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INSTITUTO DE MATEMÁTICA PURA E APLICADA

Abstract

Let A be drawn uniformly at random from the set of all n× n symmetric matrices with entries

in {−1, 1}. In Chapter 2 we show that

P(det(A) = 0) ⩽ e−cn,

where c > 0 is an absolute constant, thereby resolving a long-standing conjecture.

In Chapter 3 we show that

P(σmin(A) ⩽ ε/
√
n) ⩽ Cε+ e−cn,

where σmin(A) denotes the least singular value of A and C, c > 0 are absolute constants. This

result confirms a folklore conjecture on the lower tail of the least singular value of such matrices

and is best possible up to the value of C, c > 0. We also prove that the probability that A has

a repeated eigenvalue is e−Ω(n), confirming a conjecture of Nguyen, Tao and Vu.

In Chapter 4 we provide a new proof of the efficient container lemma. The method of hypergraph

containers was introduced in 2015 by Balogh, Morris and Samotij, and independently by Saxton

and Thomason, and since then it has been used to resolve a large number of open problems

in extremal and probabilistic combinatorics. One weakness of the original container lemma

is that it can only be applied to hypergraphs whose uniformity is at most logarithmic in the

number of vertices. In order to remedy this shortcoming, Balogh and Samotij introduced an

‘efficient’ container lemma which can be applied to hypergraphs whose uniformity is polynomial

in the number of vertices. We give a new, much simpler proof of the efficient container lemma

of Balogh and Samotij, with improved bounds. The statement of our new container lemma is

inspired by the recent proof of the Kahn–Kalai conjecture by Park and Pham.

In Chapter 5, we study the number of k-element subsets J of G, an abelian group, such that

|J + J | ⩽ λ|J |. Proving a conjecture of Alon, Balogh, Morris and Samotij, and improving a

result of Green and Morris, who proved the conjecture for λ fixed, we provide an upper bound on

the number of such sets which is tight up to a factor of 2o(k), when G = Z and λ = o(k/(log n)3).

We also provide a generalization of this result to arbitrary abelian groups which is tight up to

a factor of 2o(k) in many cases. The main tool used in the proof is the asymmetric container

lemma, introduced by Morris, Samotij and Saxton.
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In Chapter 6 we determine the number and typical structure of sets of integers with bounded

doubling. In particular, improving results of Green and Morris, and of Mazur, we show that the

following holds for every fixed λ > 2 and every k ⩾ (log n)4: if ω → ∞ as n → ∞ (arbitrarily

slowly), then almost all sets J ⊂ [n] with |J | = k and |J+J | ⩽ λk are contained in an arithmetic

progression of length λk/2 + ω.

In Chapter 7 we prove a refinement of a result of Green and Ruzsa about the number of sumsets

in Zn, for n prime. In particular, we determine up to a factor of 2o(m) the number of sets of the

form J + J , with J ⊂ Zn, |J | = k and |J + J | = m.

In Chapter 8 we improve the best known bound for a famous problem about covering in convex

geometry. In 1957, Hadwiger conjectured that every convex body in Rd can be covered by 2d

translates of its interior. For over 60 years, the best known bound was of the form O(4d
√
d log d),

but this was recently improved by a factor of eΩ(
√
d) by Huang, Slomka, Tkocz and Vritsiou. We

take another step towards Hadwiger’s conjecture by deducing an almost-exponential improve-

ment from the recent breakthrough work of Chen, Klartag and Lehec on Bourgain’s slicing

problem. More precisely, we prove that, for any convex body K ⊂ Rd,

exp

(
− Ω

(
d

(log d)8

))
· 4d

translates of int(K) suffice to cover K. We also show that a positive answer to Bourgain’s

slicing problem would imply an exponential improvement for Hadwiger’s conjecture.

The work in Chapters 2 and 3, as well as in Appendices A and B, is joint with Matthew

Jenssen, Marcus Michelen and Julian Sahasrabudhe. The work in Chapter 6 is joint with

Mauŕıcio Collares, Robert Morris, Natasha Morrison and Victor Souza. The work in Chapter 8

is joint with Peter van Hintum, Robert Morris and Marius Tiba.
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INSTITUTO DE MATEMÁTICA PURA E APLICADA

Resumo

Tome A uniformemente ao acaso do conjunto de todas as matrizes simétricas n×n com entradas

em {−1, 1}. No Caṕıtulo 2 mostramos que

P(det(A) = 0) ⩽ e−cn,

onde c > 0 é uma constante absoluta, resolvendo assim uma conjectura conhecida na área.

No Caṕıtulo 3 mostramos que

P(σmin(A) ⩽ ε/
√
n) ⩽ Cε+ e−cn,

onde σmin(A) denota o menor valor singular de A e C, c > 0 são constantes absolutas. Este

resultado confirma uma conjectura sobre a cauda inferior do menor valor singular de tais ma-

trizes e é melhor posśıvel a menos valor de C, c > 0. Também provamos que a probabilidade de

A ter um autovalor repetido é e−Ω(n), confirmando uma conjectura de Nguyen, Tao e Vu.

No Caṕıtulo 4 fornecemos uma nova prova do lema dos containers eficiente. O método dos

containers de hipergrafos foi introduzido em 2015 por Balogh, Morris e Samotij, e independen-

temente por Saxton e Thomason, e desde então tem sido usado para resolver vários problemas

em aberto em combinatória extremal e probabiĺıstica. Uma fraqueza do lema dos containers

original é que ele só pode ser aplicado a hipergrafos cuja uniformidade é no máximo logaŕıtmica

no número de vértices. Para resolver esse problema, Balogh e Samotij introduziram um lema

dos containers ’eficiente’ que pode ser aplicado a hipergrafos cuja uniformidade é polinomial

no número de vértices. Damos uma prova nova e muito mais simples do lema do containers

eficiente de Balogh e Samotij. O enunciado do nosso novo lema dos containers é inspirado na

demonstração recente da conjectura de Kahn-Kalai por Park e Pham.

No Caṕıtulo 5, estudamos o número de subconjuntos J , com k elementos, de G, um grupo

abeliano, tais que |J +J | ⩽ λ|J |. Provando uma conjectura de Alon, Balogh, Morris e Samotij,

e melhorando um resultado de Green e Morris, que provaram a conjectura para λ fixo, provamos

uma cota superior para o número desses conjuntos que é ótima a menos de um fator de 2o(k),

quando G = Z e λ = o(k/(log n)3). Nós também fornecemos uma generalização deste resultado

para grupos abelianos, também ótimo a menos de um fator de 2o(k) em muitos casos. A principal

ferramenta utilizada na prova é o lema dos containers assimétrico, introduzido por Morris,

Samotij e Saxton.
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No Caṕıtulo 6 determinamos o número e a estrutura t́ıpica de conjuntos de inteiros com ‘cons-

tante de doubling’ limitada. Em particular, melhorando resultados de Green e Morris e de

Mazur, mostramos que o seguinte vale para todo λ > 2 fixo e todo k ⩾ (log n)4: se ω → ∞
como n→ ∞ (arbitrariamente devagar), então quase todos os conjuntos J ⊂ [n] com |J | = k e

|J + J | ⩽ λk estão contidos em uma progressão aritmética de comprimento λk/2 + ω.

No Caṕıtulo 7 provamos um refinamento de um resultado de Green e Ruzsa sobre o número de

sumsets em Zn, para n linha. Em particular, determinamos a menos de um fator de 2o(m) o

número de conjuntos da forma J + J , com J ⊂ Zn, |J | = k e |J + J | = m.

No Caṕıtulo 8 melhoramos a melhor cota conhecida para um problema famoso em geometria

convexa. Em 1957, Hadwiger conjecturou que todo corpo convexo em Rd pode ser coberto por

translações 2d de seu interior. Por mais de 60 anos, a melhor cota conhecida era da forma

O(4d
√
d log d), mas ela foi recentemente melhorada por um fator de eΩ(

√
d) por Huang, Slomka,

Tkocz e Vritsiou. Damos mais um passo em direção à conjectura de Hadwiger ao deduzir

uma melhoria quase exponencial usando trabalhos inovadores de Chen, Klartag e Lehec para

o ‘Bourgain Slicing Problem’. Mais precisamente, provamos que, para qualquer corpo convexo

K ⊂ Rd,

exp

(
− Ω

(
d

(log d)8

))
· 4d

translados de int(K) são suficientes para cobrir K. Também mostramos que uma resposta

positiva para o ‘Bourgain Slicing Problem’ implicaria uma melhoria exponencial para essas

cotas.

Os trabalhos apresentados nos Caṕıtulos 2 e 3, e nos Apêndices A e B, foram realizados em

colaboração com Matthew Jenssen, Marcus Michelen e Julian Sahasrabudhe. O trabalho apre-

sentado no Caṕıtulo 6 foi feito em colaboração com Mauŕıcio Collares, Robert Morris, Natasha

Morrison e Victor Souza. O trabalho apresentado no Caṕıtulo 8 foi feito em colaboração com

Peter van Hintum, Robert Morris e Marius Tiba. —————————————
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Chapter 1

Introduction

1.1 Singularity Probability

Let B be a random n × n matrix whose entries are chosen independently and uniformly from

{−1, 1}. It is an old problem, likely stemming from multiple origins, to determine the probability

that B is singular. While a moment’s thought reveals the lower bound of (1+ o(1))2n22−n, the

probability that two rows or columns are equal up to sign, establishing the corresponding upper

bound remains an extremely challenging open problem. Indeed, it is widely believed that

P(det(B) = 0) = (1 + o(1))2n22−n. (1.1)

While this precise asymptotic has so far eluded researchers, a huge amount is now known about

this fascinating problem. The first advances were made by Komlós [95] in the 1960s, who showed

that the singularity probability is O(n−1/2) (see also [96] and [22]). He used Erdős [55] solution

to Littlewood-Offord problem thus connecting random matrices to anti-concentration problems

in probability.

Nearly 30 years later Kahn, Komlós and Szemerédi [88], in a remarkable paper, showed that

the singularity probability is exponentially small. At the heart of their paper is an ingenious

argument with the Fourier transform that allows them to give vastly more efficient descriptions

of “structured” subspaces of Rn that are spanned by {−1, 1}-vectors.

Their method was then developed by Tao and Vu [152, 153] who showed a bound of (3/4+o(1))n,

by proving an interesting link between the ideas of [88] and the structure of set addition and, in

particular, Freiman’s theorem. This trajectory was then developed further by Bourgain, Vu and

Wood [30], who proved a bound of (2−1/2+o(1))n, and by Tao and Vu [155], who pioneered the

development of “inverse Littlewood-Offord theory”, now an integral aspect of random matrix

theory (see Section 1.1.1).
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In 2007, Rudelson and Vershynin, in an important and influential paper [129], gave a different

proof of the exponential upper bound on the singularity probability of B. The key idea was to

construct efficient ε-nets for points on the sphere that have special anti-concentration properties

and are thus more likely to be in the kernel of B. This then led them to prove an elegant inverse

Littlewood-Offord type result, inspired by [155], in a geometric setting.

This perspective was then developed further in the 2018 breakthrough work of Tikhomirov [165],

who proved

P(det(B) = 0) = (1/2 + o(1))n,

thereby essentially proving the conjectured upper bound. One of the key innovations in [165]

was to adopt a probabilistic viewpoint of the (discretized) sphere: instead of directly proving

that efficient nets exist by latching onto some sort of structure, he shows that the probabil-

ity of randomly selecting a “structured” point on the discrete sphere is incredibly unlikely.

While this change in perspective may not immediately sound useful, Tikhomirov’s “inversion

of randomness” gives him access to a whole host of probabilistic tools.

Another major advance on the problem was made recently by Jain, Sah and Sawhney [86], who

(building on the recent work of Litvak and Tikhomirov [102]), proved the natural analogue of

(1.1) for random matrices with independent entries chosen from a finite set S, for any non-

uniform distribution on S. For the case of {−1, 1}-matrices, however, they do not improve on

the bound of Tikhomirov.

While the problem for matrices B with all entries independent is now very well understood,

the situation for symmetric random matrices remains somewhat more mysterious. Indeed all of

the previously mentioned works on random matrices depend deeply on the fact that the entries

of B are independent, and often treat B as n independent copies of a row, thus allowing for

an essentially “one-dimensional” treatment of the problem. In the symmetric case, no such

perspective is available.

Let A be a random n × n symmetric matrix, uniformly drawn from all symmetric matrices

with entries in {−1, 1}. Again, it is generally believed that P(detA = 0) = Θ(n22−n) (see, e.g.

[41, 169, 170]) but progress has come more slowly. The problem of showing that A is almost

surely non-singular goes back, at least, to Weiss in the early 1990s but was not resolved until

2005 by Costello, Tao and Vu [41], who obtained the bound

P(det(A) = 0) ⩽ n−1/8+o(1). (1.2)

The first super-polynomial bounds were obtained by Nguyen [113] and, simultaneously, Ver-

shynin [166], the latter obtaining a bound of the form exp(−nc). Nguyen [113] developed the
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quadratic Littlewood-Offord theory introduced in [41], while Vershynin [166] worked in the

geometric framework pioneered in his work with Rudelson [129–131].

In 2019, a more combinatorial perspective on this problem was introduced by Ferber, Jain, Luh

and Samotij [63] and applied by Ferber and Jain [62] to show

P(detA = 0) ⩽ exp(−cn1/4(log n)1/2) .

In a similar spirit, the author in joint work Mattos, Morris and Morrison [37] then improved

this bound to

P(detA = 0) ⩽ exp(−cn1/2), (1.3)

by proving a“rough” inverse Littlewood-Offord theorem, inspired by the theory of hypergraph

containers (see [15, 142]). This bound was then improved by Jain, Sah and Sawhney [87], who

improved the exponent to −cn1/2 log1/4 n, and, simultaneously, by the author in joint work with

Jenssen, Michelen and Sahasrabudhe [35], who improved the exponent to −c(n log n)1/2.

The convergence of these results onto the exponent of −c(n log n)1/2 is no coincidence and in

fact represents a natural barrier in the problem. Indeed, all of the results up to now have

treated “structured” vectors by only using the top-half of the matrix (i.e. the half above the

diagonal), which conveniently consists of independent entries. However, as pointed out in [37],

if one is restricted to working in the top-half of A one cannot obtain an exponent better than

−c(n log n)1/2. Thus to get beyond this obstruction, somehow the randomness of the matrix

must “reused”.

In Chapter 2 we prove an exponential upper-bound on the singularity probability of a symmetric

random matrix, thereby breaking though this barrier and giving the optimal bound, up to the

constant in the exponent.

Theorem 1.1.1 (C., Jenssen, Michelen, Sahasrabudhe). Let A be uniformly drawn from all

n× n symmetric matrices with entries in {−1, 1}. Then

P(det(A) = 0) ⩽ e−cn, (1.4)

where c > 0 is an absolute constant.

The main technical innovations in the proof are a new inverse Littlewood-Offord type theorem

for “conditioned” random walks and a new “inversion of randomness” technique that allows us

to “reuse” the randomness of our matrix by pushing some of the randomness onto the random

selection of a vector from our discretized sphere. In fact, there is a delicate tradeoff between

these two ingredients; a loss in the second ingredient allows for an improvement in the first,

unless some specific “arithmetic” structure arises.
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1.1.1 Inverse Littlewood-Offord theory

For v ∈ Rn, we define the concentration function (one of several to come) as

ρ(v) := max
b∈R

P

(
n∑
i=1

εivi = b

)
,

where ε1, . . . , εn ∈ {−1, 1} are uniform and independent. The study of ρ(v) goes back at least

to the classical work of Littlewood and Offord [100, 101] on the zeros of random polynomials,

but perhaps begins in earnest with the beautiful 1945 result of Erdős [55]: if v ∈ Rn has all

non-zero coordinates then

ρ(v) ⩽ 2−n
(

n

⌊n/2⌋

)
= O(n−1/2).

This was then developed by Szemerédi and Sárközy[141], who showed that if all of the vi are

distinct then one can obtain the much stronger bound of O(n−3/2), and by Stanley [147] who

determined the exact maximum, using algebraic tools. A higher-dimensional version of this

problem also received considerable attention (going under the name of the Littlewood-Offord

problem) and was studied by several authors [75, 90, 94, 138] before it was ultimately resolved

in the work of Frankl and Füredi [66] (see also [161]).

Of these early results, the most important for us here is the work of Halász [79] who made an

important connection with the Fourier transform to prove (among other things) the following

beautiful result: if there are Nk solutions to x1 + · · ·+ xk = xk+1 + · · ·+ x2k among the entries

of v, then ρ(v) = O(n−2k−1/2Nk).

More recently the question has been turned on its head by Tao and Vu [155], who pioneered the

study of “inverse” Littlewood-Offord theory. They suggested that if ρ(v) is “large” then v must

exhibit some particular arithmetic structure. For example, Tao and Vu [155, 157], and Nguyen

and Vu [117, 118] proved that if v is such that ρ(v) > n−C then O(n1−ε) of the elements vi of

v can be efficiently covered with a generalized arithmetic progression of rank r = Oε,C(1).

While these results provide a very detailed picture in the range ρ(v) > n−C , they begin to break

down1 if ρ(v) = n−ω(1) and therefore are of limited direct use in showing that the singularity

probability is exponentially small. Inverse results which work for smaller ρ bring us to the

“counting” Littlewood-Offord theorem of Ferber, Jain, Luh and Samotij [63], and the “weak”

inverse Littlewood-Offord theorems of Campos, Mattos, Morris and Morrison [37] and of the

author with Jenssen, Michelen and Sahasrabudhe in [35], which are useful for ρ(v) as small as

exp(−c(n log n)1/2), but afford less structure.

1Technically these results break down if ρ(v) < n− log logn.
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Our novel inverse Littlewood-Offord theorem in Chapter 2 is most similar to that of Rudelson

and Vershynin [129], also developed in [166] and [87], who showed that if ρ(v) ≫ e−cn then

there exists ϕ > 0 with2 ϕ ≈ 1/ρ(v) for which the dilated vector ϕ · v is exceptionally close

to the integer lattice Zn. These Littlewood-Offord theorems, styled after Rudelson-Vershynin,

tend to be a little bit subtler; instead of determining the structure of the whole vector, we only

show there is some “correlation” with the rigid object Zn.

To state our inverse Littlewood-Offord theorem, we formulate an important notion introduced

by Rudelson and Vershynin. We switch to working in Rd, for d ≈ cn, hinting at the later

context of these results. If A ⊆ Rd and x ∈ Rd then define d(x,A) := infa∈A{∥x− a∥2}. Now,

for α ∈ (0, 1), define the least common denominator of a vector v ∈ Rd to be the smallest ϕ > 0

for which ϕ · v is within
√
αd of a non-zero integer point. That is,

Dα(v) = inf
{
ϕ > 0 : d(ϕ · v,Zd \ {0}) ⩽

√
αd
}
.

Note here that we have excluded the origin from Zd in the definition since ϕ · v ≈ 0 does not

tell us any interesting about v. Indeed, given any v ∈ Sd−1, one could always set ϕ <
√
αd

and obtain d(ϕ · v,Zd) ⩽ d(ϕ · v, 0) ⩽
√
αd, and so this degenerate case needs to be excluded

somehow. In fact, in Chapter 2, we will work with a slightly different non-degeneracy condition

(see (2.2)).

Our Littlewood-Offord theorem shows that a similar conclusion to that of [129] can be obtained

in the presence of a large number (k ≈ n) of additional “soft” constraints on the random walk.

In particular we prove the following result, which is in fact weaker than what we really need (see

Lemma 2.3.1), but captures its essence. We say that a random vector with entries in {−1, 0, 1}
is µ-lazy if each entry is independent and is equal to 0 with probability 1 − µ and is equal to

each of −1, 1 with probability µ/2.

Theorem 1.1.2 (C., Jenssen, Michelen, Sahasrabudhe). There exist R, c1, c2 > 0, for which

the following holds for every d ∈ N, α ∈ (0, 1), 0 ⩽ k ⩽ c1αd and t ⩾ exp(−c1αd). Let v ∈ Sd−1,

let w1, . . . , wk ∈ Sd−1 be orthogonal and let W be the matrix with rows w1, . . . , wk.

If τ ∈ {−1, 0, 1}d is a 1/4-lazy random vector and

P
(
|⟨τ, v⟩| ⩽ t and ∥Wτ∥2 ⩽ c2

√
k
)
⩾ Rte−c1k, (1.5)

then Dα(v) ⩽ 16/t.

Here we interpret ∥Wτ∥2 ⩽ c2
√
k as encoding the “soft” constraints and |⟨τ, v⟩| ⩽ t as the

“hard” constraint. It is useful to think of t ≈ ρ(v), although we actually set t relative to a

related notion tailored specifically to our application.

2In what follows, we will be somewhat vague with our use of ≈.
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To understand the quantitative aspect of Theorem 1.1.2, it is best to consider the contrapositive

of Theorem 1.1.2, which roughly says that if v is “unstructured at scale t” (that is, Dα(v) >

16/t) then the soft and hard constraints are roughly negatively dependent3. Indeed, if v is

sufficiently “unstructured at scale t” then we might expect ⟨τ, v⟩ to approximate a Gaussian

and, in particular, to have

P(|⟨τ, v⟩| ⩽ t) ≈ t.

On the other hand, since w1, . . . , wk ∈ Sd−1 are orthogonal, it turns out that (see Lemma 2.5.7)

P(∥Wτ∥2 ⩽ c2
√
k) ⩽ e−c1k,

where c1 > 0 is a suitably small constant depending on c2 > 0. If these two events were

negatively dependent then we would expect a bound of

P
(
|⟨τ, v⟩| ⩽ t and ∥Wτ∥2 ⩽ c2

√
k
)
⩽ te−c1k.

