

Algebraic Topology Summer 2018 Dr. Severin Bunk Algebra und Zahlentheorie Fachbereich Mathematik Universität Hamburg

Sheet 13

Solutions are due on 13.07.18.

Problem 13.1

- (a) Compute $H^2(\mathbb{S}^1 \times [0, 1])$. Does this mean that Theorem 2.8.3 is wrong?
- (b) Compute $H_c^2(\mathbb{S}^1 \times (0, 1))$.

Problem 13.2

Let M be a compact, connected, orientable m-dimensional manifold.

- (a) Show that $H_{m-1}(M)$ is torsion-free. (Can you show this in two slightly different ways?)
- (b) Now suppose that m = 2k is even. Show that if $H_{k-1}(M)$ is torsion-free, then $H_k(M)$ is torsion-free as well. (Use that homology groups of compact connected manifolds are finitely generated see Hatcher, Cor. A.8, A.9.)

Problem 13.3

For connected *n*-manifolds M_1 and M_2 , the connected sum $M_1 \sharp M_2$ is constructed by cutting out small *n*-dimensional balls from M_1 and M_2 and gluing the resulting boundary spheres via a homeomorphism. For example, the connected sum of a compact connected surface F_g of genus g with a compact connected surface F_h of genus h is a compact connected surface F_{g+h} of genus g + h.

- (a) Determine under which conditions the manifold $M_1 \sharp M_2$ is orientable. Hint: One possible way to do this is via the orientation covering from Problem 11.3. Recall that (for \mathbb{Z} -orientations) this is a two-sheeted covering $\pi \colon \tilde{M} \to M$ whose fibre over any point $x \in M$ consists of the two possible choices of local orientations at x.
- (b) Compute the cohomology $H_*(M_1 \sharp M_2)$ in terms of $H_*(M_1)$ and $H_*(M_2)$ for M_1 and M_2 compact and connected. Check your result in the case of surfaces. Hint: Contract the sphere along which M_1 and M_2 are glued to a point to compare $M_1 \sharp M_2$ to $M_1 \lor M_2$. Use that $H_m(M; R) = 0$ for compact *m*-dimensional manifolds *M* that do not admit an *R*-orientation (see Remark 2.6.14.2). You may also use that orientability with respect to $R = \mathbb{Z}_p$ for *p* odd is equivalent to \mathbb{Z} -orientability.

Problem 13.4

Let M be a non-orientable closed n-manifold and let $\pi \colon \tilde{M} \to M$ be the two-sheeted orientation cover of M. Let F be either the field \mathbb{Q} or \mathbb{Z}_p , with p an odd prime (or even any field of characteristic $\neq 2$). Follow the instructions given below to show that

$$H^k(\tilde{M};F) \cong H^k(M;F) \oplus H^{n-k}(M;F)$$
.

- (a) Prove that for an *F*-vector space *V* and a linear endomorphism $T: V \to V$ such that $T^2 = \mathrm{id}_V$, there is a splitting $V = V^+ \oplus V^-$ into a direct sum of eigenspaces of *T* for the eigenvalues ± 1 .
- (b) Use the non-trivial deck transformation $\tau \colon \tilde{M} \to \tilde{M}$ that interchanges the two sheets to define splittings of cohomology and homology groups

$$H_k(\tilde{M};F) = H_k^+(\tilde{M};F) \oplus H_k^-(\tilde{M};F)$$
 and $H^k(\tilde{M};F) = H^{k+}(\tilde{M};F) \oplus H^{k-}(\tilde{M};F)$.

- (c) Again using τ , give a natural isomorphism $H_k(M; F) \to H_k^+(\tilde{M}; F)$. Proceed similarly in cohomology. Use these isomorphisms to identify the two vector spaces.
- (d) Show that the Poincaré duality isomorphism induces isomorphisms

$$H^{k\pm}(\tilde{M};F) \cong H^{\mp}_{n-k}(\tilde{M};F)$$

To this end, use that τ is orientation-reversing, i.e. $\tau[\tilde{M}] = -[\tilde{M}]$ for the fundamental class $[\tilde{M}]$ of the orientable manifold \tilde{M} .