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Abstract. We construct vertex algebras V(Y, S) from divisors S on toric Calabi-Yau threefolds Y ,
satisfying conjectures of Gaiotto-Rapcak and Feigin-Gukov, as the kernel of screening operators on
lattice vertex algebras determined by the GKM graph of Y and a filtration on OS . We prove that
there are representations of V(Y, S) on the homology groups of various moduli spaces of coherent
sheaves on Y supported on S constructed in a companion paper with Rapcak, defined by certain
Hecke modifications of these sheaves along points and curve classes in the divisor S. This generalizes
the common mathematical formulation of a conjecture of Alday-Gaiotto-Tachikawa, the special case
in which Y = C3 and S = r[C2], to toric threefolds and divisors as proposed by Gaiotto-Rapcak.
We outline an approach to the general conjecture and prove many special cases and partial results
using tools developed in the companion paper, following the proof of the original conjecture by
Schiffmann-Vasserot and its generalization to divisors in C3 by Rapcak-Soibelman-Yang-Zhao.

The vertex algebras V(Y, S) conjecturally include W -superalgebras Wκ
f0,f1

(glm|n) and genus zero

class S chiral algebras VS
Glm;f1,...,fk

, each for general nilpotents fi. By definition, this implies the
existence of a family of compatible free field realizations of these vertex algebras, relevant to their
parabolic induction and inverse quantum Hamiltonian reduction. We prove these conjectures in the
examples of lowest non-trivial rank for each case, and outline the proof in general for some cases.
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1. Introduction

The goal of this paper is to construct vertex algebras V(Y, S) associated to divisors S on toric
Calabi-Yau threefolds Y , and explain a conjectural correspondence between the representation the-
ory of these vertex algebras and the enumerative geometry of the threefolds Y and their divisors.
The first indication of this correspondence was a certain algebraic refinement of the formula of
Gottsche [Göt90] for the generating function for the Betti numbers of the Hilbert schemes Hilbn(S)
of zero dimensional, length n subschemes of a smooth projective surface S:

(1.1)

∞∑

n=0

qnPt(Hilbn(S)) =

∞∏

j=1

(1 + t2m−1qm)b1(S)(1 + t2m+1qm)b3(S)

(1− t2m−2qm)b0(S)(1− t2mqm)b2(S)(1− t2m+2qm)b4(S)
.

This refinement was discovered independently by Grojnowski [Gro96] and Nakajima [Nak97], and
is a defining example of geometric representation theory; we now briefly describe their results.

Let π(S) denote the Heisenberg vertex algebra generated by the homology H•(S,Z) with respect
to the intersection pairing, and let

(1.2) πS =
⊕

n∈N
H•(Hilbn(S),C) .

It was observed in loc. cit. that for each class [C] ∈ H•(S,C) there exist natural correspondences

(1.3)

Hilb
[C]
n,n+k(S)

p

''

q

xx
Hilbn(S) Hilbn+k(S)

,

for k ∈ Z and n ∈ N in the compatible range, inducing natural operators

(1.4) αn
−k([C]) = p∗ ◦ q∗ : H•(Hilbn(S)) → H•(Hilbn+k(S)) and αk([C]) =

∑

n∈N
αn
k([C])

for each k ∈ Z, which satisfy the relations implicit in the following theorem:

Theorem 1.1. [Gro96, Nak97] There exists a natural representation

U(π(S)) → End(πS) defined by bik 7→ αk([Ci]) ,

of the algebra of modes U(π(S)) of the vertex algebra π(S) on the vector space πS, such that πS is
identified with the vacuum module of the vertex algebra π(S).

In particular, this implies Equation 1.1 as the refined vacuum character of the Heisenberg algebra.
The first main construction of this paper gives vertex algebras V(Y, S) associated to divisors S

on certain toric Calabi-Yau threefolds Y , generalizing π(S) above. We also recall several results
of the companion paper [BR23], which provide moduli spaces Mn(Y, S) generalizing Hilbn(S),
homology groups VS =

⊕
nH•(Mn(Y, S), φWS

) generalizing πS of Equation 1.2, and certain natural
correspondences inducing endomorphisms of VS as in Equations 1.3 and 1.4, respectively. Moreover,
these constructions satisfy the following schematic analogue of Theorem 1.1, and the goal of this
paper is to formulate several precise variants of this and give proofs in some families of examples:

Conjecture 1.2. There exists a natural representation

(1.5) ρ : U(V(Y, S)) → End(VS)

of the algebra of modes U(V(Y, S)) of the vertex algebra V(Y, S) on the vector space VS.
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The vertex algebras V(Y, S) are defined as the subalgebras of lattice-type vertex algebras Π(Y, S)
given by the intersection of the kernels of certain maps of vertex algebra modules:

V(Y, S) = ∩k ker(Qk) for Qk : Π(Y, S) → Π(Y, S)λk
.

The lattice-type vertex algebra Π(Y, S) is determined by the multiplicities in the toric divisor S
of the reduced, irreducible components {Sd}d∈DS

, as follows: for a Cartier divisor S satisfying

[S] =
∑

d∈DS

rd[Sd] we let Π(Y, S) =
⊗

d∈DS

Π(Y, Sd)
⊗rd where Π(Y, Sd) =

⊕

λ∈H2(Sd,Z)

π(Sd)λ

is a natural vertex algebra extension determined by the lattice H2(Sd,Z) equipped with negative the
intersection pairing, of the (T -equivariant) Grojnowski-Nakajima Heisenberg algebra π(Sd), over F
the field of fractions of H•

T (pt) for T the subtorus preserving the Calabi-Yau form on Y .
The screening operators Qk are determined by a certain Jordan-Holder filtration on OS : for

OS =
[
OSd1

< ... < OSdk
< ... < OSdN

]
we define V(Y, S) =

N−1⋂

k=1

ker(Qk) ⊂ Π(Y, S) ,

where Qk is defined in terms of the non-compact, toric curve classes contained in Sdk ∩ Sdk+1
. This

construction satisfies the following factorization property: for any strictly coarser composition series

(1.6) OS = [OS1 < ... < OSl
< ... < OSh

] we have V(Y, S) →
h⊗

l=1

V(Y, Sl)

an embedding of vertex algebras, giving a natural system of partial free field realizations of V(Y, S).
Each such embedding determines a natural module Vf(Y, S) = ⊗h

l=1V(Y, Sl)0 over V(Y, S) by

restricting the vacuum module of the codomain, labelled by the partial semisimplification ⊕h
l=1OSl

,
which determines a framing structure f in the sense of the companion paper [BR23], a choice required
to define the desired moduli spaces Mf

n(Y, S) and homology groups Vf
S = ⊕nH

T
• (Mf

n(Y, S), φW f
S
).

For example, the trivial extension ⊕N
k=1OSdk

determines a framing structure 0S , and similarly

OS determines fS . In this setting, we have the following precise statement of Conjecture 1.2 above:

Conjecture 1.3. For each framing structure f, there is a representation ρfS : U(V(Y, S)) → End(Vf
S)

such that Vf
S identifies with the corresponding module Vf(Y, S) above. In particular, VfS

S and V0S
S

are identified with the vacuum module V(Y, S)0 and free field module Π(Y, S), respectively.

For Y = C3, S = r[C2], the above construction is that of [FF96], so that V(C3, r[C2]) ∼=
W κ

fprin
(glr), the principal affineW -algebra of glr over F at level κ = −h∨− ε2

ε1
, and for f = 0r[C2], Con-

jecture 1.3 is precisely the mathematical formulation of a conjecture of [AGT10] proved in [SV13],
[MO19], and [BFN14]. Similarly, for f = fr[C2], Conjecture 1.3 is the main result of [CCDS21].

For Y = Ym,n a resolution of Xm,n = {xy − zmwn}, a pair of partitions µ and ν of M and N , of
lengths m and n, determines a divisor Sµ,ν ⊂ Ym,n as in Figure 12. We conjecture V(Ym,n, Sµ,ν) ∼=
W κ

fµ,fν
(glM |N ), the affine W -algebra of glM |N for nilpotents fµ ∈ glM and fν ∈ glN , and we prove:

Theorem 1.4 (5.9). There is a natural isomorphism of vertex algebras

(1.7) W κ
fµ(glM )

∼=−→ V(Ym,0, Sµ)

identifying Π(Ym,0, Sµ) with the generalized Wakimoto realization, and the maps of Equation 1.6
with the parabolic induction maps of [Gen20] and inverse reduction maps generalizing [Sem94].
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In [BR23] we construct geometric representations of algebras YS(Y ) on Vf
S , and we conjecture

(1.8) ρfS : YS(Y ) ↠ U(V(Y, S)) → End(Vf
S) ,

a factorization inducing the desired representation of U(V(Y, S)) geometrically by correspondences
generalizing those of Equation 1.3, where the surjection holds in an appropriate completion.

Further, we conjecture that there exist generalized coproduct maps

∆S1,...,Sh
: YS(Y ) →

h⊗

l=1

YSl
(Y ) such that the diagrams

YS(Y ) //

��

⊗h
l=1 YSl

(Y )

��

U(V(Y, S)) //
⊗h

l=1 U(V(Y, Sl))

,

commute, where the lower horizontal arrows are the vertex algebra embeddings of Equation 1.6.
For Sµ,ν ⊂ Ym,n as above, following [Cos18] we conjecture in [BR23] an isomorphism of algebras

YSµ,ν (Ym,n) ∼= Yσµ,ν (ĝlm|n) ,

with the shifted affine Yangian of glm|n, for shift matrix σµ,ν determined by the intersection numbers
of Sµ,ν with the compact curves in Ym,n, identified with simple roots of glm|n as in Figure 12.

In this case, the factorization of Equation 1.8 induces a generalization to type A affine super-
algebras of the Brundan-Kleshchev isomorphism [BK04] between truncated, shifted Yangians and
W-algebras in finite type A, such that the conjectural generalized coproducts on shifted affine Yan-
gians are compatible with parabolic induction and inverse reduction maps for affine W -algebras.

The genus zero class S chiral algebras VS
Glm;f1,...,fk

defined in [Ara18] following [BPRR15] are

conjecturally contained in the class of algebras V(Y, S) for general nilpotents fi and k ≤ 2, where
the threefold Y and divisor S are as in Figure 22. For general k ∈ N, we also propose a variant
of the construction, summarized in Figure 25. This would imply a family of compatible free field
realizations of these algebras, inducing analogous inverse reduction and parabolic induction maps.

We now give a succinct summary of the contents of each of the sections of this paper:

• In Section 1.1 we recall some background on previous results motivating the present work,
and in Section 1.2 we give a narrative overview of our main results.

• In Section 2, we recall some preliminaries from the theory of vertex algebras: in 2.1 we recall
the most basic definitions and constructions, in 2.2 we recall the notions of vertex algebra
extensions and lattice vertex algebras, and in 2.3 we recall the notion of screening operators.

• In Section 3, we explain the algebraic construction of V(Y, S): in 3.1 we define the free
field algebras Π(Y, S), in 3.2 we define the canonical screening operators associated to non-
compact toric curve classes in Y , and in 3.3 we define the vertex algebras V(Y, S) and prove
the key factorization and locality properties.

• In Section 4, we explain the conjecturally equivalent geometric construction of the various
partial free field representations of the vertex algebra V(Y, S): in 4.1 we recall from [BR23]
the construction of the moduli spaces Mf(Y, S), their homology groups Vf

S , and geometric

representation of YS(Y ) on Vf
S , in 4.2 we prove the main conjectures in the case that S has

a single reduced, irreducible component, and in 4.3 we outline an approach in general.

• In Section 5, we explain these constructions in several examples: in 5.1 we describe basic
examples where S is reduced and irreducible, and in 5.2 and 5.3 we explain the conjectural
applications to general type A affine W -superalgebras and genus zero class S chiral algebras.
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1.1. Background. The first essential step required for the generalization of Theorem 1.1 towards
Conjecture 1.2 is to consider moduli spaces of sheaves of higher rank. The Hilbert scheme Hilbn(S)
viewed as a moduli space of ideal sheaves can equivalently be understood as the moduli space

Mζ
S(1, n) of ζ-semistable torsion free sheaves of rank 1 with trivial determinant, and it is natural

to ask if there is an analogous algebraic structure governing moduli spaces of torsion free sheaves
of higher rank. In fact, the analogous generating function to that of Equation 1.1 at t = −1,

(1.9) ZVW
r,S (q) =

∞∑

n=0

χ(Mζ
S(r, n)) ,

where χ(Mζ
S(r, n)) denotes the Euler characteristic of the moduli space Mζ

S(r, n), was considered in
the theoretical physics literature by Vafa-Witten [VW94], who predicted certain modular properties
of this generating function based on considerations in string theory. However, such moduli spaces are
much less well understood in higher rank and a general closed-form computation of the Vafa-Witten
partition function ZVW

r,S analogous to that of Equation 1.1 does not appear to be possible.
The main idea that has been used to generalize the results of Grojnowksi and Nakajima to higher

rank also came from theoretical physics, in work of Nekrasov [Nek03] and Alday-Gaiotto-Tachikawa
[AGT10]. In the context of their relation to Seiberg-Witten theory [SW94a, SW94b], Nekrasov
proposed that for a class of generating functions of invariants of surfaces including that of Equation
1.9, there is a natural local analogue defined in this case by considering the moduli spaces M(r, n)
of framed torsion free sheaves on S = C2, and computing the Euler characteristic of their localized

equivariant homology H T̃
• (M(r, n))⊗H•

T̃
(pt) F with respect to the action of T̃ = (C×)2 on S = C2.

Further, it was realized by Alday-Gaiotto-Tachikawa that the analogous vertex algebra which
governs the local structure of the equivariant homology of higher rank torsion free sheaves is the
principal affine W-algebra W κ

ρprin
(glr) of glr at level

(1.10) κ = −h∨ − ε2
ε1

,

where we have identifiedH•
T̃
(pt) = K[ε1, ε2], and h∨ = r denotes the dual Coxeter number. The ana-

logue of the result of Grojnowski and Nakajima above in this setting was one natural mathematical
formulation of the predictions of [AGT10], which was proved independently by Schiffmann-Vasserot
[SV13], Maulik-Okounkov [MO19], and Braverman-Finkelberg-Nakajima [BFN14]. For

(1.11) V0
r[C2] =

⊕

n∈N
HA

• (M(r, n))⊗H•
A(pt) F ,

where A = T̃ ×Tf for Tf ⊂ Glr the maximal torus and F is the field of fractions of H•
A(pt), we have:

Theorem 1.5. [SV13, MO19, BFN14] There exists a natural representation

U(W κ
fprin

(glr)) → End(V0
r[C2]) ,

such that V0
r[C2] is identified with the universal Verma module Mr for W κ

fprin
(glr).

As the notation suggests, in the special case Y = C3 and S = r[C2] our general construction
produces precisely the module V0

S = V0
r[C2] and the vertex algebra V(C3, r[C2]) is given by

V(C3, r[C2]) ∼= Wκ
ρprin

(glr) ,

so that Theorem 1.5 can be understood as a special case of one variant of Conjecture 1.2 above.
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We now describe some aspects of the proof of Theorem 1.5 given in [SV13], on which our general
approach is modeled. Afterwards, we will explain our proposed generalization in detail and outline
its implications for the correspondence between representations of the vertex algebras V(Y, S) and
the enumerative geometry of the threefold Y .

One essential benefit of the restriction to S = C2 is that the moduli spaces M(r, n) admit a
description as the moduli spaces of stable representations of the following Nakajima quiver

(1.12) Cr V
I

J

B1

B2

with relations [B1, B2] + IJ = 0 ,

of dimension dimV = n and framing dimension r. This description of the moduli space of framed
instantons of rank r and charge n on R4 = C2 was discovered by Atiyah-Drinfeld-Hitchin-Manin in
[AHDM78], and was the motivating example of a Nakajima quiver variety [Nak94].

It was observed in [SV13] that the correspondences of the type in Equation 1.3 are naturally
parameterized by representations of the unframed variant of the above quiver

(1.13) VB1 B2 with relations [B1, B2] = 0 ,

as we now explain. The stack of representations of this quiver with relations is given by

Mn(C2) = [Cn/Gln] where Cn = {(B1, B2) ∈ gl×2
n | [B1, B2] = 0} ,

and we denote the corresponding equivariant Borel-Moore homology groups by

H(C2) =
⊕

n∈N
Hn(C2) =

⊕

n∈N
HA

• (Mn(C2))⊗H•
A(pt) F .

There are analogous correspondences between the spaces Mn(C2), defined by the stacks of short
exact sequences Mk,l(C2) of representations of the unframed quiver of dimension k + l, with a
subobject of dimension k and quotient object of dimension l,

(1.14)

Mk,l(C2)

p

&&

q

vv
Mk(C2)×Ml(C2) Mk+l(C2)

which induce maps

(1.15) p∗ ◦ q∗ : Hk(C2)⊗Hl(C2) → Hk+l(C2) and thus m : H(C2)⊗2 → H(C2) ,

which defines an associative algebra structure on H(C2); the resulting algebra H(C2) is called the
preprojective cohomological Hall algebra of C2.
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Further, the stacks of short exact sequences of representations of the framed quiver with potential
define analogous correspondences

(1.16)

M(r, (k, n))
p

''

q

uu
Mk(C2)×M(r, n) M(r, n+ k)

and induce a representation of H(C2) on Vr[C2], which we denote by

(1.17) ρr[C2] : H(C2) → EndF (Vr[C2]) .

In particular, for r = 1 the equivariant analogue of the Nakajima operator α−1 : VC2 → VC2

of Equation 1.4 is given by the image of the fundamental class of [M1(C2)] ∈ H1(C2) under this
representation. More generally, the image of the spherical subalgebra SH(C2) ⊂ H(C2) generated by
H1(C2) includes the equivariant Nakajima operators αk for all k > 0, and we obtain an isomorphism

U(πk)+
∼=−→ ρC2(SH(C2)) ,

between the positive half U(πk)+ of the algebra of modes U(πk) of the vertex algebra πk, the
Heisenberg algebra over F at level

k = −⟨[C2], [C2]⟩ = −εA(T0C2)−1 = − 1

ε1ε2
∈ F ,

and the image of the spherical subalgebra SH(C2) under the above representation ρC2 . The above
Theorem 1.5 of [SV13] establishes that ρr[C2] of Equation 1.17 also induces an isomorphism

(1.18) U(W κ
fprin

(glr))+
∼=−→ ρ0r[C2](SH(C2)) .

Similarly, the action of the negative half of the algebra of modes is defined by taking adjoints of the
endomorphisms in ρ0r[C2](SH(C2)), with respect to the equivariant intersection pairing on Vr[C2].

The proof of loc. cit. proceeds as follows: the tensor product structure on the framing equivariant
cohomology of Nakajima quiver varieties provides natural isomorphisms

(1.19) V0
r[C2]

∼= V⊗r
C2 defining U((πk)⊗r) → EndF (V⊗r

C2 ) ∼= EndF (V0
r[C2]) ,

and the action of SH(Y ), generated by correspondences of the type in Equation 1.16, factors through
a subalgebra of U((πk)⊗r). Moreover, it is proved that this subalgebra is precisely the algebra of
modes of a vertex subalgebra V(C3, r[C2]) ⊂ (πk)⊗r defined by

(1.20) V(C3, r[C2]) =
r−1⋂

l=1

ker(Ql) where Ql =

∫
V l(z)dz : (πk)⊗r → (πk)⊗r

λl
,

and V l(z) denotes a certain lattice vertex operator with coefficients in F ; we recall the formalism
of lattice vertex algebras and screening currents in Section 2 below. In particular, we recall the
famous results of Feigin-Frenkel [FF96], which imply that the resulting vertex algebra is given by

(1.21) V(C3, r[C2]) ∼= W κ
fprin

(glr) for κ = −h∨ − ε2
ε1

,

as claimed, completing the proof of Theorem 1.5 from [SV13]. The goal of this paper is to generalize
the constructions of Equations 1.20 and 1.17, and the proof of their equivalence outlined above.
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1.2. Overview of results. We now give a narrative overview of the new results of this paper. A
succinct summary of the contents of each of the sections was provided just before Section 1.1 above.

In Sections 3 and 4, respectively, we give the two main constructions of this paper, establish some
of their corresponding properties, and prove several variants of Conjecture 1.2 :

(1) We construct vertex algebras V(Y, S), as the kernel of certain screening operators on lattice
vertex algebras determined by the GKM graph of Y and a Jordan-Holder filtration on OS ,
generalizing the Feigin-Frenkel realization [FF96] of W κ

fprin
(glr) as in Equation 1.20.

(2) We construct analogous moduli spaces M0(Y, S), homology groups V0
S , algebras H(Y ), rep-

resentations ρS : H(Y ) → EndF (V0
S), and extensions thereof to vertex algebras, generalizing

those in the construction described above of the representation in Theorem 1.5 of [SV13].

We begin by recalling the details of the latter geometric construction, following the results of the
companion paper [BR23], and afterwards describe the former algebraic construction motivated by
this and outline some partial results towards the proof of their equivalence.

Let Y → X be a toric Calabi-Yau threefold resolution of the class considered in loc. cit. and let
S be a toric divisor on Y . We define algebraic stacks

M(Y ) = MPervCohcs(Y ) and M0(Y, S) = M0S (Y,Oss
Sred [1]) ,

parameterizing certain complexes of coherent sheaves on Y . The stack M0(Y, S) is defined so that
for a suitable choice of stability condition ζ = ζVW, the moduli space of ζ-stable objects

(1.22) M0(Y, S) = M0,ζ(Y, S)

provides a model in algebraic geometry for the moduli space of instantons on the divisor S, gener-
alizing the role of M(r, n) in the usual AGT conjecture. The stack M(Y ) parameterizes complexes
of coherent sheaves with compactly supported cohomology, contained in the heart of a certan ex-
otic t-structure of DbCoh(Y ), which parameterize the natural correspondences generalizing those of
Equation 1.16, analogously to the spaces Mn(C2) in the argument above.

The first of the two main Theorems in [BR23] establishes an equivalence between the stacksM(Y )
andM0(Y, S) and stacks of representations of a quiver with potential (QY ,WY ) and a framed variant
thereof (Q0

S ,W
0
S), respectively. For example, in the case Y = C3 and S = r[C2] from [RSYZ19]:

(1.23)

QC3 = V B3

B2

B1

Q0
r[C2] = Cr V

I

J
B3

B2

B1

{
WY = B1[B2, B3]

W 0
S = B1[B2, B3] +B3IJ

.

In this setting, the natural homology theory to consider is the Borel-Moore homology with coef-
ficients in the sheaf of vanishing cycles determined by the potential, so that the vector spaces over
F underlying the algebra H(Y ) and module V0

S are given by
(1.24)

H(Y ) =
⊕

n∈NVQY

HA
• (Mn(Y ), φWY

)⊗H•
A(pt)F and V0

S =
⊕

n∈NVQY

HA
• (M0

n(Y, S), φW 0
S
)⊗H•

A(pt)F .
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The second main Theorem in [BR23] constructs the analogous representation

(1.25) ρS : H(Y ) → EndF (V0
S) ,

which conjecturally induces a representation of the algebra of modes of the vertex algebra V(Y, S),
by the same mechanism described above in the proof of Theorem 1.5 from [SV13].

