following map is a well defined isomorphism of vector spaces.

l ∩ p′ ⊕W → p ∩ p′

(A, φ) 7→ A+ φ.

The following corollary of the above lemma implies part (b) of the theorem.

Corollary 4.0.5. (a) dim(p ∩ p′) =dim(l ∩ p′)+dim(u),

(b) dim StabP (p′) =dim StabL(p′)+dim(u), and

(c) L(1 +N t) • p is dense in P (1 +N t) • p.

Therefore, we will proceed by proving the above lemma. First we will show that
the map is well defined. Since A ∈ l ∩ p′ we have

A(Vi) ⊂ Vi and A(V ′i ) ⊂
⊕
j≤i

V ′j .

Notice that (1 +N t)Vi ⊂ Vi ⊕ Vi+1. So

φ(Vi) ⊂
⊕
j<i

V ′j ⊂
⊕
j≤i

Vj.
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Therefore (A+ φ)(Vi) ⊂
⊕

j≤i Vj and A+ φ ∈ p. Now we will show that A+ φ ∈ p′.
This follows from

A(V ′i ) ⊂
⊕
j≤i

V ′j , and

φ(V ′i ) ⊂ φ(Vi) + φ(Vi+1) ⊂
⊕
j<i+1

V ′j .

Therefore the map is well defined. Now we will show that the map is an isomor-
phism. Since l∩ p′ ∩W = ∅, the map is injective. So to complete the proof we must
show that the map is surjective. Let Ã ∈ p ∩ p′ and fix vi ∈ Vi. We want to write

Ã(vi) = A(vi) + φ(vi)

for some A ∈ l ∩ p′ and some φ ∈ W . We will proceed by reverse induction on i.
Suppose i = k.

Ã(vk) = u′1 + · · ·+ u′k

with u′i ∈ V ′i . Since u′k ∈ V ′k = Vk, set

A(vk) := u′k ∈ Vk, and

φ(vk) := u′1 + · · ·+ u′k−1 ∈
⊕
j<k

V ′j .

Now assume A and φ are defined for all vj ∈ Vj with j > i. Fix vi ∈ Vi. Let
v′i = (1 +N t)vi ∈ V ′i and vi+1 = −N tvi ∈ Vi+1. Then

Ã(vi) = Ã(v′i) + Ã(vi+1).

By induction Ã(vi+1) = A(vi+1) + φ(vi+1). Since Ã ∈ p′ there are w′j ∈ V ′j so that

Ã(v′i) = w′1 + · · ·+ w′i.

So
Ã(vi) = (w′1 + · · ·+ w′i) + (u′1 + · · ·+ u′i) + A(vi+1) ∈

⊕
j≤i

Vj.

Notice that w′i + u′i + A(vi+1) ∈ Vi. So

Ã(vi) = A(vi) + φ(vi),
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where

A(vi) := w′i + u′i + A(vi+1), and

φ(vi) := w′1 + · · ·+ w′i−1 + u′1 + · · ·+ u′i−1.

Since ϕ is L-equivariant, we can define an induced map on L orbits of g1 as
follows (now identifying F (V ) with G/P ):

Φ : L\g1 → P\G/P

Q 7→ P · ϕ(Q).

Now we will relate the above map to the classifications of irreducible objects in
Chapter 2 and Chapter 3. Recall the notation N (ξ(λ), η), a subcategory of Whit-
taker modules (defined in Chapter 2), and PgH(σ), the geometric parametrization
of irreducible modules for the graded affine Hecke algebra (defined in Chapter 3).
Suppose σ ∈ h is the dual of λ+ ρ by the trace form. The double cosets Wη\W/Wλ

parametrize the set of irreducible Whittaker modules in N (ξ(λ), η) (cf. Theorem
2.1.6). Such double cosets are in one-to-one correspondence with Pη orbits onG/Pλ
(where Pη is a Lie subgroup of G with Lie algebra pη). Therefore, we denote the set
of Pη orbits on G/Pλ by PgN (η, λ), and use this set to parametrize the irreducible
objects in N (ξ(λ), η). Similarly, the geometric parameters PgH(σ) can be identified
with the set of L orbits on g1 (see the discussion following Theorem 3.3.1). If we
assume that Wλ = Wη, then Pη = Pλ, and we get the induced map on geometric
parameters:

Ψ : PgN (η, λ) → PgH(σ) ∪ {∅}

Q 7→

{
Φ−1(Q) if Q ∈ imΦ

∅ otherwise
.

Applying Theorem 2.5.1, we get the following equality of multiplicities.

Theorem 4.0.6. Assume λ is integral, dominant, and Wη = Wλ. Then for Q,O ∈
PgN (η, λ), we have

[stdN (Q), irrN (O)] = [stdH(Ψ(Q)), irrH(Ψ(O))]

if Ψ(Q), Ψ(O) 6= ∅.
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Proof. We will begin by applying Corollary 2.5.3 to the left hand side to get

[stdN (Q), irrN (O)] =
∑
i

dimH i(ICx(C(ηyλ)))

where x ∈ C(w) and C(w) is the open B orbit in Q, and C(ηyλ) is the open B orbit
in O. Applying Corollary 3.3.2 to the right hand side, we get

[stdH(Ψ(Q)), irrH(Ψ(O))] =
∑
i

dimH i(ICy(Ψ(O)))

for y ∈ Ψ(Q). Since the map ϕ is stratum preserving, continuous, and has dense
image in each stratum S of G/P , we have that

dimH i(ICx(C(ηyλ))) = dimH i(ICy(Ψ(O)))

for each i ( [54], [26, Section 4.8]).