Theorem 1.1.2 says something almost as strong as this, giving the inequality up to a constant

R and the value of c1.

For us, the main difficulty lies in “decoupling” the soft and hard constraints, which is ultimately

achieved by a somewhat complicated geometric argument on the Fourier side. However, we

should point out that Theorem 1.1.2 is non-trivial even in the case of k = 0 and in fact reduces,

in this case, to the inverse Littlewood-Offord result proved by Rudelson and Vershynin in [129].

In fact, the k = 0 case is useful for understanding the sort of structure that the conclusion

Dα(v) < c/t provides. It is not hard to show that if one chooses v ∈ Sn−1 very close to a point

on the lattice (Ct)Zn, where C ≫ 1, then v satisfies

P(|⟨v, τ⟩| ⩽ t) ≫ t. (1.6)

Thus the inverse theorem of [129, 131] says, roughly speaking, that all vectors satisfying (1.6)

must have this structure. Our Theorem 1.1.2 says the same is true even in the presence of a

large number of additional constraints.

1.2 Least Singular Value

Let A be a n× n random symmetric matrix whose entries on and above the diagonal (Ai,j)i⩽j

are i.i.d. with mean 0 and variance 1. This matrix model, sometimes called the Wigner matrix

3Here, we say events S, T are negatively dependent if P(S ∩ T ) ⩽ P(S)P(T ).
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ensemble, was introduced in the 1950s in the seminal work of Wigner [173], who established the

famous “semi-circular law” for the eigenvalues of such matrices.

In Chapter 3 we study the extreme behavior of the least singular value of A, which we denote

by σmin(A) := infv∈Sn−1 ∥Av∥2. Notice that since A is symmetric we also have σmin(A) =

min1⩽i⩽n |λi(A)|, where λi(A) are the eigenvalues of A. Since by Wigner’s “semi-circular law”

almost all eigenvalues of A lie in the interval [−2
√
n,+2

√
n] with high probability, if they were

evenly distributed we would expect that σmin(A) = Θ(n−1/2). Thus it is natural to consider

P(σmin(A) ⩽ εn−1/2), (1.7)

for all ε ⩾ 0 (see Section 1.2.2). In Chapter 3 we prove a bound on this quantity which is

optimal up to constants, for all random symmetric matrices with i.i.d. subgaussian entries.

This confirms the folklore conjecture, explicitly stated by Vershynin in [166].

Theorem 1.2.1 (C., Jenssen, Michelen, Sahasrabudhe). Let ζ be a subgaussian random variable

with mean 0 and variance 1 and let A be a n×n random symmetric matrix whose entries above

the diagonal (Ai,j)i⩽j are independent and distributed according to ζ. Then for every ε ⩾ 0,

PA(σmin(A) ⩽ εn−1/2) ⩽ Cε+ e−cn, (1.8)

where C, c > 0 depend only on ζ.

This conjecture is sharp up to the value of the constants C, c > 0 and resolves the “up-to-

constants” analogue of the Spielman–Teng conjecture for random symmetric matrices (see Sec-

tion 1.2.2). Also note that the special case ε = 0 tells us that the singularity probability of any

random symmetric A with subgaussian entry distribution is exponentially small, generalizing

our previous work presented in Chapter 2 on the {−1, 1} case.

1.2.1 Repeated eigenvalues

Before we discuss the history of the least singular value problem, we highlight one further

contribution presented in Chapter 3: a proof that a random symmetric matrix has no repeated

eigenvalues with probability 1− e−Ω(n).

In the 1980s Babai conjectured that the adjacency matrix of the binomial random graph

G(n, 1/2) has no repeated eigenvalues with probability 1 − o(1) (see [163]). Tao and Vu [163]

proved this conjecture in 2014 and, in subsequent work on the topic with Nguyen [116], went

on to conjecture the probability that a random symmetric matrix with i.i.d. subgaussian entries

has no repeated eigenvalues is 1 − e−Ω(n). In Chapter 3 we prove this conjecture en route to

proving Theorem 1.2.1, our main theorem.
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Theorem 1.2.2 (C., Jenssen, Michelen, Sahasrabudhe). Let ζ be a subgaussian random variable

with mean 0 and variance 1 and let A be a n× n random symmetric matrix where (Ai,j)i⩽j are

independent and distributed according to ζ. Then A has no repeated eigenvalues with probability

1− e−cn, where c > 0 is a constant depending only on ζ.

Theorem 1.2.2 is easily seen to be sharp whenever Ai,j is discrete: consider the event that

three rows of A are identical; this event has probability e−Θ(n) and results in two 0 eigenvalues.

Also note that the constant in Theorem 1.2.2 can be made arbitrary small; consider the entry

distribution ζ which takes value 0 with probability 1 − p and each of {−p−1/2, p−1/2} with

probability p/2. Here the probability of 0 being a repeated root is ⩾ e−(3+o(1))pn.

We in fact prove a more refined version Theorem 1.2.2 which gives an upper bound on the

probability that two eigenvalues of A fall into an interval of length ε. This is the main result

of Section 3.7 and an important step in the proof of Theorem 1.2.1. For this, we let λ1(A) ⩾

. . . ⩾ λn(A) denote the eigenvalues of the n× n real symmetric matrix A.

Theorem 1.2.3. [C., Jenssen, Michelen, Sahasrabudhe] Let ζ be a subgaussian random variable

with mean 0 and variance 1 and let A be a n× n random symmetric matrix where (Ai,j)i⩽j are

independent and distributed according to ζ. Then for each ℓ < cn and all ε ⩾ 0 we have

max
k⩽n−ℓ

P(|λk+ℓ(A)− λk(A)| ⩽ εn−1/2) ⩽ (Cε)ℓ + 2e−cn ,

where C, c > 0 are constants, depending only on ζ.

1.2.2 History of the least singular value problem

The behavior of the least singular value was first studied for random matrices Bn with i.i.d.

coefficients, rather than for symmetric random matrices. For this model, the history goes back

to von Neumann [168] who suggested that one typically has

σmin(Bn) ≈ n−1/2,

while studying approximate solutions to linear systems. This was then more rigorously conjec-

tured by Smale [144] and proved by Szarek [148] and Edelman [43] in the case that Bn = Gn

is a random matrix with i.i.d. standard gaussian entries. Edelman found an exact expression

for the density of the least singular value in this case. By analyzing this expression, one can

deduce that

P(σmin(Gn) ⩽ εn−1/2) ⩽ ε, (1.9)

for all ε ⩾ 0 (see e.g. [146]) as well as an asymptotic expansion for this probability when ε

is fixed and n → ∞. While this gives a very satisfying understanding of the gaussian case,
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one encounters serious difficulties when trying to extend this result to other distributions, as

Edelman’s proof relies crucially on the special tools available only in the gaussian case. In the

last 20 or so years, intense study of the least singular value of i.i.d. random matrices has been

undertaken with the overall goal of proving an appropriate version of (1.9) for different entry

distributions and models of random matrices.

An important and challenging feature of the more general problem arises in the case of discrete

distributions, where the matrix Bn can become singular with non-zero probability. This singu-

larity event will affect the quantity (1.7) for very small ε and thus estimating the probability

that σmin(Bn) = 0 is a crucial aspect of generalizing (1.9). This is reflected in the famous and

influential Spielman–Teng conjecture [145] which stipulates the bound

P(σmin(Bn) ⩽ εn−1/2) ⩽ ε+ 2e−cn, (1.10)

where Bn is a Bernoulli random matrix. Here this added exponential term “comes from” the

singularity probability of Bn.

In this direction, a key breakthrough was made by Rudelson [128] who proved that if Bn has

i.i.d. subgaussian entries then

P(σmin(Bn) ⩽ εn−1/2) ⩽ Cεn+ n−1/2 .

This result was extended in a series of works [130, 154, 155, 171] ultimately terminating in the

influential work of Rudelson and Vershynin [129] who showed the “up-to-constants” version of

Spielman-Teng:

P(σmin(Bn) ⩽ εn−1/2) ⩽ Cε+ e−cn, (1.11)

where Bn is a matrix with i.i.d. entries that follow any subgaussian distribution and C, c > 0

depend only on ζ. A key ingredient in the proof of (1.11) is a novel approach to the “in-

verse Littlewood-Offord problem,” a perspective pioneered by Tao and Vu [155] (discussed in

section 1.1.1).

Another very different approach was taken by Tao and Vu [156] who showed that the distribution

of the least singular value of Bn is identical to the least singular value of the Gaussian matrix

Gn, up to scales of size n−c. In particular they prove that

∣∣P(σmin(Bn) ⩽ εn−1/2)− P(σmin(Gn) ⩽ εn−1/2)
∣∣ = O(n−c0), (1.12)

thus resolving the Speilman-Teng conjecture for ε ⩾ n−c0 , in a rather strong form.

While falling just short of the Spielman-Teng conjecture, the work Tao and Vu [156], Rudelson

and Vershynin [129] and subsequent refinements by Tikhomirov [104] and Livshyts, Tikhomirov
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and Vershynin [104] (see also [103, 124]) leave us with a very strong understanding of the least

singular value for i.i.d. matrix models. However, progress on the analogous problem for random

symmetric matrices, or Wigner random matrices, has come somewhat more slowly and more

recently: in the symmetric case, even proving that An is non-singular with probability 1− o(1)

was not resolved until the important 2006 paper of Costello, Tao and Vu [41].

Progress on the symmetric version of Spielman–Teng continued with Nguyen [113] and, inde-

pendently, Vershynin [166]. Nguyen proved that for any B > 0 there exists an A > 0 for

which4

P(σmin(An) ⩽ n−A) ⩽ n−B.

Vershynin [166] proved that if An is a matrix with subgaussian entries then, for all ε > 0, we

have

P(σmin(An) ⩽ εn−1/2) ⩽ Cηε
1/8−η + 2e−n

c
, (1.13)

for all η > 0, where the constants Cη, c > 0 may depend on the underlying subgaussian random

variable. He went on to conjecture that ε should replace ε1/8 as the correct order of magnitude

and that e−cn should replace e−n
c
.

After Vershynin, a series of works [35, 37, 62, 63, 87] made progress on singularity probability

(i.e. the ε = 0 case of Vershynin’s conjecture), and we, in Chapter 2, ultimately showed that

the singularity probability is exponentially small, when Ai,j is uniform in {−1, 1}:

PAn(det(An) = 0) ⩽ e−cn,

which is sharp up to the value of c > 0.

However, for general ε the state of the art is due to Jain, Sah and Sawhney [87], who improved

on Vershynin’s bound (1.13) by showing

P(σmin(An) ⩽ εn−1/2) ⩽ Cε1/8 + e−Ω(n1/2) ,

under the subgaussian hypothesis on An.

For large ε, for example ε ⩾ n−c, another very different and powerful set of techniques have been

developed, which in fact apply more generally to the distribution of other “bulk” eigenvalues.

The works of Tao and Vu [154, 159], Erdős, Schlein and Yau [50, 51, 57], Erdős, Ramı́rez,

Schlein, Tao, Vu, Yau [49], and specifically Bourgade, Erdős, Yau and Yin [24] tell us that

P(σmin(An) ⩽ εn−1/2) ⩽ ε+ o(1), (1.14)

4We note that this result is actually proved for all matrices of the form An + F , where F is any fixed n × n
matrix and the entries of An have mean 0, but need not be identically distributed and may have large variances.
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thus obtaining the correct dependence on ε asymptotically5. These results are similar in flavor

to (1.12) in that they show the distribution various eigenvalue statistics are closely approximated

by the corresponding statistics in the Gaussian case. We note however that it appears these

techniques are limited to these large ε and different ideas are required for ε < n−C , and certainly

for ε as small as e−Θ(n).

Our main theorem, Theorem 1.2.1, proves Vershynin’s conjecture and thus proves the optimal

dependence on ε for all ε > e−cn, up to constants.

1.2.2.1 Smoothed analysis

The least singular value of random matrices also has significant application to theoretical com-

puter science due its central role in smoothed analysis, a notion introduced by Spielman and

Teng [145]. Inspired by the observation that certain algorithms have theoretically slow worst-

case performance but efficient performance in practice, Spielman and Teng proved that if one

perturbs any linear program by Gaussian noise, then the simplex method typically runs quickly.

Here, the Gaussian noise represents various errors in the data input and provides theoretical

groundwork for the observation that the simplex algorithm typically runs quickly even on ex-

amples for which it theoretical exhibits exponential run-time. At the core of their proof is the

study of the least singular value of random perturbations of arbitrary matrices. Together with

Sankar, Spielman and Teng [139] later proved that Edelman’s bound (1.9) remains essentially

unchanged if the Gaussian random matrix is perturbed by an arbitrary matrix; in particular

they showed that if Gn is an n×nmatrix of i.i.d. standard Gaussians then for any (deterministic)

n× n matrix F we have

P(σn(F +Gn) ⩽ ε/
√
n) ⩽ 1.823ε . (1.15)

This bound is then used to show that the condition number—i.e. the ratio of greatest and

least singular values—of various perturbed matrices is well-behaved, thus allowing for efficient

behavior of many algorithms. Since its introduction, smoothed analysis has been applied to

understand the behavior of various algorithms (e.g. [9, 20] and the references therein).

In practice, many numerical errors are of a more discrete nature, and so one may ask if the

behavior of (1.15) still holds if Gn is replaced by, say Bn, a matrix with i.i.d. entries from

5Tao and Vu in [159] treat the least singular value with their Corollary 24. There they prove up the distribution
of σmin(An) agrees with σmin of a symmetic gaussian matrix up to a polynomial error assuming certain moment-
matching assumptions on the distribution of the entries of An. A follow-up work [49] joint with Erdős, Ramı́rez,
Schlein, and Yau describes an approach to combine ideas from the works [50, 51, 57] to remove the moment
matching assumptions of [159], but does not explicitly address the problem of the least singular value. Finally,
the work [24] proves the non-quantitative (1.14) (see the discussion below Theorem 2.2 of [24]).
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{−1, 1}. Perhaps surprisingly, Tao and Vu [158] proved that this is not the case, and showed

that a careful choice of F can yield an extremely small singular value of F +Bn with probability

Ω(n−1/2). These matrices, however, have increasing operator norm (see [85, 158] for results

depending on F ). It was in this context that in the case of F = 0, Spielman and Teng conjectured

(1.10).

Work on smoothed analysis with non-gaussian noise continues with work by Tikhomirov [164]

and Jain, Sah and Sahwney [85]. The smoothed analysis of random symmetric matrices has

also recently received significant attention (see e.g.[29, 60, 114, 166]).

1.2.2.2 Semicircular Laws and Universality

Among the earliest mathematical treatments of random matrices are Wigner’s groundbreaking

works [172, 174] on random symmetric matrices—also called Wigner matrices—in which he

proved the celebrated semicircular law for certain ensembles of random matrices. Over a decade

later, Pastur [120] generalized Wigner’s work to show that this behavior is universal meaning

that the semicircular law holds for an arbitrary (sufficiently well-behaved) distribution of matrix

entries. Even further generalizations and extensive connections to free probability have since

been explored (see the books [6, 12, 149] for more context).

A seminal sequence of works [50, 51, 57] by Erdős, Schlein and Yau developed the theory of local

semicircular laws, which show quantitative rates of convergence to the semicircular distribution

on small windows for a general class of Wigner matrices (see [10, 11] for earlier works and

more historical context). Work on the semicircular law continues still, for instance in the works

[69, 70] and the recent survey [77].

The above results belong to the wider study of universality : the idea that certain statistics of

the spectrum of a random matrix should not depend too heavily on the precise distribution of

its entries. Of particular interest in this area is showing that the k-point correlation functions

in the bulk converge and have the same limit as those of the Gaussian Orthogonal (or Unitary)

ensemble. The problem of universality in this context is often referred to as the Wigner-Dyson-

Mehta conjecture (see Conjectures 1.2.1 and 1.2.2 of Mehta’s text [107] for precise statements).

Many results in this context focus on relaxing the assumptions on the distribution of the matrix

entries. Rather than delve into the literature here, we refer the reader to the works [1, 24, 47–

49, 52–54, 84, 159, 160, 162] for results in this direction and more context.
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1.2.2.3 Eigenvalue gaps

Another well-studied spectral statistic of Wigner matrices is the size of the gaps between con-

secutive eigenvalues. This study has been inspired in part by Wigner’s bold postulate [172] that

the spacing between the discrete energy levels of a heavy atomic nucleus should resemble the

the spacing between the eigenvalues of a random Hermitian matrix.

Given a random Wigner matrix An, a natural problem is to determine the limiting distribution

of a given gap δi(An) := λi+1(An)−λi(An). Even for the GUE, this was only recently computed

(in the bulk) by Tao [150]. Subsequent work of Tao and Vu [159] and Erdős and Yau [58] shows

that this gap distribution is in fact universal within a large class of Wigner matrices. Another

statistic of interest is the minimum gap δmin(An) := min1⩽i⩽n−1 λi+1(An) − λi(An). For the

GUE, the limiting distribution of δmin was determined by Bourgade and Ben-Arous [8]. As

noted by Nguyen-Tao-Vu [116], the Wegner estimates of Erdős, Schlein, and Yau [57] show that

under certain smoothness assumptions of the entries An one has the following bound:

P(δmin(An) ⩽ ε/
√
n) ≲ nε3 + e−cn ,

for ε > 0, matching the behavior of the GUE up to the implicit constant and exponential error

term.

In the case where the entries of An are discrete, even showing that δmin(An) > 0 (i.e. the

spectrum of An is simple) with high probability is non-trivial. Recently Tao and Vu [163]

showed that the spectrum of An is simple with high probability under very mild assumptions

on the distribution of the entries of An. In particular, their result applies to the case where An is

the adjacency matrix of the Erdős-Renyi random graph G(n, 1/2), which resolved a conjecture

of Babai (motivated by the graph isomorphism question).

In the case where the entries of An are subgaussian, Nguyen, Tao and Vu [116] showed that

δmin(An) = 0 with probability O(exp(−nc)). In particular this holds for the case where An is a

uniformly random symmetric matrix with entries in {−1, 1}. Nguyen, Tao and Vu conjectured

that in this case, the bound can be improved to O(exp(−cn)). Theorem 3.1.3 resolves this

conjecture.

1.3 Hypergraph Container Method

The method of hypergraph containers is one of the most powerful and flexible techniques in

probabilistic combinatorics. Since its introduction by Balogh, Morris and Samotij [15] and

Saxton and Thomason [142], it has been used to resolve a large number of well-known conjectures
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in extremal, probabilistic and additive combinatorics, as well as problems in areas such as

discrete geometry. As a matter of fact, a variant of the hypergraph container lemma will be

one of main tools used in Chapters 5, 6 and 7.

Roughly speaking, the idea is that many interesting combinatorial objects (such as H-free

graphs, and sets with no arithmetic progression of a given length) can be encoded as the

independent sets of uniform hypergraphs, and that the independent sets of these hypergraphs

exhibit a certain subtle clustering phenomenon, which can be exploited when counting, or when

bounding the probabilities of certain events. The survey [16] provides a gentle introduction to

the area, and numerous applications of the method.

The original container lemma provides sharp bounds (up to a constant factor) when the unifor-

mity of the hypergraph is bounded, and still provides useful bounds even when the uniformity is

poly-logarithmic in the number of vertices of the hypergraph. For hypergraphs whose edges are

larger than this, however, the statement becomes trivial. In order to remedy this shortcoming of

the method, Balogh and Samotij [18] introduced a strengthening of the container lemma, which

they called the ‘efficient’ container lemma, that provides useful information for uniformities as

large as nc, for some (moderate) constant c > 0.

The proof the efficient container lemma in [18] is quite long and complicated, and relies on some

fairly intricate geometric lemmas. The rough idea is to control the codegrees of the hypergraph

by controlling the norm of certain vectors. Then the container algorithm determines what to

do next according to geometric properties of this set of vectors, attempting to minimize their

norms.

The purpose of Chapter 4 is to provide a much simpler proof of a slightly stronger result. We

remark that the statement of our new container lemma, Theorem 4.1.1, was inspired by the

recent breakthrough results by Alweiss, Lovett, Wu and Zhang [5] on the Erdős–Rado sunflower

conjecture, and by Frankston, Kahn, Narayanan and Park [67] and Park and Pham [119] on

the Kahn–Kalai conjecture.

In order to state the main result of Chapter 4, we will need to introduce a couple of important

notions, which we will use to measure the ‘size’ of our containers. Let G and H be hypergraphs,

and write 〈
G
〉
=
⋃
E∈G

{
F ⊂ V (G) : E ⊂ F

}
for the up-set generated by G. We say that G is a cover for H if H ⊂

〈
G
〉
. In other words, G is

a cover for H if for every edge F ∈ H there exists an edge E ∈ G with E ⊂ F .

14



Next, for each p > 0, define the p-weight of G to be

wp(G) =
∑
E∈G

p|E|.

Note that wp(G) is just the expected number of edges of G in a p-random subset of V (G).
Finally, let I(H) denote the family of independent sets of H. We are now ready to state our

new container theorem.

Theorem 1.3.1. Let H be an r-uniform hypergraph with n vertices, and let 0 < p < 1/4r.

There exists a family S of subsets of V (H), and functions

g : I(H) → S and f : S → 2V (H),

such that:

(a) For each I ∈ I(H) we have g(I) ⊂ I ⊂ f(g(I)).

(b) For each S ∈ S, we have |S| ⩽ 16r2pn.

(c) If X = f(S) for some S ∈ S, then there exists a cover G for H[X] with

wp(G) < p|X|

and |E| ⩾ 2 for all E ∈ G.

