[^0]
Sheet 12

Solutions are due on 06.07.18.

Problem 12.1

(a) Let R be a commutative ring with unit 1_{R} and let I be a directed poset. Show that if

$$
0 \longrightarrow\left(A_{i}\right) \xrightarrow{\left(\phi_{i}\right)}\left(B_{i}\right) \xrightarrow{\left(\psi_{i}\right)}\left(C_{i}\right) \longrightarrow 0
$$

is a short exact sequence of directed systems of R-modules indexed by I, then the sequence of R-modules
is short exact.
Note that this implies that the direct limit of a directed system preserves kernels and cokernels.
(b) Prove that if $\left(A_{i}\right)_{i \in I}$ is a directed system of chain complexes, then

$$
\xrightarrow[\longrightarrow]{\lim } H_{m}\left(A_{i}\right) \cong H_{m}\left(\underset{\longrightarrow}{\lim } A_{i}\right) .
$$

Problem 12.2

(a) Let X be path-connected and non-compact and let G be an arbitrary abelian group. Compute $H_{c}^{0}(X ; G)$.
(b) Show that

$$
H_{c}^{n}\left(X \times \mathbb{R}^{m} ; G\right) \cong H_{c}^{n-m}(X ; G) \quad \forall m \leq n .
$$

Which earlier result in the lectures does this resemble closely?

Problem 12.3

Let M be a compact connected orientable 3-manifold without boundary. Suppose that the fundamental group $\pi_{1}(M)$ is known. Determine the homology groups $H_{*}(M)$ as explicitly as possible from this information.

Problem 12.4

We define the m-dimensional halfspace

$$
\mathbb{R}_{-}^{m}:=\left\{\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m} \mid x_{1} \leq 0\right\} .
$$

As a subset of \mathbb{R}^{m}, its topological boundary $\partial \mathbb{R}_{-}^{m}$ consists of those points with $x_{1}=0$.
An m-dimensional topological manifold with boundary is a Hausdorff space M with a countable basis of its topology, together with homeomorphisms $\varphi_{i}: U_{i} \rightarrow V_{i}$ with the following properties. We have $U_{i} \subset M$ and $V_{i} \subset \mathbb{R}_{-}^{m}$ are open, and $\left(U_{i}\right)_{i \in I}$ forms an open cover of M. A point $x \in M$ is called a boundary point of M if there is a homeomorphism $\varphi: U \rightarrow V$ with $U \subset M$ open, $x \in U, V \subset \mathbb{R}_{-}^{m}$ open, and $\varphi(x) \in \partial \mathbb{R}_{-}^{m}$. The set of boundary points of M is denoted by ∂M.

Compute the following boundaries of topological manifolds with boundary:
(a) $\partial([0,1])$ and $\partial([0,1] \times[0,1])$.
(b) $\partial\left(\mathbb{D}^{2} \times \mathbb{S}^{1}\right)$.
(c) $\partial\left(\mathbb{D}^{2} \times \mathbb{D}^{1}\right)$ and $\partial\left(\mathbb{D}^{2} \times \mathbb{D}^{2}\right)$.
(d) $\partial \mathbb{S}^{n}$ and $\partial \mathbb{R} P^{n}$.
(e) $\partial\left(\mathbb{S}^{1} \times \mathbb{S}^{1} \backslash \dot{D}^{2}\right)$, i.e. determine the boundary of the complement of an open disc in a 2 -torus.
(f) $\partial(M \times N)$, where M and N are manifolds with boundary.

[^0]: UH
 等
 Universität Hamburg
 DER FORSCHUNG I DER LEHRE I DER BILDUNG
 Algebraic Topology
 Summer 2018