In examples such as Y = C3 and S = r[C2], the homology groups V0
S are related by dimensional

reduction, in the sense of Appendix A of [Dav17] for example, to the ordinary Borel-Moore homology
groups defining H(C2) and V0

r[C2] in the preceding section: there is a natural isomorphism

(1.26) H•(Md(Q,W ), φW )
∼=−→ H•(Md(Q̃, R)) ,

between the homology of the stack of representations of the quiver with potential (Q,W ), with co-
efficients in the sheaf of vanishing cycles determined by W , and the ordinary Borel-Moore homology
of the corresponding dimensionally reduced quiver with relations (Q̃, R). In particular, we have

HA
• (M0

n(C3, r[C2]), φW 0
r[C2]

)
∼=−→ HA

• (M(r, n)) ,

so that the preceding definition of V0
S in this case agrees with that of V0

r[C2] in Equation 1.11 above:

(1.27) V0
r[C2] =

⊕

n∈N
HA

• (M0
n(C3, r[C2]), φW 0

r[C2]
)⊗H•

A(pt) F
∼=−→
⊕

n∈N
HA

• (M(r, n))⊗H•
A(pt) F .

Similarly, this extends to an ismorphism of representations under an analogous isomorphism of
associative algebras H(C3) ∼= H(C2), which follows from the results of [YZ16] and the appendix to
[RS15], so that our general construction of the representation in Equation 1.25, in the case Y = C3

and S = r[C2], is equivalent to that of Equation 1.17, from the proof of Theorem 1.5 of [SV13].
We now outline the definition of the vertex algebras V(Y, S) for general divisors S in toric Calabi-

Yau threefolds Y , and outline our approach to the proof of Conjecture 1.2 in this case. We begin with
the case that S has a single smooth, reduced, irreducible component, for which the corresponding
moduli space M0(Y, S) parameterizes rank 1 sheaves, as in the classical setting of Grojnowski and
Nakajima, though our construction differs from loc. cit. whenever H2(S;Z) ̸= 0.

An argument is outlined in the final Chapter of [Nak99] that for moduli spaces of rank 1 torsion
free sheaves of arbitrary first Chern class on a surface S, the Heisenberg algebra action on the
homology defined in loc. cit. should naturally extend to an action of

Π(S) := πH0(S,C) ⊗ VH2(S,Z) ,

the tensor product of the usual Heisenberg algebra πH0(S,C) = π on H0(S,C) = C with the lat-
tice vertex algebra VH2(S,C) extending πH2(S,C). In the localized, A-equivariant setting, as in the

definitions of Equation 1.24, for FS = ST the localization theorem implies

HA
• (S,C)⊗H•

A(pt) F
∼=−→
⊕

y∈FS

F and thus πHA
• (S,C)

∼=−→
⊗

y∈FS

πky ,

where πky denotes the Heisenberg algebra over the base field F at level ky = − 1
εA(TyS)

. From this

perspective, the analogous lattice extension to Π(S) is equivalent to extending πHA
• (S,C) by

Vi(z) = : exp
(
εT (NCi,0iS)ϕ

0i(z) + εT (NCi,∞iS)ϕ
∞i(z)

)
: ∈ Hom(πm, πm+[i])[[z

±1]] ,

a lattice vertex operator for each toric curve class Ci ⊂ S between two fixed points 0i,∞i ∈ FS .
In Section 3.1 we explain this presentation of the lattice vertex algebra over F , which we denote
Π(Y, S), towards giving the general definition of V(Y, S) for S not necessarily reduced or irreducible.
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The general definition of V(Y, S) is modeled on the Feigin-Frenkel realization of the principal
affine W-algebra at generic level κ = −h∨ − ε2

ε1
, by which we defined V(C3, r[C2]) in Equation 1.20.

Given a divisor S, we write

Sred =
⋃

d∈DS

Sd so that S =
∑

d∈DS

rd[Sd]

for some positive integers rd ∈ N. Then, generalizing Equation 1.19 above, we expect that the
vector space V0

S admits a factorization

V0
S =

⊗

d∈DS

(V0
Sd
)⊗rd and thus U(

⊗

d∈DS

Π⊗rd
d ) → EndF (V0

S) ,

a representation of the algebra of modes of the vertex algebra

Π(Y, S) =
⊗

d∈DS

Π⊗rd
d where Πd = Π(Y, Sd) ,

the lattice vertex algebra over F corresponding to the reduced, irreducible divisor Sd, as above.
The vertex algebra V(Y, S) is then defined as the kernel of a certain collection of screening

operators on Π(Y, S) constructed as follows: we fix a presentation of OS as an iterated extension

OS =
[
OSd1

< ... < OSdk
< ... < OSdN

]
,

for some ordered list of elements dk ∈ D, in which each d ∈ D occurs rd times, and define

V(Y, S) =
N−1⋂

k=1

⋂

sk

ker(Qsk) where

{
Qsk =

∫
Qsk(z)dz : Π(Y, S) → Π(Y, S)λsk

Qsk(z) = : exp
(
εT (NCs,ysSd+)ϕ

jd+
ys (z)− εT (NCs,ysSd)ϕ

jd−
ys (z)

)
:

is a canonical screening operator defined for each non-compact curve class Csk ⊂ Sdk ∩ Sdk+1
.

As we explain in Section 5, the vertex algebras V(Y, S) conjecturally include W -superalgebras
W κ

f0,f1
(glm|n) and genus zero class S chiral algebras VS

Glm;f1,...,fk
with k ≤ 2 marked points, each

for general nilpotents fi, and we give a proof of these conjectures in several low rank examples.
By definition, this implies the existence of free field realizations of these vertex algebras, which for
W -algebras W κ

f (glN ) appears to give a certain canonical bosonized presentation of the generalized

Wakimoto resolutions defined by Genra [Gen17]. More generally, these free field realizations satisfy
a natural compatibility as the divisor S varies within a fixed threefold Y , which implies natural
parabolic induction and inverse quantum Hamiltonian reduction maps for this class of algebras.

In particular, if S = S1 + S2 then we evidently have Π(Y, S) = Π(Y, S1) ⊗ Π(Y, S2), and for
composition series of OS , OS1 and OS2 in terms of the sheaves OSd

, compatible in the sense that

OS1 → OS → OS2 ,

defines a short exact sequence compatible with the filtrations, we obtain

(1.28) V(Y, S) → V(Y, S1)⊗ V(Y, S2)

an embedding of vertex algebras, with image given by the kernel of a single screening operator.
For example, in the case that Y = |OP1⊕OP1(−2)| and S = S2,1,0,0 = 2[A2

xy]+[|OP1 |], we explicitly
compute V(Y, S) = V κ(sl2)⊗ π, identify the resulting free field realizations with a bosonisation of
the Wakimoto realization, and deduce the sl2 inverse reduction result of Semikhatov [Sem94]; this
is the content of Theorem 5.8, and is summarized in Figure 16. The four natural modules appearing
in this calculation correspond under Conjecture 1.3 to the four framed quivers of Figure 7.
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2. Preliminaries

2.1. Vertex algebras and modules.

Definition 1. An element a(z) ∈ End(V )[[z±1]] is called a field if a(z)v ∈ V ((z)) for each v ∈ V .

Remark 2.1. More explicitly, A =
∑

n∈Z anz
−n−1 ∈ End(V )[[z±1]] is a field if for each v ∈ V there

exists N ∈ Z such that an(v) = 0 for all n > N .

Definition 2. A vertex algebra is a tuple (V,Ø, T, Y ) consisting of

• a vector space V ,
• an element 1 ∈ V , called the vacuum,
• a linear map T ∈ End(V ), called the translation operator, and
• a linear map Y (·, z) : V → End(V )[[z±1]], called the vertex operator,

such that:

• Y (1, z) = idV ,
• Y (a, z) =

∑
n∈Z anz

−n−1 ∈ End(V )[[z±1]] is a field for each a ∈ V and v ∈ V ,
• Y (a, z)(1) ∈ V [[z]] ⊂ V ((z)) for each a ∈ V , and the evaluation satisfies Y (a, z)(1)|z=0 = a,
• [T, Y (a, z)] = ∂zY (a, z) for each a ∈ V ,
• T1 = 0, and
• for each a, b ∈ V , the fields a(z) = Y (a, z) ∈ End(V )[[z±1]] and b(w) = Y (b, w) ∈
End(V )[[w±1]] are mutually local with respect to one another, that is, there exists N ∈ N
such that

(z − w)N [a(z), b(w)] = 0 ,

as elements of End(V )[[z±1, w±1]].

The mutual locality of the fields a(z) and b(w) implies that

(2.1) [a(z), b(w)] =
N−1∑

j=0

1

j!
γj(w)∂

j
wδ(z − w) ,

for some collection of fields γj(w) ∈ End(V )[[w±1]] defined for j = 0, ..., N − 1. In fact, these fields
can be explicitly identified with the vertex operators γj(w) = Y (ajb, w) and the above expression
implies

a(z)b(w) =
N−1∑

j=0

Y (ajb, w)

(z − w)j+1
+ :a(z)b(w): which we abbreviate a(z)b(w) ∼

N−1∑

j=0

Y (ajb, w)

(z − w)j+1
,

where :a(z)b(w): denotes the normally ordered product of the fields a(z) and b(w), which is in
particular regular at z − w = 0.

Let g a simple Lie algebra over C equipped with a non-degenerate, invariant bilinear pairing
κ : g⊗ g → C. We denote by ĝ the canonical central extension

0 → Cκ → ĝ → g((z)) → 0 ,

defined by the 2-cocycle c : g(K)⊗ g(K) → C, where g((z)) = g⊗C C((z)) denotes the loop algebra,
defined by c(f ⊗ a, g ⊗ b) = −κ(a, b)Res(f · dg) for f, g ∈ C((z)) and a, b ∈ g, where Res : Ω1

K → C
denotes the residue pairing.

Let U(ĝ) denote the universal enveloping algebra of ĝ, U(ĝ) its completion with respect to the
usual topology, and define

Vk(g) = U(ĝ)⊗U(g[[z]]⊕Cκ) Ck ,
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where Ck for k ∈ C is the one dimensional module with basis vector vk on which g(O) acts trivially
and Cκ acts by k. For elements a ∈ g, there are corresponding fields

Ja(z) =
∑

n∈Z
Ja
nz

−n−1 ∈ End(Vk(g))[[z
±1]] satisfying Ja(z)Jb(w) ∼ J [a,b](z)

z − w
+

kκ(a, b)

(z − w)2
,

which generate a vertex algebra structure on Vk(g) such that

Vk(g) = SpanC{ Ja1
n1

· · · Jaj
nj vk |ai ∈ Bg, n1 ≤ · · · ≤ nj ≤ −1, j ∈ N } ,

where Bg denotes some choice of basis for the Lie algebra g.
Moreover, the topological associative algebra U(Vk(g)) associated to the vertex algebra Vk(g) is

isomorphic to Uk(ĝ), the completion with respect to the standard topology of the quotient Uk(ĝ) of
U(ĝ) by the two sided ideal generated by 1κ − k where 1κ ∈ Cκ and k ∈ C.

Consider the case that g = h is an abelian Lie algebra of dimension r and define

πk = Vk(h) = U(ĥ)⊗U(h[[z]]⊕Cκ) Ck .

The vertex algebra structure on πk(h) is generated by fields

Ja(z) =
∑

n∈Z
banz

−n−1 ∈ End(πk)[[z±1]] satisfying Ja(z)Jb(w) ∼ kκ(a, b)

(z − w)2
,

and we denote the corresponding basis

(2.2) πk = SpanC{ ba1n1
· · · bajnj1

k |ai ∈ Bh, n1 ≤ · · · ≤ nj ≤ −1, j ∈ N } ∼= C[ban]
a∈Bh

n≤1 1k .

The topological associative algebra U(πk) = Uk(ĥ) contains a natural commutative subalgebra

Uk(ĥ)+ ∼= C[ban]
a∈Bh

n≥0 such that

πk = Uk(ĥ)⊗Uk(ĥ)+
C0

∼= C[ban]
a∈Bh

n≤1 1k ,

where C0 denotes the one dimensional Uk(ĝl1)+ module on which all ban act by zero.
More generally, for λ ∈ h∨, we define

(2.3) πk
λ = Uk(ĥ)⊗Uk(ĥ)+

Cλ
∼= C[ban]

a∈Bh

n≤1 1kλ ,

where Cλ denotes the one dimensional U1(h)+ module on which ba0 acts by kλ(a), and the remaining
generators ban act by zero for n ≥ 1. For each λ ∈ C there is a canonical vertex algebra module
structure on πk

λ over the vertex algebra πk described above.

2.2. Vertex operators and extensions. Let π = πk(h) denote the Heisenberg vertex algebra on
h at level k, and for each λ ∈ h∨ let πλ = πk

λ denote the corresponding module as in Equation 2.3
above. Further, fix an orthogonal basis B = Bh for h.

For each λ ∈ h∨, we define the induced ‘exponential vertex operator’

Vλ(z) = :
∏

a∈B
exp(−λ(a)ϕa(z)): ∈ Hom(πµ, πλ+µ)[[z

±1]]

where the above expression is a shorthand notation for the field defined by

(2.4) Vλ(z) = Sλ

∏

a∈B
zλ(a)b

a
0 exp

(
−λ(a)

∑

n<0

ban
n
z−n

)
exp

(
−λ(a)

∑

n>0

ban
n
z−n

)
,
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where Sλ : πµ → πλ+µ is the standard shift operator defined by the relations

(2.5) Sλ1µ = 1λ+µ and [Sλ, bn] = 0 for n ̸= 0,

and the expontentials are defined in terms of their power series expansions, noting the sum is locally
finite on πµ at each order in z. In particular, we can write

Vλ(z) =
∑

n∈Z
Vλ[n]z

−n−λ2

2 ∈ Hom(πµ, πλ+µ)[[z
±1]] with Vλ[n] ∈ Hom(πµ, πλ+µ)

for each n ∈ N, where we have assumed for simplicity λ2 ∈ 2Z. The fields Vλ extend to define vertex
algebra module intertwiners Y : πλ → Hom(πµ, πλ+µ)[[z

±1]] for each µ by the formula

(2.6) Y (ba1n1
· · · bajnj1λ, z) = :

(
j∏

i=1

1

(−ni − 1)!
∂−ni−1
z bai(z)

)
Vλ(z) : ∈ Hom(πµ, πλ+µ)[[z

±1]] .

We recall that the translation operator acts on these fields according to the simple expression

∂zVλ(z) = Y (T · 1λ, z) =
∑

a∈B
λ(a)Y (ba−11λ, z) ,

and moreover that the standard relations between the fields Vλ, Vν and J are given by

Ja(z)Vλ(w) ∼
kλ(a)Vλ(w)

z − w
and Vλ(z)Vν(w) = (z − w)kκ

−1(λ,ν):Vλ(z)Vν(w): ,

where the field :Vλ(z)Vν(w): ∈ Hom(πµ, πλ+ν+µ)[[z
±1]] is defined by

(2.7)

:Vλ(z)Vν(w): = SλSν

∏

a∈B
zλ(a)b

a
0wν(a)ba0 exp

(
−
∑

n<0

λ(a)
ban
n
z−n + ν(a)

ban
n
w−n

)
exp

(
−
∑

n>0

λ(a)
ban
n
z−n + ν(a)

ban
n
w−n

)
.

Let V0 be a vertex algebra, and {Vλ}λ∈Λ a collection of V0 modules parameterized by a countable
abelian group Λ, such that the module corresponding to the identity element 0 ∈ Λ is the rank 1
free module V0.

Definition 3. A vertex algebra extension of V0 by the collection of vertex modules {Vλ}λ∈Λ is a
collection of vertex algebra intertwiners

Y µ
λ : Vλ → Hom(Vµ, Vµ+λ)[[z

±1]] defined for each λ, µ ∈ Λ

such that their direct sum defines a vertex algebra structure

Y =
⊕

λ,µ∈Λ
Y µ
λ : V → Hom(V, V )[[z±1]] where V =

⊕

λ∈Λ
Vλ .

Note that for any subgroup Λ̃ ⊂ Λ, the restricted direct sum Ṽ = ⊕λ∈Λ̃Vλ is a sub vertex algebra
of the vertex algebra extension V . In particular, V0 is canonically a sub vertex algebra of any vertex
algebra extension V .

Example 2.2. Let V be a vertex algebra and M a vertex module over V . The square zero extension
of V by M is the vertex algebra extension VM = V ⊕M indexed by Λ = Z/2Z defined by the vertex
module intertwiners

Y 0
0 = YV : V → Hom(V, V )[[z±1]] Y 1

0 = YM : V → Hom(M,M)[[z±1]]

Y 0
1 = ỸM : M → Hom(V,M)[[z±1]] Y 1

1 = 0 : M → Hom(M,V )[[z±1]] ,
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where YV denotes the vertex algebra structure map for V , YM the vertex module structure map for
M , and ỸM is defined by

ỸM (m, z)v = ezTYM (v,−z)m .

Example 2.3. Let L be a lattice and let χ : L × L → Z denote the symmetric bilinear pairing.
Further, let h = L⊗ZC with the induced pairing, and π = π(h) the corresponding Heisenberg vertex
algebra at level 1. Note that each point l ∈ L defines λl = χ(l, ·) ∈ h∨ and thus a vertex algebra
module πl = πλl

over the vertex algebra π, as in Equation 2.3.
The lattice vertex algebra ΠL corresponding to L, when it exists, is the vertex algebra extension

of π given by

ΠL =
⊕

l∈L
πl

together with the intertwiners induced by the fields Vl(z) = Vλl
(z) ∈ Hom(πm, πl+m)[[z±1]] for each

l,m ∈ L, as in Equation 2.6. Thus, the lattice vertex algebra is generated by fields Ja for a ∈ Bh

some basis of h as well as fields Vl for each l ∈ L, with the following operator product expansions

Ja(z)Jb(w) ∼ χ(a, b)

(z − w)2
Ja(z)Vl(w) ∼

χ(a, l)Vl(w)

(z − w)
Vl(z)Vm(w) = (z−w)χ(l,m):Vl(z)Vm(w): .

2.3. Screening operators. Let V be a vertex algebra, v ∈ V an element of the underlying vector
space, and denote the corresponding field A(z) = Y (v, z) ∈ End(V )[[z±1]]. The formal residue A0

of the field A(z) is defined by∫
A(z)dz =

∫ ∑

n∈Z
Anz

−n−1 = A0 ∈ End(V ) .

The endomorphism A0 ∈ End(V ) is a vertex algebra derivation, in the sense that it satisfies

[A0, Y (v, z)] = Y (A0v, z) ,

for each element v ∈ V ; this follows immediately from the formula of Equation 2.1 above. In
particular, this clearly implies:

Corollary 2.4. The subspace W = kerA0 ⊂ V is a vertex subalgebra.

Now, let M be a module over a vertex algebra V , m ∈ M an element of the underlying vector
space, and denote the corresponding field

Q(z) = ỸM (m, z) ∈ Hom(V,M)[[z±1]] ,

induced by the vertex algebra structure on the square zero extension of V by M , as in Example
2.2. Then the formal residue of the field Q(z) defines a linear map

Q =

∫
Q(z)dz ∈ Hom(V,M)

such that W = ker(Q) ⊂ V is a vertex subalgebra of V . In this context, the field j is called the
screening current, its formal residue Q is called the screening charge, and we say that the vertex
subalgebra W is screened by the current Q(z).

Example 2.5. Let g = sl2 so that the principal affine W -algebra Wκ(sl2) ∼= Virc(κ) is isomorphic
to the Virasoro vertex algebra of central charge

c(κ) = 1− 6
(κ+ 1)2

(κ+ 2)
.
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The Heisenberg algebra π = πk at level k admits Virasoro currents

T d(z) =
1

2k
:b(z)b(z): +

d√
k
∂zb(z)

of central charge c(d) = 1 − 12d2 for each d ∈ K, defining a Virasoro subalgebra Virc(d) → π. In
fact, this subalgebra is the kernel of a screening operator

Qβ =

∫
Vβ(z)dz : π → πβ ,

for some appropriately chosen β, conditions on which we determine below. Indeed, the operator
product expansions against each term are given by

1

2k
:b(z)b(z):Vβ(w) ∼

kβ2

2

Vβ(w)

(z − w)2
+

∂wVβ(w)

z − w
and

d√
k
∂zb(z)Vβ(w) ∼ −d

√
kβ

Vβ(w)

(z − w)2
,

so that after integrating by parts we have

T d(z)Vβ(w) ∼ ∂w

(
Vβ(w)

z − w

)
+

(
kβ2

2
− d

√
kβ − 1

)
Vβ(w)

(z − w)2
.

Thus, we find that Virc(d) ⊂ kerQβ if and only if kβ2

2 − d
√
kβ − 1 = 0, which uniquely determines

d =

√
kβ

2
− 1√

kβ
and thus T β(z) =

1

2k
:b(z)b(z): +

(
β

2
− 1

kβ

)
∂zb(z)

is the induced form of T d(z). Note that this expression is evidently invariant under β 7→ − 2
kβ .

In particular, the Feigin-Frenkel screening operator for sl2 at level κ identifies with the residue

Qβ of the exponential vertex operator Vβ(z) for β = −
√

2
k(κ+2) , which indeed screens a Virasoro

subalgebra of central charge c(κ) in πk.

Generalizing the preceding example, we have the following seminal result of Feigin-Frenkel [FF96],
which provides a free field realization of the principal affineW -algebra of glr. The screening operator
constructions for the family of vertex algebras V(Y, S) from divisors S on toric Calabi-Yau threefolds
Y defined in Section 3 below should be understood as a broad generalization of this result, which
corresponds to the case Y = C3 and S = r[C2], as we will soon explain:

Theorem 2.6. [FF96] There is a canonical embedding of vertex algebras

W κ
fprin

(g) → πh

with image characterized as the intersection of kernels

W κ
fprin

(g) =

r⋂

i=1

ker(Qαi) for Qαi =

∫
Vαi(z) dz : πh → πh,αi

where πh,αi and Vαi(z) are the Heisenberg algebra module and exponential vertex operator determined
by the positive simple roots αi for i = 1, ..., r = rk(g), as in Equations 2.3 and 2.4, respectively.

The geometric interpretation of this result provided by the proof of the AGT conjecture in [SV13],
[MO19], and [BFN14] is the primary motivation for the construction of V(Y, S) explained in the
succeeding section below. We provide an analogous interpretation for the generalized Wakimoto
realization of arbitrary affine W -algebras in Section 5.2 below.
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3. The screening operator construction of V(Y, S)

Let Y be a resolution of an affine, toric Calabi-Yau threefold X satisfying the hypotheses of the
companion paper [BR23]. Denote by (C×)3 the torus acting on Y , T = (C×)2 ⊂ (C×)3 the maximal

subtorus that preserves the Calabi-Yau structure, and define R = H•
T (pt), K = H̃•

T (pt) its field of
fractions, so that we have

(3.1) R = K[ε1, ε2, ε3]/IT and K = K(ε1, ε2, ε3)/IT ,

where IT denotes the ideal generated by weights of (C×)3 which vanish on T . We choose conventions
such that IT = (ε1 + ε2 + ε3) and thus ε3 = −ε1 − ε2, and further we let

• D be the set of irreducible toric surfaces Sd in Y ,
• C the set of compact, irreducible toric curves Ci in Y ,
• S the set of non-compact, irreducible toric curves Cs in Y , and
• F the set of torus fixed points y in Y .

For each irreducible toric surface Sd corresponding to d ∈ D, denote by Cd ⊂ C the set of compact,
irreducible toric curves Ci in Sd, and similarly Sd ⊂ S and Fd ⊂ F the sets of non-compact,
irreducible toric curves and torus fixed points in Sd. Similarly, for each toric curve Ci or Cs

corresponding to i ∈ C or s ∈ S, let Fi or Fs ⊂ F denote the set of torus fixed points in Ci or Cs.
In particular, note that for i ∈ C we have that Fi = {0i,∞i} is given by two points corresponding
to 0 and ∞ under the identification Ci

∼= P1.
Let S be a toric effective Cartier divisor, with decomposition into irreducible components given

by

(3.2) S =
∑

d∈D
rd [Sd] ,

for some tuple of non-negative integers r = (rd) ∈ ND.

