[^0]
Sheet 9

Solutions are due on 15.06.18.

Problem 9.1

Let A be a finitely generated abelian torsion group. Explain how the abelian groups $\operatorname{Tor}(A, \mathbb{Q} / \mathbb{Z})$ and $\operatorname{Hom}(A, \mathbb{Q} / \mathbb{Z})$ are related to A.

Problem 9.2

Let M be an abelian group and let

$$
\begin{equation*}
0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow \tag{1}
\end{equation*}
$$

be a short exact sequence of abelian groups. Make explicit statements on the exactness of the sequences

$$
0 \longrightarrow \operatorname{Hom}(M, A) \xrightarrow{\alpha_{*}} \operatorname{Hom}(M, B) \xrightarrow{\beta_{*}} \operatorname{Hom}(M, C) \longrightarrow 0
$$

and

$$
0 \longrightarrow \operatorname{Hom}(C, M) \xrightarrow{\beta^{*}} \operatorname{Hom}(B, M) \xrightarrow{\alpha^{*}} \operatorname{Hom}(A, M) \longrightarrow 0
$$

at each of the non-trivial groups by giving proofs or counterexamples. What can you say, if the sequence (1) is split?

Problem 9.3

Recall the definition of a Moore space $M(A, n)$ from Problem 7.4, or you can find it in, for instance, [Example 2.40, Hatcher]. Let $M\left(\mathbb{Z}_{p}, n\right)$ and $M\left(\mathbb{Z}_{q}, m\right)$ be two Moore spaces with p, q prime and $n, m \geq 1$. Compute the homology groups of $M\left(\mathbb{Z}_{p}, n\right) \times M\left(\mathbb{Z}_{q}, m\right)$ in all cases.

Problem 9.4

Let $f: X \rightarrow Y$ be a continuous map of topological spaces.
(a) Show that whenever f induces an isomorphism $H_{*}(f ; \mathbb{Z}): H_{*}(X ; \mathbb{Z}) \rightarrow H_{*}(Y ; \mathbb{Z})$ in integer homology, it also induces an isomorphism $H_{*}(f ; G): H_{*}(X ; G) \rightarrow H_{*}(Y ; G)$ in homology with coefficients in any abelian group G.
(b) Show that the converse does not hold true: give an example of a continuous map $f: X \rightarrow Y$ and an abelian group G such that $H_{*}(f ; G)$ is an isomorphism, but $H_{*}(f ; \mathbb{Z})$ is not.

Problem 9.5

Let N_{g} denote the connected, closed, non-orientable surface of genus $g \in \mathbb{N}$, obtained by identifying edges with the same label according to the orientations indicated in the $2 g$-gon

What is N_{1} ? Can you see that N_{2} is the Klein bottle?
Compute $H_{*}\left(N_{g} ; G\right)$ for all $g \in \mathbb{N}$ and an arbitrary abelian group G.

[^0]: UH
 部
 Universität Hamburg
 DER FORSCHUNG I DER LEHRE I DER BILDUNG
 Algebraic Topology
 Summer 2018