The main novelty of Theorem 4.1.1 is property (c), which refines the usual measures used6

to control the ‘size’ of a container. Note that the condition that all edges of the cover have

size at least 2 is necessary to prevent the conclusion from being trivial, since every hypergraph

on vertex set X has a cover (of singletons) of p-weight p|X|. We would also like to draw the

reader’s attention to the dependence on r in the bound on the size of the ‘fingerprint’ S, which

is polynomial (as in the efficient container lemma of Balogh and Samotij [18]) as opposed to

super-exponential (as in the original container lemmas). In Section 4.5 we will show that the

main theorems of [18] follow easily from Theorem 4.1.1, with slightly improved bounds.

6In [15, 142], and also in [18], the ‘size’ of a container is measured either by the number of vertices, or by the
number of edges they contain.
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1.4 Counting in additive combinatorics

1.4.1 Counting sets with bounded sumset

One of the central objects of interest in additive combinatorics is the sumset

A+B := {a+ b : a ∈ A, b ∈ B}

of two sets A,B ⊂ Z. If |A + A| = λ|A| we say A has doubling constant (or sometimes simply

doubling) λ. A cornerstone of the theory is the celebrated theorem of Frĕıman [68], which states

that if |A+A| ⩽ λ|A|, then A is contained in a generalized arithmetic progression7 of dimension

Oλ(1) and size Oλ(|A|), where the implicit constants depend only on λ. For an overview of the

area, see the book of Tao and Vu [151].

In Chapters 5 and 6 we will be interested in the number and typical structure of sets with

sumset of a given size. The study of this problem was initiated in 2005 by Green [72], who

was motivated by applications to random Cayley graphs, and in recent years there has been

significant interest in related questions [2, 13, 14, 42, 73]. In particular Alon, Balogh, Morris

and Samotij [2] proved a refinement of the Cameron-Erdős conjecture about the number of

sum-free subsets of [n], which was solved independently by Green [71] and Sapozhenko [140].

In [2] the author used an early form of the method of hypergraph containers and also needed

to prove a bound on the number of k-sets A ⊂ [n] with doubling constant λ. They moreover

conjectured that the following stronger (and, if true, best possible) bound holds.

Conjecture 1.4.1 (Alon, Balogh, Morris and Samotij). For every δ > 0, there exists C > 0

such that the following holds. If k ⩾ C log n and if λ ⩽ k/C, then there are at most

2δk
(1

2λk

k

)
sets J ⊂ [n] with |J | = k and |J + J | ⩽ λ|J |.

The conjecture was later confirmed for λ constant by Green and Morris [73]; in fact they proved

a slightly more general result: for each fixed λ and as k → ∞, the number of sets J ⊂ [n] with

|J | = k and |J + J | ⩽ λ|J | is at most

2o(k)
(1

2λk

k

)
n⌊λ+o(1)⌋.

In Chapter 5 we prove Conjecture 1.4.1 for all λ = o
(
k/(log n)3

)
.

7That is, a set of the form P =
{
a+ i1d1 + · · ·+ isds : ij ∈ {0, . . . , kj}

}
for some a, d1, . . . , ds, k1, . . . , ks ∈ N.
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Theorem 1.4.2. Let k, n be integers and 2 ⩽ λ ⩽ o
(

s
(logn)3

)
. The number of sets J ⊂ [n] with

|J | = k such that |J + J | ⩽ λ|J | is at most

2o(k)
(1

2λk

k

)
.

In order to understand such why results should be true, recall first that, by Frĕıman’s theorem, a

set has bounded doubling if and only if it is a subset of positive density of a generalized arithmetic

progression P of bounded dimension. Now, if A were a random subset of P of positive density,

then A+A would be unlikely to ‘miss’ many elements of P +P , and this suggests that most sets

of bounded doubling should in fact be contained in an arithmetic progression of size roughly

|A+A|/2. If this intuition was true we should expect to have about(
λk/2

k

)
choices for A, which is roughly what Conjecture 1.4.1 states. This intuition about the typical

structure of A will be confirmed in a stronger sense in Chapter 6, which is joint work with

Maurćio Collares, Robert Morris, Natasha Morrison and Victor Souza, where we prove the

following theorem.

Theorem 1.4.3 (C., Collares, Morris, Morrison, Souza). Fix λ ⩾ 3 and ε > 0, let n ∈ N be

sufficiently large, and let k ⩾ (log n)4. Define c(λ, ε) := 220λ2 log(1/ε) + 2560λ32. Let A ⊂ [n]

be chosen uniformly at random from the sets with |A| = k and |A+A| ⩽ λk. Then there exists

an arithmetic progression P with

A ⊂ P and |P | ⩽ λk

2
+ c(λ, ε)

with probability at least 1− ε.

1.4.2 The number of sumsets of a given size

In Chapter 7 we will consider another natural counting problem in additive combinatorics: how

many sumsets of a given size are there in Zn? Questions of this type were first considered by

Green and Ruzsa [74], who proved in 2004 that if n is prime then there are 2n/3+o(n) sets of

the form A+ A in Zn. A few years later, Alon, Granville and Ubis [4] proved a corresponding

result in the asymmetric setting, showing that there are 2n/2+o(n) sets in Zn of the form A+B

for some A,B ⊂ Zn with min{|A|, |B|} ≫ 1.

A natural refinement of the problem studied by Green and Ruzsa is as follows: how many sets

of size m in Zn are of the form A + A for some A ⊂ Zn? In Chapter 7 we will resolve this

problem up to a factor of 2o(m) for all (log n)4 ⩽ m ⩽ 2n/3. Our main result is the following
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theorem, which provides a sharp bound on the number of sumsets of a given size and doubling

constant.

Theorem 1.4.4. Let n be a prime, and let m, k ∈ N with m ⩾ (2 +
√
5)k and k ⩾ (log n)4.

There are at most

2o(m)

(m−k
2

k

)
(1.16)

sets of the form A+A for some A ⊂ Zn with |A| = k and |A+A| = m.

1.5 Hadwiger’s Conjecture

Hadwiger’s covering problem asks: how many translates of the interior of a convex bodyK ⊂ Rd

are needed to cover K? That is, it asks for the value of

N(K) = min
{
N ∈ N : ∃x1, . . . , xN ∈ Rd such that K ⊂

N⋃
i=1

(
xi + int(K)

)}
.

Hadwiger [78] conjectured in 1957 that N(K) ⩽ 2d for all convex K ⊂ Rd. Note that this bound
is attained by the cube [0, 1]d. The conjecture was proved when d ⩽ 2 by Levy [99] in 1955, but

for over 60 years the best known bound for general d was

N(K) ⩽
(
d log d+ d log log d+ 5d

)(2d
d

)
= O

(
4d
√
d log d

)
,

which follows from the Rogers–Shephard inequality [126], together with a bound of Rogers [125]

on the minimum density of a covering of Rd with translates of K. A few years ago, however, a

breakthrough was made by Huang, Slomka, Tkocz and Vritsiou [83], who used a large deviation

result of Guédon and Milman [76], which is related to the so-called ‘thin-shell’ phenomenon (see

below), to obtain a bound of the form

N(K) ⩽ e−Ω(
√
d) · 4d. (1.17)

In Chapter 8, which is presents joint work with Peter van Hintum, Robert Morris and Marius

Tiba, we will prove the following almost-exponential improvement of their bound.

Theorem 1.5.1. [C., van Hintum, Morris, Tiba] If K ⊂ Rd is a convex body, then

N(K) ⩽ exp

(
− Ω

(
d

(log d)8

))
· 4d

as d→ ∞.
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We will deduce Theorem 1.5.1 from recent results of Chen [39] and Klartag and Lehec [92] on

the Bourgain slicing problem, which asks for the smallest number Ld > 0 such that for every

convex body K ⊂ Rd of volume 1, there exists a hyperplane H such that K ∩H has (d − 1)-

dimensional volume at least 1/Ld. In particular, Bourgain [25, 26] asked whether or not Ld is

bounded from above by an absolute constant. This problem is still open, and for many years

the best known bound was of the form Ld = O(d1/4), proved by Bourgain [27, 28] (with an

extra log-factor) and Klartag [91]. However, just a couple of years ago, Chen [39] made a major

breakthrough on the problem by proving a bound of the form Ld = do(1). His bound was then

improved further by Klartag and Lehec [92], who showed that Ld = O(log d)4.

The breakthroughs in [39] and [92] both used “stochastic localization”, a powerful and beautiful

technique that was introduced about ten years ago by Eldan [45], to bound the thin-shell

constant, σd, which is defined to be

σd := sup
K

E
[(
∥X∥2 −

√
d
)2]

,

where the supremum is over convex bodies K ⊂ Rd in isotropic position8, and X ∼ U(K) is a

uniformly chosen random point of K. The thin-shell conjecture [7, 21] states that σd = O(1),

and it was shown by Eldan and Klartag [46] that

Ld = O(σd),

so bounds on the thin-shell constant imply bounds for the Bourgain slicing problem. We remark

that, by a deep result of Eldan [45], bounds on the thin-shell constant also imply bounds for

the Kannan–Lovász–Simonovits isoperimetric conjecture [89], see e.g. [45, 98].

We will use an equivalent formulation of the Bourgain slicing problem, due to Milman and

Pajor [109] (see also [93]). Given a convex body K ⊂ Rd, define the isotropic constant of K to

be

LK =

(√
det(ΣK)

Vold(K)

)1/d

,

where ΣK = E[X⊗X] is the covariance matrix of the random variable X ∼ Unif(K), that is, X

is a uniformly random point of K. Equivalently, there exists an affine transformation that maps

K to a convex body K ′ of volume 1 with ΣK′ = L2
KId, where Id is the identity matrix. By [109,

Corollary 3.2] we have LK = Θ(Ld) for every convex body K ⊂ Rd, and hence LK = O(log d)4,

by the bound on Ld proved by Klartag and Lehec [92].

8This means that E[X] = 0 and E[X ⊗ X] = Id, where X ∼ U(K) is a uniformly-chosen random point of
K ⊂ Rd, and Id is the identity matrix. For any convex body K there exists a unique (up to rotations) affine
transformation that maps K to isotropic position.
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Our main result in Chapter 8 is the following bound on the covering number of a convex body.

Since LK = O(log d)4, it implies the bound in Theorem 1.5.1 for Hadwiger’s conjecture.

Theorem 1.5.2 (C., van Hintum, Morris, Tiba). If K ⊂ Rd is a convex body, then

N(K) ⩽ exp

(
− Ω(d)

L2
K

)
· 4d

as d→ ∞.

20



Chapter 2

The singularity probability of a

random symmetric matrix is

exponentially small

This chapter presents joint work with Matthew Jenssen, Marcus Michelen and Julian Sa-

hasrabudhe. It is adapted from the paper [33] which has been submitted for publication.

2.1 Introduction

Let A be a random n × n symmetric matrix, uniformly drawn from all symmetric matrices

with entries in {−1, 1}. It is generally believed that P(detA = 0) = Θ(n22−n) (see, e.g.

[41, 169, 170]).

The goal of this chapter is to prove exponential upper-bound on the singularity probability of

a symmetric random matrix.

Theorem 2.1.1. Let A be uniformly drawn from all n× n symmetric matrices with entries in

{−1, 1}. Then

P(det(A) = 0) ⩽ e−cn, (2.1)

where c > 0 is an absolute constant.

We will also prove a new Inverse Littlewood Offord type theorem. Define, for α ∈ (0, 1), the

least common denominator of a vector v ∈ Rd to be

Dα(v) := inf
{
ϕ > 0 : ∥ϕ · v∥T ⩽ min

{
ϕ∥v∥2/2,

√
αd
}}

, (2.2)
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where ∥x∥T := inf{∥x − y∥2 : y ∈ Zd}, for x ∈ Rd, denotes the minimum distance to an

integer point. We say that a random vector with entries in {−1, 0, 1} is µ-lazy if each entry

is independent and is equal to 0 with probability 1 − µ and is equal to each of −1, 1 with

probability µ/2.

Theorem 2.1.2. There exist R, c1, c2 > 0, for which the following holds for every d ∈ N,
α ∈ (0, 1), 0 ⩽ k ⩽ c1αd and t ⩾ exp(−c1αd). Let v ∈ Sd−1, let w1, . . . , wk ∈ Sd−1 be

orthogonal and let W be the matrix with rows w1, . . . , wk.

If τ ∈ {−1, 0, 1}d is a 1/4-lazy random vector and

P
(
|⟨τ, v⟩| ⩽ t and ∥Wτ∥2 ⩽ c2

√
k
)
⩾ Rte−c1k, (2.3)

then Dα(v) ⩽ 16/t.

In the next subsection we sketch the proof strategy and present how the proof is organized.

2.1.1 Proof sketch and a new “inversion of randomness” technique

Here we briefly sketch how our inverse Littlewood-Offord result is used alongside a novel scheme

for “reusing randomness” to prove Theorem 2.1.1. As hinted at before, we will be helped along

by treating the discretized sphere as a probability space, which will allow us to “recover” some

of the randomness lost due to the symmetry of A. We keep our discussion here loose and

impressionistic and we will take up our careful study in the following section.

Our first move will be to “locally replace” A with a random matrix M that has many of

the entries zeroed out. This will allow us to untangle some of the more subtle and complicated

dependencies and has the advantage that various associated Fourier transforms are non-negative.

Indeed let1

M =

[
0[d]×[d] HT

1

H1 0[d+1,n]×[d+1,n]

]
, (2.4)

where d = cn and H1 is a (n− d)× d random matrix with i.i.d. entries that are µ-lazy, meaning

that (H1)i,j = 0 with probability 1 − µ and (H1)i,j = ±1 with probability µ/2. We stress

here that we cannot “globally” replace A with M , and we may need to permute coordinates,

depending on what part of the sphere we are working on.

1Here we use the notation [n] := {1, . . . , n}; for a vector v ∈ Rn and S ⊆ [n], we use the notation vS := (v)i∈S

and for a n×m matrix A, and R ⊆ [m], we use the notation AS×R for the |S| × |R| matrix (Ai,j)i∈S,j∈R.
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We now follow the strategy of [129, 165] and partition the sphere Sn−1 based on the anti-

concentration properties of the various v ∈ Sn−1. Indeed, for each v ∈ Sn−1, we find a corre-

sponding “scale” ε ∈ (0, 1) for which

P(∥Mv∥2 < ε
√
n) ≈ (Lε)n, (2.5)

where L is a large constant. Notice here that we have defined this “scale” relative to the sym-

metric matrix M , rather than A or ρ(v), and so we expect it to capture the anti-concentration

properties of v, specific to the matrix M . This ε should be interpreted as “the scale at which

the anti-concentration properties of v just start to be felt”, as we imagine gradually decreasing

ε from 1 to 0. For example, if v is a random point on the sphere, it is not hard to see that

v will typically have ε ⩽ e−cn, which is in fact so small that we can safely ignore v (due to

previous work). On the other hand, the constant vector n−1/2(1, . . . , 1) will have ε ≈ n−1/2.

Interestingly, this latter fact is not easy to establish rigorously, but is heuristically not hard to

guess in analogy with the modified setting where M has iid entries.

We now study all vectors v ∈ Sn−1 at a given scale ε ⩾ e−cn. While this is an uncountable set,

we build an efficient ε-net for these vectors in two steps. We first discretize the whole sphere

by taking an ε-net for Sn−1, which we call Λε. We can then say something like

P(Av = 0 for some v at scale ε) ⩽ P
(
∥Mv∥2 ⩽ ε

√
n for some v ∈ Λε

)
.

One’s first instinct might be to simply union bound over all v ∈ Λε; however it turns out that

even the most efficient epsilon nets have |Λε| ≈ (C/ε)n, which is too large to say anything.

The key insight here is that most of Λε is not used when approximating v ∈ Sn−1 at scale ε and

so we can refine our net Λε by discarding all vectors w ∈ Λε with P(∥Mv∥2 ⩽ ε
√
n) ≪ (Lε)n.

So if we let Nε ⊆ Λε be the collection of vectors with P(∥Mv∥2 ⩽ ε
√
n) ⩾ (Lε)n, our problem

reduces to showing that

|Nε| ⩽ L−2n|Λε| ⩽
(
C

L2ε

)n
, (2.6)

which brings us to the technical heart of this chapter (see Theorem 2.7.1). We point out that

the factor of L−2n, rather than L−n, in (2.6) is important for us as it allows us to drown out

the Ln coming from (2.5) and the factor Cn in (2.6), when we union bound over Nε.

To prove (2.6) we take a probabilistic perspective inspired by [165]; although we stress that

our methods are considerably different. To show (2.6) it is enough to show, for v ∈ Λε chosen

uniformly at random

Pv∈Λε (v ∈ Nε) ≈ Pv∈Λε

(
PM

(
∥Mv∥2 ⩽ ε

√
n
)
⩾ (Lε)n

)
⩽ L−2n , (2.7)
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(see Lemma 2.7.3, for the rigorous statement). To get a feel for how we tackle this, let us

consider the event ∥Mv∥2 ⩽ εn1/2. Indeed recalling (2.4), the definition of M , we have that

Mv =

[
H1v[d]

HT
1 v[d+1,n]

]

and so to control the event ∥Mv∥2 ⩽ ε
√
n, it is enough to control the intersection of events

∥H1v[d]∥2 ⩽ εn1/2 and ∥HT
1 v[d+1,n]∥2 ⩽ εn1/2. Note that if we simply ignore the second event

and bound

P(∥Mv∥2 ⩽ εn1/2) ⩽ P(∥H1v[d]∥2 ⩽ εn1/2),

we land in a situation very similar to previous works; where half of the matrix is neglected

entirely and we are thus limited by the (n log n)1/2 obstruction, described above. So to overcome

this barrier, we need to control these two events simultaneously.

The key idea here is to use the randomness in H1 to control the event ∥H1v[d]∥2 ⩽ εn1/2 and to

use the randomness in v ∈ Λε to control the event ∥HT
1 v[d+1,n]∥2 ⩽ εn1/2. To get this to work,

we crucially partition the outcomes in H1, based on a robust notion of rank. Indeed, let

Ek =
{
H1 : σd−k(H1) ⩾ c

√
n and σd−k+1(H1) < c

√
n
}
,

where σ1(H1) ⩾ · · · ⩾ σd(H1) denote the singular values ofH1. We may then bound PM (∥Mv∥2 ⩽
εn1/2) above by (only using the randomness in H1, for the moment)

d∑
k=0

PH1

(
∥HT

1 v[d+1,n]∥2 ⩽ εn1/2
∣∣ ∥H1v[d]∥2 ⩽ εn1/2, Ek

)
· PH1

(
∥H1v[d]∥2 ⩽ εn1/2, Ek

)
. (2.8)

It is here that we can see the link with our inverse Littlewood-Offord theorem, Theorem 2.1.2,

which we use (after a good deal of preparation) to bound the probabilities

PH1(∥H1v[d]∥2 ⩽ ε
√
n, Ek),

that appear in (2.8). The event ∥H1v[d]∥2 ⩽ εn1/2 corresponds to the “hard” constraint |⟨τ, v⟩| ⩽
t in Theorem 2.1.2, while the event Ek corresponds to the “soft” constraint ∥Wτ∥2 ⩽ c2

√
k,

where we think of τ as a single row of H1. And so, after a certain amount of work with

Theorem 2.1.2, we are able to conclude that

PH1(∥H1v[d]∥2 ⩽ ε
√
n, Ek) ⩽ (Cεe−ck)n−d (2.9)
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unless v[d] is structured, in which case we do something different (and substantially easier).

Thus, for all non-structured v, we have (2.8) is roughly at most

(Cε)n−d
d∑

k=0

e−ck(n−d)PH1

(
∥HT

1 v[d+1,n]∥2 ⩽ εn1/2
∣∣ ∥H1v[d]∥2 ⩽ εn1/2, Ek

)
. (2.10)

Up to this point, we have not appealed to the randomness in the choice of v ∈ Λε, beyond

demanding that v is non-structured. To see how we might take advantage of the randomness

in v, let us consider the first moment of the quantity PM (∥Mv∥2 ⩽ εn1/2), which we view as a

random variable in v. Indeed, for v ∈ Λε taken uniformly at random, we show that

Ev∈Λε PH1

(
∥HT

1 v[d+1,n]∥2 ⩽ ε
√
n | ∥H1v[d]∥2 ⩽ εn1/2, Ek

)
⩽ (Cε)d−k . (2.11)

We establish this bound by swapping expectations, and bounding the probabilities

Pv[d+1,n]
(∥HT

1 v[d+1,n]∥2 ⩽ εn1/2) , (2.12)

where H1 is a fixed matrix satisfying Ek ∩ {H1 : ∥H1v[d]∥2 ⩽ εn1/2}. The idea here is that since

H1 has d− k singular values of size ≈ n1/2, we should expect

Pv[d+1,n]
(∥Hv[d+1,k]∥2 ⩽ εn1/2) ≈ (Cε)d−k, (2.13)

which is suggested, for example, by a Gaussian heuristic. This then results in the bound

at (2.11). See Section 2.7.2 for details on this step. Putting (2.11) and (2.10) together, and

using that ε > e−cn, we have

Ev PM (∥Mv∥2 ⩽ εn1/2) ⩽ (Cε)n.

Observe that the loss from the rank at (2.13) is compensated by the gain afforded by the extra

constraint added to our Littlewood-Offord step.

While this is a good bound on the expectation, this is not enough for our purposes, as the first

moment only tells us, via Markov, that

Pv∈Λε

(
PM

(
∥Mv∥2 ⩽ εn1/2

)
⩾ (Lε)n

)
⩽ L−n ,

falling short of our desired L−2n bound.