3.1. Lattice vertex algebras associated to irreducible divisors. For each irreducible toric
surface Sd in Y , we define the Heisenberg algebra

πd =
⊗

y∈Fd

πy where each πy = πky = Uky(ĝl1)⊗Uky (ĝl1)+
K

denotes a standard one dimensional Heisenberg algebra over the base field K, at level

(3.3) ky = − 1

εT (TySd)
∈ K

given by the inverse of the T -equivariant Euler class εT of the tangent space TySd to Sd at y. We
also define the abelian Lie algebra hd over K by

hd = H̃•
T (S

T
d ) =

⊕

y∈Fd

Ky where Ky = H̃•
T (y)

denotes the T equivariant cohomology of the point y, equipped with the pairing

(·, ·) : hd ⊗K hd → K defined by (1y, 1y′) =

{
ky if y = y′

0 otherwise
,

and we have the equivalent definition

πd = V1(hd) = U1(ĥd)⊗U1(ĥd)+
K ∼= K[byn]

y∈Fd
n≤−11 ,
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where we recall that U1(ĥd)+ ⊂ U1(ĥd) denotes the commutative subalgebra

U1(ĥd)+ = K[byn]
y∈Fd
n≥0 .

For each compact, irreducible toric curve Ci in Sd corresponding to i ∈ Cd, let NCiSd denote the
normal bundle to Ci in Sd, and define

λi : hd → K by λi(1y) =

{
εT (NCi,ySd) if y ∈ Fi

0 otherwise
,

where we recall that Fi = {0i,∞i} ⊂ F denotes the set of fixed points y ∈ Y T contained in the
curve class Ci corresponding to i ∈ C. Thus, for each l ∈ ZCd there is a vertex algebra module over
πd defined by

πd
l = U1(ĥd)⊗U1(ĥd)+

Kl
∼= K[byn]

y∈Fd
n≤−11l

where Kl denotes the one dimensional U1(ĥd)+ module on which by0 acts by λl(1y) =
∑

i liλi(1y)
and byn acts by zero for all n ≥ 1.

We define for each i ∈ Cd and m ∈ ZCd , the corresponding fields

(3.4) V d
i (z) = : exp

(
εT (NCi,0iSd)ϕ

0i(z) + εT (NCi,∞iSd)ϕ
∞i(z)

)
: ∈ Hom(πd

m, πd
m+[i])[[z

±1]] ,

and more generally, for l =
∑

i li[i] ∈ ZCd where [i] ∈ ZCd denotes the generator corresponding to
i ∈ Cd, the fields

V d
l (z) = :

∏

i∈Cd

V d
i (z)

li : = : exp(
∑

y∈Fd

λl(1y)ϕ
y(z)): ∈ Hom(πd

m, πd
m+l)[[z

±1]] ,

where ϕy denotes the formal bosonic fields corresponding to the Heisenberg fields Jy which generates
the subalgebras πy of πd for each torus fixed point y ∈ Fd, and we recall that Fi = {0i,∞i} ⊂ Fd

Figure 1. The resolution Y2,0 → X2,0 = {xy − z2} × C and its toric subvarieties

Sd1

Sd2

Sd3

Sd4

Ci1
y1

y2

Cs2

Cs3

Cs4

Cs1

D = {d1, d2, d3, d4}

C = {i1}

S = {s1, s2, s3, s4}

F = {y1, y2}
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denotes the subset of the fixed points which are contained in the compact curve class Ci for each
i ∈ Cd; again, we remind the reader that the expression in each of the preceding equations is a
shorthand notation for the fields defined as in Equations 2.4 and 2.7.

In summary, we obtain fields Jy(z) for each y ∈ Fd and Vi(z) for each i ∈ Cd satisfying
(3.5)

Jy(z)Jy′(w) ∼ − δy=y′

εT (TySd)

1

(z − w)2
Jy(z)V d

i (w) ∼
(
εT (NCi,ySd)

εT (TySd)
δy=0i +

εT (NCi,ySd)

εT (TySd)
δy=∞i

)
Vi(w)

z − w

as well as for each pair i, j ∈ Cd the relation

V d
i (z)V

d
j (w) = (z−w)χ(i,j):V d

i (z)V
d
j (w): where χ(i, j) =

∑

y∈Fi,y′∈Fj

δy=y′
εT (NCi,ySd)εT (NCj ,ySd)

εT (TySd)
.

In fact, we have the following elementary identification, which motivates the above conventions:

Proposition 3.1. Let i, j ∈ Cd corresponding to compact, irreducible toric curves Ci, Cj in Sd.
Then

χ(i, j) = −⟨[Ci], [Cj ]⟩Sd
∈ Z

where [Ci] ∈ H2(Sd;Z) denotes the fundamental class of Ci and ⟨·, ·⟩Sd
: H2(Sd;Z)×2 → Z denotes

the intersection pairing.

For each irreducible divisor Sd for d ∈ D we define the total Heisenberg subalgebra πd by

(3.6) πd = πd
0 = ⊗y∈Fd

πy .

Moreover, we introduce the πd module

Πd =
⊕

l∈ZCd

πd
l
∼=
⊕

l∈ZCd

K[byn]
y∈Fd
n≤−11l

and extend the above fields to define vertex algebra intertwiners

Y (by1n1
· · · byjnj1l, z) = :

(
j∏

k=1

1

(−nk − 1)!
∂−nk−1
z byk(z)

)
V d
l (z) : ∈ Hom(πd

m, πd
l+m)[[z±1]] ,

which define a lattice type vertex algebra on Πd, noting the required integrality follows from Propo-
sition 3.1, and moreover by loc. cit. we have:

Corollary 3.2. There is a natural isomorphism

Πd
∼= πK ⊗K

(
VH2(Sd;Z),χ ⊗C K

)
.

Definition 4. Let S be a toric divisor in Y given by the decomposition of Equation 3.2. We define
the free field vertex algebra Π(Y, S) associated to Y and S to be

Π(Y, S) =
⊗

d∈D
Π⊗rd

d =
⊗

d∈D,jd=1,...,rd

Πjd
d ,

and similarly define the total Heisenberg subalgebra πS to be

πS =
⊗

d∈D
π⊗rd
d =

⊗

d∈D, jd=1,...,rd

πjd
d .



VERTEX ALGEBRAS FROM DIVISORS ON CALABI-YAU THREEFOLDS 19

It will also be useful to introduce the following more detailed notation to describe the vertex
algebra Π(Y, S): define the abelian Lie algebra

hS =
⊕

d∈D
H̃•

T (S
T
d )

⊕rd =
⊕

d∈D,y∈Fd

K⊕rd
y =

⊕

d∈D,y∈Fd,jd=1,...,rd

Kjd
y

equipped with the pairing

(·, ·) : hS ⊗K hS → K defined by (1jdy , 1
jd′
y′ ) =

{
ky if d = d′, y = y′ and jd = jd′

0 otherwise
,

and we have the equivalent definition

(3.7) πS = V1(hS) = U1(ĥS)⊗U1(ĥS)+
K ∼= K[by,jdn ]d∈D,y∈Fd,jd=1,...,rd

n≤−1 1 .

To simplify this notation, we introduce the index set

FS =
⊔

d∈D

⊔

j=1,...,rd

Fd ,

for which the elements y ∈ FS can be interpreted as T -fixed points in the disjoint union of the
irreducible components of the divisor S, in terms of which we have simply

hS =
⊕

y∈FS

Ky and πS =
⊗

y∈FS

πy =
⊗

y∈FS

K[bn]n≤11y = K[byn]
y∈FS
n≤1 1 .

Figure 2. The resolution Y2,0 → X2,0 = {xy − z2} ×C and its vertex algebra data

V
jd4
i1

V
jd2
i1

Jy1,jd1

Jy1,jd2

Jy1,jd4

Jy2,jd2

Jy2,jd3

Jy2,jd4

Q
id1 ,jd1
s2 , Q

jd1 ,jd2
s2 , Q

id2 ,jd2
s2

Q
id2 ,jd2
s3 , Q

jd2 ,jd3
s3 , Q

id3 ,jd3
s3

Q
id4 ,jd4
s4 , Q

jd4 ,jd3
s4 , Q

id3 ,jd3
s4

Q
id4 ,jd4
s1 , Q

jd4 ,jd1
s1 , Q

id1 ,jd1
s1



20 DYLAN BUTSON

Further, for each d ∈ D, jd ∈ {1, ..., rd}, and i ∈ Cd corresponding to a compact, irreducible curve
Ci contained in (the jthd copy of) Sd, we define

λjd
i : hS → K by λjd

i (1
jd′
y ) =

{
εT (NCi,ySd) if d = d′, y ∈ Fi and jd = jd′

0 otherwise
,

where we recall that Fi = {0i,∞i} ⊂ F denotes the set of fixed points y ∈ Y T contained in the
curve class Ci, and that εT (NCi,ySd) denotes the equivariant Euler class of the fibre of the normal
bundle to Ci in Sd at the point y.

To simplify this notation, we introduce the index set

CS =
⊔

d∈D

⊔

j=1,...,rd

Cd ,

for which the elements i ∈ CS can be interpreted as compact, irreducible toric curves Ci in the
disjoint union of the irreducible components of the divisor S, and note that for each i ∈ CS we have
the corresponding subset Fi = {0i,∞i} ⊂ FS . In terms of this notation, for each i ∈ CS we can
equivalently define

(3.8) λi : hS → K by λi(1y) =

{
εT (NCi,ySd) y ∈ Fi

0 otherwise
,

and moreover for each l ∈ ZCS we can define the corresponding module

πS,l = U1(ĥS)⊗U1(ĥS)+
Kl

∼= K[byn]
y∈FS
n≤−11l

where Kl denotes the one dimensional U1(ĥS)+ module on which by0 acts by λl(1y) =
∑

i∈CS
liλi(1y)

for each y ∈ FS . In terms of these modules, we can decompose Π(Y, S) as a module over πS by

Π(Y, S) =
⊕

l∈ZCS

πS,l .

3.2. Screening operators associated to curve classes. For each non-compact, irreducible toric
curve Cs in Y for s ∈ S, and each pair Sd+ and Sd− of irreducible components of the divisor S
corresponding to d+, d− ∈ D, jd+ ∈ {1, ..., rd+} and j′d− ∈ {1, ..., rd−}, we also define

λ
jd+ ,jd−
s : hS → K by λ

jd+ ,j′d−
s (1jey ) =





εT (NCi,ySd+) if d+ = e, jd+ = je, and y ∈ Fi ∩ Fd+

−εT (NCi,ySd−) if d− = e, jd− = je, and y ∈ Fi ∩ Fd−

0 otherwise

.

We also write simply λs = λ
jd+ ,jd−
s when there is no risk of confusion. We define the analogous

module shifted by λs for each l ∈ ZFS by

πS,l+λs = U1(ĥS)⊗U1(ĥS)+
Kl+λs

∼= K[byn]
y∈FS
n≤−11l+λs

where Kl+λs denotes the one dimensional U1(ĥS)+ module on which by0 acts by λl(1y)+λ
jd+ ,jd−
s (1y),

and introduce the corresponding field Q
jd+ ,jd−
s (z) ∈ Hom(πS,l, πS,l+λs)[[z

±1]] defined by

Q
jd+ ,jd−
s (z) = : exp(

∑

y∈FS

λ
jd+ ,jd−
s (1y)ϕy(z)) = : exp

(
εT (NCs,ysSd+)ϕ

jd+
ys (z)− εT (NCs,ysSd)ϕ

jd−
ys (z)

)
: ,
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where we note that for each s ∈ S the non-compact irreducible toric curve Cs contains at most a
unique fixed point which we have denoted ys. This field defines a map of πS modules, and extends
to define a map of vertex algebra modules

W
jd+ ,jd−
s (z) ∈ Hom(Π(Y, S),Π(Y, S)λs)[[z

±1]] where Π(Y, S)λ =
⊕

l∈ZCS

πS,l+λ

is the Π(Y, S) module defined for each λ ∈ h∨S , and we note that Π(Y, S)0 = Π(Y, S) is the usual
vacuum module for the lattice vertex algebra. Thus, we obtain a putative screening operator

Q
jd+ ,jd−
s =

∫
Q

jd+ ,jd−
s (z)dz : Π(Y, S) → Π(Y, S)λs ,

for each non-compact, irreducible toric curve Cs in Y for s ∈ S, and each pair Sd+ and Sd− of
irreducible components of the divisor S.

3.3. The vertex algebras V(Y, S), factorization, and locality. Let S be a effective, toric
Cartier divisor, with decomposition into irreducible, reduced components given by

(3.9) Sred =
⊔

d∈DS

Sd so that [S] =
∑

d∈D
rd [Sd] ,

for some tuple of non-negative integers rS = (rd) ∈ ND. Further, fix a filtration F of the structure
sheaf OS of the divisor S, with subquotients Fk/Fk−1 given by structure sheaves of the irreducible
components OSdk

, and such that each induced extension OSdk
→ E → OSdk+1

is non-trivial, denoted

OS =
[
OSd1

< ... < OSdk
< ... < OSdN

]
,

for some ordered list of elements dk ∈ D in which each element d ∈ D occurs rd times; we interpret
the index k as an element of the ordered set {1, ..., N} where N =

∑
d∈D rd is the total number of

irreducible components.
Now, for each k = 1, ..., N − 1, and each non-compact, irreducible toric curve Cs contained in

Sdk ∩ Sdk+1
, which corresponds to a point sk ∈ Sdk ∩ Sdk+1

, let y ∈ Fs denote the unique toric
fixed point contained in Cs, and note that it defines two distinct elements yk and yk+1 ∈ FS coming
from the fixed points in Sdk and Sdk+1

, respectively. We let λsk : hS → K denote the corresponding

cocharacter and define the field Qsk ∈ Hom(Π(Y, S),Π(Y, S)λsk
)[[z±1]] by

Qsk(z) = : exp(
∑

y∈FS

λsk(1y)ϕy(z)) = : exp
(
εT (NCs,ySdk)ϕyk(z)− εT (NCs,ySdk+1

)ϕyk+1
(z)
)
: ,

as above, and similarly the corresponding screening operator

Qsk =

∫
Qsk(z)dz : Π(Y, S) → Π(Y, S)λsk

.

In summary, we define the total screening module and operator

Π1(Y, S) =

N−1⊕

k=1

⊕

sk∈Sdk
∩Sdk+1

Π(Y, S)λsk
and Q =

N−1∑

k=1

∑

sk∈Sdk
∩Sdk+1

Qsk : Π(Y, S) → Π1(Y, S)

and we can now state the main definition of this section, inspired by [GR19], [PR18] and [GR22]:
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Definition 5. Let Y be a toric Calabi-Yau threefold and S be an effective, toric Cartier divisor as
above. The vertex algebra V(Y, S) associated to Y and S is defined by

V(Y, S) = ker(Q) ⊂ Π(Y, S) .

We now explain two key properties of this construction, which we call factorization and locality:
The factorization property is a simple consequence of the definition, which holds formally in any

free field realization type construction, but it will play a crucial role in computations of examples
and in the comparison with the geometric definition of V(Y, S).

To begin, we fix k0 ∈ {1, ..., N − 1} and consider the expression for OS as an extension

0 → OR → OS → OT → 0

induced by the filtration F by defining the subsheaf and OR = Fk0 and quotient sheaf OT =
OS/Fk0 . Then OR and OT are themselves structure sheaves of effective toric Cartier divisors, with
induced filtrations

OR =
[
OSd1

< ... < OSdk0

]
and OT =

[
OSdk0+1

< ... < OSdN

]
,

and thus define vertex algebras V(Y,R) and V(Y, S), respectively. The factorization property is
given by the following proposition:

Proposition 3.3. There is a canonical embedding of vertex algebras

V(Y, S) → V(Y,R)⊗K V(Y, T ) ,

with image equal to the kernel of a screening operator Qsk0
: V(Y,R)⊗K V(Y, T ) → Π(Y, S)λk0

.

Proof. Let V(Y, S) = ker(QS) ⊂ Π(Y, S) be as above, and similarly for R and T , and note there is
a canonical isomorphism

Π(Y, S) = Π(Y,R)⊗K Π(Y, T ) .

It is a tautological property of the free field realization construction that there is an embedding

(3.10) ker(QS) =
n−1⋂

k=1

⋂

sk∈Sdk
∩Sdk+1

ker(Qsk) →
⋂

k ̸=k0

ker(Qsk) = ker(
∑

k ̸=k0

Qsk) .

Figure 3. The factorization property on the resolution Y2,0 → X2,0 = {xy−z2}×C

MS = MR +MT

LS = LR + LT

NS = NR +NT

KS = KR +KT

MR

LR

NR

KR

⊗
MT

LT

NT

KT
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Similarly, we note that the decomposition

Q̃R =

k0−1∑

k=1

∑

∈Sdk
∩Sdk+1

Qsk and Q̃T =
N∑

k=k0+1

∑

∈Sdk
∩Sdk+1

Qsk

satisfies the analogous property

ker(Q̃R) ∩ ker(Q̃T ) = ker(
∑

k ̸=k0

Qsk)

and moreover we have that

Q̃R|Π(Y,T ) = Q̃T |Π(Y,R) = 0 and Q̃R|Π(Y,R) = QR Q̃T |Π(Y,T ) = QT ,

so that we obtain the desired map composing that of Equation 3.10 with the natural isomorphisms

ker(Q̃R) ∩ ker(Q̃T ) ∼= (ker(QR)⊗Π(Y, T )) ∩ (Π(Y,R)⊗ ker(QT )) ∼= ker(QR)⊗ ker(QT ) .

Evidently the image of V(Y, S) = ker(QS) is given by the kernel of the induced screening operator

Qsk0
|ker(Q̃R)∩ker(Q̃T ) : V(Y,R)⊗K V(Y, T ) → Π(Y, S)λk0

.

□

We now formulate and prove the locality principle: Suppose Y admits a cover by two open toric
subvarieties Y1 and Y2 each satisfying the same hypotheses required of Y throughout, and such that
the intersection

Y1 ∩ Y2 ∼= (A1 \ {0})× A2

and the unique toric curve class C = (A1 \ {0}) × {(0, 0)} ⊂ Y1 ∩ Y2 has compact closure C in Y .
Define

S1 = Y1 ∩ S and S2 = Y2 ∩ S ,

and consider the corresponding vertex algebras V (Y1, S1) and V (Y2, S2). The locality property of
the vertex algebras V(Y, S) is given by the following proposition:

Proposition 3.4. There is a canonical embedding of vertex algebras

V(Y1, S1)⊗ V(Y2, S2) → V(Y, S)

such that V(Y, S) is a vertex algebra extension of V(Y1, S1)⊗V(Y2, S2), defined by a decomposition

V(Y, S) =
⊕

λ∈P+

V(Y1, S1)λ ⊗ V(Y2, S2)λ ,

where P+ ⊂ Zr is defined in Equation 3.11 below.

Proof. Note that Y1 ∩ Y2 contains no torus fixed points so that FY = FY1 ⊔ FY2 , and similarly
FS = FS1 ⊔ FS2 so that we have

hS = hS1 ⊕ hS2 and πS =
⊗

y∈FS

πy = (
⊗

y∈FS1

πy)⊗ (
⊗

y∈FS2

πy) = πS1 ⊗ πS2 ,

where πS1 ⊂ Π(Y1, S1) and πS2 ⊂ Π(Y2, S2) denote total Heisenberg subalgebras.
There are only two toric divisors in Y1 ∩ Y2 given by

S̊+
∼= (A1 \ {0})× {0} × A1 and S̊− ∼= (A1 \ {0})× A1 × {0} ,
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Y1 Y2

Sd+

Sd−

Sd1 Sd2

C

Figure 4. The locality principle for Y2,0 → X2,0 = {xy − z2} × A1

and their closures S+ = Sd+ and S− = Sd− correspond to some elements d+, d− ∈ D. The compact

curve class C is given by Ci for some i ∈ C, and corresponds to r = rd+ + rd− distinct points

i ∈ CS,∩ := (
⊔

jd+=1,...,rd+

{id+}) ⊔ (
⊔

jd−=1,...,rd−

{id−}) ⊂ CS =
⊔

d∈D,jd=1,...,rd

Cd ,

each of which defines λi : hS → K as in Equation 3.8, where id± ∈ Cd± denotes the element

corresponding to C. Note that all of the remaining compact curve classes Ci in Y are contained
completely in either Y1 or Y2, so that we have

CY = {y} ⊔ CY1 ⊔ CY2 and similarly CS = CS,∩ ⊔ CS1 ⊔ CS2 .

Thus, we can decompose

Π(Y, S) =
⊕

l∈ZCS

πS,l =
⊕

λ∈ZCS,∩

Π(Y, S1, S2)λ where Π(Y, S1, S2)λ =
⊕

l1∈CS1
,l2∈CS2

πS,(λ,l1,l2)

and moreover, we have a canonical identification of modules over πS = πS1 ⊗ πS2 given by

Π(Y, S1, S2)0 =
⊕

l1∈CS1
,l2∈CS2

πS,(0,l1,l2) =
⊕

l1∈CS1

⊕

l2∈CS2

πS1,l1 ⊗ πS2,l2 = Π(Y1, S1)⊗Π(Y2, S2) ,

noting that λi : hS → K for i ∈ CS1 vanishes on the subalgebra hS2 and vice versa. More generally,
we have the canonical identifications

Π(Y, S1, S2)λ =
⊕

l1∈CS1

⊕

l2∈CS2

πS1,l1+λ ⊗ πS2,l2+λ = Π(Y1, S1)λ ⊗Π(Y2, S2)λ

where we have denoted both the restrictions λ|hS1
: hS1 → K and λ|hS2

: hS2 → K by λ.
Finally, since none of the non-compact irreducible toric curve classes Cs for s ∈ S intersect

Y1 ∩Y2, we have the decomposition SY = SY1 ⊔SY2 and we have the corresponding decomposition
of the screening operator

QS = Q̃S1+Q̃S2 where Q̃S1 =

N1∑

k1=1

∑

sk1∈Sdk1
∩Sdk1+1

Qsk1
Q̃S2 =

N2∑

k2=1

∑

sk2∈Sdk2
∩Sdk2+1

Qsk .
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Moreover, it follows that we have

Q̃S1 |Π(Y2,S2) = Q̃S2 |Π(Y1,S1) = 0 and Q̃S1 |Π(Y1,S1) = QS1 Q̃S2 |Π(Y2,S2) = QS2 ,

so that the preceding decomposition yields the desired identification

ker(QS |Π(Y,S1,S2)0)
∼= (ker(QS1)⊗Π(Y2, S2)) ∩ (Π(Y1, S1)⊗ ker(QS2))

∼= V(Y1, S1)⊗ V(Y2, S2)

and in turn we obtain the claimed vertex algebra embedding

V(Y1, S1)⊗ V(Y2, S2) ∼= ker(QS |Π(Y,S1,S2)0) → ker(QS) = V(Y, S) .

