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Abstract

Fourier series are a central topic in
the study of differential equations.
However, it can be difficult to gain
an intuition for these mysterious
decompositions. We will explore
how Fourier series naturally appear
in representation theory, and how
they can be used to solve differential
equations. Generalizations of our
techniques compose an extremely
interesting field known as harmonic
analysis.



Motivation
Gelfand’s Program

Let G be a topological group acting on a topological space X .
Example:

· G = GL(n,R), X = {X : X is a lattice in Rn}
· G = U(1) = {z ∈ C : |z | = 1}, X = G

· G = R, X = G

Answer questions about X by understanding the group action.
Problem: this is hard
Solution: linearize



Motivation
Gelfand’s Program

Find a nice Hilbert space H related to X . For example, a
function space on X . If G preserves a measure on X , we can
take H = L2(X ). G will now act on H, and here we can make
use of linear algebra and analysis.



Motivation
Gelfand’s Program

If our choices are made well, G will act on H by unitary
operators

π : G → U(H)

Gelfand’s program says that questions about X should be
reformulated as questions about the representation of G on H,
where we can use tools from linear algebra.



Motivation
Linear Algebra

Definition

Suppose G is a topological group. A unitary representation of
G is a pair (π,H) consisting of a complex Hilbert space H,
and a homomorphism

π : G → AutC(H)

so that each operator π(g) is unitary and

G ×H → H
(g , v) 7→ π(g)v

is continuous.



Motivation
Linear Algebra

We can think about a representation as a group action of G
on H, G � H.

Definition

An invariant subspace of the representation is a subspace W
of H which is preserved by all operators π(g) (π(g)W ⊆ W ).

Definition

A representation (π,H) of a group G is irreducible if there are
no non-trivial, proper, closed, invariant subspaces of H.



Let X be a Riemann manifold, G be a group, and D be a self
adjoint differential operator on W k,2(X ). Suppose L2(X ) is a
representation of G , and D commutes with the action of G on
W k,2(X ). Then ker(D) is a representation of G .



Heat Equation

The heat equation describes the dissipation of heat through a
material. Mathematically, the heat equation is

n∑
i=1

∂2u

∂x2i
=
∂u

∂t

where u is a function of x1, · · · , xn and t.



Heat Equation on a Circle

Consider a circle.

S1 :

If we want to study how heat would dissipate through a circle
like this, we need to solve

∂2u

∂θ2
=
∂u

∂t
(1)

we will denote equation (1) by uθθ = ut . This is equivalent to
finding the kernel of the operator uθθ − ut on H, where H is a
suitable function space (L2, differentiable, etc) on S1 × R.



Heat Equation on a Circle

Let G be a group of symmetries of S1 × R.

G = U(1)× R = {(e iθ, x) : θ ∈ [0, 2π), x ∈ R}

G acts on S1 by rotation and R by translation. This leads to a
unitary representation of G :

π : G → U(L2(S1 × R))

π (g)f (x) = f (g−1.x)

for x ∈ S1 × R and g ∈ G .



Representation Theory

Theorem (Peter-Weyl)

L2(S1) ∼=
⊕̂

n∈Z
Ce inθ

as representations of U(1). Therefore, any f ∈ L2(S1) can be
written as an infinite sum

f (θ) =
∑
n∈Z

cne
inθ

This is called the Fourier Series of f .



Representation Theory
Question

How do we find the constants cn?
Projection formula:

Proje inθ(f ) =
〈f , e inθ〉
||e inθ||2

e inθ

=

(
1

2π

∫ 2π

0

f (φ)e inφdφ

)
e inθ

=

(
1

2π

∫ 2π

0

f (φ)e−inφdφ

)
e inθ

So we have a formula for the constants:

cn =
1

2π

∫ 2π

0

f (φ)e−inφdφ



Representation Theory

Theorem (Peter-Weyl)

L2(R) ∼=
∫̂
ξ∈R

Ce iξt

as representations of R. Therefore, any f ∈ L2(R) can be
written as a direct integral

f (x) =

∫
ξ∈R

cξe
iξt

This is called the Fourier Transform of f .



Spectral Theory
Heat Equation on a Circle

Representation theory tells us we can get a basis for this space:

L2(S1 × R) ∼=
∫̂

(n,ξ)∈Z×R
Ce inθe iξt

Since our operator uθθ − ut is self adjoint and commutes with
the action of G , the eigenspaces of uθθ − ut will be preserved
by G . So finding the zero eigenspace of uθθ − ut reduces to a
simple calculation.



Spectral Theory
Heat Equation on a Circle

(uθθ − ut)e
inθe iξt = 0

−n2e inθe iξt − iξe inθe iξt = 0

−n2 − iξ = 0

=⇒ ξ = in2

Therefore, solutions of the heat equation on the circle can be
written as

u(θ, t) =
∑
n∈Z

cne
inθe−n

2t



Motivation
Gelfand’s Program

For example, let X be a pseudo-Riemannian manifold, and G
be a group of isometries of X . Under suitable conditions, the
Laplace-Beltrami operator −∇2 on X is self adjoint. In this
case, G will preserve the spectral decomposition of −∇2.
Conversely, if the action of G is transitive, then any
G -invariant subspace of L2(X ) will be preserved by −∇2.
Therefore the problem of finding the G -invariant subspaces of
L2(X ) is a refinement of the spectral problem of −∇2 on X .