Therefore, under the assumptions of Theorem 4.0.6, if there is an exact functor
F : N (ξ(λ), η)→ Hλ+ρ such that

F (stdN (O)) =

{
stdH(Ψ(O)) if Ψ(O) 6= ∅
0 otherwise

then we can conclude that

F (irrN (O)) =

{
irrH(Ψ(O)) if Ψ(O) 6= ∅
0 otherwise.

The content of the remainder of the paper will be focused on constructing such a
functor for each choice of ξ(λ) and η.

4.1 Example

Let g = sl(3,C), with Cartan subalgebra h consisting of diagonal matrices in g, and
Borel subalgebra b consisting of upper triangular matrices. Let σ = (1, 0,−1) ∈ h,
α = (1,−1, 0) and β = (0, 1,−1) ∈ h∗. We have that g1 = gα ⊕ gβ , l = h, L ={

diagonal matrices in SL(3,C)}, P = B, and F (V ) = G/B.

ϕ : g1 → G/B0 ∗ 0
0 0 ∗
0 0 0

 7→

1 0 0
∗ 1 0
0 ∗ 1

B
The Bruhat order on G/B is given by the following diagram
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(1)

(23)(12)

(123) (132)

(13)

where B orbits on G/B are labelled by elements of W = S3. Here (1) ∈ S3 corre-
sponds to the closed B-orbit on G/B. Similarly, we can consider the closure order
on L orbits on g1

{{−1}, {0}, {1}}

{{0, 1},−1}{{−1, 0}, 0}

{−1, 0, 1}

where L orbits on g1 are indexed by multisegments as in Section 3.2.3. Since Wλ =

(1), in order to relate the multiplicity formulas for N (ξ(0), η) and Hρ, we must
choose η = 0. Suppose F is an exact functor from N (ξ(0), η = 0) toHρ such that

F (stdN (O(1))) = stdH(Q{{−1},{0},{1}})

F (stdN (O(12))) = stdH(Q{{−1,0},0})

F (stdN (O(23))) = stdH(Q{{0,1},−1})

F (stdN (O(123))) = stdH(Q{−1,0,1})

F (stdN (O(132))) = 0

F (stdN (O(13))) = 0
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Then we can conclude that

F (irrN (O(1))) = irrH(Q{{−1},{0},{1}})

F (irrN (O(12))) = irrH(Q{{−1,0},0})

F (irrN (O(23))) = irrH(Q{{0,1},−1})

F (irrN (O(123))) = irrH(Q{−1,0,1})

F (irrN (O(132))) = 0

F (irrN (O(13))) = 0
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Chapter 5

Arakawa-Suzuki functors for Whittaker
modules

In order to proceed in constructing exact functors from the category of Whittaker
modules to the category of graded affine Hecke algebra modules, we will need to
review some of the results of Arakawa-Suzuki.

5.1 Highest weight modules

Following [1], we can define a functor fromO′ = N (η = 0) to the category of vector
spaces as follows:

F`,λ(X) := (X ⊗ V ⊗`)[λ]
λ ,

where V is the canonical representation of g = sl(V ). Since the action of H` on
X⊗V ⊗` commutes with the action of g (Proposition 3.4.2), F`,λ(X) has the structure
of anH`-module. In this section we will show that the above functor maps standard
modules in O′ to standard modules inH.

Proposition 5.1.1. [1, Proposition 1.4.2, Remark 1.4.3] For λ dominant, we have the
following bijections

HomU(g)(M(λ),M(µ)⊗ V ⊗`) ∼= H0(n,M(µ)⊗ V ⊗`)λ
∼= H0(n̄,M(µ)⊗ V ⊗`)λ
∼= (M(µ)⊗ V ⊗`)[λ]

λ .

Proposition 5.1.2. [1, Proposition 2.1.1] For λ dominant, the functor F`,λ is exact.
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5.1.1 Images of Verma modules

We will now review the main results of [1]. For a U(g)-module X where h acts
semisimply, let P (X) := {λ ∈ h∗ : Xλ 6= 0} be the set of all non trivial weights ofX .

Theorem 5.1.3. [1] For λ, µ integral weights with λ dominant, there is an isomorphism
of H`-modules

(M(µ)⊗ V ⊗`)[λ]
λ
∼=

{
stdH(λ, µ) if λ− µ ∈ P (V ⊗`)

0 otherwise.

Sketch of Proof. In [1], Arakawa and Suzuki prove Theorem 5.1.3 with two lemmata.
First they show that for integral weight µ and integral dominant weight λ, the nat-
ural inclusion (V ⊗`)λ−µ ↪→ (M(µ)⊗V ⊗`)λ given by u 7→ vµ⊗u (where vµ is a highest
weight vector of M(µ)) induces the following isomorphism of W`(= S`) represen-
tations

(V ⊗`)λ−µ → H0(n,M(µ)⊗ V ⊗`)λ.