More generally, for each λ ∈ ZCS,∩ we have

(kerQS |Π(Y,S1,S2)λ)
∼= (ker(Q̃S1 |Π(Y,S1)λ)⊗Π(Y2, S2))∩(Π(Y1, S1)⊗ker(Q̃S2 |Π(Y2,S2)λ))

∼= V(Y1, S1)λ⊗V(Y2, S2)λ ,

where we have defined

V(Y1, S1)λ = ker(Q̃S1 |Π(Y,S1)λ) and V(Y2, S2)λ = ker(Q̃S2 |Π(Y2,S2)λ) ,

so that the direct sum is parameterized by the subset

(3.11) P+ = {λ ∈ ZCS,∩ ∼= Zr | V(Y1, S1)λ ̸= {0}, V(Y2, S2)λ ̸= {0}} ⊂ ZCS,∩ ∼= Zr,

and we obtain the desired result. □

Remark 3.5. This shows that the vertex algebras V(Y, S) satisfy one of key properties predicted
in [GR19] and in more detail in [PR18] in this setting. Similarly, in the case that S consists of
a single reduced, irreducible component S0, the vertex algebra V(Y, r[S0]) appears to provide a
construction of the vertex algebra VOA[M4; g] associated to a choice of four-manifold M4 and ADE
type g conjectured to exist in [FG20], in type Ar−1 and for the four-manifold M4 = San

0 underlying
the analytification of S0, and it was explained in loc. cit. that for a four-manifold given by the
union along a common boundary M3 of two four-manifolds with boundary M±

4 ,

M4 = M+
4 ∪M3 M

−
4 , one expects VOA[M4] =

⊕

λ∈Λ(M3,r)

VOA[M+
4 ]λ+ ⊗VOA[M−

4 ]λ− ,

the associated vertex algebra is given by an extension of the tensor product VOA[M+
4 ]⊗VOA[M−

4 ],
parameterized by Λ(M3, r) ⊂ H1(M3;Z)⊕r. Thus, the preceding proposition restricted to the case
[S] = r[S0] gives a proof that this property holds for V(Y, r[S0]), as illustrated in Figure 5 below.

Figure 5. Differential geometric interpretation of the locality property

M4 = CP1 × C M+
4 = C2 M3 = S1 × C M−

4 = C2
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4. The Gaiotto-Rapcak conjecture

4.1. The geometric construction of V(Y, S) and its representations. In this section, we
explain a conjecturally equivalent geometric construction of the vertex algebras V(Y, S) , following
the constructions of Grojnowksi [Gro96] and Nakajima [Nak97], the mathematical formulation of
the AGT conjecture [AGT10], its proof by Schiffmann-Vasserot [SV13], and the generalization to
divisors in C3 of Rapcak-Soibelman-Yang-Zhao [RSYZ19], as outlined in the introduction.

Our proposed generalization of these constructions to divisors S in toric Calabi-Yau threefolds
Y relies on the results of the companion paper [BR23], which we now recall: for M ∈ DbCoh(Y )T

satisfying some hypotheses, we define a stack M(Y,M) parameterizing perverse coherent extensions
ofM , iterated extensions ofM and the compactly supported perverse coherent sheaves of Bridgeland
[Bri02]. We define framed variants Mf(Y,M), and prove that they are equivalent to stacks of
representations of framed quivers with potential (Qf

M ,W f
M ),so that we obtain natural cohomological

enumerative invariants as vanishing cycles homology groups of ζ-stable points

Vf,ζ(Y,M) =
⊕

n∈N
V
Qf
M

H•(M
f,ζ
n (Y,M), φW f

n
) and Zζ

M (q) =
∑

n∈NQf
M

qnχ(H•(M
f,ζ
n (Y,M), φW f

n
))

corresponding generating functions for these invariants, under some additional hypotheses. In sum:

Theorem 4.1. [BR23] Let M ∈ DbCoh(Y )T as above and let f be a framing structure for M . There
is a canonical framed quiver with potential (Qf

M ,W f
M ) and an equivalence of algebraic stacks

(4.1) M(Qf
M ,W f

M )
∼=−→ Mf(Y,M) ,

such that the equivalence of groupoids of K-points is defined on objects by a monad presentation.

In fact, we must consider the localized, A-equivariant analogue of the homology groups Vf,ζ(Y,M),
where A = Tf ×T for Tf the maximal torus of the group of automorphisms of the framing structure
f and localized with respect to the field of fractions K of H•

T (pt), in the notation of Equation 3.1.
For S an effective, toric Cartier divisor, with decomposition into irreducible components

(4.2) S =
⊔

d∈DS

Sd so that [S] =
∑

d∈DS

rd [Sd] ,

for some tuple of non-negative integers rS = (rd) ∈ NDS , we let M = Oss
Sred [1] = ⊕d∈DS

OSd
[1] be

the sum of structure sheaves of irreducible components Sd ⊂ Sred. The space

(4.3) M0(Y, S) = M0S ,ζVW(Y,Oss
Sred [1]) ,

of (rank rS , trivially framed, ζVW-stable) perverse coherent extensions of Oss
Sred [1] provides the

desired model in algebraic geometry for the space of rank rS instantons on Sred, and correspondingly

(4.4) V0
S = V0S ,ζVW(Y,Oss

Sred [1]) =
⊕

n∈N
V
Q0S

HA
• (M0

n(Y, S), φW
0S
n

)⊗H•
T (pt) K ,

provides the vector space on which we will define the geometric representation conjecturally iden-
tified with the representation of V(Y, S) on the module Π(Y, S), and similarly

ZVW
S (q) := Z0S ,ζVW

⊕dOSd
[1](q) =

∑

n∈NQ0S

qnχ(H•(M0
n(Y, S), φW

0S
n

))

defines a local Vafa-Witten-type invariant [VW94], generalizing that of Equation 1.1 to describe
torsion free sheaves of higher rank r and moreover with arbitrary first Chern class c1 ∈ H2(Sred,Z).
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The second main result of [BR23] is the general construction of a representation on the coho-
mological invariant Vf,ζ(Y,M) introduced above, of a certain universal algebra H(Y ) called the
Kontsevich-Soibelman cohomological Hall algebra. These representations induce the desired repre-
sentations of the algebra of modes U(V(Y, S)) of the vertex algebra V(Y, S).

The algebra H(Y ) has underlying vector space given by the vanishing cycles homology groups of
the full stack of representations of the quiver with potential (QY ,WY ) corresponding to Y ,

H(Y ) =
⊕

n∈NVQY

H•(Mn(Y ), φWY,n
) with Mn(Y ) = Mn(QY ,WY ) ,

where (QY ,WY ) is the unframed variant of the quivers with potential in Theorem 4.1 above, cor-
responding to the trivial object M = 0, and M(QY ,WY ) its stack of representations. For example,
for the threefold Y = |OP1(−1)⊕OP1(−1)| and divisor S = r|OP1(−1)|, we have

(4.5)





QY = V0 V1

A C

B D

WY = ABCD −ADBC

and





Q0S
O

Sred [1]
=

Cr

V0 V1

I A C

B D

J

W 0S
O

Sred [1]
= ABCD −ADBC + IJC

.

The algebra structure on H(Y ) is constructed in terms of natural correspondences

Mk,l(Y )

vv &&
Mk(Y )×Ml(Y ) Mk+l(Y )

inducing m : H(Y )⊗2 → H(Y ) ,

generalizing the correspondences and induced multiplication of Equations 1.14 and 1.15, respectively.
Similarly, following results of Soibelman [Soi16] we define analogous correspondences

Mf,ζ
k,l(Y,M)

vv ''

Mk(Y )×Mf,ζ
l (Y,M) Mf,ζ

k+l(Y,M)

and prove the following theorem constructing representations of H(Y ) on Vf,ζ(Y,M):

Theorem 4.2. [BR23] There exists a natural representation

ρM : H(Y ) → End(Vf,ζ(Y,M))

of the Kontsevich-Soibelman cohomological Hall algebra H(Y ) on the invariant Vf,ζ(Y,M).

In particular, in the example M = Oss
Sred [1] = ⊕d∈DS

OSd
[1] and f = 0S described above, we have:

Corollary 4.3. There exists a natural representation

ρ0S : H(Y ) → EndF (V0
S) ,

of the Kontsevich-Soibelman cohomological Hall algebra H(Y ) on V0
S = V0S ,ζVW(Y,Oss

Sred [1]).
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We define the subspace of spherical generators H1(Y ) ⊂ H(Y ) by

H1(Y ) =
⊕

|n|=1

Hn(Y ) =
⊕

i∈VQY

H1i(Y )

where 1i ∈ NVQY denotes the ith standard basis vector, and the spherical subalgebra

SH(Y ) = ⟨H1(Y )⟩ ⊂ H(Y ) ,

as the subalgebra generated by this subspace over the base ring, which in the present setting is
given by F , the field of fractions of H•

A(pt).
Let N ⊂ M1i(Y ) ⊂ M1(Y ) =

⊔
i∈VQY

M1i(Y ) be a closed substack admitting fundamental class

[N] ∈ H•(M1i(Y ), φWY,1i
) ⊂ H1(Y ) =

⊕

i∈VQY

H•(M1i(Y ), φWY,1i
) ,

for example given by N = M1i(Y ), and consider the endomorphism ρ([N]) ∈ EndF (V0
S) induced by

the representation of Corollary 4.3. There are natural correspondences

(4.6)

M[N]
n,n+1i

(Y, S)

p

''

q

ww
M0

n(Y, S) M0
n+1i

(Y, S)

,

where M[N]
n,n+1i

(Y, S) is the moduli space of short exact sequences of ζVW-stable representations

(4.7) 0 → F → E → F → 0 ,

such that E ∈ M0
n+1i

(Y, S), F ∈ M0
n(Y, S), and such that the subobject F , which thus necessarily

determines a K-point of M1i(Y ), is an element of the substack N. This is the desired generalization
of the correspondences of Nakajima recalled in Equation 1.3 for k = 1, and we have:

Proposition 4.4. The endomorphism ρ([N]) ∈ EndF (V0
S) is given by the direct sum of the maps

(4.8) αn([N]) = p∗ ◦ q∗ : HA
• (M0

n(Y, S), φW
0S
n

)⊗H•
T (pt) K → HA

• (M0
n+k(Y, S), φW

0S
n+k

)⊗H•
T (pt) K,

over n ∈ NVQY , induced by the correspondences of Equation 4.6.

Proof. This follows from a straightforward argument generalizing the proof of Theorem 5.6 in [YZ14].
□

These are the desired generalizations of the endomorphisms of Equation 1.4 for k = 1. More
generally, for k > 0 the analogous elements given by products of fundamental classes

[N1] · . . . · [Nk] ∈ SHk(Y ) = H1(Y ) · . . . · H1(Y ) ⊂ H(Y )

define endomorphisms induced by the analogous correspondences

(4.9)

M[N1]·...·[Nk]
n,n+k (Y, S)

p

((

q

ww
M0

n(Y, S) M0
n+k(Y, S)

,
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where M[N1]·...·[Nk]
n,n+k (Y, S) is the moduli space of short exact sequences as in Equation 4.7, such that

E ∈ M0
n+k(Y, S), F ∈ M0

n(Y, S), and such that the subobject F , which thus necessarily determines
a K-point of Mk(Y ), admits a composition series

F = [F0 < F1 < . . . < Fk]

with each object Fi determining a K-point in Ni ⊂ M1i(Y ).
To define the analogous Nakajima operators for k < 0, we need to make the following additional

assumption, which appears to hold in all examples of interest: For the remainder of this section,
we assume that the A-fixed subvariety M0

n(Y, S)
A is given by a set !P

n
of isolated fixed points.

In particular, the pullback map on Borel-Moore homology groups, with coefficients in the sheaf of
vanishing cycles, gives an isomorphism

V0
S,n

∼= HA
• (M0

n(Y, S), φW
0S
n
)⊗H•

A(pt) F
ι∗−→ HA

• (!Pn
, φ

W
0S
n ◦ι)⊗H•

A(pt) F =
⊕

λ∈ !P
n

HA
• (ptλ)⊗H•

A(pt) F ,

for each n ∈ NVQY , and letting Fλ denote a copy of the base field F , we have an identification
⊕

λ∈ !P
n

Fλ

∼=−→
⊕

λ∈ !P
n

HA
• (ptλ)⊗H•

A(pt) F defined by P 7→ P ∩ [ptλ] ,

for each P ∈ Fλ so that we obtain a natural basis for the module Vζ
d given by

V0
S,n =

⊕

λ∈ !P
n

Fλ and thus V0
S =

⊕

λ∈ !P

Fλ for !P =
⊔

n∈NVQY

!P
n
.

In particular, there is a natural pairing

(4.10) (·, ·) : Vζ ⊗F Vζ → F defined by ([ptλ], [ptµ]) = δλ,µEuA(Tλ) ,

where Tλ denotes the tangent space to Mζ
d(Q

f
M ,W f

M ) at the fixed point λ ∈ !P and EuA denotes the
A-equivariant Euler class. Let SHop(Y ) denote the opposite algebra of SH(Y ) and we have:

Proposition 4.5. There exists a natural action right action

(4.11) (ρ0S)
∗ : SHop(Y ) → EndF (Vζ) defined by f = eop 7→ ρ(e)∗

for each f = eop ∈ SHop, where ρ : SH → EndF (Vζ) is the representation of Theorem 4.2 and
(·)∗ : EndF (Vζ) → EndF (Vζ) denotes the adjoint with respect to the pairing of Equation 4.10 above.

Proof. This follows from the proof of Proposition 3.6 of [SV13], mutatis mutandis. □

Analogously to Corollary 4.3, the endomorphisms (ρ0S)
∗([N]) ∈ EndF (Vζ) are induced by analogous

correspondences to those of Equation 4.6.
Following the proof of the AGT conjecture from [SV13] and its generalization to divisors S ⊂ C3

in [RSYZ19], in [BR23] we prove that the representations of Corollary 4.3 and Proposition 4.5, which
are the analogues of the raising and lowering operators in the Heisenberg algebra construction of
Nakajima, respectively, extend to define a representation of a larger algebra YS(Y ) where

(4.12) YS(Y ) = YS(Y )− ⊗ YS(Y )0 ⊗ YS(Y )+ YS(Y )+ ∼= SH(Y ) YS(Y )− ∼= SH(Y )op ,

that is, there exists a natural representation ρ0S : YS(Y ) → EndF (V0
S) such that the restrictions to

YS(Y )+ and YS(Y )− identify with the representations of SH(Y ) and SH(Y )op above.
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We can now state the generalization to this setting of the standard mathematical formulation of
the AGT conjecture [AGT10], proved in [SV13] and [MO19]. We will call this statement the Gaiotto-
Rapcak conjecture, as although the authors did not explicitly conjecture this statement, the study
of this family of vertex algebras associated to divisors in toric Calabi-Yau threefolds, understood to
be generalizing those featuring in the original AGT conjecture, was initiated in [GR19] and many
important aspects of the correspondence were studied in the subsequent work of Gaiotto, Rapcak
and their collaborators (see for example [RSYZ19], [GR22], [Rap19], [PR18], [CG20], and [GRZ23]):

Conjecture 4.6 (Gaiotto-Rapcak). There exists a natural representation

ρ : U(V(Y, S)) → EndF (V0
S)

of the algebra of modes U(V(Y, S)) of the vertex algebra V(Y, S) on V0
S, inducing an isomorphism

U(V(Y, S)) ∼=−→ ρ(U(V(Y, S))) ∼=−→ ρ0S(YS(Y ))

and such that V0
S identifies with Π(Y, S), the free field module for V(Y, S).

Following the observations above, the algebra ρ0S(YS(Y )) ⊂ EndF (V0
S) is by definition the subal-

gebra generated over F by endomorphisms induced by correspondences of the type in Equation 4.6
above. Thus, this conjecture asserts that the algebra of modes U(V(Y, S)) of the vertex algebras
V(Y, S) defined in Section 3 is equivalent to the algebra generated by the Nakajima-type operators
introduced above, generalizing the proof of the AGT conjecture in [SV13]. In the example Y = C3,
this is the generalization proved in [RSYZ19], on which our general approach is modelled.

We now describe the analogous conjectural geometric construction of more general vertex algebra
modules over V(Y, S), as outlined in the introduction. Recall that in the definition of V0

S in Equation
4.4, we fixed the choice of trivial framing structure f = 0S of rank rS determined by the divisor S.
In fact, for each choice of framing structure f of rank rS satisfying some appropriate hypotheses,
there exists a moduli space of f-framed, ζVW-stable, perverse coherent extensions of M = Oss

Sred [1],

(4.13) Mf(Y, S) = Mf,ζVW(Y,Oss
Sred [1])

generalizing those of Equation 4.3, and their corresponding homology groups

(4.14) Vf
S = Vf,ζVW(Y,Oss

Sred [1]) =
⊕

n∈N
V
Qf
S

HA
• (Mf

n(Y, S), φW f
n
)⊗H•

T (pt) K ,

where (Qf
S ,W

f) denotes the corresponding framed quiver with potential as in Theorem 4.1.
These satisfy the following analogue of Corollary 4.3 of Theorem 4.2:

Corollary 4.7. There exists a natural representation

ρ : H(Y ) → EndF (Vf
S) ,

of the Kontsevich-Soibelman cohomological Hall algebra H(Y ) on Vf
S = Vf,ζVW(Y,Oss

Sred [1]).

Further, Proposition 4.5 again applies in this case, so that we obtain the putative geometric con-
struction of the conjectural representation, precisely as above:

Conjecture 4.8. There exists a natural representation

ρfS : U(V(Y, S)) → EndF (Vf
S)

of the algebra of modes U(V(Y, S)) of the vertex algebra V(Y, S) on Vf
S, inducing an isomorphism

ρfS(U(V(Y, S)))
∼=−→ ρ(YS(Y )) .
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Y2,0 → X2,0 = {xy − z2} × C

⊂

Sµ

M0 = µ1 + µ2

M1 = µ2

KM1

QfSµ = V0 V1

KM0

W fSµ =

I

•K
E

J0

A C

B D

F

J1 J2

I0•

G

E(BC −DA) + F (AD − CB) + IJ1A
+IJ2C + I0J0D + I0KJ1 + I0GJ0

Figure 6. The toric divisor Sµ in Y2,0 and framed quiver with potential (QfSµ ,W fSµ )

Inspired by the construction of [CCDS21], in [BR23] we observed that for each divisor S there
is a natural framing structure fS of rank rS , determined by the object OS [1] itself, considered as
an iterated extension of rd copies of each of the objects OSd

[1], or equivalently the summands of
Oss

Sred [1] = ⊕d∈DS
OSd

[1], where we recall that rS = (rd)d∈DS
is determined by the coefficients of the

decomposition [S] =
∑

d∈DS
rd[Sd]. We denote the corresponding representation by simply

VS = VfS
S = VfS ,ζVW(Y,Oss

Sred [1]) ,

and we have the following variant of the preceding conjecture, which gives a geometric construction
of the vacuum module of V(Y, S):

Conjecture 4.9. The representation of Conjecture 4.8 above,

ρS : U(V(Y, S)) → EndF (VS) ,

identifies VS with the vacuum module for the vertex algebra V(Y, S).

In the example Y = Y2,0 = Ã1×A1 = |OP1(−2)⊕OP1 | with divisor Sµ determined by the labelling
of the faces of the moment polytope as on the left side of Figure 6, the corresponding quiver with
potential is that given the right side of loc. cit.. This is a special case of the family of examples
considered in Section 5.2, for which the corresponding vertex algebra is given by W κ

fµ
(glM0

), the

affine W -algebra determined by fµ ∈ NglM0
with two Jordan blocks of sizes µ1 and µ2.

More generally, in the setting of Proposition 3.3, given an expression for OS as an extension

0 → OR → OS → OT → 0

we obtain an alternative framing structure fR,T of rank rS corresponding to the iterated extension of
the summands of Oss

Sred [1] given by the partial semisimplification OR[1]⊕OS [1], and we conjecture:

Conjecture 4.10. The representation of Conjecture 4.8 above,

ρ
fR,T

S : U(V(Y, S)) → EndF (V
fR,T

S ) ,

identifies VfR,T

S with the restriction of the vacuum module for the vertex algebra V(Y,R)⊗KV(Y, T ).
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The inductive application of the preceding conjecture implies the existence of compatible geo-
metric constructions of the vacuum modules of all the relative free field realizations of the algebras
V(Y, S) defined by the analogous inductive application of Proposition 3.3. In particular, in the
limiting case in which we consider the full semisimplification, the corresponding framing structure
f is given by the trivial framing structure 0S of rank rS , that is,

Oss
S [1] = ⊕d∈DS

O⊕rd
Sd

[1] determines the framing structure f = 0S ,

and the analogue of Conjecture 4.10 is simply the original statement of the Gaiotto-Rapcak conjec-
ture given in Conjecture 4.6 above; in the example of Figure 7, this is the bottom right quiver.

In the special case that Y = Y2,0 and S = Sµ as in Figure 6 for µ = (µ1, µ2) = (1, 1), for which
we prove in Theorem 5.8 that the corresponding vertex algebra is given by the affine algebra for
sl2, that is V(Y2,0, S2,1,0,0) = V κ(gl2), the quiver with potential corresponding to each of the partial
free field realizations summarized in Figure 16 are given in Figure 7 below.

In the remainder of this section, we outline a general approach to these conjectures, and prove a
few special cases thereof as well as several partial results towards the general statement.

Figure 7. The framings f and quivers (Qf,W f) for the representations of Figure 16

fSµ =

(
0 0 0
1 0 0
0 1 0

)

K1

QfSµ = V0 V1

K2

W fSµ =

I

•K E

J0

A C

B D

F

J1 J2

I0
•

G

E(BC −DA) + F (AD − CB) + IJ1A

+IJ2C + I0J0D + I0KJ1 + I0GJ0

f2 =

(
0 0 0
1 0 0
0 0 0

)

K1

Qf2 = V0 V1

K2

W f2 =

I

•K E

J0

A C

B D

F

J1 J2

I0

E(BC −DA) + F (AD − CB) + IJ1A

+IJ2C + I0J0D + I0KJ1

f1 =

(
0 0 0
0 0 0
0 1 0

)

K1

Qf1 = V0 V1

K2

W f1 =

I

E

J0

A C

B D

F

J1 J2

I0

•

G

E(BC −DA) + F (AD − CB) + IJ1A

+IJ2C + I0J0D + I0GJ0

f0 =

(
0 0 0
0 0 0
0 0 0

)

K1

Qf0 = V0 V1

K2

W f0 =

I

E

J0

A C

B D

F

J1 J2

I0

E(BC −DA) + F (AD − CB) + IJ1A

+IJ2C + I0J0D



VERTEX ALGEBRAS FROM DIVISORS ON CALABI-YAU THREEFOLDS 33

4.2. Lattice vertex algebras and Hecke modifications along curves for rank 1 sheaves.
In this section, we outline a proof of Theorem 4.16, which establishes Conjectures 4.6 and 4.9 in
the case that the divisor S ⊂ Y consists of a single reduced, irreducible component S = S0, and
correspondingly the vertex algebra V(Y, S0) = Π(Y, S0) is given by a lattice-type vertex algebra
generated by H•(S0;Z). Note that there is a unique framing structure f0 := fS0 = 0S0 of rank 1 on
any quiver, and correspondingly the vacuum and free field module for V(Y, S0) = Π(Y, S0) are by
definition the same, so that the two aforementioned conjectures coincide in this case. Recall that
(4.15)

M0(Y, S0) = MζVW,0(Y,OS0 [1]) and VS0 = V0,ζVW(Y,OS0 [1]) = HT
• (M0(Y, S0), φW 0

S0
)

denote the corresponding moduli spaces of ζVW-stable, rank 1, trivially- (or f0-) framed perverse co-
herent extensions of OS0 [1], and their T -equivariant Borel-Moore homology groups with coefficients

in the sheaf of vanishing cycles φ
W

f0
S0

for the potential W f0
S0
. We begin with some generalities:

Remark 4.11. We now explain a crucial principle that informs several properties of the geometric
constructions of the preceding section, which will lead to the geometric analogues of the factorization
and locality properties of V(Y, S). The basic idea, which is somewhat tautological, is the following:

Algebraic properties of the algebras H(Y ) and YS(Y ) and their representations Vf
S which depend on

the geometry of the threefold Y and divisor S only in some open set U ⊂ Y can by computed in

terms of the algebras H(U) and YS×Y U (U) and their representations VfU
S×Y U .