Representation Theory
Question

What functions, f , have the property that

fφ(θ) = g(φ)f (θ)

for some g : S1 → C.

Answer:
If f (θ) = e inθ for an integer n ∈ Z, then

fφ(θ) = e in(θ+φ) = e inφe inθ = g(φ)f (θ)



Representation Theory

Theorem (Peter-Weyl)

H ∼=
⊕̂

n∈Z
Ce inθ

We can write a generic initial condition as a linear combination
of basis elements e inθ:

f (θ) =
∑
n∈Z

cne
inθ

This is called the Fourier Series of f .



Representation Theory
Question

How do we find the constants cn?



Representation Theory
Question

How do we find the constants cn?
Projection formula:

Proje inθ(f ) =
〈f , e inθ〉
||e inθ||2

e inθ

=

(
1

2π

∫ 2π

0

f (φ)e inφdφ

)
e inθ

=

(
1

2π

∫ 2π

0

f (φ)e−inφdφ

)
e inθ



Representation Theory
Question

How do we find the constants cn?
Projection formula:

Proje inθ(f ) =
〈f , e inθ〉
||e inθ||2

e inθ

=

(
1

2π

∫ 2π

0

f (φ)e inφdφ

)
e inθ

=

(
1

2π

∫ 2π

0

f (φ)e−inφdφ

)
e inθ

So we have a formula for the constants:

cn =
1

2π

∫ 2π

0

f (φ)e−inφdφ



Heat Equation on a Circle

Now we want to solve uθθ = ut with initial condition
u(θ, 0) = e inθ.



Heat Equation on a Circle

Now we want to solve uθθ = ut with initial condition
u(θ, 0) = e inθ. Let us take a guess that the answer will look
something like

u(θ, t) = e inθg(t)

where we need to determine the function g .



Heat Equation on a Circle

Let us take a guess that the answer will look something like

u(θ, t) = e inθg(t)

where we need to determine the function g . Solving a
differential equation with this method is called separation of
variables. If we plug our guess into the differential equation we
get

−n2e inθg(t) = uθθ = ut = e inθg ′(t)

−n2e inθg(t) = e inθg ′(t)

−n2g(t) = g ′(t)



Heat Equation on a Circle

Let us take a guess that the answer will look something like

u(θ, t) = e inθg(t)

where we need to determine the function g . Solving a
differential equation with this method is called separation of
variables. If we plug our guess into the differential equation we
get

−n2e inθg(t) = uθθ = ut = e inθg ′(t)

−n2e inθg(t) = e inθg ′(t)

−n2g(t) = g ′(t)

So in order to find g(t), we just need to solve the ordinary
differential equation.



Heat Equation on a Circle

g ′(t) = −n2g(t)

dg

dt
= −n2g

dg

g
= −n2dt



Heat Equation on a Circle

g ′(t) = −n2g(t)

dg

dt
= −n2g

dg

g
= −n2dt∫

1

g
dg =

∫
−n2dt

ln(g) = −n2t + c

g(t) = Ce−n
2t

From our separation of variables assumption, we know that
u(θ, 0) = e inθg(0) = e inθ, so g(0) = 1 implies that C = 1.



Heat Equation on a Circle

Now we can state the solution to the heat equation on a circle
with initial condition u(θ, 0) = e inθ:

u(θ, t) = e inθe−n
2t



Heat Equation on a Circle

Now we can state the solution to the heat equation on a circle
with initial condition u(θ, 0) = e inθ:

u(θ, t) = e inθe−n
2t

We can extend this solution to a solution for any initial
condition f (θ) with the Fourier series.



Heat Equation on a Circle

Now we can state the solution to the heat equation on a circle
with initial condition u(θ, 0) = e inθ:

u(θ, t) = e inθe−n
2t

We can extend this solution to a solution for any initial
condition f (θ) with the Fourier series. If

f (θ) =
∑
n∈Z

cne
inθ

then the solution to the heat equation with initial condition
f (θ) will be a linear combination of solutions of the heat
equation with initial conditions e inθ



Heat Equation on a Circle

We can apply the principle of superposition to get the solution
to the heat equation with initial condition f (θ)

u(θ, t) =
∑
n∈Z

cne
inθe−n

2t



Heat Equation on a Circle

We can apply the principle of superposition to get the solution
to the heat equation with initial condition f (θ)

u(θ, t) =
∑
n∈Z

cne
inθe−n

2t

Now we need to note that the right hand side of the equation
has real and imaginary values. The real values are what we are
interested in, because they tell us what the temperature is at a
given location and time.



Heat Equation on a Circle

A small calculation gives us

R(u(θ, t)) = c0 +
∞∑
n=1

an sin(2πnθ) + bn cos(2πnθ)

c0 =

∫ 2π

0

f (φ)dφ

an = 2

∫ 2π

0

f (φ) sin(2πnφ)dφ

bn = 2

∫ 2π

0

f (φ) cos(2πnφ)dφ

This is called the general solution to the heat equation.