Next they construct a projection (M(µ)⊗V ⊗`)λ → H0(n,M(µ)⊗V ⊗`)λ by identify-
ing H0(n,M(µ)⊗ V ⊗`)λ =

(
(M(µ)⊗ V ⊗`)/n̄(M(µ)⊗ V ⊗`)

)
λ
. Let uλ,µ be the image

of ũλ,µ = vµ ⊗ u⊗`11 ⊗ · · · ⊗ u`nn ∈ (M(µ)⊗ V ⊗`)λ under this projection, where the `i
are chosen in Equation 3.1. The second lemma is a calculation of the action of H`

on uλ,µ. They show that

Θ(εk)uλ,µ = ζλ,µ(ε∨i )uλ,µ,

where ζλ,µ is a character of t depending on λ and µ (defined in [1]). We can then
observe that we have a surjective H`-module morphism from stdH(λ, µ) to

H0(n,M(µ)⊗ V ⊗`)λ

which maps 1 to uλ,µ. Injectivity follows from Lemma 3.2.6, and the theorem is
proved by observing thatH0(n̄,M(µ)⊗V ⊗`)λ = (M(µ)⊗V ⊗`)[λ]

λ whenλ is dominant.

We can restate this theorem using the geometric parametrizations of standard
and irreducible objects in the respective categories as follows.
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Corollary 5.1.4. Suppose λ is regular, integral, and dominant, and η = 0. The ge-
ometric parameters for N (ξ(λ), η) are B orbits on the flag variety G/B. Let C(w)

denote the B orbit corresponding to w ∈ W .

HomU(g)(M(λ),M(w • λ)⊗ V ⊗n) =

{
stdH(Ψ(C(w))) if Ψ(C(w)) 6= ∅
0 otherwise

Notice that Ψ(C(w)) 6= ∅ precisely when λ− w • λ ∈ P (V ⊗n).

5.2 Whittaker modules

For λ ∈ h∗, we define the following functor from N (η) to the category of finite-
dimensional vector spaces:

F`,η,λ(X) := H0
η

(
nη, (X ⊗ V ⊗`)[λ]

λz

)
.

Since the action of H` onX⊗V ⊗` commutes with the action of g (Proposition 3.4.2),
F`,η,λ(X) has the structure of anH`-module. This allows us to viewF`,η,λ as a functor
from N (η) to the category of finite-dimensional H`-modules.

Proposition 5.2.1. For λ dominant, F`,η,λ is an exact functor from N (η) toH.

Proof. Following Proposition 2.0.4, Lemma 2.2.1, and Proposition 2.2.2, we can see
that F`,η,λ is exact when viewed as a functor from N (η) to the category of vector
spaces. In order to see that F`,η,λ takes exact sequences of U(g)-modules to ex-
act sequences of H`-modules (not just vector spaces), we will show that given a
morphism of U(g)-modules φ, the linear map F`,η,λ(φ) is actually a morphism of
H`-modules. Suppose φ : A→ B is a morphism of U(g)-modules. Recall the oper-
ators Ωi,j ∈ U(g)⊗`+1 from Section 3.4. Let φ′ : A ⊗ V ⊗` → B ⊗ V ⊗` be defined by
φ′(a⊗ v1⊗ · · · ⊗ v`) = φ(a)⊗ v1⊗ · · · ⊗ v`. If a ∈ A, then Ωi,j(φ

′(a⊗ v1⊗ · · · ⊗ v`)) =

Ωi,j(φ(a)⊗ v1 ⊗ · · · ⊗ v`) = φ′(Ωi,j(a⊗ v1 ⊗ · · · ⊗ v`)) then F`,η,λ(φ). Since the action
of H` is defined in terms of the operators Ωi,j , we have that hφ′(a⊗ v1 ⊗ · · · ⊗ v`) =

φ′(h(a ⊗ v1 ⊗ · · · ⊗ v`)) for h ∈ H`. It follows that F`,η,λ(φ) is a morphism of H`-
modules. Hence F`,η,λ is an exact functor from N (η) toH.

5.2.1 Images of standard Whittaker modules

In this section, we will calculate the image of standard Whittaker modules.
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Theorem 5.2.2. The functor Γη induces a morphism of H`-modules

Γ
H
η (λ, µ) : HomU(g)

(
M(λ),M(µ)⊗ V ⊗`

)
→ H0

η

(
nη,
(
stdN (µ, η)⊗ V ⊗`

)[λ]

λz

)
.

Moreover, Γ
H
η (λ, µ) is an isomorphism if λ is dominant and Wη = Wλ.

Proof. We will begin by constructing a natural isomorphism

HomU(g)

(
stdN (λ, η), stdN (µ, η)⊗ V ⊗`

) ∼= H0
η

(
nη,
(
stdN (µ, η)⊗ V ⊗`

)[λ]

λz

)
.

From Corollary 2.1.5, we see that (stdN (µ, η)⊗ V ⊗`)[λ] has a filtration with subquo-
tients isomorphic to stdN (λ + ν, η), where ν is a weight of V ⊗` and λ + ν ∈ W • λ.
Recall that P (V ⊗n) denotes the set of non zero h-weights of V ⊗n. By Theorem
2.1.3, we have that the non zero z-weight spaces of stdN (λ + ν, η) have weights
w • λ + γ for γ ∈ P (U(n̄η)). Notice that µ ∈ h∗ and w • µ are equal as z-weights
if w ∈ Wη. Since λ is dominant, we have that stdN (w • λ, η) has a non zero z-
weight space of weight λ if and only if w ∈ Wη. Moreover, since the action of nη

takes a z-weight vector of weight λ to a vector of weight λ + γ′ for γ′ ∈ P (nη),
and (w • λ + P (U(n̄η))) ∩ (λ + P (nη)) = ∅, we can conclude that nηv = 0 for all
z-weight vectors v of weight λ in stdN (w •λ, η). In conclusion, v ∈ stdN (µ, η)⊗V ⊗`

is contained in H0
η

(
nη,
(
stdN (µ, η)⊗ V ⊗`

)[λ]