A systematic explanation of the precise statement and implications of this general principle is
beyond the scope of the present work, but we will use several statements of this form throughout
the proofs of various partial results towards establishing Conjecture 4.8 and its variants from the
preceding section. The first example of this is the following:

Let Y → X be a toric Calabi-Yau threefold resolution satisfying the hypotheses of the companion
paper [BR23], and let U ⊂ Y be an open, toric subvariety such that U itself satisfies the same
hypotheses. Note that there is a canonical inclusion

M(U)
∼=−→ MU (Y ) ⊂ M(Y ) induced by PervCohcs(U)

∼=−→ PervCohcs(Y )U ⊂ PervCohcs(Y ) ,

the equivalence of PervCohcs(U) with the full subcategory PervCohcs(Y )U of compactly supported
perverse coherent sheaves on Y with cohomology sheaves supported on U ⊂ Y .

Further, suppose S0 is an irreducible, reduced, toric Cartier divisor on Y , let

(4.16) SU = S0 ×Y U and note there is Mf0(U, SU )
∼=−→ Mf0

U (Y, S0) ⊂ Mf0(Y, S0)

a natural inclusion with image Mf0
U (Y, S0) the substack of Mf0(Y, S0) parameterizing the iterated

extensions of OS0 [1] with compactly supported perverse coherent sheaves supported on U ⊂ Y .
Under these hypotheses, we assume that our choice of stability conditions ζVW for each of framed

quivers with potential (Q
0S0
S0

,W f0
S0
) satisfy the following natural property:

Definition 6. A choice of stability conditions ζ and ζU for the quivers with potential (Qf0
S0
,W f0

S0
)

and (Qf0
SU

,W f0
SU

) is called locally compatible if the map of Equation 4.16 induces an isomorphism

(4.17) Mf0,ζU (U, SU )
∼=−→ Mf0,ζ

U (Y, S0) ⊂ Mf0,ζ(Y, S0) ,

and additionally if S0 ⊂ U so that SU
∼= S0 we require Mf0,ζ

U (Y, S0) = Mf0,ζ(Y, S0).



34 DYLAN BUTSON

If we choose stability conditions for which the corresponding moduli spaces admit a common geo-
metric description intrinsic to S0 that is manifestly local, one can hope to deduce such identifications
geometrically. Indeed, by definition our putative family of stability conditions ζVW are chosen such
that the spaces M0(Y, S0) = Mf0,ζVW(Y, S0) are equivalent to moduli spaces of rank 1 torsion free

sheaves E on S0 of arbitrary first and second Chern class, with an isomorphism φ : Ẽ∨∨ ∼=−→ OS0 .
The hypotheses of Definition 6 imply the following key locality result, which we use in the proof

of Theorem 4.16 below, establishing Conjectures 4.6 and 4.9 for reduced, irreducible divisors S0:

Proposition 4.12. The cohomological Hall algebra H(U) is a naturally a subalgebra of H(Y ), and
the map of Equation 4.17 induces an isomorphism

(4.18) VSU
= HT

• (M
f0,ζVW(U, SU ), φWSU

)
∼=−→ VS0,U := HT

• (M
f0,ζVW
U (Y, S0), φWS0

) ⊂ VS0

of H(U)-representations, where in particular VS0,U defines a subrepresentation of the restriction of
the H(Y )-representation VS0 to H(U).

A detailed proof is orthogonal to the goals of this paper and we defer it to future work, but
the main idea is a straightforward base change argument relating the correspondences defining the
representations ofH(U) andH(Y ). Together with the latter assumption of Definition 6, this implies:

Corollary 4.13. Suppose S0 is supported on U ⊂ Y so that SU = S0 ×Y U = S0. Then the map of
Equation 4.18 defines an isomorphism of H(U)-representations

VSU
= HT

• (M
f0,ζVW(U, SU ), φWSU

)
∼=−→ VS0 = HT

• (M
f0,ζVW(Y, S0), φWS0

) ,

where the latter is the restriction of the H(Y )-representation to H(U).

This reduces the proof of the Gaitto-Rapcak Conjecture 4.6 for divisors S = S0 with a single
reduced, irreducible component to computations in the following examples of (Y, S0):

(4.19) (C3,C2), (Y1,1, |OP1(−1)|), (Y2,0, |OP1 |), (Y2,0, |OP1(−2)|), (Ym,n, Ãm−1,n) , (Y
∗, S∗) ,

where Ãm−1 = Ãm−1,0 denotes the resolved type Am−1 singularity, Ãm−1,n denotes its iterated
blowup at at n T -fixed points, Ym,n → Xm,n denotes a toric, Calabi-Yau resolution of the threefold

singularity Xm,n = {xy − zmwn}, and S∗ ⊂ Y ∗ = ˜C3/(Z2 × Z2) is one additional isolated example,
which we do not consider in the present work; these examples exhaust the local models for reduced,
irreducible divisors S0 ⊂ Y occurring in the class of toric Calabi-Yau threefolds we consider.

In fact, we will use Proposition 4.12 above to outline a general proof of Theorem 4.16, which does
not depend on explicit calculations exhausting the above list of examples, but we begin by outlining
the explicit computation in the first two examples in the list, to introduce the main structure of the
underlying examples.

Example 4.14. In the simplest example (Y, S0) = (C3,C2), the framed quiver with potential
(Q0

C2 ,W
0
C2) is given by that of Equation 1.23 in the case r = 1, for which the dimensional reduction

isomorphism recalled in Equation 1.26, as the r = 1 special case of that of Equation 1.27, induces
an isomorphism

(4.20) VC2 =
⊕

n∈N
HT

• (M0
n(C3,C2), φW 0

[C2]
)⊗H•

T (pt) F
∼=−→
⊕

n∈N
HT

• (Hilbn(C2))⊗H•
T (pt) F ,

where we choose the stability condition ζVW defining M0
n(C3,C2) to be that corresponding to the

standard stability condition for the ADHM quiver identifying the resulting moduli space of stable
presentations of dimension n with Hilbn(C2).
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The set of T fixed points in Hilbn(C2) can be identified with the set !P
n
of partitions of length n,

which correspond to subschemes supported set-theoretically at the origin 0 ∈ (C2)T , whose structure
sheaves are given by irreducible, graded iterated extensions of O0 of length n corresponding to the
given partition. Thus, we obtain an isomorphism

(4.21) VC2

∼=−→
⊕

n∈N
HT

• (Hilbn(C2))⊗H•
T (pt) F ∼=

⊕

n∈N

⊕

λ∈ !P
n

Fλ
∼= F [bi]i≤−1 = πk

F

where Fλ = H•
T (ptλ) ⊗H•

T (pt) F , and πk
F denotes the vacuum module of the Heisenberg algebra

over the base field F at level k ∈ F , a polynomial algebra in variables bi for i ∈ Z≤−1, in keeping
with Equation 2.2. For example, for n = 7 the following are each of the corresponding data for a
particular partition λ ∈ !P

7
, where we omit the map from the framing vertex in the representation:

(4.22)

C2ε2

Cε2

B1//
B2

OO

Cε1+ε2

C0

B1 //
B2

OO

Cε1

B1 //
B2

OO

C2ε1

B1 // C3ε1

7→ (y3, xy2, x2y, x4) 7→ y2

y xy

1 x x2 x3

7→ b3−1b
2
−2b−3b−4 .

The correspondences of Equation 4.9 and the induced endomorphisms of Equation 4.8 for VC2

are precisely those of the original arguments of Grojnowski [Gro96] and Nakajima [Nak97] recalled
in the introduction in Equations 1.3 and 1.4, respectively, and thus by Theorem 1.1 the level k ∈ F
is negative the equivariant norm of [C2] ∈ HT

• (C2) with respect to the intersection pairing,

(4.23) k = −⟨[C2], [C2]⟩ = − 1

εiεj
,

where i, j ∈ {1, 2, 3} are determined by the choice of toric divisor C2 ⊂ C3. In fact, in this case one
can explicitly calculate the commutators of the generators bk = αk([C2]) of Equation 1.4 and prove
the result, using the the presentation in terms of the localization theorem

(4.24) bn−k =
∑

(λ<µ)∈ !P
n,n+k

εT (TλHilbn)

εT (T(λ,µ)Hilbn,n+k)
: HT

• (Hilbn)⊗H•
T (pt) F → HT

• (Hilbn+k)⊗H•
T (pt) F .

Our goal in the remainder of this section is to generalize the preceding calculations to directly
check that the geometric construction in the preceding Section 4.1 defines the desired vertex algebra
Π(Y, S0) from Section 3.1 in the remaining examples listed in Equation 4.19. We begin with an
explicit check in one further example, then outline the analogous argument in the general case:

Figure 8. Reduced quiver and vacuum character for Y = C3 and S0 = C2

1

J0 C V
I

J

B1

B2

[B1, B2] + IJ = 0

ZVW
C2 (q) =

∏∞
k=1

1
1−qk
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Example 4.15. We now outline the analogous proof of Conjecture 4.6 in the case that the threefold
Y = Y1,1 = |OP1(−1)⊕OP1(−1)| → X1,1 = {xy−zw} and S0 = |OP1(−1)|, for which the associated
framed quiver with potential is that on the right hand side of Equation 4.5 with r = 1.

In this example, the dimensional reduction isomorphism recalled in Equation 1.26 above induces
(4.25)

V|OP1 (−1)| =
⊕

n0,n1∈N
HA

• (M0
n0,n1

(Y1,1, |OP1(−1)|), φW 0
|OP1 (−1)|

)⊗H•
A(pt)F

∼=−→
⊕

n0,n1∈N
HA

• (M(1,n0,n1)(QNY))⊗H•
A(pt)F ,

where M(1,n0,n1)(QNY) = M
∞ζ
(1,n0,n1)

(QNY) denotes the moduli space of ∞ζ-stable representations

of the framed quiver with relations QNY in Figure 9 below, such that dimV0 = n0, dimV1 = n1

and the framing vector space is of dimension r = 1; precisely this moduli space was considered by

Nakajima-Yoshioka [NY08], where they proved it is isomorphic to the moduli space M̂(1, ℓ, n) of
framed, rank 1 torsion free sheaves E on |OP1(−1)| with Chern classes c1(E) = ℓ and c2(E) = n:

(4.26) M(1,n0,n1)(QNY)
∼=−→ M̂(1, ℓ, n) for ℓ = n1 − n0 and n =

1

2
(n0 + n1 − ℓ2) ,

where we have chosen the stability condition ζVW defining M0
n0,n1

(Y1,1, |OP1(−1)|) to be that cor-
responding to the stability condition denoted by ∞ζ in loc. cit..

By Proposition 3.2 of [NY05], the T fixed points of M̂(1, ℓ, n) are of the form I(ℓC) = I⊗OO(ℓC)
for I a T fixed ideal sheaf of codimension n, defining a zero dimensional, T fixed subscheme denoted
ZI ⊂ S0 = |OP1(−1)|. Any such subscheme is supported set theoretically on the union of the two
distinct fixed points 0 and ∞, and thus is canonically decomposed as a disjoint union ZI = Z0⊔Z∞
with each T -fixed Zi supported at {i} corresponding to a partition λi as in the preceding example.

In summary, we have that for each ℓ ∈ Z and n ∈ N, the set of T fixed points !P
ℓ,n

= M̂(1, ℓ, n)T

is given by the set of pairs of partitions (λ0, λ∞) such that |λ0|+ |λ∞| := n0+n∞ = n. In particular
(4.27)

V|OP1 (−1)|
∼=−→

⊕

n∈N,ℓ∈Z

⊕

(λ0,λ∞)∈ !P
ℓ,n

F(ℓ,λ0,λ∞)
∼=
⊕

ℓ∈Z

( ⊕

n0∈N

⊕

λ0∈!P
n0

Fλ0

)

ℓ

⊗
( ⊕

n∞∈N

⊕

λ∞∈ !P
n∞

Fλ∞

)

ℓ

,

which is evidently consistent with our algebraic definition of the algebra V(Y, S0) for S0 = |OP1(−1)|.
We now explain the concrete proof of Conjecture 4.6 in this case using localization, analogous to
the proof in the case S0 = C2 recalled in Example 4.14 above.

Figure 9. Reduced quiver and vacuum character for Y = Y1,1 and S0 = |OP1(−1)|

J0 V

1

J∞

C

V0 V1

I

d

B1 B2

J

B1dB2 −B2dB1 + IJ = 0

ZVW
|OP1 (−1)|(q) =

∑
ℓ∈Z q

ℓ2

2
1∏∞

k=1(1−qk)2
.
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As in Equation 4.22, each representation of the quiver with relations in Figure 9 describes the
presentation of the corresponding torsion free sheaf as an iterated extension of the compactly sup-
ported perverse coherent sheaves corresponding to the vertices of the quiver, together with a single
copy of the structure sheaf OS0 [1], as explained in the companion paper [BR23]. For simplicity, we
will describe these presentations in terms of sheaves on S0 = |OP1(−1)| rather than Y = Y1,1, since
all such ζVW-stable extensions in this case are supported scheme-theoretically on S0. We still follow
the structural results described in loc. cit. in the three dimensional setting:

Let C = P1, ι : C → S0 = |OP1(−1)| denote the zero section, and to begin consider the rep-
resentations of the unframed variant of the reduced quiver of Figure 9, which corresponds to the
dimensional reduction of the quiver on the left side of Equation 4.5. The one dimensional represen-
tations determined by the vertices of this quiver correspond to the simple, compactly supported,
perverse coherent sheaves on S0 → Saff

0 in the sense of Bridgeland [Bri02], which are given by

F0 = ι∗OC and F1 = ι∗OC(−1)[1] ,

for the one dimensional, unframed representations of dimension (1, 0) and (0, 1), respectively.
The linear maps B1 and B2 are the Koszul dual generators to the standard arrows in the Beilin-

son quiver describing coherent sheaves on P1 in terms of representations of the Kronecker quiver
[Bei78]. For example, the structure sheaves of zero dimensional subschemes of C correspond to
quiver representations of equal dimension n0 = n1 such that d = 0, and in particular the structure
sheaf a single closed point c ∈ C can be expressed as a quiver representation, and correspondingly
an extension of the objects F0 and F1, given by

(4.28) C0 C1
B1

oo

B2oo
and F0 = ι∗OC → ιc∗Oc → ι∗OC(−1)[1] = F1 ,

respectively, where the values of the linear maps B1, B2 ∈ C determine c = B1/B2 ∈ P1; this was
the basic example motivating the definition of the perverse coherent heart in [Bri02].

Similarly, the line bundles ι∗OC(m) and ι∗OC(−m− 1)[1] for m ≥ 0 are determined by

(4.29) Cm+1
0 Cm

1
[id 0]
oo

[0 id]oo
and Cm

0 Cm+1
1

[ id
0
]

oo

[ 0
id
]

oo
,

respectively, which correspond to expressions for the desired sheaves as iterated extensions of the
simple objects F0 and F1: for example, for m = 0 they are the one dimensional representations
corresponding to F0 and F1 themselves as above, and for m = 1 they correspond to the extensions

O⊕2
C → OC(1) → OC(−1)[1] and OC → OC(−2)[1] → OC(−1)⊕2[1] ,

determined by the Euler-type short exact sequences of vector bundles on P1 given by

OC(−1) → O⊕2
C → OC(1) and OC(−2)[1] → OC(−1)⊕2[1] → OC [1] .

We now describe the geometric interpretation of the stable, framed representations of the reduced
quiver as torsion free sheaves. We focus on the graded representations, which correspond to the
T -fixed points in the corresponding moduli space of sheaves, for the choice of compatible bigrading

deg(B1) = (1, 0) deg(B2) = (−1, 0) deg(d) = (0, 1) deg(I) = (0, 0) deg(J) = (0, 1) .

To begin, recall that on the ℓ = 0 component a fixed point corresponds to the ideal sheaf IZ of
a zero dimensional subscheme Z = Z0 ⊔ Z∞, with each Zi supported set theoretically at the point
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{i} ⊂ C = P1 for i = 0,∞, which are determined by partitions λ0 and λ∞. As usual, the ideal
sheaves IZ , and their corresponding representations, can be expressed as an extensions

OZ → IZ [1] → OS0 [1] and correspondingly decompose as Cf
I−→ R

where Cf denotes the framing vector space and R denotes a representation of the unframed quiver
with potential corresponding to the compactly supported (perverse) coherent sheaf OZ . Thus, we
omit the map from the framing vertex when describing such quiver representations in order to
simplify notation, as in Equation 4.22 in the preceding example. The two fixed points for which R
is of the form in Equation 4.28 correspond to [OS0 → O{0}] or [OS0 → O{∞}], with graded quiver
representations and in turn coloured partitions

(4.30) C0,0 C1,ε1
B2oo or C1,−ε1

B1 // C0,0 and
0

or
0

.

The analogous descriptions for fixed points labelled by λ0 or λ∞ in the ℓ = 0 component are
(4.31)

C0,−2ε1+2ε2 C1,−ε1+2ε2

B2oo

C0,−ε1+ε2

d
OO

C1,ε2

B2oo B1// C0,ε1+ε2 C1,2ε1+ε2

B2oo

C0,0

d
OO

C1,ε1

B2oo B1 // C0,2ε1

d
OO

C1,3ε1

B2oo

or

C1,ε1+2ε2

B1 // C0,2ε1+2ε2

C1,ε2

B1// C0,ε1+ε2

d
OO

C1,−3ε1

B1 // C0,−2ε1 C1,−ε1

B2oo B1 // C0,0

d
OO

for example, which correspond to coloured partitions determining λ0 or λ∞, as for example
(4.32)

0

or

0

=⇒ λ0 =
x2

x xz

1 z

or λ∞ =
x̃2

x̃

z−1 1

for the representations of the preceding Equation 4.31.
Similarly, for each ℓ ≥ 0 the line bundle O(l) can be described in terms of such quiver represen-

tations as follows: let ℓC denote the degree ℓ Cartier divisor on S0 = |OP1(−1)| with [ℓC] = ℓ[C],
so that we have a short exact sequence

(4.33) OS0(−ℓ[C]) → OS0 → OℓC and thus an exact triangle OℓC → O(ℓ)[1] → OS0 [1] ,

noting OS0([C]) = OS0(−1). Moreover, for each ℓ there is a short exact sequence

OC(ℓ− 1) → OℓC → O(ℓ−1)C inducing OℓC = [OC(ℓ− 1) < OC(ℓ− 2) < . . . < OC ]

a composition series in which each of the factors are given by the iterated extensions of F0 and F1

corresponding to the quiver representations on the left side of Equation 4.29. These composition
series correspond to the sequence of quiver representations
(4.34)

C0,0

C0,−ε1+ε2 C1,ε2

B2oo B1// C0,ε1+ε2

C0,0

d
OO

C0,−2ε1+2ε2 C1,−ε1+2ε2

B2oo B1 // C0,2ε2 C1,ε1+2ε2

B2oo B1 // C0,2ε1+2ε2

C0,−ε1+ε2

d
OO

C1,ε2

B2oo B1 // C0,ε1+ε2

d
OO

C0,0

d
OO

. . .
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and in turn the sequence of coloured partitions

0 0 0

. . . and similarly
0 0 0 . . .

are the analogous shorthand expressions for the quiver representations corresponding to the pre-
sentations of O(−l) for ℓ ≥ 0 as iterated extensions of the objects F0 and F1 with a single OS0 ; the
latter are determined similarly from the composition series of O(−ℓ) induced by the exact triangles

OS0 [1] → O(−ℓ)[1] → OℓC(−ℓ)[1] and OC(−1)[1] → OℓC(−ℓ)[1] → O(ℓ−1)C(−ℓ+ 1)[1] ,

together with the expressions for OC(ℓ− 1)[1] given on the right side of Equation 4.29.
Recall that the conjectural generators for the geometric action of the algebra of modes of the

vertex algebra are defined in Section 4.1, by Theorem 4.2, Corollary 4.3, and Propositions 4.4 and
4.5. Consider the spherical subalgebras SHy(Y ) ⊂ H(Y ) generated by the equivariant fundamental
classes [pty] ∈ H(Y )(1,1) for y = 0,∞ corresponding to the unframed variants of the representations
pictured in Equation 4.30. The natural basis vectors in each component of the subalgebra

[pty]
k ∈ SHy

k(Y ) := SHy(Y ) ∩ SH2k(Y ) define b̃yk = ρS0([pty]
k) ∈ EndF (VS0)

as their image under the representation ρS0 : H(Y ) → EndF (VS0) of Corollary 4.3 for k ≤ 0, and
similarly their adjoints for k > 0. Further, by Propositions 4.4 and 4.5, these endomorphisms can
be computed in terms of the correspondences of Equation 4.9, and by localization we obtain an
analogous formula to that of Equation 4.24, from which one can readily compute

(4.35) [b̃yn, b̃
y′
m] = −nδm−nδy=y′εT (TyS0) where

{
εT (T0S0) = 2ε1(−ε1 + ε2)

εT (T∞S0) = −2ε1(ε1 + ε2)

are determined in the calculation by our grading conventions, and match the grading implicit the
orientation of the toric diagram in Figure 9. In particular, applying the rescaling automorphism of
the Heisenberg algebra over F we can define the equivalent generators

byn = εT (TyS0)
−1b̃yn and let by0 = ⟨[{y}], c1⟩ = ℓ εT (NC,yS0) =: ℓλy

so that the fields defined by

Jy(z) :=
∑

n∈Z
bynz

−n−1 ∈ End(VS0)[[z
±1]] satisfy Jy(z)Jy′(w) ∼ − δy=y′

εT (TySd)

1

(z − w)2

as in Equation 3.5, for y = 0,∞. In summary, we obtain the desired representation of the Heisenberg
subalgebra πS0

∼= πk0 ⊗ πk∞ defined in Equation 3.7, giving

(4.36) U(πk0 ⊗ πk∞) → EndF (VS0) for k0 = − 1

2ε1(−ε1 + ε2)
k∞ =

1

2ε1(ε1 + ε2)
.

Since the endomorphisms byn preserve the components corresponding to distinct first Chern class,
as well as the factorization into pairs of partitions, the decomposition of Equation 4.27 induces

(4.37) VS0
∼=
⊕

ℓ∈Z
πk0
ℓλ0

⊗ πk∞
ℓλ∞
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an isomorphism of representations of πS0
∼= πk0 ⊗ πk∞ , where λy are as in Equation ?? above. This

is evidently consistent with the vacuum module for the lattice extension of the Heisenberg algebra
πS0 generated by the exponential vertex operators

(4.38) Vℓ(z) = : exp
(
ℓ(εT (NC,0S0)ϕ

0(z) + εT (NC,∞S0)ϕ
∞(z)

)
: ∈ EndF (VS0)[[z

±1]]

for ℓ ∈ Z, just as in Equation 3.4 in the definition of V(Y, S0) = Π(Y, S0).
It remains to show that this algebra is generated by the endomorphisms in the image of the

geometric representation defined above. Each of the unframed variants Rℓ of the representations
pictured in Equation 4.34, corresponding to the OℓC factors in the presentations of the line bundles
O(ℓ) as extensions in Equation 4.33, define classes

[pt0ℓ ] ∈ SH(Y )(ℓ0,ℓ1) and thus eℓ,0 = ρS0([pt
0
ℓ ]) ∈ EndF (VS0)

where ℓ0 = ℓ(ℓ + 1)/2 and ℓ1 = ℓ(ℓ − 1)/2 for ℓ ≥ 0 and opposite for ℓ < 0. The only non-trivial
components of the correspondence of Equation 4.9 inducing the endomorphism eℓ are given by

M̂[pt0ℓ ]

(1,0,n),(1,ℓ,n)
∼= {(E,E′) ∈ M̂(1,0,n) × M̂(1,ℓ,n) | E′ = E(ℓ) := E ⊗OS0

O(ℓ) }

noting that for E ∈ M̂(1,0,n) there is a unique stable extension by OℓC given by

OℓC → E(ℓ)[1] → E[1]

where the maps are induced by those of the exact triangle on the right side of Equation 4.33.

