UH

等
Universität Hamburg
DER FORSCHUNG I DER LEHRE I DER BILDUNG
Algebraic Topology
Summer 2018
Dr. Severin Bunk
Algebra und Zahlentheorie
Fachbereich Mathematik
Universität Hamburg

Sheet 1

Solutions are due on 13.04.18.

Problem 1.1

Let \mathbb{D}^{n} be the chain complex of abelian groups whose only non-trivial entries are in degrees n and $n-1$, with $\mathbb{D}_{n}^{n}=\mathbb{D}_{n-1}^{n}=\mathbb{Z}$. Its only non-trivial boundary operator is the identity:

$$
\mathbb{D}_{*}^{n}:=\ldots \rightarrow 0 \rightarrow \mathbb{Z} \xrightarrow{\mathrm{id}} \mathbb{Z} \rightarrow 0 \longrightarrow \ldots
$$

Similarly, let \mathbb{S}^{n} be the chain complex whose only non-trivial entry is $\mathbb{S}_{n}^{n}=\mathbb{Z}$, i.e.

$$
\mathbb{S}_{*}^{n}:=\ldots \rightarrow 0 \rightarrow \mathbb{Z} \rightarrow 0 \rightarrow \ldots
$$

(a) What is the homology of the chain complexes \mathbb{D}_{*}^{n} and \mathbb{S}_{*}^{m} ?
(b) Assume that $\left(C_{*}, d\right)$ is an arbitrary chain complex of abelian groups. Describe the chain maps from \mathbb{D}_{*}^{n} to C_{*} and from \mathbb{S}_{*}^{n} to C_{*} in terms of elements of the groups C_{*}.
(c) Are there chain maps between \mathbb{D}_{*}^{n} and \mathbb{S}_{*}^{m} ?
(d) Let $f_{*}: C_{*} \rightarrow C_{*}^{\prime}$ be a chain map and assume that f_{n} is a monomorphism for all n. Do we then know that the maps $H_{n}\left(f_{*}\right)$ induced on homology are also monomorphisms?

Problem 1.2

(a) What are the homology groups of the chain complex

$$
C_{*}:=\ldots \longrightarrow \mathbb{Z} / 4 \mathbb{Z} \xrightarrow{2 \cdot(-)} \mathbb{Z} / 4 \mathbb{Z} \xrightarrow{2 \cdot(-)} \ldots
$$

(b) Is there a chain homotopy from the identity of C_{*} to the zero map, i.e. are there maps $s_{n}: C_{n} \rightarrow C_{n+1}$ with $d_{n+1} \circ s_{n}+s_{n-1} \circ d_{n}=\operatorname{id}_{C_{n}}$ for all $n \in \mathbb{Z}$?

Problem 1.3

Let $\left(A_{n}\right)_{n \in \mathbb{Z}}$ be an arbitrary family of finitely generated abelian groups. Is there a chain complex F_{*} with F_{n} a finitely generated, free abelian group as well as with $H_{n}\left(F_{*}\right) \cong A_{n}$ for all $n \in \mathbb{Z}$? (Recall the structure theorem for finitely generated abelian groups for this problem.)

Problem 1.4

Let $\left(C_{*}, d_{*}^{C}\right)$ and $\left(D_{*}, d_{*}^{D}\right)$ be chain complexes of abelian groups. For $k \in \mathbb{Z}$ we define a new chain complex $\left(D_{*}[k], d_{*}^{D[k]}\right)$ by

$$
D_{n}[k]:=D_{n+k}, \quad d_{n}^{D[k]}:=d_{n+k}^{D} .
$$

We let $\operatorname{Hom}_{\mathrm{Ch}}\left(C_{*}, D_{*}\right)$ denote the abelian group of families $\left(f_{n}: C_{n} \rightarrow D_{n}\right)_{n \in \mathbb{Z}}$, where each $f_{n}: C_{n} \rightarrow D_{n}$ is a morphism of abelian groups, and we set

$$
\operatorname{Hom}_{\mathrm{Ch}, k}\left(C_{*}, D_{*}\right):=\operatorname{Hom}_{\mathrm{Ch}}\left(C_{*}, D_{*}[k]\right)
$$

for all $k \in \mathbb{Z}$.
Define morphisms of abelian groups

$$
d_{k}^{\mathrm{Hom}}: \operatorname{Hom}_{\mathrm{Ch}, k}\left(C_{*}, D_{*}\right) \rightarrow \operatorname{Hom}_{\mathrm{Ch}, k-1}\left(C_{*}, D_{*}\right)
$$

such that $\left(\operatorname{Hom}_{\mathrm{Ch}, *}\left(C_{*}, D_{*}\right), d_{*}^{\mathrm{Hom}}\right)$ becomes a chain complex with the two properties
(1) an element $f_{*} \in \operatorname{Hom}_{\mathrm{Ch}, 0}\left(C_{*}, D_{*}\right)$ is a chain map from C_{*} to D_{*} if and only if it is a 0 -cycle in the complex $\left(\operatorname{Hom}_{\mathrm{Ch}, *}\left(C_{*}, D_{*}\right), d_{*}^{\mathrm{Hom}}\right)$,
(2) if $f_{*}, g_{*} \in \operatorname{Hom}_{\mathrm{Ch}, 0}\left(C_{*}, D_{*}\right)$ are chain maps and $h_{*} \in \operatorname{Hom}_{\mathrm{Ch}, 1}\left(C_{*}, D_{*}\right)$, then h_{*} is a chain homotopy from f_{*} to g_{*} if and only if $d_{1}^{\text {Hom }}\left(h_{*}\right)=f_{*}-g_{*}$.
The complex $\left(\operatorname{Hom}_{\mathrm{Ch}, *}\left(C_{*}, D_{*}\right), d_{*}^{\mathrm{Hom}}\right)$ is also called the mapping complex of $\left(C_{*}, d_{*}^{C}\right)$ and $\left(D_{*}, d_{*}^{D}\right)$. Condition (2) says that there exists a chain homotopy from a chain map f_{*} to a chain map g_{*} if and only if the chain map $f_{*}-g_{*}$ is a boundary in the mapping complex.