So to prove our result, we instead study2 the second moment of PM (∥Mv∥2 ⩽ εn1/2),

Ev
(
PM (∥Mv∥2 ⩽ εn1/2)

)2
,

2Actually, we need a slight variant, where we cut out structured vectors.
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in much the same way, but with a few added technicalities.

To say a few words about how the second moment is different, we will see (Fact 2.7.7)(
PM

(
∥Mv∥2 ⩽ εn1/2

))2
⩽ P(∥H1v[d]∥2 ⩽ εn1/2, ∥H2v[d]∥2 ⩽ εn1/2 and ∥HT v[d+1,n]∥2 ⩽ 2εn1/2) ,

where H2 is an independent copy of H1 and H := [H1, H2] is the concatenation of these two

matrices. We then proceed in much the same way as above, but treating H, in place of H1, and

carrying forward the two “hard” constraints resulting from the two copies of v[d]. This explains

the shape of our “real” inverse Littlewood-Offord theorem, Lemma 2.3.1, where we allow for

these two hard constraints. Ultimately, we arrive at the bound

Ev
(
PM (∥Mv∥2 ⩽ εn1/2)

)2
⩽ (Cε)2n,

which implies the desired conclusion at (2.7).

2.1.2 A few remarks on presentation

This chapter is roughly divided into three parts. The first part consists of Sections 2.3-2.5 which

are dedicated to proving our conditioned inverse Littlewood-Offord result, Lemma 2.3.1, which

is the “real” version of Theorem 2.1.2. These sections lay the groundwork for Section 2.6, where

we prove Theorem 2.6.1, which is the only result we carry forward into later sections.

The second part consists of Section 2.7 and Section 2.8. In Section 2.7, we obtain our crucial

bound on the size of our net Nε using our novel “inversion of randomness” technique, as outline

above. On the other hand, Section 2.8 contains the less exciting proof that Nε is in fact a net

for Σε.

In the final section, Section 2.9, we pull together the various elements of this chapter, state the

reductions we will use from previous work and prove Theorem 2.1.1.

In most cases, we have highlighted the main results of each section at the start. So if one does

not want to delve into the details of a particular element of the proof, one can simply inspect

the top of the section to glean what is needed for going forward.

2.2 Central Definitions

We now turn to give a proper treatment of the proof, by laying out the key definitions that will

concern us in this chapter. We begin by partitioning the sphere Sn−1 into “structured” and
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“unstructured” vectors. Formally, we set γ = e−cn, for sufficiently small c > 0, and then define

the “structured” vectors as

Σ :=
{
v ∈ Sn−1 : ρ(v) ⩾ γ

}
.

The invertibility of a random symmetric matrix on the set of “unstructured” vectors v ∈ Sn−1\Σ
is already well understood and so we can restrict our attention to this set of structured vectors.

We refer the reader to Section 2.9 for the details here.

Following Rudelson and Vershynin [129], we make a further reduction to working with vectors

that are reasonably “flat” on a large part of their support. For D ⊆ [n], with |D| = d, we define

I(D) :=
{
v ∈ Sn−1 : (κ0 + κ0/2)n

−1/2 ⩽ |vi| ⩽ (κ1 − κ0/2)n
−1/2 for all i ∈ D

}
, (2.14)

where 0 < κ0 < 1 < κ1 are absolute constants, fixed throughout this chapter and defined in

Section 2.2.1. We will set d := c20n/2, where c0 is defined below in Section 2.2.1.

Now set

I :=
⋃

D⊆[n],|D|=d

I(D).

The case of non-flat v is already taken care of in the work of Vershynin [166] (see Section 2.9)

and so it is enough to work with I ∩ Σ. Since we will ultimately union bound over D, it is

enough to work with I(D) ∩ Σ, for some fixed set D, and so, by symmetry it is enough to

restrict our attention to vectors v ∈ I([d]) ∩ Σ.

Now, with this in mind, we further partition the set I([d]) ∩ Σ ⊆ Sn−1, but for this we need to

introduce another distribution on symmetric matrices. Define the probability space Mn(µ) by

defining M ∼ Mn(µ) to be the random matrix

M =

[
0[d]×[d] HT

1

H1 0[d+1,n]×[d+1,n]

]
,

where H1 is a (n− d)× d random matrix with i.i.d. entries that are µ-lazy (that is, (H1)i,j = 0

with probability 1 − µ and (H1)i,j = ±1 with probability µ/2). In fact, we will fix µ = 1/4

throughout this chapter.

Now, given v ∈ I([d]) and L > 0, in the spirit of [165], we define the threshold

TL(v) = sup
{
t ∈ [0, 1] : P(∥Mv∥2 ⩽ t

√
n) ⩾ (4Lt)n

}
,

or the “scale” of v, as we called it in Section 2.1.1. Observe carefully here that we are defining

TL relative to the matrix M , rather than our original distribution A.
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We may now define our partition of I([d]) ∩ Σ. For ε ∈ (0, 1), let

Σε := {v ∈ I([d]) : TL(v) ∈ [ε, 2ε]} .

We shall show (as it is not obvious) that indeed

Σ ∩ I([d]) ⊆
⋃
ε>γ4

Σε.

With the definition of Σε in hand, we are able to define Nε which will be an efficient net for Σε

at scale ε. It turns out that defining this net is not hard, although showing that it satisfies the

desired properties will be the main challenge of this chapter. For this, we first define the trivial

net at scale ε to be3

Λε := Bn(0, 2) ∩
(
4εn−1/2 · Zn

)
∩ I ′([d]),

which is a natural net for I([d]). Where I ′(D) is similar to I(D) but with slightly looser

constraints and relative to Rn;

I ′(D) :=
{
v ∈ Rn : κ0n

−1/2 ⩽ |vi| ⩽ κ1n
−1/2 for all i ∈ D

}
.

Since we are only interested in approximating vectors in Σε, we can get away with a significantly

more efficient net. For this we introduce two more concentration functions. First, we define the

Lévy concentration function: if X is a random vector taking values in Rn, define

L(X, t) := max
w∈Rn

P (∥X − w∥2 ⩽ t) .

Second, we define a variant of this concentration function for the uniform distribution on random

symmetric matrices with capped operator norm4.

LA,op(v, t) := max
w∈Rn

P
(
{∥Av − w∥2 ⩽ t} ∩ {∥A∥ ⩽ 4

√
n}
)
.

Here we are just cutting out the slightly irritating event that A has large operator norm.

Intuitively this is an acceptable move as the probability that ∥A∥ ⩾ 4
√
n, is exponentially small

(see Lemma 2.9.5), however some care is needed as we are mostly concerned with far less likely

events.

We now introduce our nets Nε,

Nε :=
{
v ∈ Λε : P(∥Mv∥2 ⩽ 4ε

√
n) ⩾ (Lε)n and LA,op(v, ε

√
n) ⩽ (28Lε)n

}
.

3Here and throughout, Bn(x, r) is the ℓ2 ball centered at x with radius r.
4For a matrix A, we use the notation ∥A∥ := maxx:∥x∥2=1 ∥A∥2 to denote the usual 2 → 2 operator norm.
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The reader should view the lower bound P(∥Mv∥2 ⩽ 4ε
√
n) ⩾ (Lε)n as the real core of this

definition, while the upper bound for LA,op is less important. The two main tasks of this chapter

will be to show that Nε is indeed a net for Σε (an easier task) and secondly that |Nε|/|Λε| is
smaller than ≈ L−2n, where L is a large constant.

2.2.1 Discussion of constants and parameters

We will treat the constants κ0, κ1 (seen at (2.14)) as absolute throughout the chapter, and we

allow other absolute constants C,C ′, · · · to depend on these exact quantities. In particular, we

set κ0 = ρ and κ1 = δ−1/2/2, where δ, ρ are as in Lemma 2.9.2 (which is a lemma from [166]).

While we have not computed these constants, it would not be too much work to do so.

We also note our treatment of c0, which, for most of the chapter, will be presented as a parameter

and dependencies involving c0 will be explicitly noted. However, we will ultimately fix c0 =

min{2−24, ρδ1/2} where, again, δ, ρ are as in Lemma 2.9.2. Thus it is no harm for the reader

to view c0 as an absolute constant which is fixed throughout the chapter. The reason for the

extra care with c0 comes from its delicate relationship to d/n. Indeed, we will ultimately set

d := ⌈c20n/2⌉.

Another point to note is our use of R, which represents related, but different constants through-

out the chapter. Roughly speaking, these related values of R increase as we get deeper into the

proof.

2.3 Inverse Littlewood-Offord for conditioned random walks I:

Statement of result and setting up the proof

This section is the first of three sections where we lay out and prove our main inverse Littlewood-

Offord type theorem, Lemma 2.3.1, which works in the presence of a large number (k ≈ n) of

relatively soft constraints on our random walk. As mentioned before, the conclusion of our

Littlewood-Offord theorem will be similar to that of Rudelson and Vershynin [129], who showed

that vectors v, for which the random walk ⟨v, τ⟩ concentrates, admit non-trivial least common

denominators. As we will see, the proof of Lemma 2.3.1 is rather involved and consists mainly

of a geometric argument on the Fourier side to “decouple” the many soft constraints from the

few hard constraints.
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Given a 2d×ℓ matrixW (which encodes these soft constraints on our walk, as in Theorem 2.1.2)

and a vector Y ∈ Rd, we define the Y -augmented matrix WY as

WY =

[
W,

[
0d

Y

]
,

[
Y

0d

]]
. (2.15)

Here Y ≈ v/t will be a re-scaled version of v from Theorem 2.1.2.

We let ∥A∥HS denote the Hilbert-Schmidt norm of a matrix A, that is, ∥A∥2HS :=
∑

i,j |Ai,j |2

and for µ ∈ (0, 1), m ∈ N, define the m-dimensional µ-lazy random vector τ ∼ Q(m,µ) to be

the vector with independent entries (τi)
m
i=1, satisfying

P(τi = −1) = P(τi = +1) = µ/2 and P(τi = 0) = 1− µ.

We now state our main inverse Littlewood-Offord type theorem, which is our “real” (and

strengthened) version of Theorem 2.1.2, from Section 1.1.1.

Lemma 2.3.1. For d ∈ N and α ∈ (0, 1), let 0 ⩽ k ⩽ 2−10αd and t ⩾ exp(−2−9αd). For

0 < c0 ⩽ 2−24, let Y ∈ Rd satisfy ∥Y ∥2 ⩾ 2−10c0/t, let W be a 2d × k matrix with ∥W∥ ⩽ 2

and ∥W∥HS ⩾
√
k/2.

If τ ∼ Q(2d, 1/4) and Dα(Y ) > 16 then

L
(
W T
Y τ, c

1/2
0

√
k + 1

)
⩽ (Rt)2 exp(−c0k), (2.16)

where R = 232c−2
0 .

Before we start working towards the proof of Lemma 2.3.1, we make a few informal remarks on

its statement and its connection to Theorem 2.1.2. The main difference to note is that there are

now two “hard” constraints encoded in the left-hand side of (2.16); these are, in the notation

of Theorem 2.1.2,

|⟨(v, 0[d]), τ⟩| < t and |⟨(0[d], v), τ⟩| < t.

The “soft” constraints are now encoded as the columns w1, . . . , wk of W .

To combine the “hard” and “soft” constraints into a single matrix inequality, we rescale v,

thinking of |⟨(v, 0[d]), τ⟩| < t as |⟨c1/20 t−1(v, 0[d]), τ⟩| < c
1/2
0 . This explains the scaling on Y ,

which is unusually written as ∥Y ∥2 ⩾ 2−10c0/t, where t should be thought of a very small

number ≈ e−cn.

The scaling of Dα(Y ) in Lemma 2.3.1, in contrast with the statement of Theorem 2.1.2, is

explained in a similar way. If ϕ · Y ∼ Zd, where ϕ = O(1) then (ϕ/t) = O(1/t) satisfies

(ϕ/t) · v ∼ Zd, as we think of Y ≈ v/t.
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This also makes the numerology of Lemma 2.3.1 a little more transparent. If Y is a random

vector with ∥Y ∥2 ≈ 1/t, we have |Yi| ≈ t−1n−1/2 and thus we expect the one dimensional

random walk ⟨Y, τ⟩ to have

L
(
⟨Y, τ⟩, c1/20

)
≈ t.

Thus we expect Y to have some special structure if L
(
⟨Y, τ⟩, c1/20

)
≫ t. On the other hand,

for each wi we expect that |⟨wi, τ⟩| ≈ 1 and, since the wi must be “approximately orthogonal”

(due to the assumption ∥W∥ ⩽ 2), we should expect

L
(
Wτ, c

1/2
0

√
k
)
≈ e−ck,

being somewhat vague about this constant c > 0. Second, note that Lemma 2.3.1 is still

interesting even in the case k = 0, where it is not hard to see that it reduces to

L
(
⟨Y, τ⟩, c1/20

)
⩽ Rt,

whenever Dα(Y ) ⩽ 16, which is essentially the statement of the main inverse Littlewood-Offord

theorem of Rudelson and Vershynin in [129].

Finally, we point out that the contrapositive of Lemma 2.3.1 is more conducive to the “inverse

Littlewood-Offord” reading:

if L(W T
Y τ, c

1/2
0

√
k + 1) ⩾ (Rt)2 exp(−c0k) then Dα(Y ) ⩽ 16.

For the remainder of this section, we take some first steps towards the proof of Lemma 2.3.1.

We first pass to the Fourier side and set up our problem there, describing our goal in terms of a

certain “level set”. We then make a first reduction, by getting some basic control on the fibers of

this level set. In the following section, Section 2.4, we make a more significant reduction about

the geometry of our level set. In Section 2.5 we prove the key Lemma 2.5.1, the statement of

which is very similar to that of Lemma 2.3.1, but with a more complicated quantity replacing

the right-hand side of (2.16). Finally, with one further step, we conclude Section 2.5, with the

proof of Lemma 2.3.1.

2.3.1 Passing to the Fourier side

To prove Lemma 2.3.1 we will prove the contrapositive; assume (2.16) fails and then obtain an

upper bound on the least common denominator by finding a non-trivial ϕ > 0 that satisfies

ϕ = O(1) and ∥ϕ · Y ∥T ⩽
√
αd. Our first step in proving Lemma 2.3.1 is to use the lower
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bound in the negation of (2.16) to obtain a lower bound on a level set of an appropriate Fourier

transform. This manoeuvre was pioneered by Halász [79] and has been a key step in all of the

Fourier approaches to inverse Littlewood-Offord theory.

For a 2d× ℓ matrix W , we define the W -level set, for t ⩾ 0, to be

SW (t) :=
{
θ ∈ Rℓ : ∥Wθ∥T ⩽

√
t
}

and we define γℓ to be the ℓ dimensional Gaussian measure defined by γℓ(S) = P(g ∈ S), where

g ∼ N (0, (2π)−1Iℓ) and Iℓ denotes the ℓ× ℓ identity matrix.

The following Esseen-type lemma, allows us relate the quantity seen at the left-hand side of

(2.16) with the Gaussian volume of a level-set.

Lemma 2.3.2. Let β > 0, ν ∈ (0, 1/4], let W be a 2d × ℓ matrix and let τ ∼ Q(2d, ν). Then

there exists m > 0 so that

L(W T τ, β
√
ℓ) ⩽ 2 exp

(
2β2ℓ− νm/2

)
γℓ(SW (m)).

The proof of this Lemma is a straightforward exercise with the characteristic function of W T τ

and is postponed to Appendix A.

We can now describe how our least common denominator can be spotted in Fourier space. From

Lemma 2.3.2 along with the negation of (2.16), we obtain m > 0 and a set SWY
(m) ⊆ Rk+2

with Gaussian volume bounded below by (Rt)2 exp(c1m − c2k). Now, for reasons that we will

not explain here (since it is just a consequence of the Fourier transform), the first k-coordinates

of the space, correspond to the k “soft” constraints while the final two coordinates correspond

to the two “hard” constraints.

With this in mind, the idea is to find an element ψ ∈ SWY
(m) for which ∥ψ[k]∥2 = O(

√
k),

and one of ψk+1, ψk+2 is O(1) and “non-trivial”. It will turn out that one of ψk+1, ψk+2 is a

good candidate for our desired least common denominator. The condition on the ψ[k] should

be thought of as just getting these coordinates “out of the way”.

To find this desired ψ ∈ SWY
(m), for r, s > 0, we define the cylinder

Γr,s :=
{
θ ∈ Rk+2 :

∥∥θ[k]∥∥2 ⩽ r, |θk+1| ⩽ s and |θk+2| ⩽ s
}
. (2.17)

We now restate our condition on ψ in terms of Γr,s: we want to show that there exists an

x ∈ SWY
(m) for which

(Γ2
√
k,16 \ Γ2

√
k,s + x) ∩ SWY

(m) ̸= ∅, (2.18)
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where s is chosen depending on the non-triviality condition we need. We shall then ultimately

see that if y ∈ (Γ2
√
k,16 \ Γ2

√
k,s + x), where x ∈ SWY

(m), then (x− y) is a good candidate for

ψ (see Claims 2.5.4-2.5.6). In what remains in this section, we warm up by making a first easy

reduction on the structure of SWY
(m) under the assumption that (2.18) fails.

2.3.2 A first reduction: controlling the density on fibers

For our first reduction, we first record the following easy fact.

Fact 2.3.3. For s > 0, let S ⊆ R2 be such that γ2(S) ⩾ 8s2, then there exists x, y ∈ S so that

s < ∥x− y∥∞ ⩽ 16.

Proof. We prove the contrapositive and assume there is no pair x, y ∈ S with s < ∥x−y∥∞ ⩽ 16.

We cover R2 =
⋃
p∈16·Z2 Qp where Qp := p+ [−8, 8]2. Thus γ2(S) ⩽

∑
p∈16·Z2 γ2(S ∩Qp). Since

there is no x, y ∈ S so that s < ∥x− y∥∞ ⩽ 16, then for each Qp there is x = x(p) ∈ Qp so that

γ2(S ∩Qp) ⩽ γ2(S ∩Qp ∩ (x(p) + [−s, s]2)) ⩽ γ2(x(p) + [−s, s]2).

Letting g ∼ N (0, (2π)−1), we have

γ2(x+ [−s, s]2) ⩽ P(x1 − s ⩽ g ⩽ x1 + s)P(x2 − s ⩽ g ⩽ x2 + s) ⩽ 4s2 exp(−π∥p∥22/16),

where we have used that (xi − s)2 ⩾ p2i /8, which holds since we may assume that s ⩽ 1 (else

the statement holds trivially). Now we may bound

γ2(S) ⩽
∑

p∈16·Z2

γ2(S ∩Qp) ⩽ 4s2
∑

p∈16·Z2

exp(−π∥p∥22/16) < 8s2,

which completes the proof. □

Now for S ⊆ Rk+2, and θ[k] ∈ Rk, we define the “vertical fiber”

S(θ[k]) :=
{
(θk+1, θk+2) ∈ R2 : (θ[k], θk+1, θk+2) ∈ S

}
. (2.19)

The following lemma tells us that if we are unable to find a point in our desired intersection

(Γr,16 \ Γr,s + x) ∩ S, for all x ∈ S, we can obtain good control on the measure of the vertical

fibers of S.

Lemma 2.3.4. For k ∈ N, r > 0 and s > 0, let S ⊂ Rk+2 be such that for all x ∈ S we have

(Γr,16 \ Γr,s + x) ∩ S = ∅ .
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Then

max
θ[k]∈Rk

γ2(S(θ[k])) ⩽ 8s2 .

Proof. We prove the contrapositive; let ψ[k] be such that γ2
(
S(ψ[k])

)
> 8s2. This implies

(Fact 2.3.3) that there exists (θk+1, θk+2), (θ
′
k+1, θ

′
k+2) ∈ S(ψ[k]) with

s ⩽ max{|θk+1 − θ′k+1|, |θk+2 − θ′k+2|} ⩽ 16 .

Unpacking what this means in the full space Rk+2: we have θ, θ′ ∈ S so that θ[k], θ
′
[k] = ψ[k],

and s ⩽ max{|θk+1 − θ′k+1|, |θk+2 − θ′k+2|} ⩽ 16. Thus

θ ∈ (θ′ + Γr,16 \ Γr,s),

as desired. □

In the next section we go on to obtain a more complicated reduction of this form, that will

ultimately be key in proving Lemma 2.3.1.

2.4 Inverse Littlewood Offord II: A geometric inequality

We now turn to make a more intricate and subtle reduction from that seen in Section 2.3.2,

that will be key in finding our least common denominator. The lemma we prove here is purely

geometric, but one should always think of it as being applied to an appropriate level set S =

SWY
(m), as seen in Lemma 2.3.2.

Given a set S ⊂ Rk+2 and y ∈ Rk+2, define the “translated horizontal fiber”,

Fy(S; a, b) := {θ[k] = (θ1, . . . , θk) ∈ Rk : (θ1, . . . , θk, a, b) ∈ S − y} .

Our main goal of this section tells us that under the assumption

(Γ2
√
k,16 \ Γ2

√
k,s + x) ∩ S = ∅,

for all x ∈ S, the total measure of S can be controlled by the measure of the k-dimensional

fibers Fy(S; a, b). We state it in the contrapositive form to make the application (in Section 2.5)

a little easier to spot.

Lemma 2.4.1. For k ∈ N and s > 0, let S ⊂ Rk+2 be a measurable set which satisfies

8s2e−k/8 + 64s2max
a,b,y

(
γk(Fy(S; a, b)− Fy(S; a, b))

)1/4
< γk+2(S) . (2.20)
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Then there is an x ∈ S so that5

(Γ2
√
k,16 \ Γ2

√
k,s + x) ∩ S ̸= ∅ . (2.21)

To prove this lemma, we will need a few facts about Gaussian space, which we collect in

Sections 2.4.1 and 2.4.2, before moving on to prove Lemma 2.4.1 in Section 2.4.3.