Evidently the correspondence is isomorphic to M̂(1,0,n) itself by the canonical projection, so that

the endomorphism eℓ is simply induced by pushforward along the map of moduli spaces,

eℓ,0 = Eℓ,0
∗ : VS0,(0,n) → VS0,(ℓ,n) for Eℓ,0 := (·)⊗OS0

O(ℓ) : M̂(1,0,n) → M̂(1,ℓ,n)

which are all isomorphisms. The induced maps evidently commute with the endomorphisms byn for
n ̸= 0, and extend uniquely to a representation of the group algebra F [Z] → EndF (VS0) defined by

(4.39) ℓ 7→ eℓ =
∑

ℓ′∈Z
eℓ,ℓ

′
: VS0 → VS0 where eℓ,ℓ

′
: VS0,(ℓ′,n) → VS0,(ℓ+ℓ′,n) ,

are defined uniquely by compatibility with the endomorphisms eℓ,0. In summary, the endomorphisms
eℓ identify with the shift operators Sℓ of Equation 2.5 in this case, and together with the action
of the Heisenberg subalgebra πS0 defined in Equation 4.36 above, generate the action of the vertex
operators Vℓ(z) of Equation 4.38 above, and thus the desired free field vertex algebra V(Y, S0) =
Π(Y, S0) in this example, as claimed.

We now outline a proof of the main result of this section, establishing Conjectures 4.6 and 4.9
for irreducible, reduced divisors S0 ⊂ Y :

Theorem 4.16. There exists a natural representation

ρ : U(V(Y, S0)) → EndF (VS0)

of the algebra of modes U(V(Y, S0)) of the vertex algebra V(Y, S0) = Π(Y, S0) on VS0, such that VS0

is identified with the vacuum module Π(Y, S0)0 for Π(Y, S0).

Proof. To begin, note that for the class of surfaces S0 appearing in Equation 4.19, we have

Pic(S0)
∼=−→ H2(S0;Z) ∼= H2(S0;Z) ∼= ZCS0 ,
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where we recall that CS0 denotes the index set for the irreducible, compact toric curve classes
Ci ⊂ S0. Further, recall the notation for the set of fixed points y ∈ FS0 = ST

0 , and note that each
fixed point is contained in an affine, toric Zariski chart Uy

∼= C3 ⊂ Y such that

Sy = S0 ×Y Uy
∼= C2 ⊂ C3 .

Analogously to Equation 4.27, by the localization theorem we have the vector space isomorphism

VS0

∼=−→
⊕

ℓ∈ZCS0

⊗

y∈FS0

( ⊕

ny∈N

⊕

λny∈ !P
ny

Fλny

)

ℓ

corresponding to the decomposition ofM0(Y, S0) into components with first Chern class ℓ = c1(E) ∈
H2(S0,Z)∨ ∼= ZCS0 , and the enumeration of the T -fixed points in each component in terms of tuples
of partitions (λny ∈ !P

ny
)y∈FS0

of lengths ny ∈ N, corresponding to the zero dimensional subschemes

of S0 supported set theoretically on the fixed points ST
0 . Moreover, applying Proposition 4.12 to

each of the open sets Uy, together with the proof of the desired result for (Y, S) = (C3,C2) from
[SV13] as recalled in the introduction, we obtain inclusions of subalgebras

Y(ĝl1)
∼= YSy(Uy) → YS0(Y )

under which the restriction of the representation VS0 to YSy(Uy) has subrepresentation VS0,Uy

induced by Proposition 4.12 is given by

VS0,Uy =
⊕

ny∈N

⊕

λny∈ !P
ny

Fλny
admitting a factorization Y(ĝl1) → U(πy) → EndF (πS0,y)

such that the representation VS0,Uy of U(πy) identifies with the vacuum module for πy, the Heisen-
berg vertex algebra at level ky as in Equation 4.23.

The representations U(πy) → EndF (VS0) naturally commute for distinct fixed points y ∈ FS0 , as
the supports of the compactly supported perverse coherent sheaves generating the cohomological
Hall algebras H(Uy) are disjoint for distinct y, so that we obtain the desired representation of the
Heisenberg subalgebra

(4.40) U(πS0) =
⊗̂

y∈FS0

U(πy) → End(VS0) where πS0 =
⊗

y∈FS0

πy

denotes the Heisenberg subalgebra πS0 ⊂ Π(Y, S0), as in Equation 3.6.
Similarly, for each compact toric curve class Ci ∈ CS0 , let 0i,∞i ∈ FS0 denote the T -fixed points

contained in Ci and define

Ui = U0i ∪ U∞i ⊂ Y and Si = S ×Y Ui .

Given our assumptions on (Y, S0), we must have either

Ui
∼= Y1,1 or Y2,0 and similarly Si

∼= |OP1(−1)| , |OP1 | or |OP1(−2)| ,
where we recall that Y1,1 ∼= |OP1(−1) ⊕ OP1(−1)| and Y2,0 ∼= |OP1 ⊕ OP1(−2)|. Again, applying
Proposition 4.12 we obtain an inclusion of algebras YSi(Ui) → YS0(U) such that the subrepresenta-
tion of the restriction of VS0 to YSi(Ui) is given by

VS0,Ui =
⊕

ℓi∈Z

( ⊕

n0i
∈N

⊕

λn0i
∈ !P

n0i

Fλn0i

)

ℓi

⊗
( ⊕

n∞i∈N

⊕

λn∞i
∈ !P

n∞i

Fλn∞i

)

ℓi

,
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as in Equation 4.27. In the case (Ui, Si) = (Y1,1, |OP1(−1)|), by the computation in Example 4.15
above, we have the desired factorization

(4.41) YSi(Ui) → U(Π(Ui, Si)) → EndF (VS0,Ui)

under which VS0,Ui is identified with the vacuum module Π(Ui, Si)0. A similar computation in the
two remaining cases (Ui, Si) = (Y2,0, |OP1 | or (Y2,0, |OP1(−2)|) implies the analogous factorizations
in those examples, where in both cases the resulting quiver with potential





Qf0
|OP1 |

=

C

V0 V1

I

E

A C

B D

F

J1 J2

W f0
|OP1 |

= E(BC −DA) + F (AD − CB)

+IJ1A+ IJ2C

and





Qf0
|OP1 (−2)| =

C

V0 V1

I

E

J A C

B D

F

W f0
|OP1 (−2)| = E(BC −DA) + F (AD − CB)

+EIJ − IGfJ

admits an analogous dimensional reduction isomorphism to that of Equation 4.25, where the reduced
quiver with relations is given by
(4.42)





Q|OP1 | =

C

V0 V1

I

E
B D

F

J1 J2

R|OP1 | = EB −BF + IJ2 = 0

DF − ED + IJ1 = 0

and





Q|OP1 (−2)| =

C

V0 V1

IJ A C

B D

R|OP1 | = BC −DA+ IJ = 0

AD − CB = 0

,

respectively. In particular, this implies that the endomorphisms induced as in Equation 4.39 by the
representation of Equation 4.41 satisfy the desired relations of Equation 3.5 with the Heisenberg
generators induced by the representations of π0i and π∞i defined in Equation 4.40, and that together
these generate the action of YSi(Ui) and in turn U(Π(Ui, Si)).

Finally, note that the algebra YS0(Y ) is generated by the collection of subalgebras YSi(Ui),

YS0(Y ) = F ⟨YSi(Ui)⟩i∈CS0
and thus the representation YS0(Y ) → EndF (VS0)

is determined by the action of the generators of each of the subalgebras YSi(Ui), which by the
preceding paragraph satisfy the desired relations to determine a factorization

YS0(Y ) → U(Π(Y, S0)) → EndF (VS0)

inducing the desired representation of U(Π(Y, S0)) and identification of VS0 with the vacuum module
Π(Y, S0), as desired.

□



VERTEX ALGEBRAS FROM DIVISORS ON CALABI-YAU THREEFOLDS 43

4.3. Towards the proof in higher rank: factorization and locality. In this section, we explain
some partial results towards a proof of the main conjectures of Section 4.1. The strategy is to use
relations between the various representations Vf

S to reduce to calculations which can be checked in
local models and low rank. The first main result required for our approach is the following natural
refinement of Conjecture 4.10: Suppose we can express OS as an extension

0 → OR → OS → OT → 0

for divisors R, T ⊂ Y as in the hypotheses preceding Proposition 3.3, and let fR,T be the framing
structure on Oss

Sred of rank rS determined by OR ⊕OT .

Conjecture 4.17. There exists a natural isomorphism

(4.43) VfR,T

S

∼=−→ VfR
R ⊗ VfS

S

of representations of V(Y, S), where VfR,T

S is as in Conjecture 4.8 for f = fR,T , and VfR
R ⊗VfS

S is the
restriction along the factorization map of Proposition 3.3 of the representations of Conjecture 4.9.

In particular, if R and T are reduced, irreducible divisors, then fR,T = 0S is given by the trivial
framing structure, so that by inductive application of the preceding conjecture for a choice of
composition series

OS =
[
OSd1

< ... < OSdk
< ... < OSdN

]

we obtain the following corollary, which analogously refines Conjecture 4.6:

Corollary 4.18. There exists a natural isomorphism

V0
S

∼=−→
⊗

d∈DS

V⊗rd
Sd

= Π(Y, S)0

of representations of V(Y, S), where V0
S is as in Conjecture 4.6 and

⊗
d∈DS

V⊗rd
Sd

is the restriction

along the defining free field realization of V(Y, S) of the tensor product of the representations defined
in Theorem 4.16, which in particular implies the latter equality.

Note that often the existence of an isomorphism of underlying vector spaces in Equation 4.43
can be directly checked. For example, in many cases where [S] = r[S0] for S0 a reduced, irreducible
divisor, and f = 0S is given by the trivial framing structure, there exists a dimensional reduction
isomorphism analogous to that of Equation 4.25,

HA
• (M0S

n (Y, S), φ
W

0S
S

)
∼=−→ HA

• (Mn,r(QS , RS)) and thus V0
S
∼=
⊕

n

HA
• (Mn,r(QS , RS))⊗H•

T (pt)F ,

for (QS , RS) a Nakajima quiver with relations and Mn,r(QS , RS) the moduli space of stable, framed
representations of dimension (n, r) with respect to an appropriate choice of stability condition; the
higher rank analogues of the framed quivers with relations in Equation 4.42 provide examples of this
phenomenon. In this case, the tensor product structure on the A-fixed points of Nakajima quiver
varieties, in the sense of Section 2.4 of [MO19] for example, implies the existence of an isomorphism
between the underlying vector spaces induced by localization, that is,

Mn,r(QS , RS)
A =

⊔

n1+...+nr=n

Mn1,1(QS , RS)× ...×Mnr,1(QS , RS) implies V0
S
∼= V⊗r

S0
.

Similarly, in the setting of Example 4.15, by Proposition 3.2 of [NY05] we have an analogous
description of the fixed points in the moduli space of representations of the reduced quiver with
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relations in Figure 9 and thus by the isomorphism of Equation 4.25 together with the analogous
application of the localization again implies the desired factorization at the level of vector spaces.
From this perspective, the content of Conjecture 4.17 above is the existence of a canonical nor-
malization of such isomorphisms which intertwines the geometric representation on V0

S defined in
Section 4.1 above, and the tensor product of those geometric representations for reduced, irreducible
components VSd

, restricted along the factorization maps of Proposition 3.3.
Following [SV13] and in turn a suggestion of Nakajima cited therein, our expectation is that

these factorization maps are related to generalized coproducts on the shifted affine Yangian-type
quantum groups YS(Y ), which essentially by construction admit geometric representations on the
vector spaces VS , following the results of the companion paper [BR23] and references therein:

Conjecture 4.19. Suppose there exist divisors Sl on Y for l = 1, ..., h, such that OS admits

OS = [OS1 < ... < OSl
< ... < OSh

] ,

a composition series such that each of the induced extensions OSl
→ E → OSl+1

satisfies the
hypotheses preceding Proposition 3.3. Then there exist generalized coproduct maps

∆S1,...,Sh
: YS(Y ) →

h⊗

l=1

YSl
(Y ) such that

YS(Y ) //

��

U(V(Y, S))

��

// EndF (Vf
S)

��⊗h
l=1 YSl

(Y ) //
⊗h

l=1 U(V(Y, Sl)) //
⊗h

l=1 EndF (VSl
)

,

commutes, where the top and bottom horizontal maps are as induced by Conjecture 4.6 for S and
Sl, respectively, the middle vertical arrow is given by the vertex algebra embeddings of Proposition
3.3, and the right vertical arrow is induced analogously by the isomorphisms of Equation 4.43.

Finally, we outline a geometric approach to the higher rank analogue of the locality principle,
established in the algebraic setting in Proposition 3.5. The main result required is the following
higher rank analogue of Proposition 4.12. To begin, note that in the setting of loc. cit. a framing
structure f for a divisor S induces a natural framing structure fU on SU = S ×Y U by restriction.

Proposition 4.20. The natural generalization of the map of Equation 4.17 induces an isomorphism

(4.44) VfU
SU

= HT
• (M

fU ,ζVW(U, SU ), φW
fU
SU

)
∼=−→ Vf

S,U := HT
• (M

f,ζVW
U (Y, S), φW f

S
) ⊂ VS

of H(U)-representations, where in particular Vf
S,U defines a subrepresentation of the restriction of

the H(Y )-representation VS to H(U).

Again, the proof is orthogonal to the main goals of this paper and is deferred to future work.
The main corollary of this result is a geometric analogue of Proposition 3.5, which holds under the
same hypotheses as loc. cit., and gives a geometric explanation for the property of Remark 4.11:

Corollary 4.21. There is an isomorphism of H(Y1)⊗H(Y2)-representations

Vf
S

∼=−→
⊕

l∈Zr

Vf1
S1,l

⊗ Vf2
S2,l

,

where the former is the restriction of the H(Y )-representation to H(Y1)⊗H(Y2), for some geometric

H(Yi) representations Vfi
Si,l

such that Vfi
Si,0

= Vfi
Si
, defined for i = 1, 2 and each l ∈ Zr.

This establishes a key step in proving the desired geometric analogue of Proposition 3.5. Our
hope is that this will facilitate a local-to-global proof of the main conjectures of Section 4.1.
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5. Examples and applications

In this section, we explain several conjectures about the vertex algebras V(Y, S) and their geo-
metric representations, and give proofs of some of the results in low rank examples.

5.1. Examples of lattice vertex algebras associated to irreducible divisors. To begin, we
simply recall the construction of Section 3 in a few explicit examples in rank 1.

Example 5.1. Let Y = |OP1 ⊕ OP1(−2)| and S = |OP1 |. Then the vertex algebra Π(Y, S) is
generated two Heisenberg fields J1 and J2 satisfying

J1(z)J1(w) ∼ − 1

ε1ε3

1

(z − w)2
and J2(z)J2(w) ∼ 1

ε1ε3

1

(z − w)2

as well as the vertex operator

V (z) = : exp(ε1(ϕ1 + ϕ2)): and more generally Vl(z) = :V (z)l:

for each l ∈ Z, which satisfy the relations

J i(z)Vl(w) ∼ (−1)i
l

ε3

Vl(w)

z − w
and Vl(z)Vm(w) = :Vl(z)Vm(w): .

Example 5.2. Let Y = |OP1(−1)⊕OP1(−1)| and S = |OP1(−1)|. Then the vertex algebra Π(Y, S)
is generated two Heisenberg fields J1 and J2 satisfying

J1(z)J1(w) ∼ − 1

ε2ε3

1

(z − w)2
and J2(z)J2(w) ∼ − 1

ε3ε1

1

(z − w)2

as well as the vertex operator

V (z) = : exp(ε2ϕ1(z)− ε1ϕ2(z))): and more generally Vl(z) = :V (z)l:

for each l ∈ Z, which satisfy the relations

J i(z)Vl(w) ∼ (−1)i
l

ε3

Vl(w)

z − w
and Vl(z)Vm(w) = (z − w)lm:Vl(z)Vm(w): .

Figure 10. Vertex algebra data for Π(Y2,0, |OP1 |) and Π(Y1,1, |OP1(−1)|)

J1

J2

V 1

J1

J2

V

1
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Example 5.3. Let Y = |OP1 ⊕ OP1(−2)| and S = |OP1(−2)|. Then the vertex algebra Π(Y, S) is
generated two Heisenberg fields J1 and J2 satisfying

J1(z)J1(w) ∼ − 1

ε2ε3

1

(z − w)2
and J2(z)J2(w) ∼ − 1

ε3(ε1 − ε3)

1

(z − w)2

as well as the vertex operator

V (z) = : exp(ε2ϕ1(z) + (ε3 − ε1)ϕ2(z))): and more generally Vl(z) = :V (z)l:

for each l ∈ Z, which satisfy the relations

J i(z)Vl(w) ∼∼ (−1)i
l

ε3

Vl(w)

z − w
and Vl(z)Vm(w) = (z − w)2lm:Vl(z)Vm(w): .

Example 5.4. Let Y = Ã2 ×A1 be the product of the resolved A2 singularity with the affine line,
and S = Ã2. Then the vertex algebra Π(Y, S) is generated by three Heisenberg fields J1, J2 and
J3 satisfying

J1(z)J1(w) ∼ − 1

ε2ε3

1

(z − w)2
J2(z)J2(w) ∼ − 1

ε3(ε1 − ε3)

1

(z − w)2
J3(z)J3(w) ∼ − 1

(ε3 − ε1)(2ε1 − ε3)

1

(z − w)2

as well as the vertex operators

V1,0(z) = : exp(ε2ϕ1(z) + (ε3 − ε1)ϕ2(z))): and V0,1(z) = : exp(−ε3ϕ2(z) + (ε3 − 2ε1)ϕ3(z))):

as well as more generally

Vl(z) = :V1,0(z)
l1V0,1(z)

l2 : for each l = (l1, l2) ∈ Z2 .

which satisfy the relations

J1(z)V1,0(w) ∼ − 1

ε3

V1,0(w)

z − w
J2(z)V1,0(w) ∼

1

ε3

V1,0(w)

z − w

J2(z)V0,1(w) ∼
1

(ε1 − ε3)

V0,1(w)

z − w
J3(z)V0,1(w) ∼

1

(ε3 − ε1)

V0,1(w)

z − w

Figure 11. Vertex algebra data for the algebras Π(Y2,0, Ã1) and Π(Y3,0, Ã2)

J1

J2

V

1
J1

J2

J3

V1,0

V0,1

1
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as well as the relations for each l = (l1, l2), m = (m1,m2) ∈ Z2 given by

Vl(z)Vm(w) = (z − w)2(l1m1+l2m2)−l1m2−l2m1 : Vl(z)Vm(w) : .

5.2. W -superalgebras W κ
fµ,fν

(glM |N ) from divisors Sµ,ν in Ym,n. We now describe the applica-

tion of our results to examples of divisors S in a resolution Ym,n of Xm,n = {xy − zmwn}. Let µ
and ν be partitions of length m and n, respectively

µ = {µ1 ≥ . . . ≥ µm ≥ 0} and ν = {ν1 ≥ . . . ≥ νn ≥ 0}
and define the corresponding lists of integers

M = (Mi)
m−1
i=0 N = (Ni)

n−1
i=0 where Mi =

m∑

k=i+1

µk Ni =
n∑

k=i+1

νk

i = 0, ...,m−1, j = 0, ..., n−1; we also write just M = M0 =
∑m

k=1 µk and N = N0 =
∑n

k=1 νk. We
define Sµ,ν as the toric divisor corresponding to the labeling of the faces of the moment polytope
of Ym,n by the integers Mi and Ni depicted in Figure 12 below in the case m = 3, n = 2. We also
write simply Sµ or Sν if n = 0 or m = 0, respectively.

In this setting, following physical predictions from [PR18] and [Rap19] we conjecture that the
corresponding vertex algebra is given by the affine W -algebra W κ

fµ,fν
(glM |N ) of glM |N corresponding

to the nilpotents fµ and fν in glM and glN , respectively, determined by µ and ν:

Conjecture 5.5. There is an isomorphism of vertex algebras

W κ
fµ,fν (glM |N )

∼=−→ V(Ym,n, Sµ,ν) ,

such that Π(Y, S) identifies with a certain canonical free field realization of W κ
fµ,fν

(glM |N ).

Figure 12. The resolution Y3,2, the toric divisor Sµ,ν , and the compact toric curve
classes Ci with their corresponding simple roots αi of gl3|2

Y3,2 → X3,2 = {xy − z3w2}

M0 = µ1 + µ2 + µ3

M1 = µ2 + µ3

M2 = µ3

N1 = ν2

N0 = ν1 + ν2

C1

C2

C3

C4




α1

α2

α3

α4
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In fact, we prove this conjecture in the case n = 0, assuming some results in progress [BBN24] about
the properties of free field realizations of W -algebras in type A, as stated in Theorem 5.9 below.

The theorem follows from identifying the defining free field realization of V(Ym,n, Sµ,ν) with a
certain canonical bosonized presentation, in the sense of [FMS86], of the generalization [Gen17] of
the Wakimoto resolution [Wak86] to W -algebras for general nilpotents, such that the embeddings of
Equation 1.28 induce parabolic induction [Gen20] and inverse reduction [Sem94] maps. We will give
an explicit proof of the result for gl2 with any nilpotent, as well as a general argument conditional
on the work in progress mentioned above on the properties of generalized Wakimoto realizations.

We begin by explaining the simplest example with a non-trivial W -algebra:

Proposition 5.6. Let Y = C3 and S = 2[C2]. There is an isomorphism of vertex algebras

W κ
fprin

(gl2) = π+ ⊗ W κ
fprin

(sl2)
∼=−→ V(C3, r[C2]) ,

such that the representation Π(C3, 2[C2]) identifies with πhgl2 , the Feigin-Frenkel realization [FF96].

Proof. The free field vertex algebra Π(Y, S) = Π(Y,C2)⊗2 is generated by two Heisenberg fields J1,
J2 satisfying

J1(z)J1(w) ∼ − 1

ε1ε2

1

(z − w)2
and J2(z)J2(w) ∼ − 1

ε1ε2

1

(z − w)2
,

and the screening currents are given by

Q1(z) = : exp(ε1(ϕ1 − ϕ2)): and Q2(z) = : exp(ε2(ϕ1 − ϕ2)): .

After making the change of basis

J+(z) = J1(z) + J2(z) J−(z) = J1(z)− J2(z)

we can identify Π(Y, S) ∼= π+ ⊗ π− where π+ denotes the Heisenberg subalgebra generated by J+

at level k+ = − 2
ε1ε2

and similarly π− that generated by J− at level k− = − 2
ε1ε2

.
The screening current current is given by

Q1(z) = : exp(ε1(ϕ1(z)− ϕ2(z))): ,

Figure 13. Vertex algebra data for V(C3, 2[C2])

J1/2

Q1

Q2

2
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which has nonsingular OPE with J+, so that J+ generates a Heisenberg subalgebra π+ ⊂ V(Y, S)
independent of the other fields, while on π− it induces n

Q1 =

∫
Q1(z)dz : π− → π−

−ε1 .