λz

)
if and only if v is a z-weight vector

with weight λ, and has xv = η(x)v for all x ∈ n. Since stdN (λ, η) is isomorphic
to U(g)v for each v ∈ H0

η

(
nη,
(
stdN (µ, η)⊗ V ⊗`

)[λ]

λz

)
, we can define a morphism

φv : stdN (λ, η) → stdN (µ, η) ⊗ V ⊗` for each v ∈ H0
η

(
nη,
(
stdN (µ, η)⊗ V ⊗`

)[λ]

λz

)
.

Alternatively, for each φ ∈ HomU(g)(stdN (λ, η), stdN (µ, η) ⊗ V ⊗`), we can define a
vector vφ := φ(1⊗1⊗1) ∈ stdN (µ, η)⊗V ⊗` by considering the image of the canoni-
cal generator 1⊗1⊗1 of stdN (λ, η) = U(g)⊗U(pη)

(
U(lη)/ξη(λ)U(lη)⊗U(nη)Cη

)
. Since

φ is morphism of U(g)-modules, it follows that vφ is a z-weight vector of weight λ
and xvφ = η(x)vφ for all x ∈ n. Moreover, the maps v 7→ φv and φ 7→ vφ are inverses
of each other, which proves the natural identification described above.

Consider the map induced on morphisms by the functor Γη. Let

φ ∈ HomU(g)(A,B)

for A,B in BGG category O. Then Γη(φ) ∈ HomU(g)

(
Γη(A),Γη(B)

)
is given by

Γη(φ)

 ∑
ν∈P (A)

xν

 =
∑

ν∈P (A)

φ(xν),
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where we view elements of Γη(A) (elements of Γη(B)) as formal infinite linear sums
of weight vectors of A (weight vectors of B, respectively). Now, the action of H` on
HomU(g)(M(λ),M(µ) ⊗ V ⊗`) (which we will denote here by h.φ) is given by the
action of H` on M(µ)⊗ V ⊗`. By Proposition 2.4.4, we have that

HomU(g)

(
Γη(M(λ)),Γη(M(µ)⊗ V ⊗`)

)
= HomU(g)

(
Γη(M(λ)),Γη(M(µ))⊗ V ⊗`

)
.

Since Γη(M(λ)) is a U(g)-module, we see that H` acts on

HomU(g)

(
Γη(M(λ)),Γη(M(µ))⊗ V ⊗`

)
,

which we will denote again by h.φ. For h ∈ H` we have

h.Γη(φ)

 ∑
ν∈P (M(λ))

xν

 = h
∑

ν∈P (M(λ))

φ(xν)

=
∑

ν∈P (M(λ))

hφ(xν)

= Γη(h.φ)

 ∑
ν∈P (M(λ))

xν

 .

Therefore, Γη induces a morphism of H`-modules. We will now turn our focus
to showing that the induced morphism of H`-modules is an isomorphism when
Wη = Wλ, and µ is nη antidominant. The generating vector 1 ⊗ 1 ⊗ 1 of stdN (λ, η)

has z-weight λ. Therefore, if we write the generating vector as a linear combination∑
ν∈P (M(λ)) xν , we have

z
∑

ν∈P (M(λ))

xν =
∑

ν∈P (M(λ))

zxν =
∑

ν∈P (M(λ))

ν(z)xν = λ(z)
∑

ν∈P (M(λ))

xν ,

for all z ∈ z. Therefore, the ν ∈ P (M(λ)) for which xν is non zero must have the
property that ν(z) = λ(z) for all z ∈ z. In other words, the ν ∈ P (M(λ)) for which xν
is non zero must be contained in the set P (U(lη)vλ), where vλ is a λ-highest weight
vector inM(λ). SinceWλ = Wη, we have thatU(lη)vλ is an irreducibleU(lη)-module.
Therefore, if φ ∈ HomU(g)(M(λ),M(µ) ⊗ V ⊗`) and φ(vλ) 6= 0, then φ(w) 6= 0 for all
(non zero)w ∈ U(lη)vλ. Since φ is determined completely by its value on vλ, we have
that φ 6= 0 implies that φ(vλ) 6= 0. This implies that φ(xν) 6= 0 for each xν which
appears in the sum decomposition of the generating vector of stdN (λ, η). Observe
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that since φ is a morphism of U(g)-modules, it preserves weight spaces. Therefore,
if ν1 6= ν2 ∈ h∗, we have φ(xν1) + φ(xν2) = 0 if and only if φ(xν1), φ(xν2) = 0. So if
φ 6= 0, then

Γη(φ)

 ∑
ν∈P (M(λ))

xν

 =
∑

ν∈P (M(λ))

φ(xν) 6= 0.

We have therefore shown that the map Γ
H
η (λ, µ) is injective. To conclude the proof,

we will show that

dimHomU(g)(M(λ),M(µ)⊗ V ⊗`) = dimHomU(g)

(
stdN (λ, η), stdN (µ, η)⊗ V ⊗`

)
.

