[^0]Sheet 5
Solutions are due on 11.05.18.

Problem 5.1

(a) Let $B_{R}(x) \subset \mathbb{R}^{n}$ be the closed ball of radius $R>0$, centred at an arbitrary point $x \in \mathbb{R}^{n}$. Prove Brouwer's Fixed Point Theorem:
Any continuous map $f: \overline{B_{R}(x)} \longrightarrow \overline{B_{R}(x)}$ has a fixed point.
(Hint: Consider rays starting at $z \in \overline{B_{R}(x)}$ and passing through $f(z)$.)
(b) Use Brouwer's Fixed Point Theorem to prove the Perron-Frobenius Theorem:

Any matrix $\left(a_{i j}\right)=A \in M(n \times n, \mathbb{R})$ with non-negative entries $a_{i j}$ must have an eigenvector with non-negative coordinates, and the corresponding eigenvalue is positive.

Problem 5.2

Let $A \in \mathrm{O}(n+1)$ be an orthogonal matrix. Then multiplication by A induces a continuous self-map on \mathbb{S}^{n}. Compute its degree.

Problem 5.3

Consider the following commutative diagram with exact rows:

Suppose that the columns are complexes. Show that if the first two columns or the right two columns are short exact sequences, then the other column is a short exact sequence as well.

Problem 5.4

(a) Let $f, g: X \rightarrow Y$ be two continuous maps. The mapping torus of f and g is defined as the quotient space

$$
T(f, g):=(X \times[0,1] \sqcup Y) / \sim, \quad(x, 0) \sim f(x) \quad \text { and } \quad(x, 1) \sim g(x) \quad \forall x \in X
$$

Show that there is a long exact sequence

$$
\ldots \longrightarrow H_{n}(X) \xrightarrow{f_{*}-g_{*}} H_{n}(Y) \xrightarrow{\iota_{*}} H_{n}(T(f, g)) \xrightarrow{\delta} H_{n-1}(X) \xrightarrow{f_{*}-g_{*}} \ldots
$$

Hint:
Find a map $q: X \times[0,1] \rightarrow T(f, g)$ and consider the induced morphism of the long exact sequences in relative homology for the subspace $X \times \partial[0,1]$.
(b) Write the Klein bottle as a mapping torus and compute its homology in this way.

Problem 5.5

Let F_{g} denote the connected, closed, orientable surface of genus $g \in \mathbb{N}_{0}$, obtained by identifying edges with the same label according to the orientations indicated in the $4 g$-gon

Use the Mayer-Vietoris Theorem to compute $H_{*}\left(F_{g}\right)$.
(Do not use the Hurewicz Theorem to compute H_{1} !)

[^0]: UH
 H
 Universität Hamburg
 DER FORSCHUNG I DER LEHRE \| DER BILDUNG
 Algebraic Topology
 Summer 2018