The vertex subalgebra ker(Q1) ⊂ π− is generated by the Virasoro current

(5.1) T (z) = −ε1ε2
4

:J−(z)J−(z):− ε1 + ε2
2

∂zJ
−(z) of central charge c = 1 + 6

(ε1 + ε2)
2

ε1ε2
by the calculation recalled in Proposition 2.5, and identifies with the Feigin-Frenkel realization of
the principal affine W -algebra Wκ(sl2) at level

κ+ 2 = −ε2
ε1

.

Moreover, the symmetry of T (z) under interchanging ε1 and ε2, which identifies with the symmetry
of T β interchanging β and − 2

kβ in loc. cit., is equivalent to interchanging Q2 and Q1, which implies

that we have
V(Y, S) = ker(Q1) = ker(Q2) ∼= π+ ⊗ Wκ(sl2) .

□

In order to prove Theorem 5.9 for M = 2, it remains to consider the case of the trivial nilpotent
fµ = 0 ∈ Ngl2 corresponding to the sl2 coweight µ = (1, 1). We begin with an intermediate case:

Proposition 5.7. Let Y = |OP1 ⊕ OP1(−2)| and S = S1,1,0,0 = [A2
xy] + [|OP1 |]. There is an

isomorphism of vertex algebras

π+ ⊗Dch(A1)
∼=−→ V(Y, S) ,

such that the free field module is identified with Π(Y, S) = π+ ⊗Π0 the bosonization of [FMS86].

Proof. The Heisenberg subalgebra π(Y, S) of the free field vertex algebra

Π(Y, S) = Π(Y,C2)⊗Π(Y, |OP1 |)
is generated by three Heisenberg fields J2, J3 and J4 (note we have so far omitted J1; the notation
is chosen to be consistent with the application in Theorem 5.8 below). The field J2 generating
Π(Y,C2) satisfies

J2(z)J2(w) ∼ − 1

ε1ε2

1

(z − w)2

and J3 and J4 from Π(Y, |OP1 |) satisfy

J3(z)J3(w) ∼ − 1

ε1ε3

1

(z − w)2
and J4(z)J4(w) ∼ 1

ε1ε3

1

(z − w)2

which generate Π(Y, |OP1 |) together with the vertex operator

V (z) = : exp(ε1(ϕ3(z) + ϕ4(z))): and more generally Vl(z) = :V (z)l:

for each l ∈ Z, and satisfy the relations

J3(z)Vl(w) ∼ − l

ε3

Vl(w)

z − w
J4(z)Vl(w) ∼

l

ε3

Vl(w)

z − w
and Vl(z)Vm(w) = :Vl(z)Vm(w): .

The only screening current is given by

Q(z) = : exp(ε2ϕ2(z)− ε3ϕ3(z))): .
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J2

J3

J4

V

Q

1

1

Figure 14. Vertex algebra data for V(Y2,0, S1,1,0,0)

Consider the change of basis in the total Heisenberg subalgebra of Π(Y, S) given by

J+ = J2 + J3 + J4 α = ε2J
2 − ε3J

3 β = −ε2(J
2 + J3) + ε1J

4 .

Note that J+ has nonsingular OPE with α, β, and the screening current S, and it generates a
Heisenberg subalgebra of π+ ⊂ V(Y, S) independent of the other fields, as in Proposition 5.6.

Similarly, note that α and β define commuting Heisenberg subalgebras of levels 1 and −1, re-
spectively, that is, they satisfy

α(z)α(w) ∼ 1

(z − w)2
β(z)β(w) ∼ − 1

(z − w)2
α(z)β(w) ∼ 0 ,

and in terms of α and β, we have the identifications

V (z) = : exp(ϕα(z) + ϕβ(z)): and S(z) = : exp(ϕα(z)): ,

where ϕα = ε2ϕ2 − ε3ϕ3 and ϕβ = −ε2(ϕ
2 + ϕ3) + ε1ϕ

4 are the corresponding vertex operators.
Thus, together the fields α, β and V generate a canonically normalized half lattice vertex algebra
Π0, so that in summary we have

Π(Y, S) = π+ ⊗Π0 .

Moreover, note that under this identification the screening current S identifies with the standard
screening current for the realization of a canonically normalized chiral Weyl vertex algebra Dch(A1)
as a subalgebra of the half lattice vertex algebra, that is
(5.2)

ker(Q) ∼= Dch(A1) ⊂ Π0 generated by a(z) = : exp(ϕα(z)+ϕβ(z)): a∗(z) = :α(z) exp(−ϕα(z)−ϕβ(z)):

which satisfy the defining relations thereof

a(z)a(w) ∼ a∗(z)a∗(w) ∼ 0 a(z)a∗(w) ∼ 1

z − w
;

see for Example [AW22], though we recall the original physics reference is [FMS86]. In summary,
we have shown that that the vertex algebra V (Y, S) associated to the divisor is given by

V(Y, S) = π+ ⊗Dch(A1) .
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□

We now give a proof of Theorem 5.9 for M = 2 and trivial nilpotent fµ = 0 ∈ Ngl2 :

Theorem 5.8. Let Y = |OP1 ⊕OP1(−2)| and S = S2,1,0,0 = 2[A2
xy] + [|OP1 |]. There is an isomor-

phism of vertex algebras

V κ(gl2) = π+ ⊗ V κ(sl2)
∼=−→ V(Y, S)

such that the representation Π(Y, S) is identified with the bosonization, in the sense of [FMS86], of
the Wakimoto realization [Wak86], used in the proof of inverse reduction for sl2 in [Sem94].

Proof. The free field vertex algebra

Π(Y, S) = Π(Y,C2)⊗2 ⊗Π(Y, |OP1 |)
is generated by four Heisenberg fields, J1 and J2 generating Π(Y,C2)⊗2 satisfying

J1(z)J1(w) ∼ − 1

ε1ε2

1

(z − w)2
and J2(z)J2(w) ∼ − 1

ε1ε2

1

(z − w)2

and J3 and J4 from Π(Y, |OP1 |) satisfying

J3(z)J3(w) ∼ − 1

ε1ε3

1

(z − w)2
and J4(z)J4(w) ∼ 1

ε1ε3

1

(z − w)2

which generate Π(Y, |OP1 |) together with the vertex operator

V (z) = : exp(ε1(ϕ3(z) + ϕ4(z))): and more generally Vl(z) = :V (z)l:

for each l ∈ Z, which satisfy the relations

J3(z)Vl(w) ∼ − l

ε3

Vl(w)

z − w
J4(z)Vl(w) ∼

l

ε3

Vl(w)

z − w
and Vl(z)Vm(w) = :Vl(z)Vm(w): .

The screening currents are given by

Q1 = : exp(ε1(ϕ1 − ϕ2)): and Q2 = : exp(ε2ϕ2 − ε3ϕ3)): .

Figure 15. Vertex algebra data for V(Y2,0, S2,1,0,0)

J1/2

J3

J4

V

Q2

Q1

2

1
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We now explain the two descriptions of the vertex algebra V (Y, S) induced by Proposition 3.3
applied to the two screening currents above. First, partitioning the divisor along the curve class
corresponding to the screening operator Q1, we have a vertex algebra embedding

V(Y, S) ⊂ ker(Q2) = V(Y, S1,0,0,0)⊗ V(Y, S1,1,0,0) ∼= π ⊗ π+
1,1,0,0 ⊗Dch(A1) ,

where the tensor factors of the right hand side are generated by J1, J2 + J3 + J4, and a and a∗

defined as in Equation 5.2, respectively, following Example 5.7 above. The image of V (Y, S) under
this embedding is identified with the kernel of the screening operator Q1 corresponding to the curve
class along which we have partitioned the divisor.

Now, consider the change of basis in the Heisenberg subalgebra πS of Π(Y, S) given by

J+ = J1+J2+J3+J4 α = ε2J
2−ε3J

3 β = −ε2(J
2+J3)+ε1J

4 δ = ε2(J
1−J2−J3−J4) .

Note that J+ still has nonsingular OPE with each of the other fields J−, α, β, and Vl, and both
screening currents Q1 and Q2, so that it generates a Heisenberg subalgebra of π+ ⊂ V(Y, S) inde-
pendent of the other fields, as in the previous examples. The field δ also has nonsingular OPE with
each of the other fields and the screening current Q2, so that it defines an independent Heisenberg
subalgebra πδ ⊂ ker(Q2) at level kδ = −2 ε2

ε1 = 2(κ + 2). The fields α and β and their relations
with the vertex operators Vl and the screening current Q2 are evidently the same as in the previous
example.

In summary, the fields J+ and δ together with a and a∗ defined in terms of α and β as in Equation
5.2 give a new set of generators for ker(Q2), so that we have

ker(Q2) ∼= π+ ⊗ πδ ⊗Dch(A1) ,

where the residual screening operator Q1 vanishes identically on π+. Moreover, in terms of these
generators the residual screening current Q1 is given by

Q1(z) = : exp(ε1(ϕ1(z)− ϕ2(z))): = : exp(ϕα(z) + ϕβ(z) +
ε1
ε2

ϕδ(z)): = :a(z) exp(
ε1
ε2

ϕδ(z)):

which identifies with the screening current for the Wakimoto realization [Wak86] of the affine algebra
of sl2 at level κ, that is, we have

ker(Q1|πδ⊗Dch(A1))
∼= V κ(sl2) ⊂ πδ⊗A generated by





Je(z) = a(z)

Jh(z) = −2 : a∗(z)a(z): + δ(z)

Jf (z) = −:a∗(z)2a(z): + κ∂za
∗(z) + a∗(z)δ(z)

,

noting that − ε1
ε2

= 1
κ+2 ; see for Example [FG06]. In summary, we obtain that the vertex algebra

V (Y, S) associated to the divisor is given by

V(Y, S) = ker(Q1) ∩ ker(Q2) ∼= π+ ⊗ V κ(sl2) ,

the affine Kac-Moody vertex algebra associated to gl2 at level κ = −2− ε2
ε1
.

Next, we consider instead the embedding induced by Proposition 3.3 by partitioning the divisor
along the curve class corresponding to the screening current Q2, so that we have

V(Y, S) ⊂ ker(Q1) = V(Y, S2,0,0,0)⊗ V(Y, S0,1,0,0) ∼= π+
2,0,0,0 ⊗Wκ(sl2)⊗Π0

where π+
2,0,0,0 denotes the Heisenberg algebra generated by J1 + J2, Wκ(sl2) the affine W algebra

generated by T (z) as defined in Equation 5.1, and Π0 = Π[Y, S0,1,0,0] denotes the half lattice vertex

algebra generated by J3, J4 and V l for l ∈ Z.
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Now, consider the alternative change of basis in the Heisenberg subalgebra of Π(Y, S) given by

J+ = J1+J2+J3+J4 J− = J1−J2 µ =
ε2
2
(J1+J2+J3−J4)−ε1J

4 ν =
ε2
2
(J1+J2)−ε3J

3 .

Note that J+ and J− have non-singular OPE with each other as well as µ, ν and V l, J+ has non-
singular OPE with both screening currents so that it generates a Heisenberg subalgebra as before,
and J− has the same relations with Q1 as in Example 5.6. The fields µ and ν define commuting
Heisenberg subalgebras of levels kµ = 1

2(−2− ε2
ε1
) = κ

2 and kν = 1
2(2+

ε2
ε1
) = −κ

2 , that is, they satisfy

µ(z)µ(w) ∼ κ

2

1

(z − w)2
ν(z)ν(w) ∼ −κ

2

1

(z − w)2
µ(z)ν(w) ∼ 0 .

Moreover, in terms of µ and ν, we have the identifications

V = : exp(ε1(ϕ3(z)+ϕ4(z))): = : exp(
2

κ
(ϕµ−ϕν)): and Q2(z) = : exp(ε2ϕ2−ε3ϕ3)): = : exp(ϕν−

ε2
2
ϕ−)): .

Thus, the fields µ, ν and V again generate a half lattice vertex algebra Π in the kernel of Q1, and
together with the field T defined in terms of J− as in Equation 5.1 give a new set of generators for
ker(Q1), so that we have

ker(Q1) ∼= π+ ⊗Wκ(sl2)⊗Π ,

where the residual screening operator Q2 vanishes identically on π+. Moreover, in terms of these
generators the residual screening current Q2 screens the corresponding subalgebra

Je(z) = : exp(ε1(ϕ3(z) + ϕ4(z))): = : exp(
2

κ
(ϕµ − ϕν)):(5.3)

Jh(z) = −2β(z) + δ(z) = 2µ(z)(5.4)

Jf (z) = ... = (T (z) + Tν(z)): exp(−
2

κ
(ϕµ − ϕν)): .(5.5)

which precisely corresponds to the embedding of V κ(sl2) in Wκ
fprin

(sl2)⊗Π constructed in [Sem94],

where Tν(z) = :ν(z)ν(z): + cκ∂zν(z) denotes the Segal-Sugawara field in πν . In summary, we have

ker(Q2|Wκ(sl2)⊗Π) ∼= V κ(sl2) ⊂ Wκ
fprin

(sl2)⊗Π and again V(Y, S) = ker(Q1)∩ker(Q2) ∼= π+⊗V κ(sl2) .

□
Figure 16. Factorization structure on the vertex algebra V(Y2,0, S2,1,0,0)
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J4
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1
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⊗

⊗ ⊗ ⊗

[Sem94]

[Wak86]

[FF96]⊗id

id⊗[FMS86]

π ⊗ (π ⊗Dch(A1)) = ker(Q2)V(Y2,0, S2,1,0,0) = π ⊗ V κ(sl2)

π ⊗ π ⊗Π0 = Π(Y2,0, S2,1,0,0)ker(Q1) = (π ⊗W κ
fprin

(sl2))⊗Π0
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We recall that the framing structures and induced quivers with potential that conjecturally
correspond to each of the representations of V κ(gl2) in Figure 16 above are given in Figure 7.

Next, we describe the generalization of these arguments to outline a proof of Theorem 5.9 below.
Recall that we let µ denote a partition of length m given by

µ = {µ1 ≥ . . . ≥ µm ≥ 0} and let M = (Mi)
m−1
i=0 where Mi =

m∑

j=i+1

µj

and write simply M = M0 = |µ| = ∑m
j=1 µj . We define the corresponding divisor Sµ in Ym,0 by

the labelling of the faces of the moment polytope of Ym,0 pictured in Figure 17 below. We also
introduce the shorthand expression for Sµ indicated in the top left of the figure. We have:

Theorem 5.9. There is an isomorphism of vertex algebras

W κ
fµ(glM )

∼=−→ V(Ym,0, Sµ) .

The proof will consist of identifying the defining free field realization of V(Ym,0, Sµ) with a certain
bosonized presentation, in the sense of [FMS86], of the generalization [Gen17] of the Wakimoto
resolution [Wak86] to W -algebras for general nilpotents, such that the embeddings of Equation 1.28
induce parabolic induction [Gen20] and inverse reduction [Sem94] maps, generalizing Theorem 5.8.

Proof. To begin, we note that the statement of the theorem is naturally compatible with the exis-
tence of parabolic induction maps between affine W -algebras for glM : Given a pyramid πσ which is
the sum of two pyramids πµ and πν for a decomposition σ = µ+ ν as a sum of dominant coweights
µ, ν ≥ 0, it is proved in [Gen20] that there is an embedding of vertex algebras

(5.6) W κ
fσ(glO) → W κ1

fµ
(glM )⊗W κ2

fν
(glN )

which preserves the gradings from the respective pyramids, where M = |µ|, N = |ν| and O = |σ|.

Figure 17. The divisor Sµ in Ym,0 and its associated pyramid πµ and shorthand

Ym,0 → Xm,0 = {xy − zm} × A1

⊂

Sµ = M0. . .Mi−1Mi. . .Mm−1

µ1µiµi+1µm

M0 = µ1 + . . .+ µm

M1 = µ2 + . . .+ µm

Mi−1 = µi + . . .+ µm

Mi = µi+1 + . . .+ µm

Mi+1 = µi+2 + . . .+ µm

Mm−1 = µm

πµ =

µm . . .

µm−1. . .
...

...
...

...
...

µi . . .
...

...
...

...
...

...
...

µ2 . . .

µ1 . . .
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O0. . .Oi−1Oi. . .Om−1

σ1σiσi+1σm
M0. . .Mi−1Mi. . .Mm−1

µ1µiµi+1µm

⊗
N0. . .Ni−1Ni. . .Nm−1

ν1νiνi+1νm

Figure 18. The divisor Sµ in Ym,0 and its associated pyramid πµ and shorthand

Further, note that the corresponding divisors Sµ, Sν and Sσ satisfy the natural relation

0 → OSµ → OSσ → OSν → 0

so that by the factorization principle of Proposition 3.3, there is a natural embedding

(5.7) V(Ym,0, Sσ) → V(Ym,0, Sµ)⊗ V(Ym,0, Sν)

with image characterized by the kernel of a single screening operator, induced by filtrations


OSµ =

[
OSd1

< ... < OSdk0

]

OSν =
[
OSdk0+1

< ... < OSdN

] such that OSσ =
[
OSd1

< ... < OSdk0
< OSdk0+1

< ... < OSdN

]
.

Indeed, recall that such a decomposition induces an identification Π(Y, Sσ) ∼= Π(Y, Sµ)⊗KΠ(Y, Sν),
such that the screening operator Qsk : Π(Y, Sσ) → Π(Y, Sσ)λk

is the only screening operator which
does not vanish on either of the subalgebras Π(Y, Sµ)⊗K 1 or 1⊗Π(Y, Sν) of Π(Y, Sµ)⊗K Π(Y, Sν),
and the remaining screening operators can be identified with those defining the tensor product
V(Ym,0, Sµ)⊗ V(Ym,0, Sν); this is summarized in Figure 18 above.

The proof of the existence of parabolic induction maps given in [Gen20] uses essentially the same
argument, comparing the generalized Wakimoto resolutions of the relevant W -algebras W κ

fµ
(glM )

introduced in [Gen17]. Indeed, we will argue that the isomorphisms of Theorem 5.9 identify the free
field algebras Π(Ym,0, Sµ) with certain canonical bosonizations of the generalized Wakimoto resolu-
tions, and identify the vertex algebra embeddings of Equations 5.6 and 5.7. Inductive application
of parabolic induction realizations gives an embedding of any W -algebra W κ

fµ
(glM ) into a tensor

product of affine algebras determined by the columns of the corresponding pyramid πµ, so that the
preceding claim reduces Theorem 5.9 to the case of affine algebras. We begin by outlining the proof
of the result for affine algebras, after which we explain the identification with generalized Wakimoto
resolutions and compatibility with parabolic induction maps.

The glm coweight µm = (1, ..., 1) corresponds to the trivial nilpotent fµm = 0 ∈ glM = glm, for
which the corresponding W -algebra is given by the affine Kac-Moody algebra W κ

0 (glm) = V κ(glm).
The corresponding divisor Sµm is given by the labelling of the moment polytope as in Figure 19 for
Mi = m− i for each i = 0, ...,m−1. We now proceed to analyze the defining free field realization of
the vertex algebra V(Ym,0, Sµm) in this case, which will be identified with the Wakimoto realization
[Wak86], proving Theorem 5.9 for coweights µ of the form µm.

To begin, note that for any M = (Mi)
m−1
i=0 ∈ Nm we have a corresponding divisor SM deter-

mined by the labelling of the moment polytope as above, but in general the corresponding integers
µi = Mi−1 − Mi need not be positive or ordered, and thus the corresponding coweight µ need
not be dominant. Nonetheless, as we will explain, there are several such examples for which the
corresponding vertex algebras admit natural interpretations in representation theory.
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1. . .111. . .1

0001

⊗

⊗
...

⊗

⊗
...

1. . .110. . .0

0010

1. . .000. . .0

1000

m. . .i+ 1ii− 1. . .1

1111

Figure 19. Factorization for Sµm in Ym,0 associated to the trivial nilpotent fµm = 0

In particular, applying Proposition 3.3 inductively to the above divisor Sµm , as in Figure 19
above, we see that the vertex algebra V(Ym,0, Sµm) admits an embedding

(5.8) V(Ym,0, Sµm) →
m−1⊗

i=0

V(Ym,0, SMj )

characterized as the intersection of the kernels of screening operators Qj for j = 1, ...,m− 1, where
SMj is the divisor corresponding to the labelling Mi = (1, ..., 1, 0, ..., 0), where the first zero entry
is Mi+1. In fact, we have the following description of these vertex algebras: □

Proposition 5.10. There is an isomorphism of vertex algebras

Dch(Aj)⊗ π
∼=−→ V(Ym,0, SMj ) .

Proof. The argument is the same as that in the proof of Proposition 5.7, which is precisely the
claimed result in the case j = 1, mutatis mutandis. □

Proof. (of Theorem 5.9, continued) We now complete the proof of Theorem 5.9 in the case that
fµ = 0, before proceeding with the generalization to arbitrary µ ≥ 0. By Proposition 5.10, the
codomain of the embedding of vertex algebras in Equation 5.8 is isomorphic to the Wakimoto
module,

(5.9) Wκ
0(glm)0 := Dch(N)⊗ πh

∼=−→
m−1⊗

i=0

V(Ym,0, SMj ) ,

the tensor product of the chiral differential operators Dch(N) on the lower triangular unipotent
matrices N ⊂ Glm, with the Heisenberg algebra πk

h on the diagonal subalgebra h ⊂ glm, as follows

from the identifications N ∼= A
m(m−1)

2 and πk
h
∼= (πk)⊗m. Similarly, we have

⊕

l(w)=1

Wκ
0(glm)w

∼=−→
m−1⊕

j=1

(
m−1⊗

i=0

V(Ym,0, SMi)

)

λj

so that it remains to show that there exists a coordinate system on T ∗N for which the direct sum
of the Wakimoto screening operators QWak

w : Wκ
0(glm)0 → Wκ

0(glm)w is identified with that of the
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screening operators Qj for j = 1, ..,m−1 introduced above, which are all of the canonical linear form
given in the definition of V(Y, Sµ). In the forthcoming work [BBN24] of the author together with
Christopher Beem and Sujay Nair, we construct such coordinate systems in terms of multiplication
maps on generalized slices between orbits in the affine Grassmannian of Glm. This implies the
desired result in the case fµ = 0, and more generally as we now explain:

For a general nilpotent fµ in glM corresponding to a dominant slm coweight µ with |µ| = M and a
choice of pyramid πµ for fµ of width h and necessarily of height m, there are two natural labellings
of the pyramid, given by bibliographically with respect to columns and rows. These correspond
to the Jordan normal form of fµ (which by definition has m Jordan blocks), and what we call
the generalized hook-type form of fµ: that for which fµ is contained in the Lie algebra nµ of the
lower triangular unipotent subgroup Nµ, defined as the complement to the Levi factors Ll = Glml

determined by the heights ml of the columns of πµ for l = 1, ..., h.
In the example that µ = (3, 2, 1, 1), the two labellings and corresponding permutations of coor-

dinates are given by

πµ = 7

6

4 5

1 2 3

, πµ = 7

6

3 5

1 2 4

=⇒ fµ =




0 0 0 0 0 0 0
1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




, fµ =




0 0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0



,

where the blue entries indicate the Lie algebra nµ, and the red denote the Lie algebras nl of the
lower triangular unipotent subgroups Nl of the aforementioned Levi factors Ll.

