

Algebraic Topology Summer 2018 Dr. Severin Bunk Algebra und Zahlentheorie Fachbereich Mathematik Universität Hamburg

Sheet 9

Solutions are due on 15.06.18.

Problem 9.1

Let A be a finitely generated abelian torsion group. Explain how the abelian groups $\text{Tor}(A, \mathbb{Q}/\mathbb{Z})$ and $\text{Hom}(A, \mathbb{Q}/\mathbb{Z})$ are related to A.

Problem 9.2

Let M be an abelian group and let

$$0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0 \tag{1}$$

be a short exact sequence of abelian groups. Make explicit statements on the exactness of the sequences

$$0 \longrightarrow \operatorname{Hom}(M, A) \xrightarrow{\alpha_*} \operatorname{Hom}(M, B) \xrightarrow{\beta_*} \operatorname{Hom}(M, C) \longrightarrow 0$$

and

$$0 \longrightarrow \operatorname{Hom}(C, M) \xrightarrow{\beta^*} \operatorname{Hom}(B, M) \xrightarrow{\alpha^*} \operatorname{Hom}(A, M) \longrightarrow 0$$

at each of the non-trivial groups by giving proofs or counterexamples. What can you say, if the sequence (1) is split?

Problem 9.3

Recall the definition of a Moore space M(A, n) from Problem 7.4, or you can find it in, for instance, [Example 2.40, Hatcher]. Let $M(\mathbb{Z}_p, n)$ and $M(\mathbb{Z}_q, m)$ be two Moore spaces with p, q prime and $n, m \geq 1$. Compute the homology groups of $M(\mathbb{Z}_p, n) \times M(\mathbb{Z}_q, m)$ in all cases.

Problem 9.4

Let $f: X \to Y$ be a continuous map of topological spaces.

(a) Show that whenever f induces an isomorphism $H_*(f;\mathbb{Z}): H_*(X;\mathbb{Z}) \to H_*(Y;\mathbb{Z})$ in integer homology, it also induces an isomorphism $H_*(f;G): H_*(X;G) \to H_*(Y;G)$ in homology with coefficients in any abelian group G. (b) Show that the converse does not hold true: give an example of a continuous map $f: X \to Y$ and an abelian group G such that $H_*(f;G)$ is an isomorphism, but $H_*(f;\mathbb{Z})$ is not.

Problem 9.5

Let N_g denote the connected, closed, non-orientable surface of genus $g \in \mathbb{N}$, obtained by identifying edges with the same label according to the orientations indicated in the 2g-gon

What is N_1 ? Can you see that N_2 is the Klein bottle? Compute $H_*(N_g; G)$ for all $g \in \mathbb{N}$ and an arbitrary abelian group G.