Heat Equation on the Torus
uθ1θ1 + uθ2θ2 = ut

θ1

θ2 θ2

Now we can use two different rotational symmetries to find a
basis for the space of functions on the torus.

f(φ1,φ2)(θ1, θ2) = f (θ1 + φ1, θ2 + φ2)



Representation Theory of T 2

Find a basis of L2(T 2)

Which functions have the property that

f(φ1,φ2)(θ1, θ2) = f (θ1 + φ1, θ2 + φ2) = g(φ1, φ2)f (θ1, θ2)



Representation Theory of T 2

Find a basis of L2(T 2)

Which functions have the property that

f(φ1,φ2)(θ1, θ2) = f (θ1 + φ1, θ2 + φ2) = g(φ1, φ2)f (θ1, θ2) (2)

Answer:
If n,m ∈ Z, then

f (θ1, θ2) = e inθ1e imθ2

satisfies (4). So we want to solve our PDE with initial
conditions u(θ1, θ2, 0) = e inθ1e imθ2



Heat Equation on the Torus

Again, let us assume that our solution will have the form
u(θ1, θ2, t) = e inθ1e imθ2g(t).



Heat Equation on the Torus

Again, let us assume that our solution will have the form
u(θ1, θ2, t) = e inθ1e imθ2g(t). Then

uθ1θ1 + uθ2θ2 = ut

(−n2e inθ1e imθ2 −m2e inθ1e imθ2)g(t) = e inθ1e imθ2g ′(t) = ut

(−n2 −m2)g(t) = g ′(t)

g(t) = e−n
2te−m

2t



Heat Equation on the Torus

Again, let us assume that our solution will have the form
u(θ1, θ2, t) = e inθ1e imθ2g(t). Then

uθ1θ1 + uθ2θ2 = ut

(−n2e inθ1e imθ2 −m2e inθ1e imθ2)g(t) = e inθ1e imθ2g ′(t) = ut

(−n2 −m2)g(t) = g ′(t)

g(t) = e−n
2te−m

2t

So our general solution has the form

u(θ1, θ2, t) =
∑
n∈Z

∑
m∈Z

cn,me
inθ1e imθ2e−n

2te−m
2t

cn,m =
1

4π2

∫ 2π

0

∫ 2π

0

f (θ1, θ2)e−inθ1e−imθ2dθ1dθ2



Representation Theory
Fourier Transform

Instead of the circle, consider functions on the line R:

R

Now we have the symmetry

fc(x) = f (x − c)



Representation Theory
Fourier Transform

R

Question: When does f have the property

fc(x) = g(c)f (x)



Representation Theory
Fourier Transform

R

Question: When does f have the property

fc(x) = g(c)f (x)

Answer: If f (x) = e iξx , then

fc(x) = e iξ(x−c) = e−icξe icx = g(c)f (x)

for any ξ ∈ R.



Representation Theory
Fourier Transform

So if f (x) ∈ L2(R), then

f (x) =
∑
ξ∈R

c(ξ)e iξx =

∫
c(ξ)e iξxdξ

where c(ξ)e iξx is the projection of f (x) onto e iξx :

c(ξ) =

∫
f (x)e−iξxdx

for any c ∈ R.



Spectral Theory
Heat Equation on a Circle

Instead of looking at the space of initial conditions, let us
think about the space of all functions whose domain is a point
on the circle and a time (square integrable, differentiable, ...).



Spectral Theory
Heat Equation on a Circle

Instead of looking at the space of initial conditions, let us
think about the space of all functions whose domain is a point
on the circle and a time (square integrable, differentiable, ...).
We will call this space of functions H.



Spectral Theory
Heat Equation on a Circle

Instead of looking at the space of initial conditions, let us
think about the space of all functions whose domain is a point
on the circle and a time (square integrable, differentiable, ...).
We will call this space of functions H. So if u solves our
differential equation, then u(θ, t) ∈ H.



Spectral Theory
Heat Equation on a Circle

Representation theory tells us we can get a basis for this space:

H ∼=
⊕̂

ξ∈R,n∈Z

Ce inθe iξt

Question: Which of these basis elements actually satisfy our
differential equation?



Spectral Theory
Heat Equation on a Circle

Representation theory tells us we can get a basis for this space:

H ∼=
⊕̂

ξ∈R,n∈Z

Ce inθe iξt

Question: Which of these basis elements actually satisfy our
differential equation?
Answer:

−n2e inθe iξt = iξe inθe iξt

−n2 = iξ

=⇒ ξ = in2



Spectral Theory

So any solution to the differential equation can be written as a
linear combination of basis elements which satisfy they
differential equation.

u(θ, t) =
⊕
n∈Z

cne
inθe−n

2t

This is the answer we got before! But we never used
separation of variables.



Dirac Equation

Dirac equation on R3 × R:

i~γ0
∂

∂t
− i~c

3∑
j=1

γj
∂

∂xj
= mc2I

We can generalize this to a differential equation on a general
Lie group and study the space of solutions in terms of
representation theory.


