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Definition
A topological stratification of a topological space X is a filtration by
closed subsets

@:X_1CXOCX1C"'CXn:X

such that X; — X;_1 is an i-dimensional (topological) manifold.
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Stratifications

Topological Stratifications

Definition
A topological stratification of a topological space X is a filtration by

closed subsets
Q)Ix_1CX0CX1C"'CXn:X

such that X; — X;_1 is an i-dimensional (topological) manifold.

+ conditions on how the strata fit together.
Notation: We call X; — X;_1 a stratum, and denote it by S;.

+ visualize the stratification by

X=5,US5,_1U---U5



Computing Topological Stratifications

Problem: Compute (reasonable) topological stratifications of triangulated
topological spaces.
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Computing Topological Stratifications

Problem: Compute (reasonable) topological stratifications of triangulated
topological spaces.

| need to check if X; — X;_1 is a manifold for each i.
In practice, this is computationally difficult...
Revise our definition of stratification

Rourke-Sanderson [4], Bendich-Wang-Mukherjee [1], Nanda [3]
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Results

Our contributions are four-fold:
@ Definition of F-stratification
@ Existence and uniqueness results for certain F-stratifications
© Algorithm for computation of F-stratifications
@ Application to local homology stratifications

We envision that our abstraction could give rise to a larger class of
computable stratifications beyond homological stratification.
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Sheaves

Suppose X is a topological space.
A sheaf F on X associates each open set U C X to a vector space
denoted F(U), and to each inclusion U C V a linear map

FUCV):F(V)— FU)

such that

Q F(0)=0;

Q@ F(UcU)=idy.

Q@ IfUCVCW, then F(UC W)=F(UC V)oF(VCW).

Q If {Vi} is an open cover of U, and s; € F(V;) has the property that
Vi, j, F(VinVj) C Vi)(si) = F((V; N V;) C Vj)(sj), then there
exists a unique s € F(U) such that Vi, F(V; C U)(s) =s;.
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Fopological Stratifications

Definition
A tepological stratification of a topological space X is a filtration by

closed subsets
@ZX_lCXOCX;[C"'CXn:X

such that X; — Xj_1 is an+—dimensional-{topological-manifeld.

Definition
An F-stratification of a topological space X is a filtration by closed subsets

@:X_1CXOCX1C”-CX”:X

such that F is locally constant when restricted to X; — X;_1, for each i.
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Local Homology Sheaf

Suppose X is an (abstract) simplicial complex, viewed as a topological
space with the up-set topology:

U c X is open if 0 € U implies that 7 € U for all 7 > 0.

Local homology can be viewed as a sheaf on X defined by:

L(U) = Ho(X, X — U)
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Example

Triangulation of the Sundial
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Hasse Diagram

[0,1,3] [0,1,2] [0,2,3] [0,1,4]
1,3] [0,3] [1,2] [0,1] [2,3] [0,2] [1,4] [0, 4]
3] [2] [0] (1] [4]
4
3 ‘
e
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Labeled Hasse Diagram
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Inductively defined stratification

Following Goresky-MacPherson [2], Rourke-Sanderson [4], Nanda [3], we
define a stratification of X inductively:
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Inductively defined stratification

Following Goresky-MacPherson [2], Rourke-Sanderson [4], Nanda [3], we
define a stratification of X inductively:

Sp={0 € X : L|st, is constant}
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Labeled Hasse Diagram, St|0, 2]
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Labeled Hasse Diagram of S,

[0,1,3] © [0,1,2] © [0,2,3] © [0,1,4] ©

[0,31© [0,21©
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Inductively defined stratification

Inductive step: Restrict the local homology sheaf from X to the
complement of S,, and repeat:

Spmi={oceX-5,: EISt(stn)a is constant}
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Example

[1,3]o [1,2]o [0,&]@@ [2,3]o [1,4]0 10, 4o

3o (o U 4o
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Example

[1,2,3] [1,2,4] [1,3,4] [1,
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computable stratification theory
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Thank you for listening.
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