Since λ is dominant,M(λ) is a projective object inO, and the left hand side is equal
to [M(µ)⊗V ⊗` : L(λ)], cf. [22]. Again, since λ is dominant, [M(w •λ) : L(λ)] is zero
unless w • λ = λ, in which case the multiplicity is 1. Therefore, the left hand side is
equal to dim(V ⊗`)λ−µ . On the right hand side, we have that stdN (µ, η)⊗ V ⊗` has a
filtration with quotients isomorphic to stdN (µ+ τ, η) for τ ∈ P (V ⊗`). So

dimHomU(g)(stdN (λ, η), stdN (µ, η)⊗ V ⊗`) ≤
∑

τ∈Wη•λ−µ

dimV ⊗`τ .

Since Wη • λ = λ, we have that

dimHomU(g)(stdN (λ, η), stdN (µ, η)⊗ V ⊗`) ≤ dim(V ⊗`)λ−µ.

Since Γ
H
η (λ, µ) is injective, the inequality must be an equality, and the map must be

an isomorphism.

Theorem 5.2.3. Let λ be dominant, integral, and suppose Wη = Wλ. Then

F`,η,λ(stdN (y • λ, η)) ∼=

{
stdH(λ, y • λ) if λ− y • λ ∈ P (V ⊗`)

0 otherwise.

Alternatively, under the geometric parametrization of standard modules (with the notation
of Section 4), we have

F`,η,λ(stdN (O)) ∼=

{
stdH(Ψ(O)) if Ψ(O) 6= 0

0 otherwise

where O is a P orbit on G/P .
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Proof. By Theorem 5.2.2,

Γ
H
η (λ, µ) : HomU(g)

(
M(λ),M(µ)⊗ V ⊗`

)
→ H0

η

(
nη,
(
stdN (µ, η)⊗ V ⊗`

)[λ]

λz

)
is an isomorphism of H`-modules. By Theorem 5.1.3,

(
M(µ)⊗ V ⊗`

)[λ]

λ
∼=

{
stdH(λ, µ) if λ− µ ∈ P (V ⊗`)

0 otherwise

as H`-modules. There is a canonical bijection [1, Remark 1.4.3]

HomU(g)

(
M(λ),M(µ)⊗ V ⊗`

)
→
(
M(µ)⊗ V ⊗`

)[λ]

λ
.

Therefore

H0
η

(
nη,
(
stdN (µ, η)⊗ V ⊗`

)[λ]

λz

)
∼= HomU(g)

(
M(λ),M(µ)⊗ V ⊗`

)
∼=

(
M(µ)⊗ V ⊗`

)[λ]

λ

∼=

{
stdH(λ, µ) if λ− µ ∈ P (V ⊗`)

0 otherwise

as H`-modules.

5.2.2 Images of irreducible modules

Fix a character η of n, and let ` = n. The following theorem is the main result of the
paper, and gives an algebraic relationship between simple Whittaker modules and
simple modules for the graded affine Hecke algebra. Moreover, this algebraic rela-
tionship agrees with the geometric relationship between the corresponding multi-
plicity formulas and intersection homologies observed by Zelevinsky [54].

Theorem 5.2.4. Let λ be integral and dominant. Assume Wλ = Wη. Let ηyλ denote the
longest element in the double coset WηyWλ. If λ− ηyλ • λ ∈ P (V ⊗n), then

Fn,η,λ (irrN (y • λ, η)) = irrH(λ, ηyλ • λ).

If λ− ηyλ •λ /∈ P (V ⊗n), then Fn,η,λ(irrN (y •λ, η)) = 0. Again, we will restate the theorem
in the more natural setting of geometric parameters:

Fn,η,λ (irrN (O)) ∼=

{
irrH(Ψ(O)) if Ψ(O) 6= 0

0 otherwise.
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Proof. This follows directly from the statements following Theorem 4.0.6.

Corollary 5.2.5. Every simple Hn-module (with central character given by λ + ρ)
appears as the image of the irreducible Whittaker module irrN (O) for some choice
of η ∈ chn and O a Pη orbit on G/Pλ.

Proof. For any give parameter O ∈ PgH(λ + ρ), choose η such that Wη = Wλ. Recall
the map Φ from Section 4

Φ(O) = P · (1 +N t) · p

for someN ∈ O. We have that Φ(O) is a singleP (hencePη) orbit onG/P . Therefore
Ψ(Φ(O)) = O, and

Fn,η,λ(irrN (Φ(O))) = irrH(O).



Chapter 6

Contravariant Forms

In this chapter we will classify contravariant forms on Whittaker modules. The
content of this chapter is part of an ongoing collaboration with Anna Romanov.

Definition. Let τ be the antiautomorphism of U(g) induced by the transpose map
given by xα 7→ x−α for a Chevalley basis {xα : xα ∈ gα} of n⊕ n̄ and h 7→ h for h ∈ h.
A contravariant form on a U(g)-module X is a C-bilinear symmetric form 〈, 〉 on X
such that

〈uv, w〉 = 〈v, τ(u)w〉

for all u ∈ U(g) and v, w ∈ X .

Proposition 6.0.6. The set of contravariant forms on a cyclic U(g)-moduleX = U(g)v

are in bijection with linear functionals γ : U(g) → C satisfying the following con-
ditions:

(a) γ
(
AnnU(g)v

)
= 0, and

(b) γ(u) = γ(τ(u)) for all u ∈ U(g).

Proof. Given a contravariant form 〈·, ·〉 : X ×X → C, define γ : U(g)→ C by

γ(u) = 〈uv, v〉.

