

Algebraic Topology Summer 2018 Dr. Severin Bunk Algebra und Zahlentheorie Fachbereich Mathematik Universität Hamburg

Sheet 5

Solutions are due on 11.05.18.

Problem 5.1

- (a) Let $\overline{B_R(x)} \subset \mathbb{R}^n$ be the closed ball of radius R > 0, centred at an arbitrary point $x \in \mathbb{R}^n$. Prove Brouwer's Fixed Point Theorem: Any continuous map $f: \overline{B_R(x)} \longrightarrow \overline{B_R(x)}$ has a fixed point. (Hint: Consider rays starting at $z \in \overline{B_R(x)}$ and passing through f(z).)
- (b) Use Brouwer's Fixed Point Theorem to prove the Perron-Frobenius Theorem: Any matrix $(a_{ij}) = A \in M(n \times n, \mathbb{R})$ with non-negative entries a_{ij} must have an eigenvector with non-negative coordinates, and the corresponding eigenvalue is positive.

Problem 5.2

Let $A \in O(n+1)$ be an orthogonal matrix. Then multiplication by A induces a continuous self-map on \mathbb{S}^n . Compute its degree.

Problem 5.3

Consider the following commutative diagram with exact rows:

Suppose that the columns are complexes. Show that if the first two columns or the right two columns are short exact sequences, then the other column is a short exact sequence as well.

Problem 5.4

(a) Let $f, g: X \to Y$ be two continuous maps. The mapping torus of f and g is defined as the quotient space

$$T(f,g) \coloneqq (X \times [0,1] \sqcup Y) / \sim, \quad (x,0) \sim f(x) \quad \text{and} \quad (x,1) \sim g(x) \quad \forall x \in X.$$

Show that there is a long exact sequence

$$\dots \longrightarrow H_n(X) \xrightarrow{f_* - g_*} H_n(Y) \xrightarrow{\iota_*} H_n(T(f,g)) \xrightarrow{\delta} H_{n-1}(X) \xrightarrow{f_* - g_*} \dots$$

Hint:

Find a map $q: X \times [0,1] \to T(f,g)$ and consider the induced morphism of the long exact sequences in relative homology for the subspace $X \times \partial[0,1]$.

(b) Write the Klein bottle as a mapping torus and compute its homology in this way.

Problem 5.5

Let F_g denote the connected, closed, orientable surface of genus $g \in \mathbb{N}_0$, obtained by identifying edges with the same label according to the orientations indicated in the 4g-gon

Use the Mayer-Vietoris Theorem to compute $H_*(F_g)$. (Do not use the Hurewicz Theorem to compute H_1 !)