2.4.1 A few facts about Gaussian space

Recall that for ℓ ∈ N, γℓ is the ℓ dimensional Gaussian measure defined by γℓ(S) = P(g ∈ S),

where g ∼ N (0, (2π)−1Iℓ).

Lemma 2.4.2. Let k ⩾ 0, r > 0 and S ⊂ Rk+2 be measurable. Then there exists x ∈ S, and

h ∈ Γr,8 so that

γk+2(S ∩B) ⩽ 8γk+2((S − x) ∩ Γ2r,16 + h) ,

where B := {θ ∈ Rk+2 : ∥θ[k]∥2 ⩽ r}.

Proof. Consider translates Γr,8 + y where yk+1, yk+2 ∈ 16Z2 to write

γk+2(S ∩B) =
∑

y∈{0}k×16Z2

γk+2(S ∩ (Γr,8 + y)) . (2.22)

We express γk+2(S ∩ (Γr,8 + y)) as∫
Rk+2

1
[
θ ∈ S ∩ (Γr,8 + y)

]
e−π∥θ∥

2
2/2 dθ =

∫
Rk+2

1
[
ϕ ∈ (S − y) ∩ Γr,8

]
e−π∥ϕ+y∥

2
2/2 dϕ. (2.23)

Rewriting the exponent in the integrand at (2.23)

−∥ϕ+ y∥22 = −∥ϕ∥22 − 2ϕk+1yk+1 − 2ϕk+2yk+2 − y2k+1 − y2k+2,

we use that |ϕk+1|, |ϕk+2| ⩽ 8 whenever 1[ϕ ∈ (S − y) ∩ Γr,8] ̸= 0, to see

γk+2(S∩(Γ8,r+y)) ⩽ exp
(
−π
2
y2k+1 −

π

2
y2k+2 + 8π|yk+1|+ 8π|yk+2|

)
γk+2((S−y)∩Γr,8) . (2.24)

So, apply (2.24) to (2.22) to get

γk+2(S ∩B) ⩽
∑

y∈{0}k×16Z2

γk+2((S − y) ∩ Γr,8)e
−π

2
y2k+1−

π
2
y2k+2+8π|yk+1|+8π|yk+2|

⩽ max
y

γk+2((S − y) ∩ Γr,8)
∑

yk+1,yk+2∈16Z
e−

π
2
y2k+1−

π
2
y2k+2+8π|yk+1|+8π|yk+2|

⩽ 16max
y

γk+2((S − y) ∩ Γr,8) .

5Note, in particular, that Lemma 2.4.1 says that if (2.20) is satisfied then we must have s < 16.
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Let y be a vector at which the above maximum is attained. Now observe that if S∩(Γr,8+y) = ∅
then (S − y) ∩ Γr,8 = ∅ and thus γk+2(S ∩ B) = 0; so there is nothing to prove. Thus we may

assume S ∩ (Γr,8 + y) ̸= ∅ and let x ∈ S ∩ (Γ8,r + y). Define h := x− y ∈ Γr,8 and notice that

(S − y) ∩ Γr,8 − h = (S − y − h) ∩ (Γr,8 − h) ⊆ (S − x) ∩ Γ2r,16,

where the inclusion holds since h ∈ Γr,8. Therefore (S−y)∩Γr,8 ⊆ (S−x)∩Γ2r,16+h, allowing

us to conclude that

γk+2(S ∩B) ⩽ 16γk+2((S − y) ∩ Γr,8) ⩽ 16γk+2((S − x) ∩ Γ2r,16 + h),

as desired. □

We also need the following standard tail estimate on a k-dimensional Gaussian.

Fact 2.4.3. γk
(
{x ∈ Rk : ∥x∥22 ⩾ k}

)
⩽ exp(−k/8).

Proof. For any ε ∈ (0, 1) the standard Gaussian measure of the set {x ∈ Rk : ∥x∥22 ⩾ k/(1− ε)}
is at most exp(−ε2k/4). Recalling that γk has standard deviation (2π)−1/2 and taking ε =

1− (2π)−1, gives the desired bound. □

2.4.2 A Gaussian Brunn-Minkowski type theorem

We now lay out a useful tool which gives us some control of the Gaussian measure of the sum

set A+B, relative to the Gaussian measures of A and B. Indeed, the following theorem due to

Borell [23], can be viewed as a Brunn-Minkowski-type theorem for Gaussian space.

For this, let Φ(x) be the cumulative probability function Φ(x) := P(Z ⩽ x), for the standard

one dimensional Gaussian Z ∼ N (0, 1), while γk is (still) the k-dimensional Gaussian with

covariance matrix (2π)−1Ik.

Theorem 2.4.4 (Borell). Let A,B ⊆ Rk be Borel. Then

γk(A+B) ⩾ Φ

(
Φ−1(γk(A)) + Φ−1(γk(B))

)
.

Proof. In [23] Theorem 2.4.4 is proved for the standard Gaussian measure rather than γk.

However we can change the standard deviation of the measure by taking dilates of the sets A

and B. □

We will use the following simple consequence of Theorem 2.4.4.
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Lemma 2.4.5. Let A ⊆ Rk be Borel. Then

γk(A−A) ⩾ γk(A)
4 .

Proof. By Theorem 2.4.4, we have

γk(A−A) ⩾ Φ(2Φ−1(γk(A))) = Φ(2x), (2.25)

where we have set x = Φ−1(γk(A)). Note that

Φ(2x) = P(Z ⩽ 2x) = P (Z1 + Z2 + Z3 + Z4 ⩽ 4x) ⩾ P(Z ⩽ x)4 = Φ(x)4 (2.26)

where Zj are i.i.d. copies of Z ∼ N (0, 1). Combining (2.25) and (2.26) completes the proof.□

2.4.3 Proof of Lemma 2.4.1

With these pieces now in place, we can move on to prove Lemma 2.4.1, our key geometric lemma

on the Fourier side.

Proof of Lemma 2.4.1. Write r =
√
k for simplicity. We prove the contrapositive and assume

for every x ∈ S we have

(Γ2r,16 \ Γ2r,s + x) ∩ S = ∅. (2.27)

We define

B := {θ ∈ Rk+2 : ∥θ[k]∥2 ⩽ r}.

and proceed to bound γk+2(S) from above by first bounding γk+2(S \ B) and then bounding

γk+2(S ∩B).

Step 1: Upper bound for γk+2(S \B). For θ[k] ∈ Rk, let S(θ[k]) be as defined at (2.19)

S(θ[k]) =
{
(θk+1, θk+2) ∈ R2 : (θ[k], θk+1, θk+2) ∈ S

}
.

We may write

γk+2(S \B) =

∫
∥θ[k]∥2⩾r

γ2
(
S(θ[k])

)
dγk (2.28)

and thus

γk+2(S \B) ⩽

(
max
θ[k]∈Rk

γ2
(
S(θ[k])

))
γk
(
{∥θ[k]∥2 ⩾ r}

)
. (2.29)

Lemma 2.3.4 and (2.27) shows

max
θ[k]∈Rk

γ2
(
S(θ[k])

)
⩽ 8s2. (2.30)
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Fact 2.4.3 bounds

γk
(
{∥θ[k]∥2 ⩾ r}

)
⩽ exp(−k/8) (2.31)

and so from (2.29), (2.30) and (2.31) we learn

γk+2(S \B) ⩽ 8s2e−k/8. (2.32)

Step 2: Upper bound for γk+2(S ∩ B). By Lemma 2.4.2, there exists x ∈ S and h ∈ Γr,8 such

that

γk+2(S ∩B) ⩽ 16γk+2((S − x) ∩ Γ2r,16 + h). (2.33)

Now since we are assuming the claim is false, and x ∈ S, we use (2.27) to deduce that

(S − x) ∩ Γ2r,16 ⊆ (S − x) ∩ Γ2r,s (2.34)

and so letting y = x− h, we see

(S − x) ∩ Γ2r,s + h = (S − x+ h) ∩ (Γ2r,s + h) = (S − y) ∩ (Γ2r,s + h). (2.35)

Thus by (2.33), (2.34) and (2.35), we have

γk+2(S ∩B) ⩽ 16γk+2((S − y) ∩ (Γ2r,s + h)) . (2.36)

Bound

γk+2((S − y) ∩ (Γ2r,s + h)) ⩽
∫
|a−hk+1|,|b−hk+2|⩽s

γk
(
Fy(S; a, b)

)
dγ2 (2.37)

and apply Lemma 2.4.5 to obtain

γk+2((S − y) ∩ (Γ2r,s + h)) ⩽ 4s2max
a,b,y

(γk(Fy(S; a, b)− Fy(S; a, b)))
1/4 . (2.38)

Combining (2.36) and (2.38) gives

γk+2(S ∩B) ⩽ 64s2max
a,b,y

(
γk (Fy(S; a, b)− Fy(S; a, b))

)1/4
(2.39)

Putting Step 1 and Step 2 together : (2.39) together with (2.32) implies

γk+2(S) ⩽ 8s2e−k/8 + 64s2max
a,b,y

(γk(Fy(S; a, b)− Fy(S; a, b)))
1/4,

completing the proof of the contrapositive. □

38



2.5 Inverse Littlewood-Offord III: Comparison to a lazier walk

and Proof of Lemma 2.3.1

In Section 2.4 we proved our key geometric ingredient, Lemma 2.4.1, to deal with the geometry

of our level set (as seen in Section 2.3.1). We now use this lemma to take the following big step

towards Lemma 2.3.1.

Lemma 2.5.1. For d ∈ N and α ∈ (0, 1), let 0 ⩽ k ⩽ 2−10αd and t ⩾ exp(−2−10αd). For

0 < c0 ⩽ 2−24, let Y ∈ Rd satisfy ∥Y ∥ ⩾ 2−10c0/t and let W be a 2d× k matrix with ∥W∥ ⩽ 2.

Also let τ ∼ Q(2d, 1/4) and τ ′ ∼ Q(2d, 2−9) and β ∈ [c0/2
10,

√
c0], β

′ ∈ (0, 1/2).

If

L(W T
Y τ, β

√
k + 1) ⩾ (Rt)2 exp(4β2k)

(
P(∥W T τ ′∥2 ⩽ β′

√
k) + exp(−β′2k)

)1/4
(2.40)

then Dα(Y ) ⩽ 16. Here we have set R = 231/c20.

Of course, Lemma 2.5.1 looks quite a bit like Lemma 2.3.1 save for quantity

P(∥W T τ ′∥2 ⩽ β′
√
k) + exp(−β′2k), (2.41)

on the right-hand side of (2.40). One should view this quantity as an approximation of the

contribution that the “soft” constraints make. Indeed, if one reads this lemma in the contra-

positive, it says that we can successfully “decouple” the “soft” constraints from the “hard”

constraints, provided Y is sufficiently “unstructured”, meaning Dα(Y ) > 16. Of course, this

story is not quite an honest one; we have to use the lazier vector τ ′, rather than τ , to get things

to work out, and we also take a loss in the exponent of 1/4. The key here is that we obtain the

correct power of t in our bound, which is deeply important for our application. We also note

that our use of “decoupling” should not be confused with the “decoupling” step in Costello,

Tao and Vu [41], which is used to deal with very unstructured vectors.

We prove this lemma in Section 2.5.2 after laying out a few facts on level sets in Section 2.5.1.

We will then conclude this section in Section 2.5.3 with a proof of Lemma 2.3.1, by combining

Lemma 2.5.1 with one further ingredient to bound (2.41).

2.5.1 Working with level sets

To prepare for the proof of Lemma 2.5.1, we record two basic facts about level sets. First off, we

note a sort of converse to the Esseen-type inequality that we saw in Section 2.3, Lemma 2.3.2.

Again, we will postpone the straightforward proof of this lemma to Appendix A. Recall that
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we defined, for a 2d× ℓ matrix W , the W -level set, for t ⩾ 0, to be

SW (t) :=
{
θ ∈ Rℓ : ∥Wθ∥T ⩽

√
t
}
.

Lemma 2.5.2. Let β > 0, µ ∈ (0, 1/4], let W be a 2d × ℓ matrix, and let τ ∼ Q(2d, µ). Then

for all t ⩾ 0, we have

γℓ(SW (t))e−32µt ⩽ Pτ
(
∥W T · τ∥2 ⩽ β

√
ℓ
)
+ exp

(
−β2ℓ

)
.

We need also need the following basic fact about level sets. Recall that, for a set S ⊂ Rk+2 and

y ∈ Rk+2, we defined the “translated horizontal fiber”,

Fy(S; a, b) := {θ[k] = (θ1, . . . , θk) ∈ Rk : (θ1, . . . , θk, a, b) ∈ S − y} .

Fact 2.5.3. For any 2d× (k + 2) matrix W . If m > 0 we have

SW (m)− SW (m) ⊆ SW (4m).

Similarly, for any y ∈ Rk+2 and a, b ∈ R we have

Fy(SW (m); a, b)− Fy(SW (m); a, b) ⊆ F0(SW (4m); 0, 0). (2.42)

Proof. Notice that if x, y ∈ SW (m) then by definition ∥Wx∥T, ∥Wy∥T ⩽
√
m . Thus, by the

triangle inequality,

∥W (x− y)∥T ⩽ ∥Wx∥T + ∥Wy∥T ⩽ 2
√
m.

For (2.42), let θ[k], θ
′
[k] ∈ Fy(S; a, b). We have that

(θ1, . . . , θk, a, b), (θ
′
1, . . . , θ

′
k, a, b) ∈ SW (m)− y

and so θ′′ := (θ1− θ′1, . . . , θk− θ′k, 0, 0) ∈ SW (4m). Thus θ[k]− θ′[k] ∈ F0(SW (4m); 0, 0), implying

(2.42). □

2.5.2 Proof of 2.5.1

We may now turn to prove Lemma 2.5.1, our big step towards Lemma 2.3.1.

Proof of Lemma 2.5.1. Apply Lemma 2.3.2 to find m > 0 such that the level set

S := SWY
(m) = {θ ∈ Rk+2 : ∥WY θ∥T ⩽

√
m},

satisfies

e−
1
8
m+2β2kγk+2(S) ⩾ L(W T

Y τ, β
√
k + 1). (2.43)
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Thus (2.43) together with our hypothesis (2.40) gives a lower bound

γk+2(S) ⩾
1

4
e

1
8
m−2β2k (Rt)2 T 1/4, (2.44)

where we have set

T := P(∥W T τ ′∥2 ⩽ β′
√
k) + exp(−β′2k).

We now make the following important designations,

r0 :=
√
k and s0 := 216c−1

0 (
√
m+

√
k)t. (2.45)

Recall from (2.17) that for r, s > 0 we defined the cylinder

Γr,s :=
{
θ ∈ Rk+2 :

∥∥θ[k]∥∥2 ⩽ r and |θk+1| ⩽ s, |θk+2| ⩽ s,
}
.

Claim 2.5.4. There exists x ∈ S ⊆ Rk+2 so that6(
Γ2r0,16 \ Γ2r0,s0 + x

)
∩ S ̸= ∅. (2.46)

Proof of Claim 2.5.4. We look to apply Lemma 2.4.1 with s = s0. For this, we bound

M := max
a,b,y

{
γk

(
Fy(S; a, b)− Fy(S; a, b)

)}
,

above by em/4T , thus giving a lower bound on γk+2(S) and allowing us to apply Lemma 2.4.1.

Use Fact 2.5.3 to see that for any y, a, b, we have

Fy(S; a, b)− Fy(S; a, b) ⊆ F0(SWY
(4m); 0, 0) . (2.47)

Now carefully observe that

F0(SWY
(4m); 0, 0) =

{
θ[k] ∈ Rk : ∥Wθ[k]∥T ⩽

√
4m
}
= SW (4m),

which is a level-set corresponding to the (“decoupled”) event Pτ ′(∥W T τ ′∥2 ⩽ β′
√
k), where

τ ′ ∼ Q(2d, 2−9) and β′ ∈ (0, 1/2) is as in the hypothesis. Thus we may apply Lemma 2.5.2

along with (2.47) to obtain

M ⩽ γk(F0(SWY
(4m), 0, 0)) = γk(SW (4m)) ⩽ em/4T . (2.48)

So combining (2.48) with (2.44), gives

γk+2(S) ⩾ (1/4)em/16+2β2k(Rt)2M1/4 ⩾ 8s20e
−k/8 + 64s20M

1/4, (2.49)

allowing us to apply Lemma 2.4.1 and complete the proof of the claim. The last inequality at

(2.49) follows from a simple check: each term on the right-hand side of (2.49) is at most half of

6Note that this claim shows, in particular, that s0 < 16.
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the left-hand side. First note that

s20 = 232c−2
0 (

√
m+

√
k)2t2 < 233(k +m)(t/c0)

2 (2.50)

and so

8s20e
−k/8 ⩽

1

8
em/8−2β2k(Rt)2e−β

′2k/4

follows from β′ ⩽ 1/2 and the definition of R. On the other hand, use (2.50) to bound

64s20e
m/16 ⩽ 239t2c−2

0 (220c−2
0 β2k + 8(m/8)) ⩽

1

8
(Rt)2em/8+β

2k

thus showing the second inequality at (2.49) and finishing the proof of the claim. □

We now observe the simple consequence of Claim 2.5.4.

Claim 2.5.5. We have that SWY
(4m) ∩ (Γ2r0,16 \ Γ2r0,s0) ̸= ∅.

Proof of Claim 2.5.5. By Claim 2.5.4, there exists x, y ∈ S = SWY
(m) so that y ∈ (Γ2r0,16 \

Γ2r0,s0 +x
)
∩S. Set ϕ := y−x and observe that ϕ ∈ SWY

(4m)∩ (Γ2r0,16 \Γ2r0,s0), by Fact 2.5.3.

□

We now conclude the proof of Lemma 2.5.1 with the following claim.

Claim 2.5.6. If ψ ∈ SWY
(4m) ∩ (Γ2r0,16 \ Γ2r0,s0) then there exists i ∈ {k + 1, k + 2} so that

∥ψiY ∥T < min{ψi∥Y ∥2/2,
√
αd} .

Proof of Claim 2.5.6. Note that since ψ ∈ SWY
(4m) there is a p ∈ Z2d so that WY ψ ∈

B2d(p, 2
√
m). So if we express

WY ψ =Wψ[k] + ψk+1

[
Y

0d

]
+ ψk+2

[
0d

Y

]
,

we have that

ψk+1

[
Y

0d

]
+ ψk+2

[
0d

Y

]
∈ B2d(p, 2

√
m)−Wψ[k] ⊆ B2d(p, 2

√
m+ 4

√
k), (2.51)

where the last inclusion holds because ψ ∈ Γ2r0,16 and so ∥ψ[k]∥2 ⩽ 2r0 ⩽ 2
√
k and ∥W∥ ⩽ 2.

Since ψ ̸∈ Γ2r0,s0 we have that at least one of |ψk+1|, |ψk+2| are > s0. So, assume without loss

that |ψk+1| > s0 and that ψk+1 > 0 (otherwise replace ψ with −ψ). Now project (2.51) onto

the first d coordinates, to obtain

ψk+1Y ∈ Bd(p[d], 2
√
m+ 4

√
k). (2.52)
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We now observe that ∥ψk+1Y ∥T < ψk+1∥Y ∥2
2 . Indeed,

ψk+1∥Y ∥2
2

>
s0∥Y ∥2

2
⩾

(
215(

√
m+

√
k)t

c0

)(
2−10 c0

t

)
> (2

√
m+ 4

√
k), (2.53)

where we have used the definition of s0 and that ∥Y ∥2 > 2−10c0/t.

Finally, we note that m ⩽ 2−4αd. To see this, we use (2.44), γk+2(S) ⩽ 1 and our lower bound

t ⩾ exp(−2−9αd) to see

e−m/8 ⩾ γk+2(S)e
−m/8 ⩾ (Rt)2e−2β′2k ⩾ exp(−2−7αd),

where we have used k ⩽ 2−9αd and β′ < 1 for the last inequality, thus m ⩽ 2−4αd. Therefore

from (2.52) and (2.53) we have

∥ψk+1Y ∥T ⩽ 2
√
m+ 4

√
k ⩽

√
αd,

as desired. This completes the proof of the Claim 2.5.6. □

Let ψ and i ∈ {k + 1, k + 2} be as guaranteed by Claim 2.5.6. Then ψi ⩽ 16, and

∥ψiY ∥T < min{∥ψiY ∥2/2,
√
αd},

and so Dα(Y ) ⩽ 16 thus completing the proof of Lemma 2.5.1. □

2.5.3 Proof of Lemma 2.3.1

Before turning to prove Lemma 2.3.1, we require one further result which tells us that ∥Wσ∥2 is
anti-concentrated when σ is a random vector and W is a fixed matrix. While there are several

interesting results of this type in the literature [64, 79, 132] (and we will encounter another

in Subsection 2.7.2), we state here a variant of the Hanson-Wright inequality with an explicit

constant. A proof can be found in Appendix D in [33], the arXiv version of this paper.

Lemma 2.5.7. For d ∈ N, ν ∈ (0, 1), let δ ∈ (0,
√
ν/16), let σ ∼ Q(2d, ν), and let W be a

2d× k matrix satisfying ∥W∥HS ⩾
√
k/2 and ∥W∥ ⩽ 2. Then

P(∥W Tσ∥2 ⩽ δ
√
k) ⩽ 4 exp(−2−12νk) (2.54)

We now turn to prove Lemma 2.3.1.