An easy computation shows that γ is a linear functional satisfying conditions (a)
and (b). Alternatively, given γ : U(g) → C satisfying (a) and (b), define a bilinear
form on X by

〈x, y〉 = 〈uv, u′v〉 = γ(τ(u′)u)

for x, y ∈ X . Here x = uv and y = u′v for u, u′ ∈ U(g). Notice that the choices
of u, u′ ∈ U(g) such that x = uv and y = u′v are not necessarily unique. It is

53
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straightforward to check that this form is symmetric, bilinear, and τ -contravariant.
To see this form is well defined, suppose that x = tv and y = t′v, with t 6= u ∈ U(g)

and t′ 6= u′ ∈ U(g). Then

〈uv, u′v〉 − 〈tv, t′v〉 = 〈(u− t)v, u′v〉+ 〈tv, (u′ − t′)v〉

= γ(τ(u′)(u− t)) + γ(τ(t)(u′ − t′))

= 0.

Here the second equality follows from condition (b) and the third equality follows
from (a), since u− t and u′ − t′ are in the annihilator of v.

Let stdN (λ, η) be a standard Whittaker module with Whittaker vector w = 1 ⊗
1⊗ 1. Using the PBW basis theorem, we have the decomposition

U(g) = U(lη)⊕ (U(g)nη + n̄ηU(g)).

Let πη denote the corresponding projection map from U(g) to U(lη).

Lemma 6.0.7. If a ∈ AnnU(g)w, then πη(a) ∈ AnnU(g)w.

Proof. Using the above decomposition, write a = l+m+n for l ∈ U(lη),m ∈ U(g)nη,
and n ∈ n̄ηU(g). Since m annihilates w, we have that a −m = l + n annihilates w.
Since n = yu for y ∈ n̄η, u ∈ U(g), [36, Proposition 2.4] implies that nw is either zero
or is not contained in U(lη)w. If nw /∈ U(lη)w, then lw+nw 6= 0 (since lw ∈ U(lη)w).
This contradicts the fact that l + n annihilates w. Therefore nw = 0. We conclude
that l ∈ AnnU(lη)w.

Let Γ denote the space of linear functionals on U(g) satisfying the conditions of
Proposition 6.0.6 for the U(g)-module stdN (λ, η) with Whittaker vector w. Let Γη

denote the space of linear functions on U(lη) satisfying the conditions of Proposi-
tion 6.0.6 for the U(lη)-module stdN (λ, η)λz

∼= U(lη)w ∼= Y (ξη(λ), η) with Whittaker
vector w.

Proposition 6.0.8. The restriction map from U(g) to U(lη) of linear functionals in-
duces an isomorphism

res : Γ
∼−→ Γη.
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Proof. If γ ∈ Γ, then clearly
γ
(
AnnU(lη)w

)
= 0

since AnnU(lη)w ⊂ AnnU(g)w. Moreover,

γ(u) = γ(τ(u)) for all u ∈ U(lη)

since U(lη) ⊂ U(g). Therefore, the restriction map res : Γ→ Γη is well-defined. We
will construct an inverse of this restriction map by extending a linear functional γη ∈
Γη to a linear functional γ on U(g) by setting γ(n) = 0 for all n ∈ (U(g)nη + n̄ηU(g)).
This is clearly an inverse of the restriction map, and all that is left to show is that
γ ∈ Γ. For a ∈ AnnU(g)w, we can decompose a as

a = πη(a) + n

for n ∈ (U(g)nη + n̄ηU(g)). By Lemma 6.0.7, πη(a) ∈ AnnU(lη)w. Therefore

γ(a) = γ(πη(a) + n) = γη(πη(a)) = 0.

So γ(AnnU(g)w) = 0. We can see that γ is τ -invariant by noticing that the decompo-
sition U(g) = U(lη)⊕ (U(g)nη + n̄ηU(g)) is τ -invariant (i.e. πη(τ(u)) = τ(πη(u))).

Therefore, we have reduced the problem of computing the dimension of Γ to
the case when η is a nondegenerate character of n. Suppose η is a nondegenerate
character of n. Recall that Uη(n) denotes the kernel of η : U(n) → C. Let A =

AnnU(g)w, N = U(g)Uη(n), and I = U(g)ξ(λ).

Proposition 6.0.9. [32, Theorem 3.1]

A = N + I.

Let Aτ = A + τ(A) and Nτ = N + τ(N). Consider the decomposition U(g) =

Nτ ⊕ U(h) and the short exact sequence:

0→ Nτ → U(g)
pη−→ U(h)→ 0.

Let Q = U(h)/pη(I).

Lemma 6.0.10. As vector spaces,
Γ ∼= Q∗.
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Proof. First we will note that Q∗ is canonically isomorphic to the space of linear
functionals on U(h) which vanish on pη(I). We will show that the restriction map
from U(g)∗ to U(h)∗ defines an isomorphism from Γ to Q∗:

resU(h) : Γ → Q∗

γ 7→ γ|U(h).

First we will show that this map is well defined. Since γ(A) = 0, and γ(u) = γ(τ(u)),
we have that γ(Aτ ) = 0. Using the above short exact sequence, each element u ∈ I

can be written as u = n+ pη(u), where n ∈ Nτ . Since I and Nτ are contained in Aτ ,
we have that

0 = γ(u) = γ(n) + γ(pη(u)) = γ(pη(u)).

