

Algebraic Topology Summer 2018 Dr. Severin Bunk Algebra und Zahlentheorie Fachbereich Mathematik Universität Hamburg

Sheet 7

Solutions are due on 01.06.18.

Problem 7.1 A continuous map $f: \mathbb{S}^n \to \mathbb{S}^n$ is called *even* if f(-x) = f(x) for all $x \in \mathbb{S}^n$. Using Example 1.12.8.4 and that even maps interact nicely with projective spaces (how?), prove the following statements:

- (a) in even dimension n, every even map has degree zero.
- (b) In odd dimension, even maps have even degree.
- (c) If n is odd, any even number $2k \in 2\mathbb{Z}$ is the degree of an *even* map.

Problem 7.2

- (a) Let F_g be the closed, oriented surface of genus $g \in \mathbb{N}_0$. Write down an explicit CW model for F_g and compute the cellular homology of F_g .
- (b) Give a CW model for the product $\mathbb{S}^n \times \mathbb{S}^m$ for $n, m \in \mathbb{N}$ and compute its cellular homology.

Problem 7.3 Let X be a CW complex and let X^n denote its *n*-th skeleton.

- (a) Can the abelian group $H_n(X^n)$ have torsion?
- (b) Show that if X has k many n-cells, then $H_n(X)$ is generated by at most k many elements.

Problem 7.4 Let G be a finitely generated abelian group, and let $n \in \mathbb{N}$ be arbitrary.

(a) Construct a CW complex M(G, n) whose reduced homology groups read as

$$\widetilde{H}_k(M(G,n)) \cong \begin{cases} G, & k=n, \\ 0, & k\neq n. \end{cases}$$

Spaces with these reduced homology groups are called *Moore spaces*.

- (b) Describe M(G, n) for the case that G is a finite cyclic group. What is $M(\mathbb{Z}_2, n)$?
- (c) Let $(A_n)_{n \in \mathbb{N}}$ be a sequence of finitely generated abelian groups. Construct a path-connected space X with

$$H_k(X) \cong A_n \qquad \forall k \in \mathbb{N}.$$