UH
H
Universität Hamburg
DER FORSCHUNG I DER LEHRE I DER BILDUNG
Algebraic Topology
Summer 2018

Dr. Severin Bunk
Algebra und Zahlentheorie
Fachbereich Mathematik
Universität Hamburg

Sheet 2

Solutions are due on 20.04.18.

Problem 2.1

Consider an exact chain complex

of finite-dimensional vector spaces which is bounded above and below as indicated. Here the differentials d_{*} are linear maps. Compute the Euler characteristic

$$
\chi\left(V_{*}\right):=\sum_{i \in \mathbb{Z}}(-1)^{i} \operatorname{dim}\left(V_{i}\right) .
$$

Problem 2.2

(a) Let X and Y be topological spaces. Is every chain map $f_{*}: S_{*}(X) \rightarrow S_{*}(Y)$ induced by a map of topological spaces?
(b) Let $p: \tilde{X} \rightarrow X$ be a covering map. We know that the induced map $\pi_{1}(p)$ on fundamental groups is a monomorphism. Is that also true for the map $H_{1}(p)$ induced on homology?

Problem 2.3

Let Δ^{n} be the standard topological n-simplex, i.e.

$$
\begin{equation*}
\Delta^{n}:=\left\{\left(t_{0}, \ldots, t_{n}\right) \in \mathbb{R}^{n+1} \mid \sum_{i=0}^{n} t_{i}=1, t_{i} \geq 0 \quad \forall i=0, \ldots, n\right\} \subset \mathbb{R}^{n+1} \tag{1}
\end{equation*}
$$

endowed with the subspace topology of \mathbb{R}^{n+1}. For $i \in\{0, \ldots, n-1\}$ we define the degeneracy maps

$$
s_{i}: \Delta^{n} \rightarrow \Delta^{n-1}, \quad\left(t_{0}, \ldots, t_{n}\right) \mapsto\left(t_{0}, \ldots, t_{i-1}, t_{i}+t_{i+1}, t_{i+2}, \ldots, t_{n}\right) .
$$

Check that the face and degeneracy maps together satisfy the cosimplicial identities

$$
\begin{cases}d_{j} \circ d_{i}=d_{i} \circ d_{j-1}, & 0 \leq i<j \leq n, \\ s_{j} \circ d_{i}=d_{i} \circ s_{j-1}, & 0 \leq i<j \leq n, \\ s_{j} \circ d_{j}=\mathrm{id}=s_{j} \circ d_{j+1}, & 0 \leq j \leq n, \\ s_{j} \circ d_{i}=d_{i-1} \circ s_{j}, & 1 \leq j+1<i \leq n, \\ s_{j} \circ s_{i}=s_{i} \circ s_{j+1}, & 0 \leq i \leq j \leq n .\end{cases}
$$

Observe that the first of these identities has already been shown in Lemma 1.2.3.

Problem 2.4

Let $n \in \mathbb{N}_{0}$ and $k \in\{0, \ldots, n\}$ be arbitrary. Let $E_{n} \subset \mathbb{R}^{n+1}$ be the unique n-dimensional affine subspace of \mathbb{R}^{n+1} that contains the standard basis vectors $\left(e_{i}\right)_{i=0, \ldots, n}$. We let $\partial \Delta^{n}$ denote the topological boundary of the standard topological n-simplex Δ^{n}, seen as a subspace of E_{n}. Further, the k-th horn of Δ^{n} is defined as the union

$$
\Lambda_{k}^{n}:=\bigcup_{i \in\{0, \ldots, n\} \backslash\{k\}} d_{i}\left(\Delta^{n-1}\right) \quad \subset \Delta^{n}
$$

of the images of the face maps d_{i} for $i \in\{0, \ldots, n\} \backslash\{k\}$.
(a) Give explicit expressions of the form of Equation (1) for $\partial \Delta^{n}$ and for Λ_{k}^{n}. (Why is the horn called horn? Can you explain why Δ^{n} and Λ_{k}^{n} are very intuitive choices of notation?)
(b) Show that Δ^{n} deformation retracts onto any of its faces $d_{k} \Delta^{n-1}$. Do so by constructing a deformation retraction $h:[0,1] \times \Delta^{n} \rightarrow \Delta^{n}$ whose restriction to Λ_{k}^{n} yields a homeomor$\operatorname{phism} h_{1 \mid \Lambda_{k}^{n}}: \Lambda_{k}^{n} \rightarrow d_{k} \Delta^{n-1}$.
(c) Let X be a topological space. A Λ_{k}^{n}-horn on X is a continuous map $\alpha: \Lambda_{k}^{n} \rightarrow X$. Use the statement of part (b) to prove that any Λ_{k}^{n}-horn $\alpha: \Lambda_{k}^{n} \rightarrow X$ on X can be extended to an n-simplex $\hat{\alpha}: \Delta^{n} \rightarrow X$ on X.
(d*) The insight from part (c) can be used to concatenate 1 -simplices "up to 2 -simplices". That is, given two 1 -simplices $\alpha_{0}, \alpha_{2}: \Delta^{1} \rightarrow X$ such that $\partial_{0} \alpha_{2}=\partial_{1} \alpha_{0}$, show that there exists some 2 -simplex $\beta: \Delta^{2} \rightarrow X$ such that $\partial_{j} \beta=\alpha_{j}$ for $j=0,2$. We may then call $\alpha_{1}:=\partial_{1} \beta: \Delta^{1} \rightarrow X a$ (not the!) concatenation of α_{0} and α_{2}; in general the 1 -simplex $\alpha_{1}: \Delta^{1} \rightarrow X$ depends on the choice of β. Given another 2 -simplex β^{\prime} with the above properties, i.e. defining another choice $\alpha^{\prime}:=\partial_{1} \beta^{\prime}$ of concatenation of α_{0} and α_{2}, show that $\left[\alpha_{1}\right]=\left[\alpha_{1}^{\prime}\right]$ in homology.