Therefore γ vanishes on pη(I), and the above restriction map is well defined. It is
easy to check that the inverse of the restriction map is given by

Q∗ → Γ

φ 7→ φ ◦ pη.

If a ∈ A, then a = n+ u with n ∈ N and u ∈ I, and

φ ◦ pη(a) = φ(pη(n)) + φ(pη(u)) = 0

since φ is assumed to vanish on pη(I) and pη(n) = 0. Moreover, if u ∈ U(g), then
u = m + h, where m ∈ Nτ and h ∈ U(h) (using the short exact sequence above).
Therefore

φ◦pη(u) = φ◦pη(m+h) = φ◦pη(h) = φ◦pη(τ(h)) = φ◦pη(τ(m)+τ(h)) = φ◦pη(τ(u))

since τ(m) ∈ Nτ (hence pη(τ(m)) = 0). Composition with pη and resU(h) are inverses
because pη|U(h) is the identity map.

Let S = 〈S(h)W+ 〉 be the ideal in S(h) generated by the W -invariant polynomials
with positive degree. There is a graded, W -invariant, decomposition

S(h) = C ⊕ S,

where C is isomorphic to C[W ] as a representation of W , see [9, Chapter 5 Section
5 Subsection 2 page 112]. In what follows, we will identify U(h) with S(h).
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Lemma 6.0.11. If s ∈ S, then there exists an r ∈ pη(I), and an e ∈ U(h) such that

s = r + e and deg(e) < deg(s).

Additionally, if r′ ∈ pη(I), then there exists an s′ ∈ S, and an f ∈ U(h) such that

r′ = s′ + f and deg(f) < deg(r′).

Proof. Let tρ be the ρ-twist map from U(h) to U(h), H 7→ H − ρ(H). If s ∈ S, then

s = h · tρ(p0(z))

where p0 is the Harish-Chandra homomorphism, z ∈ Z(g)+, and h ∈ U(h). Writing
z in the PBW basis of U(g), we get

z = p0(z) +
∑
i

yihixi

where yi ∈ U(n̄)+, hi ∈ U(h), xi ∈ U(n)+.
Since the Harish-Chandra isomorphism induces an isomorphism between the

corresponding graded objects [8, Chapter 7 Section 8 Subsection 5, page 145], we
have

deg(hi) < deg(p0(z)) for all i.

Moreover,
pη(z) = p0(z) +

∑
i

η(τ(yi)xi)hi.

For all h ∈ U(h), tρ(h) = h+ e′ for some e′ ∈ U(h) with deg(e′) < deg(h). Therefore

s = h · tρ(p0(z))

= h · tρ

(
pη(z)−

∑
i

η(τ(yi)xi)hi

)
= h · (pη(z) + e′′) = hpη(z) + he′′

where deg(e′′) < deg(p0(z)) = deg(pη(z)). The last thing we need is to rewrite
hpη(z) as u + e′′′ for u ∈ pη(I) and deg(e′′′) < deg(hpη(z)). For each z ∈ Z(g),
z − χλ(z) ∈ ξ(λ), where χλ is the infinitesimal character corresponding to λ. So

hpη(z) = hpη(z − χλ(z)) + χλ(z)h = pη(h(z − χλ(z))) + χλ(z)h.
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Finally,
s = hpη(z) + he′′ = pη(h(z − χλ(z))) + χλ(z)h+ he′′.

Therefore, there exists a r ∈ pη(I), and an e ∈ U(h) such that

s = r + e and deg(e) < deg(s).

The second statement of the lemma is proved by a similar argument. If r ∈ pη(I),
then

r = hpη(z − χλ(z)) = h

(
p0(z) +

∑
i

η(τ(yi)xi)hi − χλ(z)

)
.

Twisting by t−1
ρ gives

r = s+ f

where s ∈ S and deg(f) < deg(r).

Lemma 6.0.12.
U(h) = C ⊕ pη(I).

Proof. We will begin with the graded decomposition

U(h) = C ⊕ S

and proceed by induction on degree. The base case is trivial, as pη(I) contains no
constant polynomials. Let U(h)i denote the set of polynomials with degree less
than or equal to i. Assume U(h)i = Ci ⊕ pη(I)i. Let h ∈ U(h)i+1. Then

h = c+ s

where c ∈ Ci+1 and s ∈ Si+1. By the previous lemma, we can write s as

s = r + e

with r ∈ pη(I) and deg(e) < deg(s) ≤ i+ 1. Therefore

h = c+ r + e.

By induction, e can be written uniquely as e = c′ + r′, with c′ ∈ Ci and r′ ∈ pη(I)i.
So finally, we have a decomposition of h given by

h = (c+ c′) + (r + r′).
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Moreover, since deg(c′),deg(r′) < i + 1, we have that (c + c′) ∈ Ci+1 and (r + r′) ∈
pη(I)i+1. To complete the proof, it remains to show thatCi+1∩pη(I)i+1 = 0. Assume
x ∈ Ci+1 ∩ pη(I)i+1. By the previous lemma, x = s + f , where f ∈ U(h) has lower
degree than x and s ∈ S. We can decompose f as f = c+ s′ with c ∈ Ci and s ∈ Si.
So x = s+c+s′. Therefore s+s′ ∈ S∩C, which implies that s+s′ = 0. So x = c, but
degc ≤ i. So x ∈ Ci ∩ pη(I)i, which implies x = 0 by the induction hypothesis.

Corollary 6.0.13. Assuming still that η is nondegenerate,

dimΓ = |W |.