Proof of Lemma 2.3.1. Setting β′ := 4
√
c0, we look to apply Lemma 2.5.1. For this, note

that the hypotheses in Lemma 2.3.1 imply the hypotheses in Lemma 2.5.1 with respect to
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c0, d, α, k, Y,W and τ (and we have the extra condition on ∥W∥HS). So if we additionally

assume Dα(Y ) > 16, we may apply Lemma 2.5.1 (in the contrapositive) to obtain

L
(
W T
Y τ, β

√
k + 1

)
⩽ (231c−2

0 t/2)2e4β
2k
(
P(∥W T τ ′∥2 ⩽ β′

√
k) + e−β

′2k
)1/4

. (2.55)

To deal with the right-hand side, we apply Lemma 2.5.7 to take care of the quantity involving

τ ′ ∈ {−1, 0, 1}2d, our ν = 2−9 lazy random vector. Note that 4
√
c0 ⩽ 2−10 ⩽

√
ν/16, and that

our given W satisfies ∥W∥HS ⩾
√
k/2 and ∥W∥ ⩽ 2. Thus we may apply Lemma 2.5.7, with

δ = β′ and σ = τ ′, to see

P(∥W T τ ′∥2 ⩽ β′
√
k) ⩽ 4 exp(−2−12νk). (2.56)

Plugging this into the right-hand side of (2.55) yields

exp(4β2k)
(
P(∥W T τ ′∥2 ⩽ β′

√
k) + exp(−β′2k)

)1/4
⩽ 2 exp(4c0k − 2−21k) + 2 exp(2c0k − 4c0k)

⩽ 4 exp(−c0k).

Putting this together with (2.55), yields

L
(
W T
Y τ, β

√
k + 1

)
⩽ (Rt)2 exp(−c0k),

as desired. □

2.6 Inverse Littlewood-Offord for conditioned random matrices

In this section we lift the main result of the previous sections (Lemma 2.3.1) to study the

concentration of the vector H1X, where H1 is a random (n − d) × d matrix, conditioned on

having k singular values which are much smaller than “typical” and X is a fixed vector for

which |Xi| ≈ N for each i.

Here N should be thought of as ≈ 1/ε, in the context of the proof (see Section 2.1.1) and H1

comes from its appearance in our matrix M ,

M =

[
0[d]×[d] HT

1

H1 0[d+1,n]×[d+1,n]

]
.

The main result of this section is the following theorem7.

7For convenience, we define σj(H) = 0 for j > rk(H).
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Theorem 2.6.1. For n ∈ N and 0 < c0 ⩽ 2−24, let d ⩽ c20n, and for α ∈ (0, 1), let 0 ⩽

k ⩽ 2−10αd and N ⩽ exp(2−10αd). Let X ∈ Rd satisfy ∥X∥2 ⩾ c02
−10n1/2N , and let H be a

random (n− d)× 2d matrix with i.i.d. (1/4)-lazy entries in {−1, 0, 1}.

If Dα(rn ·X) > 16 then

PH
(
σ2d−k+1(H) ⩽ c02

−4√n and ∥H1X∥2, ∥H2X∥2 ⩽ n
)
⩽ e−c0nk/4

(
R

N

)2n−2d

, (2.57)

where we have set H1 := H[n−d]×[d], H2 := H[n−d]×[d+1,2d], rn := c0
16

√
n
and R := 239c−3

0 .

To understand the numerology in Theorem 2.6.1, notice that if we only consider the “soft”

constraints on the singular values (without the constraints imposed by X) we would expect

something like

PH
(
σ2d−k+1(H) ⩽ c02

−4√n
)
≈ cnk, (2.58)

for some absolute c ∈ (0, 1), which depends on the value of c0. Here we are using, crucially, that

H is a rectangular matrix with aspect ratio bounded away from 1. Indeed, if H were a square

matrix then σmin(H) ≈ n−1/2, with high probability8.

On the other hand, the inverse Littlewood-Offord theorem of Rudelson and Vershynin [129]

(with a bit of extra work) tells us that if X is such that |Xi| ≈ N for all i ∈ [d], and

P(∥H1X∥2, ∥H2X∥2 ⩽ n) ⩾

(
R

N

)2n−2d

,

then Dα(n
−1/2X) = O(1). Thus Theorem 2.6.1 is telling us that we maintain an inverse

Littlewood-Offord type theorem even in the presence of many additional constraints imposed

by the condition on the least singular values.

2.6.1 A tensorization step

We need the following basic fact.

Fact 2.6.2. If r ⩾ t > 0 and X is a random variable taking values in Rk+2, then

L(X, t) ⩽ L(X, r) ⩽ (1 + 2r/t)k+2L(X, t).

Proof. The lower bound is trivial. The upper bound follows from the fact that a ball of radius

r in Rk+2 can be covered by (1 + 2r/t)k+2 balls of radius t. □

8While we can refer the reader to [130, 131] for more on the singular values of rectangular random matrices,
we were not able to find any result such as (2.58) in the literature. However, it is not so hard to deduce (2.58)
from the Hanson-Wright inequality [132] along with a “random rounding” step similar to that in Appendix E in
[33] .
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We now prove a “tensorization” lemma which shows that anti-concentration of a single row in

a random matrix H (with iid rows) implies the anti-concentration of matrix products involving

H.

Lemma 2.6.3. For d < n and k ⩾ 0, let W be a 2d× (k+2) matrix and let H be a (n−d)×2d

random matrix with i.i.d. rows. Let τ ∈ R2d be a random vector with the same distribution as

the rows of H. If β ∈ (0, 1/8) then

PH
(
∥HW∥HS ⩽ β2

√
(k + 1)(n− d)

)
⩽
(
25e2β

2kL
(
W T τ, β

√
k + 1

))n−d
.

Proof. Apply Markov’s inequality to see that

P
(
∥HW∥HS ⩽ β2

√
(k + 1)(n− d)

)
⩽ exp

(
2β2(k + 1)(n− d)

)
EHe−2∥HW∥2HS/β

2
. (2.59)

Letting τ1, . . . , τn−d denote the i.i.d. rows of H, we may rewrite

EH e−2∥HW∥2HS/β
2
=

n−d∏
i=1

Eτi e
−2∥WT τi∥2/β2

=
(
Eτ e−2∥WT τ∥2/β2

)n−d
. (2.60)

Observe now that

Eτ e−2∥WT τ∥2/β2
=

∫ ∞

0
P
(
e−2∥WT τ∥2/β2

> u
)
du =

∫ ∞

0
4ue−2u2P

(
∥W T τ∥2/β ⩽ u

)
du.

Splitting the integral on the right-hand side gives

Eτ e−2∥WT τ∥2/β2
=

∫ √
k+1

0
4ue−2u2P

(
∥W T τ∥2 ⩽ βu

)
+

∫ ∞

√
k+1

4ue−2u2P
(
∥W T τ∥2 ⩽ βu

)
.

We then appeal to Fact 2.6.2 to write

Eτ e−2∥WT τ∥2/β2
⩽ L

(
W T τ, β

√
k + 1

)(∫ √
k+1

0
4ue−2u2 du+

∫ ∞

√
k+1

(
1 +

2u√
k + 1

)k+2

4ue−2u2 du

)
.

Here the first integral is ⩽ 1, while the second integral is ⩽ 8 and thus

Eτ e−2∥WT τ∥2/β2
⩽ 9L

(
W T τ, β

√
k + 1

)
. (2.61)

Combining lines (2.61) with (2.60) and (2.59) gives

PH(∥HW∥HS ⩽ β2
√

(k + 1)(n− d)) ⩽

(
9 exp(2β2(k + 1))L

(
W T τ, β

√
k + 1

))n−d
,

and the result follows. □
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2.6.2 Approximating matrices W with nets

Note that in Theorem 2.6.1, the least singular values of the matrix H could, a priori, correspond

to any of a huge number of possible directions. To limit the number of directions we need to

consider, we build nets for k-tuples of these directions. Luckily, the construction of these nets is

rendered relatively simple (unlike the netsNε) by appealing to a randomized-rounding technique

pioneered in the context of random matrices by Livshyts [103] (also see Section 3 of [104]).

With this in mind, let U2d,k be the set of all 2d × k matrices with orthonormal columns. The

following theorem provides a net for U2d,k, when viewed as a subset of R[2d]×[k]. A proof can be

found in Appendix E of [33], the arXiv version of this paper.

Lemma 2.6.4. For k ⩽ d and δ ∈ (0, 1/2), there exists N = N2d,k ⊂ R[2d]×[k] with |N | ⩽
(26/δ)2dk so that for any U ∈ U2d,k, any r ∈ N and r× 2d matrix A there exists W ∈ N so that

1. ∥A(W − U)∥HS ⩽ δ(k/2d)1/2∥A∥HS,

2. ∥W − U∥HS ⩽ δ
√
k and

3. ∥W − U∥ ⩽ 8δ.

Recall, for a 2d× k matrix W and Y ∈ Rd, we defined (at (2.15)) the augmented matrix

WY =

[
W,

[
0d

Y

]
,

[
Y

0d

]]
.

2.6.3 Proof of Theorem 2.6.1

We recall a standard fact from linear algebra, reworded to suit our context.

Fact 2.6.5. For 3d < n, let H be a (n − d) × 2d matrix. If σ2d−k+1(H) ⩽ x then there exist

k orthogonal unit vectors w1, . . . , wk ∈ R2d so that ∥Hwi∥2 ⩽ x. In particular, there exists

W ∈ U2d,k so that ∥HW∥HS ⩽ x
√
k.

We also note that if H is a (n− d)× 2d matrix with entries in {−1, 0, 1} then we immediately

have ∥H∥HS ⩽
√

2d(n− d).

Proof of Theorem 2.6.1. Write Y := c0
16

√
n
·X. We use Fact 2.6.5 to upper bound the left-hand-

side of (2.57) as

P(σ2d−k+1(H) ⩽ c02
−4√n and ∥H1X∥2, ∥H2X∥2 ⩽ n)

⩽ P(∃U ∈ U2d,k : ∥HUY ∥HS ⩽ 3c0
√
n(k + 1)/16).
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Set δ := c0/16, and let W be the δ-net for U2d,k, given by Lemma 2.6.4.

We fix a matrix H for a moment. If there exists a matrix U ∈ U2d,k so that ∥HUY ∥HS ⩽

3c0
√
n(k + 1)/16, apply Lemma 2.6.4 to find W ∈ W so that

∥HWY ∥HS ⩽ ∥H(WY − UY )∥HS + ∥HUY ∥HS ⩽ δ(k/2d)1/2∥H∥HS + 3c0
√
n(k + 1)/16

which is at most c0
√
n(k + 1)/4, since ∥H∥HS ⩽

√
2nd. Thus

P
(
∃U ∈ U2d,k : ∥HUY ∥HS ⩽

c0
16

√
n(k + 1)

)
⩽ P

(
∃W ∈ W : ∥HWY ∥HS ⩽

c0
4

√
n(k + 1)

)
.

So by the union bound, we have

P
(
∃W ∈ W : ∥HWY ∥HS ⩽ (c0/4)

√
n(k + 1)

)
⩽
∑
W∈W

P
(
∥HWY ∥HS ⩽ (c0/4)

√
n(k + 1)

)
.

Now

|W| ⩽ (26/δ)2dk ⩽ exp(32dk log c−1
0 ) ⩽ exp(c0k(n− d)/4),

where the last inequality holds since d ⩽ c20n, and so∑
W∈W

P
(
∥HWY ∥HS ⩽

c0
4

√
n(k + 1)

)
⩽ ec0k(n−d)/4 max

W∈W
P
(
∥HWY ∥HS ⩽

c0
4

√
n(k + 1)

)
.

(2.62)

LetW ∈ W be such that the maximum in (2.62) is attained, apply Lemma 2.6.3 with β :=
√
c0/2

to obtain

P(∥HWY ∥HS ⩽ (c0/4)
√
n(k + 1)) ⩽

(
25ec0k/2L

(
W T
Y τ, c

1/2
0

√
k + 1

))n−d
. (2.63)

We now look to apply Lemma 2.3.1. We define t := 16/(c0N) ⩾ exp(−2−9αd) and

R0 := 2−7c0R = 2−7c0(2
39c−3

0 ) = 232c−2
0 so that we have

∥Y ∥2 = c0∥X∥2/(16n1/2) ⩾ 2−14c20N = 2−10c0/t.

By the construction of W in Lemma 2.6.4 we have ∥W∥ ⩽ 2 and ∥W∥HS ⩾
√
k/2. We also have

k ⩽ 2−10αd and Dα(
c0

16
√
n
X) = D(Y ) > 16, therefore we may apply Lemma 2.3.1 to see that

L
(
W T
Y τ, c

1/2
0

√
k + 1

)
⩽ (R0t)

2 exp(−c0k) ⩽
(
R

8N

)2

exp(−c0k).

Substituting this bound in (2.63) we get

max
W∈W

PH(∥HWY ∥2 ⩽ (c0/4)
√
n(k + 1)) ⩽

(
R

N

)2n−2d

exp(−c0k(n− d)/2)
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and finally combining it with the previous bounds gives

P(σ2d−k+1(H) ⩽ c0
√
n/16 and ∥H1X∥2, ∥H2X∥2 ⩽ n) ⩽

(
R

N

)2n−2d

exp(−c0k(n− d)/4).

This completes the proof of Theorem 2.6.1. □

2.7 Nets for structured vectors: Size of the Net

In this section we take a important step towards Theorem 2.1.1 by bounding the size of our net

Nε :=
{
v ∈ Λε : (Lε)

n ⩽ P(∥Mv∥2 ⩽ 4ε
√
n) and LA,op(v, ε

√
n) ⩽ (28Lε)n

}
,

where we recall that

Λε := Bn(0, 2) ∩
(
4εn−1/2 · Zn

)
∩ I ′([d]).

In particular, our main goal of this section will be to prove the following theorem on the size of

Nε.

Theorem 2.7.1. For L ⩾ 2 and 0 < c0 ⩽ 2−24, let n ⩾ L64/c20, let d ∈ [c20n/4, c
2
0n] and let

ε > 0 be such that log ε−1 ⩽ nL−32/c20. Then

|Nε| ⩽
(

C

c60L
2ε

)n
,

where C > 0 is an absolute constant.

As the geometry of the set Λε is a bit complicated, we follow an idea of Tikhomirov [165], by

working with the intersection of Nε with a selection of “boxes” which cover (an appropriately

re-scaled) Λε.

Definition 2.7.2. Define a (N,κ, d)-box to be a set of the form B = B1× . . .×Bn ⊂ Zn where

|Bi| ⩾ N for all i ⩾ 1; Bi = [−κN,−N ] ∪ [N,κN ], for i ∈ [d]; and |B| ⩽ (κN)n.

The advantage of working with these boxes is that they lend themselves naturally to a proba-

bilistic interpretation, which we now adopt. We ask “what is the probability that

PM (∥MX∥2 ⩽ n) ⩾

(
L

N

)n
,

where X is chosen uniformly at random from B?”. This interpretation was used to ingenious

effect in the work of Tikhomirov, who called this the “inversion of randomness”. While we do

take this vantage point, our path forward is considerably different from that of Tikhomirov.
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We now state our key “box” version of Theorem 2.7.1, in this probabilistic framework. Indeed,

almost all of the work in proving Theorem 2.7.1 goes into proving the following variant for

boxes.

Lemma 2.7.3. For L ⩾ 2 and 0 < c0 ⩽ 2−24, let n > L64/c20 and let 1
4c

2
0n ⩽ d ⩽ c20n. For

N ⩾ 2, satisfying logN ⩽ c0L
−8n/dd, and κ ⩾ 2, let B be a (N,κ, d)-box and let X be chosen

uniformly at random from B. Then

PX
(
PM (∥MX∥2 ⩽ n) ⩾

(
L

N

)n)
⩽

(
R

L

)2n

,

where R := Cc−3
0 and C > 0 is an absolute constant.

2.7.1 Counting with the least common denominator

In this subsection, we prove the following simple lemma, which says that the probability of

choosing X ∈ B with “large” least common denominator is super-exponentially small. This will

ultimately allow us to apply Theorem 2.6.1, which requires an upper-bound on the Dα(X) for

application.

We point out that in Lemma 2.7.4, we rescale by a factor of rn = c02
−4n−1/2, despite the fact

we are working in d < n dimensions. This is just a trace of the fact that Rn is our true point

of reference. Additionally we will only need Lemma 2.7.4 when K = 16.

Lemma 2.7.4. For α ∈ (0, 1),K ⩾ 1 and κ ⩾ 2, let n ⩾ d ⩾ K2/α and let N ⩾ 2 be so that

KN < 2d. Let B = ([−κN,−N ] ∪ [N,κN ])d and let X be chosen uniformly at random from B.
Then

PX
(
Dα

(
rn ·X

)
⩽ K

)
⩽ (220α)d/4 , (2.64)

where we have set rn := c02
−4n−1/2.

Proof. If Dα

(
rn ·X

)
⩽ K then let ψ ∈ (0,K] be the minimum9 in the definition of least common

denominator. Set ϕ := rnψ and observe that ϕ satisfies

∥ϕX∥T ⩽
√
αd and ϕ ∈ [(2κN)−1, rnK] . (2.65)

To see the bound ϕ ⩾ (2κN)−1, note that if ϕ < (2κN)−1 then each coordinate of ϕ ·X lies in

(−1/2, 1/2) which would imply ∥ϕX∥T = ∥ϕX∥2 = ϕ∥X∥2. Using the non-triviality condition

in the definition of least common denominator (2.2), this would imply

ϕ∥X∥2 = ∥ϕ ·X∥T = ∥ψ(rn ·X)∥T ⩽ ψ∥rn ·X∥2/2 = ϕ∥X∥2/2,
9Technically the least common denominator is defined in terms of an infimum, however the minimum is always

attained for non-zero vectors.
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which is a contradiction. Thus the bounds in (2.65) hold.

Now to calculate the probability in (2.64), we discretize the range of possible ϕ. For each integer

i ∈ [1/α, 2KN/α] =: I we define ϕi := iα/(2κN) and note that if X,ϕ satisfy (2.65) then there

exists ϕi for which

∥ϕiX∥T ⩽ 2
√
αd and ϕi ∈ [(2κN)−1, rnK],

by simply choosing ϕi for which |ϕi − ϕ| ⩽ α/(κN) and using triangle inequality

∥ϕiX∥T ⩽ ∥ϕX∥T + ∥(ϕi − ϕ)X∥2 ⩽
√
αd+ |ϕi − ϕ| ·

√
d(κN) ⩽ 2

√
αd. (2.66)

Thus we have that

PX(Dα(rn ·X) ⩽ K) ⩽
∑
i∈I

PX
(
∥ϕiX∥T ⩽ 2

√
αd
)
. (2.67)

To bound the terms on the right-hand side, note that if ∥ϕiX∥T ⩽ 2
√
αd then

1

d

d∑
j=1

∥ϕiXj∥2T ⩽ 4α .

By averaging, there is a set S(X, i) ⊂ [d] with |S(X, i)| ⩾ d/2 for which ∥ϕiXj∥T ⩽ 4
√
α for all

j ∈ S(X, i). Union bounding over all sets S ⊆ [d] and using the independence of the coordinates

Xj we have

PX(Dα(rn ·X) ⩽ K) ⩽ 2d
∑
i∈I

d/2∏
j=1

PXj

(
∥ϕiXj∥T ⩽ 4

√
α
)
. (2.68)

We now claim that

PXj

(
∥ϕiXj∥T ⩽ 4

√
α
)
⩽ 32

√
α. (2.69)

For this, note that if ∥ϕiXj∥T ⩽ 4
√
α, then |ϕiXj − p| ⩽ 4

√
α, where p ∈ Z satisfies |p| ⩽

|ϕiXj |+ 1 ⩽ ϕiκN + 1 =: Ti. And so

PXj (∥ϕiXj∥T ⩽ 4
√
α) ⩽

Ti∑
p=−Ti

PXj (|Xj − pϕ−1
i | ⩽ 4

√
αϕ−1

i ) ⩽
(2Ti + 1)(8α1/2ϕ−1

i + 1)

2(κ− 1)N
.

where we have used thatXj is uniform on [−κN,−N ]∪[N,κN ] and the lower bound κNϕi ⩾ 1/2

from (2.66) along with the assumption κ ⩾ 2. Also note that 8α1/2ϕ−1
i ⩾ 1 since ϕ ⩽ rnK ⩽

d−1/2K, allowing us to conclude (2.69).

Now, plugging (2.69) into (2.68) and bounding |I| ⩽ (2KN/α+ 1) ⩽ 3d completes the proof of

Lemma 2.7.4. □
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2.7.2 Anti-concentration for linear projections of random vectors

In this subsection we prove the following anti-concentration result for random variables HX,

where H is a fixed matrix and X is a random vector with independent entries. One small

remark regarding notation: H as stated in Lemma 2.7.5 will actually be HT in Section 2.7.3.

Lemma 2.7.5. Let N ∈ N, n, d, k ∈ N be such that n−d ⩾ 2d > 2k, H be a 2d× (n−d) matrix

with σ2d−k(H) ⩾ c0
√
n/16 and B1, . . . , Bn−d ⊂ Z with |Bi| ⩾ N . If X is taken uniformly at

random from B := B1 × . . .×Bn−d, then

PX(∥HX∥2 ⩽ n) ⩽

(
Cn

dc0N

)2d−k
,

where C > 0 is an absolute constant.

We derive this from the following anti-concentration result of Rudelson and Vershynin. This is

essentially Corollary 1.4 along with Remark 2.3 in their paper [133], but we have restated their

result slightly to better suit our context.

