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Abstract

Fourier series are a central topic in the study of differential
equations. However, it can be difficult to gain an intuition for
these mysterious decompositions. We will explore how Fourier
series naturally appear in representation theory, and how they
can be used to solve differential equations. Generalizations of
our techniques compose an extremely interesting field known as
harmonic analysis.
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Motivation
Differential Equations: Definitions

Definition
A differential equation is an equation which relates a function with
it’s derivatives.

For example, if f is a function of the variable x , we could require that
f satisfies the following differential equation:

df

dx
= 2xf (x) (1)

A solution to a differential equation is a function which satisfies the
equation. For example,

f (x) = ex2

satisfies (1)
df

dx
= 2xex2 = 2xf (x)
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Motivation
Differential Equations: Definitions

Definition
If we have a function of several variables, a partial differential
equation is an equation which relates a function and it’s partial
derivatives.

For example:
∂f

∂x1
+
∂f

∂x2
= 0 (2)

For example, the function f (x1, x2) = x1 − x2 solves (2)

∂f

∂x1
+
∂f

∂x2
= 1− 1 = 0
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Motivation
Differential Equations

Mathematicians have been developing methods to solve differential
equations for hundreds of years. Solutions of different deferential
equations are extremely useful in a vast range of fields such as
physics, engineering, mathematical biology, etc. Today we will talk
about how we can apply some results from representation theory and
harmonic analysis to solve some differential equations.
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Heat Equation

The heat equation describes the diffusion of heat through a material.
Mathematically, the heat equation is

n∑
i=1

∂2u

∂x2
i

=
∂u

∂t

where u is a function of x1, · · · , xn and t. We can think of x1, · · · , xn
as our spatial variables, and t as time. If we plug in a particular point
in space and a particular time, u should tell us the temperature at
that point. If we want to consider heat dissipating through different
materials with different specific heats and physical properties, we will
have several constants and possibly some other terms. But we will
ignore these constants to make our computations more elegant.
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Heat Equation on a Circle

Consider a circle.

S1 :

If we want to study how heat would dissipate through a metal circle
like this, we need to solve

∂2u

∂θ2
=
∂u

∂t
(3)

we will denote equation (3) by uθθ = ut .
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Heat Equation on a Circle

We need to begin by describing the initial heat distribution at time
t = 0. This is called the initial condition

u(θ, 0) = f (θ)

Let us consider initial temperature distributions f (θ) which are square
integrable: ∫ 1

0

f (θ)2dθ <∞

We can think about that as a requirement that there is a finite
amount of thermal energy in our metal circle.
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Heat Equation on a Circle

The space of square integrable functions on S1 is a Hilbert space, ie
we can add functions and multiply them by constants. If
f , g ∈ L2(S1) and c is a constant, then

f (θ) + g(θ) ∈ L2(S1)

cf (θ) ∈ L2(S1)

We can think of L2(S1) as an infinite dimensional vector space. So
we should be able to write f (θ) as a linear combination of basis
vectors. If we choose our basis vectors carefully, we can try to solve
the initial condition problem for each basis vector, and then use the
principle of superposition to find the solution for f (θ).
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Representation Theory

Observe that the circle S1 has a rotational symmetry. If we rotate
the circle by an angle θ, the result is still a circle. We may be able to
exploit this symmetry to find a basis for the space of functions on the
circle.
To simplify the mathematics, lets consider f as a function from the
circle S1 to the complex numbers C. The real part of the image will
correspond to the temperature at a particular point on the circle. So

f : S1 → C
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Representation Theory

We can incorporate the rotational symmetry by rotating the domain
of our function of by an angle φ:

fφ(θ) = f (θ − φ)

Example: If f (θ) = sin(θ), then we can rotate f to get

fπ/2(θ) = sin(θ − π/2) = − cos(θ)
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Representation Theory
Question

What functions f , have the property that

fφ(θ) = g(φ)f (θ)

for some g : S1 → C.
Answer:

Theorem (Peter-Weyl Theorem)

If f (θ) = e inθ for an integer n ∈ Z, then

fφ(θ) = e in(θ−φ) = e−inφe inθ = g(φ)f (θ)
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Representation Theory

Furthermore, the Peter Weyl theorem tells us that we can think of all
the possible initial conditions as a vector space with basis {e inθ}. So
we can write a generic initial condition as a linear combination of
basis elements:

f (θ) =
∑
n∈Z

cne inθ

This is called the Fourier Series of f .
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Representation Theory
Question

How do we find the constants cn?
Projection formula:

Proje inθ(f ) =
〈f , e inθ〉
||e inθ||2

e inθ

=

(
1

2π

∫ 2π

0

f (φ)e inφdφ

)
e inθ

=

(
1

2π

∫ 2π

0

f (φ)e−inφdφ

)
e inθ

So we have a formula for the constants:

cn =
1

2π

∫ 2π

0

f (φ)e−inφdφ
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Heat Equation on a Circle

Now we want to solve uθθ = ut with initial condition u(θ, 0) = e inθ.
Let us take a guess that the answer will look something like

u(θ, t) = e inθg(t)

where we need to determine the function g . Solving a differential
equation with this method is called separation of variables. If we plug
our guess into the differential equation we get

−n2e inθg(t) = uθθ = ut = e inθg ′(t)

−n2e inθg(t) = e inθg ′(t)

−n2g(t) = g ′(t)

So in order to find g(t), we just need to solve the ordinary differential
equation.
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Heat Equation on a Circle

g ′(t) = −n2g(t)

dg

dt
= −n2g

dg

g
= −n2dt∫

1

g
dg =

∫
−n2dt

ln(g) = −n2t + c

g(t) = Ce−n
2t

From our separation of variables assumption, we know that
u(θ, 0) = e inθg(0) = e inθ, so g(0) = 1 implies that C = 1.
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Heat Equation on a Circle

Now we can state the solution to the heat equation on a circle with
initial condition u(θ, 0) = e inθ:

u(θ, t) = e inθe−n
2t

We can extend this solution to a solution for any initial condition
f (θ) with the Fourier series. If

f (θ) =
∑
n∈Z

cne inθ

Then the solution to the heat equation with initial condition f (θ) will
be a linear combination of solutions of the heat equation with initial
conditions e inθ
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Heat Equation on a Circle

Then the solution to the heat equation with initial condition f (θ) will
be a linear combination of solutions of the heat equation with initial
conditions e inθ.

u(θ, t) =
∑
n∈Z

cne inθe−n
2t

Now we need to note that the right hand side of the equation has
real and imaginary values. The real values are what we are interested
in, because they tell us what the temperature is at a given location
and time.
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Heat Equation on a Circle

A small calculation gives us

R(u(θ, t)) = c0 +
∞∑
n=1

an sin(2πnθ) + bn cos(2πnθ)

c0 =

∫ 2π

0

f (φ)dφ

an = 2

∫ 2π

0

f (φ) sin(2πnφ)dφ

bn = 2

∫ 2π

0

f (φ) cos(2πnφ)dφ

This is called the general solution to the heat equation.
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Heat Equation on the Torus

θ1

θ2 θ2

uθ1θ1 + uθ2θ2 = ut

Now we can use two different rotational symmetries to find a basis
for the space of functions on the torus.

f(φ1,φ2)(θ1, θ2) = f (θ1 − φ1, θ2 − φ2)
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Representation Theory of T 1

Question

Which functions have the property that

f(φ1,φ2)(θ1, θ2) = f (θ1 − φ1, θ2 − φ2) = g(φ1, φ2)f (θ1, θ2)

Answer:
f (θ1, θ2) = e inθ1e imθ2

for n,m ∈ Z. So we want to solve our PDE with initial conditions
u(θ1, θ2, 0) = e inθ1e imθ2
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Heat Equation on the Torus

Again, let us assume that our solution will have the form
u(θ1, θ2, t) = f (θ1, θ2)g(t). Then

uθ1θ1 + uθ2θ2 = ut

(−n2e inθ1e imθ2 −m2e inθ1e imθ2)g(t) = e inθ1e imθ2g ′(t) = ut

(−n2 −m2)g(t) = g ′(t)

g(t) = e−n
2te−m

2t

So our general solution has the form

u(θ1, θ2, t) =
∑
n∈Z

∑
m∈Z

cn,me inθ1e imθ2e−n
2te−m

2t

cn,m =
1

4π2

∫ 2π

0

∫ 2π

0

f (θ1, θ2)e−inθ1e−imθ2dθ1dθ2
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Wave Equation on S1

S1 :

uθθ = utt

We already found a basis of initial conditions on the circle, {e inθ}, so
we just need to solve the new differential equation for each of these
initial conditions. Assume our solution has the form
u(θ, t) = e inθg(t). Then

−n2e inθg(t) = uθθ = utt = e inθg ′′(t)

−n2g(t) = g ′′(t)

g(t) = ce int g(0) = 1 −→ c = 1

u(θ, t) = e inθe int
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Wave Equation on S1

So our general solution for the initial condition u(θ, 0) = f (θ) is

u(θ, t) =
∑
n∈Z

cne inθe int

cn =
1

2π

∫ 2π

0

f (φ)e−inφdφ
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