Proof. We have that dimC = |W | since C is isomorphic to C[W ], see [9, Chapter 5
Section 5 Subsection 2 page 112]. Both Q∗ and C∗ are isomorphic to the space of
linear functionals on U(h) which vanish on pη(I). Therefore Q∗ ∼= C∗. By Lemma
8, we have that

Γ ∼= C∗.

Corollary 6.0.14. We can then use the reduction at the beginning of this chapter to
conclude that for general η ∈ chn, if Γ is the space of linear functionals on U(g)

satisfying the conditions of Proposition 6.0.6 for the U(g)-module stdN (λ, η) and
Whittaker vector w, then

dimΓ = |Wη|.

6.1 Future directions

There are several natural extensions of this thesis which the author will study in
future work.

6.1.1 Jantzen conjecture for Whittaker modules

Jantzen filtrations and the Jantzen conjecture are central to the study of highest
weight modules and give a representation-theoretic interpretation of coefficients
of Kazhdan-Lusztig polynomials. A natural question is how one might develop
an analogous theory of Jantzen filtrations for Whittaker modules. Additionally, a
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Jantzen-type conjecture for Whittaker modules would pave the way for future re-
search on the properties of the Arakawa-Suzuki functors constructed in this thesis
(and in [10]), generalizing results of Suzuki for highest weight modules [45].

In [23], Jantzen introduced a filtration for a particular class of well behavedU(g)-
modules in category O known as Verma modules. For each Verma module, de-
noted by M(λ), Jantzen showed that there is a filtration

M(λ)0 ⊃M(λ)1 ⊃ · · · ⊃M(λ)N = 0

with the property that the corresponding quotientsM(λ)i/M(λ)i+1 admit a nonde-
generate contravariant form. Using this filtration, Jantzen developed a sum formula∑

i

chM(λ)i =
∑
sα·λ<λ

chM(sα · λ)

which gives a powerful tool for studying the characters of Verma modules. The sum
formula can be used to prove the BGG theorem for categoryO [22], and helped lead
to the Jantzen conjecture, which describes how the filtration of M(λ) relates to the
filtration ofM(µ) whenM(λ) embeds as a submodule intoM(µ). The Jantzen con-
jecture (proved in [7]) provides deep insight to the structure of highest weight mod-
ules, and implies the truth of the celebrated Kazhdan-Lusztig conjectures (which
were originally proved with geometric techniques in [6] and [11]). Moreover, the
Jantzen conjecture illustrates a relationship between the coefficients of Kazhdan-
Lusztig polynomials and the filtrations of Verma modules introduced by Jantzen:∑

i

[griM(w · λ) : L(y · λ)]q(l(y)−l(w)−i)/2 = Pw,y(q).

As part of ongoing research, we aim to define a Jantzen filtration for Whittaker
modules and prove a corresponding Jantzen conjecture, relating Jantzen filtrations
to the coefficients of parabolic Kazhdan-Lusztig polynomials. For longest coset rep-
resentatives w and y of Wη\W/Wλ, we aim to prove the equality∑

i

[griM(w · λ, η) : L(y · λ, η)]q(l(y)−l(w)−i)/2 = Pw,y(q)

where Pw,y(q) is a parabolic Kazhdan-Lusztig polynomial. The successful comple-
tion of this research project would result in an interpretation of the coefficients of
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parabolic Kazhdan-Lusztig polynomials in terms of filtrations of standard Whit-
taker modules. The Jantzen conjecture for categoryOwas first proved by Beilinson
and Bernstein using weight filtrations of perverse sheaves [7], and later proved by
Williamson using the local Hodge theory of Soergel bimodules [52]. In extend-
ing these results to the category of Whittaker modules, we will explore techniques
involving weight filtrations of twisted D-modules, and methods using the local
Hodge theory of Soergel bimodules.

6.1.2 Duality and tilting modules

Modules in category O admit a natural exact contravariant duality functor, map-
ping modules M to M∨ :=

⊕
λ∈h∗M

∗
λ [22, Chapter 3.2]. This notion of duality has

many interesting applications. For example, it plays a central role in the study of
tilting modules. A tilting module M in O is a module such that M and M∨ ad-
mit a filtration with quotients consisting of Verma modules. One of the primary
obstructions to the study of tilting modules in N is the fact that there is not cur-
rently a notion of duality. The duality functor for category O does not extend to
the category of Whittaker modules in a straightforward way because, in general,
Whittaker modules do not decompose into h-weight spaces. It is, therefore, nec-
essary to develop a more general method for defining duality in the category of
Whittaker modules. An additional research direction extending from this thesis
aims to construct an exact contravariant functor (−)∨ : N → N which preserves
infinitesimal character, and agrees with the classical highest weight duality when
restricted to O.

Duality in the category of Whittaker modules relates to the contravariant forms
appearing in my project on a Jantzen conjecture for Whittaker modules. These con-
travariant forms should induce natural maps from a Whittaker module J to the
dual object J∨. The interplay between contravariant forms and duality has been
exploited for proving many results in categoryO and would advance the theory of
Whittaker modules. Once duality is defined in the category of Whittaker modules,
we will continue by studying the corresponding tilting modules and computing
their characters.

The study of formal characters of indecomposable tilting modules will be a ma-
jor step toward a Whittaker module generalization of results of Soergel in [44],
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which relate characters of tilting modules in category O to Kazhdan-Lusztig poly-
nomials.
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