The latter presentation of the nilpotent fµ and the good grading induced by πµ implies that

(5.10) N0
µ := N/Nµ

∼=−→
h∏

l=1

Nl ,

where N denotes the lower triangular unipotent subgroup, with respect to the basis inducing the
generalized hook-type form of fµ. Using this identification and applying the factorization maps of
Proposition 3.3 corresponding to the decomposition of πµ into columns, as pictured in Figure 20
below in the example µ = (3, 2, 1, 1), we obtain a vertex algebra embedding

(5.11) V(Y, Sµ) →
h⊗

l=1

V(Ym,0, Sµml
) ∼=

h⊗

l=1

V κ(glml
) ,

such that composing with the tensor product over l of the factorization maps of Equation 5.8 for
m = ml identifies the resulting free field realization with the generalized Wakimoto realization of

Figure 20. Factorization for µ = (3, 2, 1, 1) = (1, 1, 1, 1) + (1, 1, 0, 0) + (1, 0, 0, 0)

⊗

⊗

0 0 0 1
0 0 0 1

0 0 1 2
0 0 1 1

1 2 3 4
1 1 1 1

1 2 4 7
1 1 2 3
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[Gen17], as we now explain; this implies the compatibility of the factorization structure maps with
the parabolic inductions maps as claimed in the beginning of the proof.

First, note that composing the factorization map of Equation 5.11 with the tensor product of
those of Equation 5.8, as described, gives a vertex algebra embedding

V(Y, Sµ) →
h⊗

l=1

ml−1⊗

i=0

V(Ym,0, SMj )
∼=

h⊗

l=1

Dch(Nl)⊗ πhl ,

where hl denotes the Cartan subalgebra of the Levi factor Ll, so that the identification of Equation
5.10 gives an identification of the codomain with the generalized Wakimoto module

Wκ
fµ(glM )0 := Dch(N0

µ)⊗ πh
∼=−→

h⊗

l=1

ml−1⊗

i=0

V(Ym,0, SMj ) ,

for nilpotent fµ ∈ glM at level κ of [Gen17], generalizing the identification of Equation 5.9, where

we let h ∼=
⊕h

l=1 hml
be the Cartan subalgebra of glM .

Moreover, the screening operators characterizing the images of each of the factorization embed-
dings of Equation 5.8 are identified with those of the Wakimoto realizations for each of the Levi
factors factors Ll, by the previous results in the affine case. Thus, we have identifications

⊕

l(w)=1

Wκ
fµ(glml

)w
∼=−→

ml−1⊕

j=1

(
ml−1⊗

i=0

V(Yml,0, SMi)

)

λj

for each l = 1, ..., h, under which the geometric screening operators Qsj for j = 1, ...,ml and
l = 1, ..., h correspond to the ml Wakimoto screening operators for each of the Levi factors Ll. In
turn, acting on the larger algebra these can be identified with the generalized Wakimoto screening
operators QWak

w : Wκ
fµ
(glM )0 → W κ

fµ
(glM )w for the length one Weyl group elements w corresponding

to only those simple roots αi for glM which are contained in one of the corresponding lower triangular

nilpotent Lie algebras nl. This accounts for
∑h

l=1ml − 1 = M − h of the M − 1 screening operators
in the generalized Wakimoto presentation for W κ

fµ
(glM ).

Similarly, the image of the vertex algebra embedding in Equation 5.11 is given by the kernel
of h − 1 screening operators, which can be identified with precisely the remaining h − 1 screening
operators in the generalized Wakimoto realization, those corresponding to the simple roots with root
space contained in the complementary subspace nµ. These are precisely the screening operators such
that if one of their kernels is omitted in the intersection defining W κ

fµ
(glM ), the induced embedding

into the remaining intersection defines the parabolic induction map given by splitting the pyramid
πµ above the lth row, for l = 1, ..., h − 1. These are the simple roots corresponding to the boxed
entries of the matrix in the above example of the expression for the generalized hook-type form in
the case µ = (3, 2, 1, 1).

□

We now explain the application of the results of this section to the construction of inverse quantum
Hamiltonian reduction maps, generalizing those in [Sem94], [ACG21], [Feh23b], and [Feh23a] to
arbitrary W-algebras in type A, following work in progress proving this result joint with Christopher
Beem and Sujay Nair [BBN24]. The statement of the main Theorem (in progress) is the following:

Theorem 5.11. [BBN24] Let f1 ≤ f2 be nilpotents in glM . There is an embedding of vertex algebras

W κ
f1(glM ) → W κ

f2(glM )⊗Dch(G×a
m × Ab) .
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Let µ1 and µ2 be dominant coweights corresponding to the partitions determined by the Jordan
normal form of f1 and f2, respectively, and let m2 ≤ m1 ∈ N be the lengths of the corresponding
partitions. Then by Theorem 5.9 above (which we recall relies on the results of loc. cit.) we have
divisors Sµ1 and Sµ2 in Ym1,0 such that

(5.12) W κ
f1(glM )

∼=−→ V(Ym1,0, Sµ1) and W κ
f2(glM )

∼=−→ V(Ym1,0, Sµ2) .

The condition that f1 ≤ f2 implies that there exists a divisor Sσ on Ym1,0 such that

(5.13) OSσ → OSµ1
→ OSµ2

defines a short exact sequence as in the hypotheses of Proposition 3.3, so that we have

(5.14) V(Ym1,0, Sµ1) → V(Ym1,0, Sµ2)⊗ V(Ym1,0, Sσ)

an embedding of vertex algebras. Similarly, there exists a further filtration on OSσ such that loc.
cit. induces an embedding of vertex algebras

(5.15) V(Ym1,0, Sσ) → Dch(G×a
m × Ab) ,

where a is the minimum number of boxes that must be moved to change the partition corresponding
to µ1 into that corresponding to µ2, and b is determined by 2(a+ b) = dimSf1 − dimSf2 where Sfi
denotes a slice to the nilpotent orbit Ofi in glM for i = 1, 2.

In summary, composing the embedding of Equation 5.14 with that of Equation 5.15 (tensored
with the identity on V(Ym1,0, Sµ2)), implies Theorem 5.11, by the identifications of Equation 5.12
induced by Theorem 5.9. Thus, we see that the presentation of affine W-algebras as vertex algebras
V(Ym,0, Sµ) in loc. cit. is naturally adapted to the proof of inverse Hamiltonian reduction.

Finally, we provide a simple example: Let µ1 = (3, 2, 1, 1), as in the example discussed in the
proof of loc. cit. outlined above, and let µ2 = (4, 1, 1, 1) so that we can take σ = (−1, 1, 0, 0) and
we have the desired short exact sequence of Equation 5.13. Then we have

Sσ = |OP1 | and thus V(Ym1,0, Sσ) = Dch(Gm) ,

so that we obtain the desired inverse quantum Hamiltonian reduction map

W κ
f1(gl7) → W κ

f2(gl7)⊗Dch(Gm) ,

as summarized in Figure 21 below.

Figure 21. Factorization for inverse quantum Hamiltonian reduction

W κ
f1
(gl7) W κ

f2
(gl7) Dch(Gm)

1 2 4 7

1 1 2 3

1 2 3 7

1 1 1 4

⊗ 1

1 −1
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5.3. Genus zero class S chiral algebras. In this section, we explain the conjectural application
of our results to the genus zero, class S chiral algebras, which were proposed in [BPRR15] and
defined mathematically in the case of genus zero with regular singularities in [Ara18]. The main
result of loc. cit. is that there exists a family of vertex algebras VS

G;f1,...,fk
, for any simply connected,

semisimple algebraic group G and collection of nilpotent elements fi ∈ g for i = 1, ..., k, which satisfy
several natural compatibilities as the number of points k and nilpotents fi vary.

In our geometric setting, we must take G = GlM , and to begin we restrict to the case that k ≤ 2.
Then we must fix nilpotents f and f̃ in NM ⊂ glM , which correspond to a pair of partitions of M

µ = {µ1 ≥ . . . ≥ µm ≥ 0} and µ̃ = {µ̃1 ≥ . . . ≥ µ̃m̃ ≥ 0} ,

of some lengths m and m̃. As in the preceding Section 5.2, we also define the lists of integers

M = (Mi)
m−1
i=0 M̃ = (M̃i)

m̃−1
i=0 where Mi =

m∑

k=i+1

µk M̃i =
m̃∑

k=i+1

µ̃k

i = 0, ...,m− 1, j = 0, ..., m̃− 1, noting that by hypothesis we have

|µ| = M0 = M = M̃0 = |µ̃| ,
and define a divisor Sµ,µ̃ ⊂ Ym+m̃,0 by labelling the faces of the moment polytope as pictured in
Figure 22 below, and we have the following conjecture:

Conjecture 5.12. There is an isomorphism of vertex algebras

VS,κ
GlM ;f,f̃

∼=−→ V(Ym+m̃,0, Sµ,µ̃) .

Here we let VS,κ
GlM ;f,f̃

= H0
DS;f,f̃

(Dch
κ (G)) denote the Drinfeld-Sokolov reduction with respect to

nf ×nf̃ at (f, f̃) of the κ-twisted chiral differential operators Dch
κ (G) on G, the natural deformation

of VS
GlM ;f,f̃

= H0
DS;f,f̃

(Dch
−h∨(G)) from κ = −h∨; this algebra was introduced under the notation

Iκ
G,f,f̃

in Section 7 of [Ara18], generalizing the example of Sl2 at generic κ considered in [FS06].

Figure 22. The divisor Sµ,µ̃ in Ym+m̃,0 associated to partitions (µ, µ̃) of M

Ym+m̃,0 → Xm+m̃,0 = {xy − zm+m̃} × A1

⊂

Sµ,µ̃ = M̃m̃. . .M̃1MM1. . .Mm

µ̃m̃µ̃1µ1µm
M̃m̃ = µ̃m̃

M̃1 = µ̃2 + . . .+ µ̃m̃

M = M0 = M̃0

M1 = µ2 + . . .+ µm

Mm = µm

f

M

f̃
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In particular, this conjecture implies the existence of free field realizations of the class S chiral
algebras VS

GlM ;f,f̃
with image characterized as the kernel of the explicit screening operators defined

in Section 3.2. Moreover, these various free field realizations for different rank GlM and choices of
nilpotents f and f̃ are manifestly compatible, so that the conjecture would also imply the existence
of parabolic induction and inverse reduction relations between the algebras VS

GlM ;f,f̃
, generalizing

those for the usual affine type A W -algebras W κ
f (glM ) described in the preceding Section 5.2.

In particular, consider the case f = f̃ = fprin ∈ NM ⊂ glM , for which we have

VS
GlM ;fprin,fprin

∼= VS
GlM

= IchG ,

that is, VS
GlM ;fprin,fprin

is equivalent to the genus zero class S chiral algebra for k = 0 points VS
GlM

,

which is by definition the chiral universal centralizer. In this case, we have m = m̃ = 1, so that the
corresponding divisor is given by S = M [|OP1(−1)] on Y = Y2,0 and the free field module is given
by

Π(Y, S) = Π(Y2,0,M [|OP1(−1)|]) = Π(Y2,0, |OP1(−1)|)⊗M ∼= Dch(Gm)⊗M ∼= Dch(T ) ,

in keeping with the Beem-Nair conjecture [BN23a], part of which was recently proved in [Fur23].
Thus, our approach gives a refinement of the Beem-Nair conjecture, providing an explicit descrip-
tion of the screening operators which conjecturally characterize the image of the desired free field
realization, as well as a generalization thereof to generic κ.

Example 5.13. Let Y = |OP1 ⊕ OP1(−2)| and S = S0,2,0,0 = 2[|OP1 |]. Then the Heisenberg
subalgebra πS of the free field vertex algebra

Π(Y, S) = Π(Y, |OP1 |)⊗2

is generated by four Heisenberg fields, J1 and J3 satisfying

J1(z)J1(w) ∼ − 1

ε1ε2

1

(z − w)2
and J3(z)J3(w) ∼ 1

ε1ε2

1

(z − w)2

which generate the first copy of Π(Y, |OP1 |) together with the vertex operator

V1,0(z) = : exp(ε1(ϕ1(z) + ϕ3(z))): and more generally Vl,0(z) = :V1,0(z)
l:

for each l ∈ Z, that is, they satisfy the relations

J1(z)Vl,0(w) ∼ − l

ε2

Vl,0(w)

z − w
J3(z)Vl,0(w) ∼

l

ε2

Vl,0(w)

z − w
and Vl,0(z)Vm,0(w) = :Vl,0(z)Vm,0(w): ,

and the independent fields J2 and J4 satisfying

J2(z)J2(w) ∼ − 1

ε1ε2

1

(z − w)2
and J4(z)J4(w) ∼ 1

ε1ε2

1

(z − w)2

which generate the second copy of Π(Y, |OP1 |) together with the vertex operator

V0,1(z) = : exp(ε1(ϕ2(z) + ϕ4(z))): and more generally V0,l(z) = :V (z)l:

for each l ∈ Z, which satisfy the relations

J2(z)V0,l(w) ∼ − l

ε2

V0,l(w)

z − w
J4(z)V0,l(w) ∼

l

ε2

V0,l(w)

z − w
and V0,l(z)V0,m(w) = :V0,l(z)V0,m(w): .

The screening currents are given by

(5.16) Q1 = : exp(ε2(ϕ1 − ϕ2)): and Q2 = : exp(−ε2(ϕ3 − ϕ4)): .
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J1/2

J3/4

V1,0/0,1

Q1

Q2

2

J1/2

J3/4

Q1

Q2

2

2

Figure 23. Vertex algebra data and locality principle for V(Y2,0, S0,2,0,0)

Consider the change of basis in the Heisenberg subalgebra πS of Π(Y, S) given by

α = J1 + J2 β = J3 + J4 α− = J1 − J2 β− = J3 − J4 ,

as well as in the lattice direction by defining

V + = V1,1 = : exp(ε1(ϕ1 + ϕ2 + ϕ3 + ϕ4)): and V − = V1,−1 = : exp(ε1(ϕ1 − ϕ2 + ϕ3 − ϕ4)) .

Note that the fields α, β, and V+ all commute with the remaining fields α−, β− and V−, and
have non-singular OPE with both of the screening currents, so that they generate an independent
half-lattice vertex algebra Π+ ⊂ V(Y, S). The fields α−, β− and V − generate another independent
half-lattice vertex algebra Π− ⊂ Π(Y, S) so that we have

Π(Y, S) ∼= Π+ ⊗Π− ,

where both screening operators Q1 and Q2 vanish on Π+.
Now, we can apply the locality property of Proposition 3.5 analyze the structure of V(Y, S). In

particular, each field α− and β− has non-singular OPE with the complimentary screening current
Q2 and Q1, respectively. Thus, we can decompose

Π− =
⊕

λ∈Z
πα−
λε1 ⊗ πβ−

λε1

and we have that

Q1|πβ = Q2|πα = 0 and moreover ker(Q1|πα) ∼= Wκ
fprin

(sl2) ker(Q2|πβ ) ∼= Wκ∗
fprin

(sl2)

by the calculation of Example 5.6, where

(5.17) κ+ 2 = −ε2
ε1

and κ∗ + 2 =
ε2
ε1

,

so that we have

ker(Q|
πα−⊗πβ− ) ∼= Wκ

fprin
(sl2)⊗Wκ∗

fprin
(sl2) and more generally ker(Q|Π−) ∼=

⊕

λ∈P+

Wκ
fprin,λ

(sl2)⊗Wκ∗
fprin,λ∗(sl2) ,
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which identifies with the modified regular representation, or chiral universal centralizer Iκsl2 for

g = sl2, at level κ = −h∨ − ε2
ε1
, as defined in [FS06, Ara18]. In summary, we obtain

V(Y, S) ∼= Π+ ⊗ Iκsl2 .

Our expectation is that a similar strategy can be used to prove Conjecture 5.12 in general. Indeed,
applying Proposition 3.5 together with Theorem 5.9, we obtain in general:

Corollary 5.14. The vertex algebra V(Ym+m̃,0, Sµ,µ̃) is canonically a vertex algebra extension of

W κ
fµ
(glM )⊗W κ∗

fµ̃
(glM ), where κ and κ∗ are as in Equation 5.17.

For example, generalizing Example 5.13 we can consider again the case M = 2 and choose non-
principal (and thus necessarily trivial) nilpotents f = 0 or f̃ = 0, for which the corresponding

partitions are given by µ = (1, 1) or µ̃ = (1, 1); the divisor Sµ,µ̃ in Y4,0 = Ã3×A1 and corresponding

vertex algebra data for the case f = f̃ = 0 ∈ gl2 are pictured in Figure 24 below.
In addition to the generators J1, J2, J3, J4 from Example 5.13 above, we have independent Heisen-

berg generators J5, J6, J7 and J8 at levels

k5 =
1

ε1(ε1 + ε2)
k6 = − 1

ε1(ε1 + ε2)
k7 =

1

ε1(ε1 − ε2)
and k8 = − 1

ε1(ε1 − ε2)
,

as well as the additional lattice generators

V +(z) = : exp(ε1(ϕ5(z) + ϕ6(z))): and V −(z) = : exp(ε1(ϕ7(z) + ϕ8(z))):

and the additional screening currents between the Heisenberg generators in distinct components

Q+ = : exp(ε2ϕ1 + (ε1 + ε2)ϕ5): and Q− = : exp(ε2ϕ4 + (ε1 − ε2)ϕ7): .

Figure 24. Vertex algebra data and locality principle for V(Y4,0, S0,1,2,1,0)
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V −
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Q2
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2

2

1
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The subalgebra generated by J1, J2, J5, J6 and V + and screened byQ1 andQ+ is evidently identi-
fied with V κ(gl2) by Theorem 5.8, and similarly that for the complimentary generators J3, J4, J7, J8

and V − and screening operators Q2 and Q− is identified with V κ∗
(gl2), where κ and κ∗ are again as

in Equation 5.17, so that we obtain a vertex algebra extension of V κ(gl2)⊗ V κ∗
(gl2), conjecturally

isomorphic to Π+⊗Dch
κ (SL2); this partition of a subset of the generators into subalgebras is pictured

on the right of Figure 24.
Finally, we describe a more speculative extension of the preceding proposal, which gives a conjec-

tural alternative construction for genus zero class S chiral algebras VS
GlM ;f1,...,fk

for G = GlM and

k > 2 marked points, and perhaps even the twisted variants constructed in [BN23b]. The basic idea
is that by judiciously forgetting the screening operators corresponding to certain compact curve
classes in the definition of V(Y, S), one can formally separate the sheets of the divisor in order to
include the data of multiple nilpotents within a single divisor in the same class of threefolds Ym,0

used in the conjectural construction for k ≤ 2 marked points described above.
To begin, we consider the following critical level limit κ → −h∨ of the preceding constructions for

k ≤ 2. We introduce the rescaled Heisenberg generators J̃y = ε2J
y for y = 1, 2, 3, 4, which satisfy

J̃1/2(z)J̃1/2(w) ∼ −ε2
ε1

1

(z − w)2
=

κ+ h∨

(z − w)2
and J̃3/4(z)J̃3/4(w) ∼ ε2

ε1

1

(z − w)2
= − κ+ h∨

(z − w)2

and corresponding bosons ϕ̃y = ε2ϕy in terms of which we have

Q1 = : exp(ϕ̃1 − ϕ̃2): and Q2 = : exp(ϕ̃3 − ϕ̃4): .

In particular, in the limit ε2 → 0 or equivalently κ → −h∨ we have that the Jy generate commutative
Heisenberg algebras for y = 1, 2, 3, 4, and the subalgebras screened by Q1 and Q2 in those generated
by J1, J2 and J3, J4, respectively, are each isomorphic to the critical level κ = κ∗ = −h∨ principal

affine W algebra, or equivalently the centre of the affine Kac-Moody algebra z(ĝl2) ⊂ V −h∨
(gl2) at

critical level κ = −h∨, by Proposition 7.3.6 of [Fre10].
Further, note that in this limit the levels of the additional Heisenberg generators are given by

k5 = k7 =
1

ε21
and k6 = k8 = − 1

ε21
,

and the auxiliary screening currents are given by

Q+ = : exp(ϕ̃1 + ε1ϕ5): and Q− = : exp(ϕ̃4 + ε1ϕ7): .

In particular, note that the subalgebra isomorphic to Dch(Gm) generated by J5, J6 and V + is
canonically identified with that generated by J7, J8 and V −, under which the screening currents
Q+ and Q− differ only by the choice of boson ϕ̃1 or ϕ̃4. This additional symmetry naturally suggests
a generalization to k > 2 by simply tensoring with additional subalgebras Dch(Gm) and introducing

auxiliary screening operators of this form, for ϕ̃ some linear combination of the bosons ϕ̃1, ϕ̃2, ϕ̃3

and ϕ̃4. Such algebras arise as modifications of vertex algebras V(Ym,0, S) for more general divisors
S in the same class of threefolds Ym,0, as we now explain:

For concreteness, we begin by considering the case of k = 3 non-trivial marked points and
corresponding non-principal, and thus necessarily trivial, nilpotents f1 = f2 = f3 = 0. Consider
the divisor S = S0,2,2,1,0 and corresponding vertex algebra V(Y4,0, S0,2,2,1,0), with generators and
screening operators as indicated on the left in Figure 25 below. Our candidate for the class S chiral
algebra VS

Gl2,b=3 is defined by omitting, from the intersection defining V(Y4,0, S0,2,2,1,0), the kernel



VERTEX ALGEBRAS FROM DIVISORS ON CALABI-YAU THREEFOLDS 65

J1/2

J3/4

V1,0/0,1

Q1

Q2

Q+

Q−, Qs2

Qs1

2

1

2

J5

J7/9

J6

J8/10

V +

V −
1,0/0,1

V(Y, S) ṼS
Gl2,b=3

ṼS
Gl2,b=2 ⊗Dch(Gm)

⊗

Cs1

Figure 25. The conjectural free field presentation ṼS
Gl2,b=3 from V(Y4,0, S0,2,2,1,0)

of the screening operator Qs1 corresponding to the non-compact curve class Cs1 . We let ṼS
Gl2,b=3

denote the resulting vertex algebra, defined by the intersection

ṼS
Gl2,b=3 := ker(Q1) ∩ ker(Q2) ∩ ker(Q+) ∩ ker(Q−) ∩ ker(Qs2) ⊂ Π(Y4,0, S0,2,2,1,0) .

We propose that one can understand this modification geometrically as deforming the two sheets
of the divisor along that irreducible component in order to separate them at Cs1 , as pictured on
the right of Figure 25, and we conjecture that this vertex algebra (or a slight variant thereof) will
be isomorphic to the desired class S chiral algebra VS

Gl2,b=3. Indeed, as in Example 5.13 there

is a subalgebra Π+
∼= Dch(Gm) ⊂ Π(Y4,0, S0,2,2,1,0) generated by two rank 1 Heisenberg algebras

and a single Z-family of lattice vertex operators which commute with all the screening operators,
and the complimentary free field algebra is generated by eight rank 1 Heisenberg algebras and
four orthogonal families of lattice generators, which can together be identified with Dch(Gm)⊗4.
We conjecture that the subalgebra of the latter defined by the remaining screening operators is
equivalent to four copies of the standard free field realization of [FMS86] given by

Dch(A4) → Dch(Gm)⊗4 so that we have ṼS
Gl2,b=3

∼= Π+ ⊗Dch(A4) = Π+ ⊗ VS
Sl2,b=3 ,

in agreement with the calculation of Theorem A.1 in [Ara18]. Further, note there is an embedding

ṼS
Gl2,b=3 → V(Y4,0, S0,1,2,1,0)⊗ V(Y4,0, |OP1 |) ∼= ṼS

Gl2,b=2 ⊗Dch(Gm)

with image characterized by the kernel of the single screening operatorQs2 . More generally, applying

the same procedure to define ṼS
Gl2,b

for b ≥ 3, we have analogous relative free field realizations

ṼS
Gl2,b → ṼS

Gl2,b−1 ⊗Dch(Gm) ,

which appear to be consistent with the system of partial free field realizations of the genus zero
class S chiral algebras for G = Sl2 constructed in [BN23a].
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