

Algebraic Topology Summer 2018 Dr. Severin Bunk Algebra und Zahlentheorie Fachbereich Mathematik Universität Hamburg

Sheet 2

Solutions are due on 20.04.18.

Problem 2.1

Consider an exact chain complex

 $\dots \longrightarrow 0 \xrightarrow{d_{N+1}} V_N \xrightarrow{d_N} \dots \xrightarrow{d_2} V_1 \xrightarrow{d_1} V_0 \xrightarrow{d_0} 0 \longrightarrow \dots$

of finite-dimensional vector spaces which is bounded above and below as indicated. Here the differentials d_* are linear maps. Compute the Euler characteristic

$$\chi(V_*) \coloneqq \sum_{i \in \mathbb{Z}} (-1)^i \, \dim(V_i) \, .$$

Problem 2.2

- (a) Let X and Y be topological spaces. Is every chain map $f_* \colon S_*(X) \to S_*(Y)$ induced by a map of topological spaces?
- (b) Let $p: \tilde{X} \to X$ be a covering map. We know that the induced map $\pi_1(p)$ on fundamental groups is a monomorphism. Is that also true for the map $H_1(p)$ induced on homology?

Problem 2.3

Let Δ^n be the standard topological *n*-simplex, i.e.

$$\Delta^{n} \coloneqq \left\{ (t_{0}, \dots, t_{n}) \in \mathbb{R}^{n+1} \, \middle| \, \sum_{i=0}^{n} t_{i} = 1, \, t_{i} \ge 0 \; \forall i = 0, \dots, n \right\} \subset \mathbb{R}^{n+1}, \tag{1}$$

endowed with the subspace topology of \mathbb{R}^{n+1} . For $i \in \{0, \ldots, n-1\}$ we define the *degeneracy* maps

$$s_i: \Delta^n \to \Delta^{n-1}, \quad (t_0, \dots, t_n) \mapsto (t_0, \dots, t_{i-1}, t_i + t_{i+1}, t_{i+2}, \dots, t_n).$$

Check that the face and degeneracy maps together satisfy the *cosimplicial identities*

$$\begin{cases} d_{j} \circ d_{i} = d_{i} \circ d_{j-1}, & 0 \leq i < j \leq n, \\ s_{j} \circ d_{i} = d_{i} \circ s_{j-1}, & 0 \leq i < j \leq n, \\ s_{j} \circ d_{j} = \mathrm{id} = s_{j} \circ d_{j+1}, & 0 \leq j \leq n, \\ s_{j} \circ d_{i} = d_{i-1} \circ s_{j}, & 1 \leq j+1 < i \leq n, \\ s_{j} \circ s_{i} = s_{i} \circ s_{j+1}, & 0 \leq i \leq j \leq n. \end{cases}$$

Observe that the first of these identities has already been shown in Lemma 1.2.3.

Problem 2.4

Let $n \in \mathbb{N}_0$ and $k \in \{0, \ldots, n\}$ be arbitrary. Let $E_n \subset \mathbb{R}^{n+1}$ be the unique *n*-dimensional affine subspace of \mathbb{R}^{n+1} that contains the standard basis vectors $(e_i)_{i=0,\ldots,n}$. We let $\partial \Delta^n$ denote the topological boundary of the standard topological *n*-simplex Δ^n , seen as a subspace of E_n . Further, the *k*-th horn of Δ^n is defined as the union

$$\Lambda^n_k \coloneqq \bigcup_{i \in \{0, \dots, n\} \setminus \{k\}} d_i(\Delta^{n-1}) \quad \subset \Delta^n$$

of the images of the face maps d_i for $i \in \{0, \ldots, n\} \setminus \{k\}$.

- (a) Give explicit expressions of the form of Equation (1) for $\partial \Delta^n$ and for Λ^n_k . (Why is the horn called horn? Can you explain why Δ^n and Λ^n_k are very intuitive choices of notation?)
- (b) Show that Δ^n deformation retracts onto any of its faces $d_k \Delta^{n-1}$. Do so by constructing a deformation retraction $h: [0,1] \times \Delta^n \to \Delta^n$ whose restriction to Λ^n_k yields a homeomorphism $h_{1|\Lambda^n_k} \colon \Lambda^n_k \to d_k \Delta^{n-1}$.
- (c) Let X be a topological space. A Λ_k^n -horn on X is a continuous map $\alpha \colon \Lambda_k^n \to X$. Use the statement of part (b) to prove that any Λ_k^n -horn $\alpha \colon \Lambda_k^n \to X$ on X can be extended to an *n*-simplex $\hat{\alpha} \colon \Delta^n \to X$ on X.
- (d*) The insight from part (c) can be used to concatenate 1-simplices "up to 2-simplices". That is, given two 1-simplices $\alpha_0, \alpha_2 \colon \Delta^1 \to X$ such that $\partial_0 \alpha_2 = \partial_1 \alpha_0$, show that there exists some 2-simplex $\beta \colon \Delta^2 \to X$ such that $\partial_j \beta = \alpha_j$ for j = 0, 2. We may then call $\alpha_1 \coloneqq \partial_1 \beta \colon \Delta^1 \to X$ a (not the!) concatenation of α_0 and α_2 ; in general the 1-simplex $\alpha_1 \colon \Delta^1 \to X$ depends on the choice of β . Given another 2-simplex β' with the above properties, i.e. defining another choice $\alpha' \coloneqq \partial_1 \beta'$ of concatenation of α_0 and α_2 , show that $[\alpha_1] = [\alpha'_1]$ in homology.