

Algebraic Topology Summer 2018 Dr. Severin Bunk Algebra und Zahlentheorie Fachbereich Mathematik Universität Hamburg

Sheet 12

Solutions are due on 06.07.18.

Problem 12.1

(a) Let R be a commutative ring with unit 1_R and let I be a directed poset. Show that if

 $0 \longrightarrow (A_i) \xrightarrow{(\phi_i)} (B_i) \xrightarrow{(\psi_i)} (C_i) \longrightarrow 0$

is a short exact sequence of directed systems of R-modules indexed by I, then the sequence of R-modules

$$0 \longrightarrow \varinjlim A_i \stackrel{\phi}{\longrightarrow} \varinjlim B_i \stackrel{\psi}{\longrightarrow} \varinjlim C_i \longrightarrow 0$$

is short exact.

Note that this implies that the direct limit of a directed system preserves kernels and cokernels.

(b) Prove that if $(A_i)_{i \in I}$ is a directed system of chain complexes, then

$$\varinjlim H_m(A_i) \cong H_m(\varinjlim A_i) \,.$$

Problem 12.2

- (a) Let X be path-connected and non-compact and let G be an arbitrary abelian group. Compute $H^0_c(X;G)$.
- (b) Show that

$$H_c^n(X \times \mathbb{R}^m; G) \cong H_c^{n-m}(X; G) \qquad \forall m \le n.$$

Which earlier result in the lectures does this resemble closely?

Problem 12.3

Let M be a compact connected orientable 3-manifold without boundary. Suppose that the fundamental group $\pi_1(M)$ is known. Determine the homology groups $H_*(M)$ as explicitly as possible from this information.

Problem 12.4

We define the m-dimensional halfspace

$$\mathbb{R}^m_- \coloneqq \left\{ (x_1, \dots, x_m) \in \mathbb{R}^m \,|\, x_1 \le 0 \right\}$$

As a subset of \mathbb{R}^m , its topological boundary $\partial \mathbb{R}^m_-$ consists of those points with $x_1 = 0$.

An *m*-dimensional topological manifold with boundary is a Hausdorff space M with a countable basis of its topology, together with homeomorphisms $\varphi_i \colon U_i \to V_i$ with the following properties. We have $U_i \subset M$ and $V_i \subset \mathbb{R}^m_-$ are open, and $(U_i)_{i \in I}$ forms an open cover of M. A point $x \in M$ is called a *boundary point of* M if there is a homeomorphism $\varphi \colon U \to V$ with $U \subset M$ open, $x \in U, V \subset \mathbb{R}^m_-$ open, and $\varphi(x) \in \partial \mathbb{R}^m_-$. The set of boundary points of M is denoted by ∂M .

Compute the following boundaries of topological manifolds with boundary:

- (a) $\partial([0,1])$ and $\partial([0,1] \times [0,1])$.
- (b) $\partial(\mathbb{D}^2 \times \mathbb{S}^1)$.
- (c) $\partial(\mathbb{D}^2 \times \mathbb{D}^1)$ and $\partial(\mathbb{D}^2 \times \mathbb{D}^2)$.
- (d) $\partial \mathbb{S}^n$ and $\partial \mathbb{R}P^n$.
- (e) $\partial(\mathbb{S}^1 \times \mathbb{S}^1 \setminus \mathring{\mathbb{D}}^2)$, i.e. determine the boundary of the complement of an open disc in a 2-torus.
- (f) $\partial(M \times N)$, where M and N are manifolds with boundary.