Theorem 2.7.6. Let N ∈ N and let n, d, k ∈ N be such that n − d ⩾ 2d > k. Let P be an

orthogonal projection of Rn−d onto a (2d−k)-dimensional subspace and let X = (X1, . . . , Xn−d)

be a random vector with independent entries for which

L
(
Xi, 1/2

)
⩽ N−1,

for all i ∈ [n− d]. Then, for all K ⩾ 1,

max
y∈Rn−d

PX
(
∥PX − y∥2 ⩽ K

√
2d− k

)
⩽

(
CK

N

)2d−k
,

where C > 0 is a absolute constant.

We can now deduce Lemma 2.7.5.

Proof of Lemma 2.7.5. Since HTH is a symmetric (n − d) × (n − d) matrix with rk(H) ⩽ 2d,

by the spectral theorem we have HTH =
∑2d

i=1 σi(H)2viv
T
i , where v1, . . . , v2d ∈ Rn−d are

orthonormal. Define the orthogonal projection P :=
∑2d−k

i=1 viv
T
i . Then we have

∥HX∥22 = ⟨X,HTHX⟩ =
2d∑
j=1

σj(H)2⟨X, vj⟩2 ⩾ σ2d−k(H)2
2d−k∑
j=1

⟨X, vj⟩2 ⩾ 2−8c20n∥PX∥22.

Therefore

PX(∥HX∥2 ⩽ n) ⩽ PX(∥PX∥2 ⩽ 16c−1
0

√
n). (2.70)
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We now apply Theorem 2.7.6 to the orthogonal projection P with K = 16c−1
0

√
n/(2d− k) to

see

PX(∥PX∥2 ⩽ K
√
2d− k) ⩽

(
Cn

dc0N

)2d−k
, (2.71)

which together with (2.70) completes the proof of Lemma 2.7.5. □

2.7.3 Proof of Theorem 2.7.3

We take a moment to prepare the ground for the proof of Theorem 2.7.3. We express our

random matrix M, as in the statement of Theorem 2.7.3, as

M =

[
0[d]×[d] HT

1

H1 0[n−d]×[n−d],

]

Where H1 is a (n− d)× d random matrix with iid 1/4-lazy entries in {−1, 0, 1}. We shall also

let H2 be an independent copy of H1 and define H to be the (n− d)× 2d matrix

H :=
[
H1 H2

]
.

For a vector X ∈ Rn, we define the event A1 = A1(X) by

A1 :=
{
H : ∥H1X[d]∥2 ⩽ n and ∥H2X[d]∥2 ⩽ n

}
and let A2 = A2(X) be the event

A2 :=
{
H : ∥HTX[d+1,n]∥2 ⩽ 2n

}
.

We now note a simple inequality linking H, A1 and A2 with the event {∥MX∥2 ⩽ n}.

Fact 2.7.7. For X ∈ Rn, let A1 = A1(X), A2 = A2(X) be as above. We have

(PM (∥MX∥2 ⩽ n))2 ⩽ PH(A1 ∩ A2).

Proof. Let M ′ be an independent copy of M . Expand 1(∥MX∥2 ⩽ n) as a sum of indicators,

apply EM and square to see

(PM (∥MX∥2 ⩽ n))2 =
∑
M,M ′

P(M ′)P(M)1(∥MX∥2, ∥M ′X∥2 ⩽ n),

which is at most∑
H1,H2

P(H1)P(H2)1
(
∥H1X[d]∥2 ⩽ n, ∥H2X[d]∥2 ⩽ n and ∥HTX[d+1,n]∥2 ⩽ 2n

)
,
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which is exactly PH(A1 ∩ A2). □

We shall also need a “robust” notion of the rank of the matrix H: Define Ek to be the event

Ek :=
{
H : σ2d−k(H) ⩾ c0

√
n/16 and σ2d−k+1(H) < c0

√
n/16

}
and note that always exactly one of the events E0, . . . , E2d holds.

We now set

α := 213L−8n/d, (2.72)

and, given a box B, we define the set of typical vectors T (B) ⊆ B to be

T = T (B) :=
{
X ∈ B : Dα(c02

−4n−1/2X[d]) > 16
}
. (2.73)

Now set K := 16 and note that Lemma 2.7.4 implies that if X is chosen uniformly from B and

n ⩾ L64/c20 ⩾ 28/α we have

PX(X ̸∈ T ) = PX
(
Dα(c02

−4n−1/2X[d]) ⩽ 16
)
⩽
(
233L−8n/d

)d/4
⩽

(
2

L

)2n

. (2.74)

Proof of Lemma 2.7.3. LetM , H1, H2, H, A1,A2, Ek, α and T := T (B) be as above. We denote

E :=
{
X ∈ B : PM (∥MX∥2 ⩽ n) ⩾ (L/N)n

}
and write

PX(E) ⩽ PX(E ∩ {X ∈ T}) + PX(X ̸∈ T ).

Now define

f(X) := PM (∥MX∥2 ⩽ n)1(X ∈ T )

and apply (2.74), the bound on PX(X ̸∈ T ), to obtain

PX(E) ⩽ PX (f(X) ⩾ (L/N)n) + (2/L)2n ⩽ (N/L)2nEX f(X)2 + (2/L)2n, (2.75)

where the last inequality follows from Markov’s inequality. So to prove Lemma 2.7.3, it is

enough to prove EX f(X)2 ⩽ 2(R/N)2n.

From Fact 2.7.7 we may write

PM (∥MX∥2 ⩽ n)2 ⩽ PH(A1 ∩ A2) =

d∑
k=0

PH(A2|A1 ∩ Ek)PH(A1 ∩ Ek) (2.76)

and so

f(X)2 ⩽
d∑

k=0

PH(A2|A1 ∩ Ek)PH(A1 ∩ Ek)1(X ∈ T ). (2.77)
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We now look to apply Lemma 2.6.1 to obtain upper bounds for the quantities PH(A1∩Ek), when
X ∈ T . For this, note that d ⩽ c20n, N ⩽ exp(L−8n/dd) ⩽ exp(2−10αn) and set R0 := 239c−3

0

(This is the “R” in Theorem 2.6.1). Also note that, by the definition of a (N,κ, d)-box and the

fact that d ⩾ 1
4c

2
0n, we have that ∥X[d]∥2 ⩾ d1/2N ⩾ c02

−10√nN . Now set α′ := 2−10α to see

that for X ∈ T and 0 ⩽ k ⩽ α′d,

PH(A1 ∩ Ek) ⩽ exp(−c0nk/4)
(
R0

N

)2n−2d

.

Moreover by Theorem 2.6.1,∑
k⩾α′d

PH(A1 ∩ Ek) ⩽ PH
(
{σ2d−α′d(H) ⩽ c0

√
n/16} ∩ A1

)
⩽ exp(−c0α′dn/4).

Thus, for all X ∈ B, we have

f(X)2 ⩽
α′d∑
k=0

PH(A2 | A1 ∩ Ek) exp(−c0nk/4)
(
R0

N

)2n−2d

+ exp(−c0α′dn/4) . (2.78)

We now consider the quantities gk(X) := PH(A2 | A1 ∩ Ek) appearing in (2.78). Indeed,

EX [gk(X)] = EXEH
[
A2 | A1 ∩ Ek

]
= EX[d]

EH
[
EX[d+1,n]

1[A2]
∣∣A1 ∩ Ek

]
.

We now consider a fixed H ∈ A1 ∩ Ek for k ⩽ α′d. Each such H has σ2d−k(H) ⩾ c0
√
n/16 and

thus we may apply Lemma 2.7.5 to see that

EX[d+1,n]
1[A2] = PX[d+1,n]

(∥HTX[d+1,n]∥2 ⩽ n) ⩽

(
C ′n

c0dN

)2d−k
⩽

(
4C ′

c30N

)2d−k
,

for an absolute constant C ′ > 0, using that d ⩾ 1
4c

2
0n. And so for each 0 ⩽ k ⩽ α′d, taking

R := max{8C ′c−3
0 , 2R0}, we have

EX [gk(X)] ⩽

(
R

2N

)2d−k
. (2.79)

We apply EX to (2.78) and then use (2.79) to obtain

EXf(X)2 ⩽

(
R

2N

)2n α′d∑
k=0

(
2N

R

)k
exp(−c0nk/4) + exp(−c0α′dn/4).

Using that N ⩽ exp(c0n/4) and N ⩽ exp(c0L
−8n/dd) = exp(c0α

′d/8) gives

EX f(X)2 ⩽ 2

(
R

2N

)2n

. (2.80)

Combining (2.80) with (2.75) completes the proof of Lemma 2.7.3. □
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2.7.4 Proof of Theorem 2.7.1

The main work of this section is now complete with the proof of Lemma 2.7.3. We now just

need to go from X in a “box” to X in a “sphere” Λε. To accomplish this step, we simply cover

the sphere with boxes. Recall that

I ′([d]) :=
{
v ∈ Rn : κ0n

−1/2 ⩽ |vi| ⩽ κ1n
−1/2 for all i ∈ [d]

}
,

Λε := Bn(0, 2) ∩
(
4εn−1/2 · Zn

)
∩ I ′([d]),

and that 0 < κ0 < 1 < κ1 are absolute constants defined in Section 2.2.

Lemma 2.7.8. For all ε ∈ [0, 1], κ ⩾ max{κ1/κ0, 28κ−4
0 }, there exists a family F of (N,κ, d)-

boxes with |F| ⩽ κn so that

Λε ⊆
⋃
B∈F

(4εn−1/2) · B , (2.81)

where N = κ0/(4ε).

Proof. For ℓ ⩾ 1 define the interval of integers Iℓ :=
[
−2ℓN, 2ℓN

]
\
[
−2ℓ−1N, 2ℓ−1N

]
and I0 :=

[−N,N ]. Also take J := [−κN, κN ]\[−N,N ]. For (ℓd+1, . . . , ℓn) ∈ Zn⩾0 we define the box

B(ℓd+1, . . . , ℓn) := Jd ×
∏n
j=d+1 Iℓj and the family of boxes

F :=

B(ℓd+1, . . . , ℓn) :
∑
j:ℓj>0

22ℓj ⩽ 8n/κ20

 .

We claim that F is the desired family. For this, we first show the inclusion at (2.81). Let

v ∈ Λε. Since v ∈ 4εn−1/2Zn, X := vn1/2/(4ε) ∈ Zn. For i ∈ [d + 1, n], define ℓi so that

Xi ∈ I(ℓi). We claim X ∈ B(ℓd+1, . . . , ℓn). For this, observe that Xi ∈ J for i ∈ [d]: since

v ∈ I ′([d]), we have κ0 ⩽ |vi|n1/2 ⩽ κ1, for i ∈ [d]. So κ0/(4ε) ⩽ |Xi| ⩽ κ1/(4ε), for i ∈ [d].

Thus Xi ∈ J since N = κ0/(4ε) and κ ⩾ κ1/κ0. Thus v ∈ B(ℓd+1, . . . , ℓn). We now observe

that B(ℓd+1, . . . , ℓn) ∈ F , since

∑
j:ℓj>0

22(ℓj−1)N2 ⩽
n∑
j=1

X2
j ⩽ n/(4ε)2

(∑
i

v2i

)
⩽ 4nN2/κ20.

Thus we have (2.81).

We now show |F| ⩽ κn. For this we only need to count the number of sequences (ℓd+1, . . . , ℓn)

of non-negative integers for which
∑

ℓi>0 4
ℓi ⩽ 8n/κ20. For each t ⩾ 0 are at most 8n/(4tκ20)

values of i ∈ [d+1, n] for which ℓi = t and there are at most
(

n
⩽8n/(4tκ20)

)
choices for these values

of i. Hence, there are at most

∏
t⩾0

(
n

⩽ 8n/(κ204
t)

)
⩽ (κ0/4)

−4n < κn
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such tuples.

It only remains to show an upper bound on the size of B(ℓd+1, . . . , ℓn) ∈ F . We have

|B(ℓd+1, . . . , ℓn)| ⩽ Nnκd2n+
∑

j ℓj ⩽ κd(16/κ20)
nNn ⩽ (κN)n

where the second inequality holds due to the fact
∏
j 2

ℓj ⩽
(

1
n

∑
j 2

2ℓj
)n

⩽ (8/κ20)
n and the

last inequality holds due to the choice of κ. □

We may now use our covering Lemma 2.7.8 to apply Theorem 2.7.3 to deduce Theorem 2.7.1,

the main result of this section.

Proof of Theorem 2.7.1. Apply Lemma 2.7.8 with κ = max{κ1/κ0, 28κ−4
0 } and use the fact that

Nε ⊆ Λε to write

Nε ⊆
⋃
B∈F

(
(4εn−1/2) · B

)
∩Nε

and so

|Nε| ⩽
∑
B∈F

|(4εn−1/2 · B) ∩Nε| ⩽ |F| ·max
B∈F

|(4εn−1/2 · B) ∩Nε|.

By rescaling by
√
n/(4ε) and applying Lemma 2.7.3, we have

|(4εn−1/2 · B) ∩Nε| ⩽
∣∣∣{X ∈ B : PM (∥MX∥2 ⩽ n) ⩾ (Lε)n

}∣∣∣ ⩽ (R
L

)2n

|B|.

Here the application of Lemma 2.7.3 is justified as 0 < c0 ⩽ 2−24, c20n/2 ⩽ d ⩽ c20n; κ ⩾ 2; we

have log 1/ε ⩽ n/L32/c20 and therefore

logN = log κ0/(4ε) ⩽ n/L32/c20 ⩽ c0L
−8n/dd,

as specified in Lemma 2.7.3, since κ0 < 1, d ⩾ L−1/c20n, c0 ⩾ L−1/c20 and 8n/d ⩽ 16/c20. So,

using that |F| ⩽ κn and |B| ⩽ (κN)n for each B ∈ F , we have

|Nε| ⩽ κn
(
R

L

)2n

|B| ⩽ κn
(
R

L

)2n

(κN)n ⩽

(
C

c60L
2ε

)n
,

where C = κ2R2c60, thus completing the proof of Theorem 2.7.1. □

2.8 Nets for structured vectors: approximating with the net

While we have spent considerable energy up to this point showing that Nε is small, we have so

far not shown that it is in fact a net. We now show just this, by showing that vectors in Σε are

approximated by elements of Nε. As we will see, this is considerably easier and is taken care of
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in Lemma 2.8.2, which, in a similar spirit to Lemma 2.6.4, is based on randomized rounding.

For this, we recall that we defined

Σε = {v ∈ I([d]) : TL(v) ∈ [ε, 2ε]} ⊂ Sn−1 , (2.82)

where TL(v) = sup{t ∈ [0, 1] : P(∥Mv∥2 ⩽ t
√
n) ⩾ (4Lt)n}, and d = c20n < 2−32n. Also recall

the definition of our net

Nε =
{
v ∈ Λε : P(∥Mv∥2 ⩽ 4ε

√
n) ⩾ (Lε)n and LA,op(v, ε

√
n) ⩽ (28Lε)n

}
.

We also make the basic observation that if TL(v) = s, then

(2sL)n ⩽ P(∥Mv∥2 ⩽ s
√
n) ⩽ (8sL)n .

Until now, we have almost entirely been working with the matrix M . The following lemma

allows us to make a comparison between M and our central object of study: A, a uniform n×n
symmetric matrix with entries in {−1, 1}. The proof of the lemma is based on a comparison

of Fourier transforms and is deferred to Appendix B. This is similar to the replacement step in

the work of Kahn Komlós and Szemerédi [88] and subsequent works [30, 153]. However, here

we only need to “break even”, whereas they are looking for a substantial gain at this step.

Lemma 2.8.1. For v ∈ Rn and t ⩾ TL(v) we have

L(Av, t
√
n) ⩽ (50Lt)n .

We now prove Lemma 2.8.2 which tells us that Nε is a net for Σε.

Lemma 2.8.2. Let ε ∈ (0, κ0/8), d ⩽ n/32. If v ∈ Σε then there is u ∈ Nε with ∥u − v∥∞ ⩽

4εn−1/2.

Proof. Given v ∈ Σε, we define a random variable r = (r1, . . . , rn) where the ri are independent,

E ri = 0, |ri| ⩽ 4εn−1/2 and such that v − r ∈ 4εn−1/2Zn, for all r. We then define the random

variable u := v − r. We will show that with positive probability there is a choice of u ∈ Nε.

Note that ∥r∥∞ = ∥u− v∥∞ ⩽ 4εn−1/2 for all u. Also, u ∈ I ′([d]) for all u, since v ∈ I([d]) and
∥u − v∥∞ ⩽ 4ε/

√
n ⩽ κ0/(2

√
n). So, from the definition of Nε, we need only show that there

exists such a u satisfying

P(∥Mu∥2 ⩽ 4ε
√
n) ⩾ (Lε)n and LA,op(u, ε

√
n) ⩽ (28Lε)n. (2.83)
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We first show that all u satisfy the upper bound at (2.83). To see this, write E = {∥A∥ ⩽ 4
√
n}

and let w(u) ∈ Rn, be such that

LA,op(u, ε
√
n) = P

(
∥Av −Ar − w(u)∥ ⩽ ε

√
n and E

)
⩽ P

(
∥Av − w(u)∥ ⩽ 5ε

√
n and E

)
⩽ LA,op(v, 5ε

√
n) ⩽ L(Av, 5ε

√
n).

Since v ∈ Σε, Lemma 2.8.1 bounds

L(Av, 5ε
√
n) ⩽ (28Lε)n . (2.84)

We now show that

Eu PM (∥Mu∥2 ⩽ 4ε
√
n) ⩾ (1/2)PM (∥Mv∥2 ⩽ 2ε

√
n) ⩾ (1/2)(2εL)n , (2.85)

where the last inequality holds by the fact v ∈ Σε. From (2.85), it follows that there exists

u ∈ Λε satisfying (2.83).

So to prove the first inequality in (2.83), we define the event E := {M : ∥Mv∥2 ⩽ 2ε
√
n}. For

all u, we have

PM (∥Mu∥2 ⩽ 4ε
√
n) = PM (∥Mv −Mr∥2 ⩽ 4ε

√
n) ⩾ PM (∥Mr∥2 ⩽ 2ε

√
n and E);

Thus

PM (∥Mu∥2 ⩽ 4ε
√
n) ⩾ PM (∥Mr∥2 ⩽ 2ε

√
n
∣∣E)P(E)

⩾
(
1− PM (∥Mr∥2 > 2ε

√
n
∣∣E))PM (∥Mv∥2 ⩽ 2ε

√
n) .

Taking expectations with respect to u gives,

EuPM (∥Mu∥2 ⩽ 4ε
√
n) ⩾

(
1− EuPM (∥Mr∥2 > 2ε

√
n
∣∣E))PM (∥Mv∥2 ⩽ 2ε

√
n) (2.86)

and exchanging the expectations reveals that it is enough to show

EM
[
Pr(∥Mr∥2 > 2ε

√
n)
∣∣ E] ⩽ 1/2.

We will show that Pr(∥Mr∥2 > 2ε
√
n) ⩽ 1/4 for all M ∈ E , by Markov’s inequality. For this,

fix a n× n matrix M with entries |Mi,j | ⩽ 1 and Mi,j = 0, if (i, j) ∈ [d+ 1, n]× [d+ 1, n], and

note that

Er ∥Mr∥22 =
∑
i,j

E (Mi,jri)
2 =

∑
i

E r2i
∑
j

M2
i,j ⩽ 32ε2d ⩽ ε2n,

where, for the second equality, we have used that the ri are mutually independent and E ri = 0,

for the third inequality, we used ∥r∥∞ ⩽ 4ε/
√
n and for the final inequality we used d ⩽ n/32.
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Thus by Markov, we have

Pr(∥Mr∥2 ⩾ 2ε
√
n) ⩽ (2ε

√
n)−2Er ∥Mr∥22 ⩽ 1/4. (2.87)

Putting (2.87) together with (2.86) proves (2.85), completing the proof of (2.83). □

2.9 Proof of Theorem 2.1.1

In this section we put together our results to prove Theorem 2.1.1. But before we get to this,

we note a few reductions afforded by previous work. Let us define

qn(γ) := max
w∈Rn

PA(∃v ∈ Rn \ {0} : Av = w, ρ(v) ⩾ γ), (2.88)

where

ρ(v) = max
w∈R

P

(
n∑
i=1

εivi = w

)
and ε1, . . . , εn ∈ {−1, 1} are i.i.d. and uniform. One slightly irritating aspect of the definition

(2.88) is that the existential quantifies over all non-zero v ∈ Rn, rather than all v ∈ Sn−1, as

we have been working with. So, as we will shortly see, we will need to approximate this extra

dimension of freedom with a net.

These small issues aside, we will use the following inequality, which effectively allows us to

remove very unstructured vectors from consideration.

Lemma 2.9.1. Let A be a random n× n symmetric {−1, 1}-matrix. For all γ > 0 we have

P(det(A) = 0) ⩽ 16n

2n−2∑
m=n

(
γ1/8 +

qm−1(γ)

γ

)

We record the details of this lemma in Appendix C of the arXiv version of this paper [33],

although an almost identical lemma can be found in [37], which collected elements from [41, 62,

113].

2.9.1 Non-flat vectors

Here we note a lemma due to Vershynin [166] which tells us that it is enough for us to consider

vectors v ∈ I. For this, we reiterate the important notion of compressible vectors, introduced by

Rudelson and Vershynin [129]. Say a vector in Sn−1 is (δ, ρ)-compressible if it has distance ⩽ ρ

from a vector with support ⩽ δn. Let Comp (δ, ρ) denote the set of such compressible vectors.
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In [166, Proposition 4.2], Vershynin provides the following lemma which allows us to disregard

all compressible vectors.

Lemma 2.9.2. There exist δ, ρ, c ∈ (0, 1) so that for all n ∈ N,

max
w∈Rn

PA

 ⋃
v∈Sn−1\Comp (δ,ρ)

{
∥Av − w∥2 ⩽ c

√
n
} ⩽ 2e−cn,

where A is a random n× n symmetric {−1, 1}-matrix.

The following lemma of Rudelson and Vershynin [129, Lemma 3.4] tells us that incompressible

vectors are “flat” for a constant proportion of coordinates.

Lemma 2.9.3. For δ, ρ ∈ (0, 1), let v ∈ Incomp (δ, ρ). Then

(ρ/2)n−1/2 ⩽ |vi| ⩽ δ−1/2n−1/2

for at least ρ2δn/2 values of i ∈ [n].

Now recall that we defined

I(D) =
{
v ∈ Sn−1 : (κ0 + κ0/2)n

−1/2 ⩽ |vi| ⩽ (κ1 − κ0/2)n
−1/2 for all i ∈ D

}
and I =

⋃
D⊆[n],|D|=d I(D). Here we fix κ0 = ρ/3 and κ1 = δ−1/2 + ρ/6, where δ, ρ are as in

Lemma 2.9.2. We also fix c0 = min{2−24, ρδ1/2/2}.

The following lemma is what we will apply in the proof of Theorem 2.1.1.

Lemma 2.9.4. For n ∈ N, let d < c20n. Then

max
w∈Rn

PA

 ⋃
v∈Sn−1\I

{
Av ∈ {t · w}t>0, ∥A∥ ⩽ 4

√
n
} ⩽ 16c−1e−cn.

Proof. Apply Lemma 2.9.3 along with the definitions of κ1, κ2 and I to see Sn−1\I ⊆ Comp (δ, ρ).

Now take a c
√
n-net X for {t · w}0<t⩽4

√
n of size 8c−1. Then

{
A : Av ∈ {t · w}t>0, ∥A∥ ⩽ 4

√
n
}
⊂
⋃
w′∈X

{
A : ∥Av − w′∥2 ⩽ c

√
n
}
.

Union bounding over X and applying Lemma 2.9.2 completes the lemma. □
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2.9.2 Proof of Theorem 2.1.1

As we noted in Section 2.2, matrices A with ∥A∥ ⩾ 4
√
n will be a slight nuisance for us. The

following concentration inequality for the operator norm of a random matrix will allow us to

remove all such matrices A from consideration.

Lemma 2.9.5. Let A be uniformly drawn from all n × n symmetric matrices with entries in

{−1, 1}. Then for n sufficiently large,

P
(
∥A∥ ⩾ 4

√
n
)
⩽ 4e−n/32.

This follows from a classical result of Bai and Yin [11] (see also [149, Theorem 2.3.23]) which

implies that the median of ∥A∥ is equal to (2+o(1))
√
n, combined with a concentration inequality

due to Meckes [106, Theorem 2]. A version of Lemma 2.9.5 without explicit constants, is

well-known and straightforward, though we have included a version with explicit constants for

concreteness.

We will also need the following, rather weak, relationship between the threshold TL, defined in

terms of the matrix M , and ρ(v), the “one-dimensional” concentration function of v. For this

we define one more bit of (standard) notation

ρε(v) := max
b∈Rn

P

(∑
i

viεi ∈ (b− ε, b+ ε)

)
.

Lemma 2.9.6. Let v ∈ Sn−1 and ε = TL(v). Then ρε(v)
4 ⩽ 212Lε.

We postpone the proof of this lemma to Appendix B and move on to the proof of Theorem 2.1.1.

Proof of Theorem 2.1.1. It is not hard to see that P(det(A) = 0) < 1 for all n, and therefore it

is enough to prove Theorem 2.1.1 for all sufficiently large n.

Now, as in Section 2.2, we set γ = e−cn, where we now define, c := L−32/c20/8, L := max{226C1, 16/κ0},
where C1 = C/c60 is the constant appearing in Theorem 2.7.1. We also let c0 > 0 be as defined

above and d := ⌈c20n/2⌉.

From Lemma 2.9.1 we have

P(det(A) = 0) ⩽ 16n
2n−2∑
m=n

(
γ1/8 +

qm−1(γ)

γ

)

and so it is enough to bound qn(γ) for all large n. Let Σ = {v ∈ Sn−1 : ρ(v) ⩾ γ}, as defined in

Section 2.2, and note that

{A : ∃v ∈ Rn, Av = w, ρ(v) ⩾ γ} ⊂ {A : ∃v ∈ Σ, Av ∈ {t · w}t>0}.
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Since d = ⌈c20n/2⌉, by Lemma 2.9.4 and Lemma 2.9.5, we have

qn(γ) ⩽ max
w∈Rn

PA
(
{∃v ∈ I ∩ Σ : Av ∈ {t · w}t>0} ∩ {∥A∥ ⩽ 4

√
n}
)
+ 32c−1e−cn (2.89)

and so it is enough to show the first term on the right-hand-side is ⩽ 2−n. Using that I =⋃
D I(D), we have the first term of (2.89) is

⩽ 2n max
D∈[n](d)

max
w∈Rn

PA
(
{∃v ∈ I(D) ∩ Σ : Av ∈ {t · w}t>0} ∩ {∥A∥ ⩽ 4

√
n}
)

(2.90)

= 2n max
w∈Rn

PA
(
{∃v ∈ I([d]) ∩ Σ : Av ∈ {t · w}t>0} ∩ {∥A∥ ⩽ 4

√
n}
)
, (2.91)

where the last line holds by symmetry of the coordinates. Thus it is enough to show that the

maximum at (2.91) is at most 4−n.

Now, for v ∈ Σ we have ρ(v) ⩾ γ and so, by Lemma 2.9.6, we have that

γ4 ⩽ ρ(v)4 ⩽ ρTL(v)(v)
4 ⩽ 212LTL(v).

Define η := γ4/(212L) ⩽ TL(v). Also note that by definition, TL(v) ⩽ 1/L ⩽ κ0/8.

Now, recalling definition (2.82) of Σε = Σε([d]) from Section 2.2, we may write

I([d]) ∩ Σ ⊆
n⋃
i=1

{
v ∈ I : TL(v) ∈ [2j−1η, 2jη]

}
=

log2(κ0/16η)⋃
j=0

Σ2jη

and so by the union bound, it is enough to show

max
w∈Rn

PA
(
{∃v ∈ Σε : Av ∈ {t · w}t>0} ∩ {∥A∥ ⩽ 4

√
n}
)
⩽ 8−n,

for all ε ∈ [η, κ0/16]. Fix an ε
√
n-net X for {t · w}0<t⩽4

√
n of size 8/ε ⩽ 2n to get

{A : Av ∈ {t · w}t>0, ∥A∥ ⩽ 4
√
n} ⊂

⋃
w′∈X

{A : ∥Av − w′∥2 ⩽ ε
√
n, ∥A∥ ⩽ 4

√
n}.

So by taking the union bound over X it is enough to prove that

Qε := max
w∈Rn

PA
(
{∃v ∈ Σε : ∥Av − w∥2 ⩽ ε

√
n} ∩ {∥A∥ ⩽ 4

√
n}
)
⩽ 2−4n. (2.92)

Let w ∈ Rn be such that the maximum at (2.92) is attained. Now, since ε < κ0/8 for v ∈ Σε,

we apply Lemma 2.8.2, to find a u ∈ Nε = Nε([d]) so that ∥v− u∥2 ⩽ 4ε. So if ∥A∥ ⩽ 4
√
n and

∥Av − w∥ ⩽ ε
√
n, we see that

∥Au− w∥2 ⩽ ∥Av − w∥2 + ∥A(v − u)∥2 ⩽ ∥Av − w∥2 + ∥A∥∥(v − u)∥2 ⩽ 32ε
√
n
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and thus

{A : ∃v ∈ Σε : ∥Av−w∥ ⩽ ε
√
n}∩{∥A∥ ⩽ 4

√
n} ⊆ {A : ∃u ∈ Nε : ∥Au−w∥ ⩽ 32ε

√
n, ∥A∥ ⩽ 4

√
n}.

So, by union bounding over our net Nε, we see that

Qε ⩽ PA
(
∃u ∈ Nε : ∥Au− w∥ ⩽ 32ε

√
n and ∥A∥ ⩽ 4

√
n
)
⩽
∑
u∈Nε

LA,op
(
u, 32ε

√
n
)
.

Now note that if u ∈ Nε, then LA,op(u, ε
√
n) ⩽ (28Lε)n and so by Fact 2.6.2 we have that

LA,op (u, 32ε
√
n) ⩽ (216Lε)n. As a result,

Qε ⩽ |Nε|(216Lε)n ⩽

(
C

L2ε

)n
(216Lε)n ⩽ 2−4n.

where the second to last inequality follows from our Theorem 2.7.1 and the last inequality holds

for our choice of L = max{226C1, 16/κ0}. To see that the application of Theorem 2.7.1 is valid,

note that

log 1/ε ⩽ log 1/η = log 212L/γ4 ⩽ nL−32/c20/2 + log 212L ⩽ nL−32/c20 ,

where the last inequality hold for all sufficiently large n. This completes the proof. □
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Chapter 3

The least singular value of a random

symmetric matrix

This chapter presents joint work with Matthew Jenssen, Marcus Michelen and Julian Sa-

hasrabudhe. It is adapted from the paper [34] which has been submitted for publication.

3.1 Introduction

Let A be a n× n random symmetric matrix whose entries on and above the diagonal (Ai,j)i⩽j

are i.i.d. with mean 0 and variance 1.

In this chapter we study the extreme behavior of the least singular value of A, which we

denote by σmin(A). We prove a bound on this quantity which is optimal up to constants,

for all random symmetric matrices with i.i.d. subgaussian entries. This confirms the folklore

conjecture, explicitly stated by Vershynin in [166].

Theorem 3.1.1. Let ζ be a subgaussian random variable with mean 0 and variance 1 and let A

be a n×n random symmetric matrix whose entries above the diagonal (Ai,j)i⩽j are independent

and distributed according to ζ. Then for every ε ⩾ 0,

PA(σmin(A) ⩽ εn−1/2) ⩽ Cε+ e−cn, (3.1)

where C, c > 0 depend only on ζ.

We also prove a conjecture of Nguyen, Tao and Vu [116] on repeated eigenvalues.

Theorem 3.1.2. Let ζ be a subgaussian random variable with mean 0 and variance 1 and let A

be a n× n random symmetric matrix where (Ai,j)i⩽j are independent and distributed according
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to ζ. Then A has no repeated eigenvalues with probability 1 − e−cn, where c > 0 is a constant

depending only on ζ.

We actually prove the following stronger result, that is necessary in the proof of 3.1.1.

Theorem 3.1.3. Let ζ be a subgaussian random variable with mean 0 and variance 1 and let A

be a n× n random symmetric matrix where (Ai,j)i⩽j are independent and distributed according

to ζ. Then for each ℓ < cn and all ε ⩾ 0 we have

max
k⩽n−ℓ

P(|λk+ℓ(A)− λk(A)| ⩽ εn−1/2) ⩽ (Cε)ℓ + 2e−cn ,

where C, c > 0 are constants, depending only on ζ.

3.1.1 Approximate negative correlation

Before we sketch the proof of Theorem 3.1.1, we highlight a technical theme of this chapter: the

approximate negative correlation of certain “linear events”. While this is only one of several

new ingredients in this chapter, we isolate these ideas here, as they seem to be particularly

amenable to wider application. We refer the reader to Section 3.2 for a more complete overview

of the new ideas in this chapter.

We say that two events A,B in a probability space are negatively correlated if

P(A ∩B) ⩽ P(A)P(B).

Here we state and discuss two approximate negative correlation results: one of which is a variant

of Theorem 2.1.2, but is used in a entirely different context, and one of which is new.

We start by describing the latter result, which says that a “small ball” event is approximately

negatively correlated with a large deviation event. This complements Theorem 2.1.2 which says

that two “small ball events”, of different types, are negatively correlated. In particular, we

prove something in the spirit of the following inequality, though in a slightly more technical

form, which will be sufficient for our purposes:

PX
(
|⟨X, v⟩| ⩽ ε and ⟨X,u⟩ > t

)
⩽ PX(|⟨X, v⟩| ⩽ ε)PX(⟨X,u⟩ > t), (3.2)

where u, v are unit vectors and t, ε > 0 and X = (X1, . . . , Xn) with i.i.d. subgausian random

variables with mean 0 and variance 1.

To state and understand our result, it makes sense to first consider in isolation the two events

present in (3.2). The easier of the two events is ⟨X,u⟩ > t, which is a large deviation event for
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which we may apply the essentially sharp and classical inequality (see Chapter 3.4 in [167])

PX(⟨X,u⟩ > t) ⩽ e−ct
2
,

where c > 0 is a constant depending only on the distribution of X.

We now turn to understand the more complicated small-ball event |⟨X, v⟩| ⩽ ε appearing in

(3.2). Here, we have a more subtle interaction between v and the distribution of X, and thus

we first consider the simplest possible case: when X has i.i.d. standard gaussian entries. Here,

one may calculate

PX(|⟨X, v⟩| ⩽ ε) ⩽ Cε, (3.3)

for all ε > 0, where C > 0 is an absolute constant. However, as we depart from the case when

X is gaussian, a much richer behavior emerges when the vector v admits some “arithmetic

structure”. For example, if v = n−1/2(1, . . . , 1) and the Xi are uniform in {−1, 1} then

PX(|⟨X, v⟩| ⩽ ε) = Θ(n−1/2),

for any 0 < ε < n−1/2. This, of course, stands in contrast to (3.3) for all ε≪ n−1/2 and suggests

that we employ an appropriate measure of the arithmetic structure of v.

For this, we use the notion of the “least common denominator” of a vector, introduced by Rudel-

son and Vershynin [129]. For parameters α, γ ∈ (0, 1) define the Least Common Denominator

(LCD) of v ∈ Rn to be

Dα,γ(v) := inf

{
ϕ > 0 : ∥ϕv∥T ⩽ min

{
γϕ∥v∥2,

√
αn
}}

, (3.4)

where ∥v∥T := dist(v,Zn), for all v ∈ Rn. What makes this definition useful is the important

“inverse Littlewood-Offord theorem” of Rudelson and Vershynin [129], which tells us (roughly

speaking) that one has (3.3) whenever Dα,γ(v) = Ω(ε−1).

This notion of Least Common Denomonator is inspired by Tao and Vu’s introduction and

development of “inverse Littlewood-Offord theory”, which is a collection of results guided by

the meta-hypothesis: “If PX(⟨X, v⟩ = 0) is large then v must have structure”. We refer the

reader to the paper of Tao and Vu [155] and the survery of Nguyen and Vu [118] for more

background and history on inverse Littlewood-Offord theory and its role in random matrix

theory.

We may now state our approximate version of (3.2), which uses Dα,γ(v)
−1 as a proxy for

P(|⟨X, v⟩| ⩽ ε).

Theorem 3.1.4. For n ∈ N, ε, t > 0 and α, γ ∈ (0, 1), let v ∈ Sn−1 satisfy Dα,γ(v) > C/ε and

let u ∈ Sn−1. Let ζ be a subgaussian random variable and let X ∈ Rn be a random vector whose
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coordinates are i.i.d. copies of ζ. Then

PX (|⟨X, v⟩| ⩽ ε and ⟨X,u⟩ > t) ⩽ Cεe−ct
2
+ e−c(αn+t

2),

where C, c > 0 depend only on γ and the distribution of ζ.

In fact, we need a significantly more complicated version of this result (Lemma 3.5.2) where the

small-ball event |⟨X, v⟩| ⩽ ε is replaced with a small-ball event of the form

|f(X1, . . . , Xn)| ⩽ ε,

where f is a quadratic polynomial in variables X1, . . . , Xn. The proof of this result is carried

out in Section 3.5 and is an important aspect of this chapter. Theorem 3.1.4, on the other hand,

is only stated here to illustrate the general flavor of this result and is not actually used in this

chapter. We do provide a proof in Appendix A of [34] for completeness and to suggest further

inquiry into inequalities of the form (3.2).

We now turn to discuss our second approximate negative dependence result, which deals with

the intersection of two different small ball events. TA variant of this theorem was proved in

Chapter 2, but is put to a different use here. This result tells us that the events

|⟨X, v⟩| ⩽ ε and |⟨X,w1⟩| ≪ 1, . . . , |⟨X,wk⟩| ≪ 1, (3.5)

are approximately negatively correlated, where X = (X1, . . . , Xn) is a vector with i.i.d. sub-

gaussian entries and w1, . . . , wk are orthonormal. That is, we prove something in the spirit

of

PX
(
{|⟨X, v⟩| ⩽ ε} ∩

k⋂
i=1

{|⟨X,wi⟩| ≪ 1}
)

⩽ PX
(
|⟨X, v⟩| ⩽ ε

)
PX
( k⋂
i=1

{|⟨X,wi⟩| ≪ 1}
)
,

though in a more technical form.

To understand our result, again it makes sense to consider the two events in (3.5) in isolation.

Since we have already discussed the subtle event |⟨X, v⟩| ⩽ ε, it remains only to consider the

event on the right of (3.5). Returning to the gaussian case, we note that if X has independent

standard gaussian entries, then one may compute directly that

PX (|⟨X,w1⟩| ≪ 1, . . . , |⟨X,wk⟩| ≪ 1) = P(|X1| ≪ 1, . . . |Xk| ≪ 1) ⩽ e−Ω(k) , (3.6)

by rotational invariance of the gaussian. Here the generalization to other random variables

is not as subtle, and the well-known Hanson-Wright inequality tells us that (3.6) holds more

generally when X has general i.i.d. subgaussian entries.
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Our innovation in this line is our second “approximate negative correlation theorem”, which

allows us to control these two events simultaneously. Again we use Dα,γ(v)
−1 as a proxy for

P(|⟨X, v⟩| ⩽ ε).

Here, for ease of exposition, we state a less general version for X = (X1, . . . , Xn) ∈ {−1, 0, 1}
with i.i.d. c-lazy coordinates, meaning that P(Xi = 0) ⩾ 1 − c. Our theorem is stated in full

generality in Section 3.9, see Theorem 3.9.2.

Theorem 3.1.5. Let γ ∈ (0, 1), d ∈ N, α ∈ (0, 1), 0 ⩽ k ⩽ c1αd and ε ⩾ exp(−c1αd). Let

v ∈ Sd−1, let w1, . . . , wk ∈ Sd−1 be orthogonal and let W be the matrix with rows w1, . . . , wk.

If X ∈ {−1, 0, 1}d is a 1/4-lazy random vector and Dα,γ(v) > 16/ε then

PX
(
|⟨X, v⟩| ⩽ ε and ∥WX∥2 ⩽ c2

√
k
)
⩽ Cεe−c1k,

where C, c1, c2 > 0 are constants, depending only on γ.

In this chapter we will put Theorem 3.1.5 to a very different use to that in Chapter 2, where

we used it to prove a version of the following statement.

Let v ∈ Sd−1 be a vector on the sphere and let H be a n× d random {−1, 0, 1}-matrix

conditioned on the event ∥Hv∥2 ⩽ εn1/2, for some ε > e−cn. Here d = cn and c > 0 is a

sufficiently small constant. Then the probability that the rank of H is n− k is ⩽ e−ckn.

In this chapter we use (the generalization of) Theorem 3.1.5 to obtain good bounds on quantities

of the form

PX(∥BX∥2 ⩽ εn1/2),

where B is a fixed matrix with an exceptionally large eigenvalue (possibly as large as ecn), but

is otherwise pseudo-random, meaning (among other things) that the rest of the spectrum does

not deviate too much from that of a random matrix. We use Theorem 3.1.5 to decouple the

interaction of X with the largest eigenvector of B, from the interaction of X with the rest of B.

We refer the reader to (3.16) in the sketch in Section 3.2 and to Section 3.9 for more details.

The proof of Theorem 3.9.2 follows closely along the lines of the proof of Theorem 2.1.2, requiring

only technical modifications and adjustments. So as not to distract from the new ideas presented

in this chapter, we have sidelined this proof to the supplementary paper [36].

Finally we note that it may be interesting to investigate to what extent one may sharpen these

approximate negative correlation theorems in the direction of their idealized forms.
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3.2 Proof sketch

Here we sketch the proof of Theorem 3.1.1. We begin by giving the rough “shape” of the proof,

while making a few simplifying assumptions, (3.8) and (3.9). We shall then come to discuss

the substantial new ideas of this chapter in Section 3.2.2 where we describe the considerable

lengths we must go to, in order to remove our simplifying assumptions. Indeed, if one were to

only tackle these assumptions using standard tools, one cannot hope for a bound much better

than ε1/3 in Theorem 3.1.1 (see Section 3.2.2.2).

3.2.1 The shape of the proof

Recall that An+1 is a (n+1)× (n+1) random symmetric matrix with subgaussian entries. Let

X := X1, . . . , Xn+1 be the columns of An+1, let

V = Span{X2, . . . , Xn+1}

and let An be the matrix An+1 with the first row and column removed. We now use an important

observation from Rudelson and Vershynin [129] that allows for a geometric perspective on the

least singular value problem1

P(σmin(An+1) ⩽ εn−1/2) ≲ P(dist(X,V ) ⩽ ε).

Here our first significant challenge presents itself: X and V are not independent and thus the

event dist(X,V ) ⩽ ε is hard to understand directly. However, one can establish a formula for

dist(X,V ) that is a rational function in the vector X with coefficients that depend only on V .

This brings us to the useful inequality2 due to Vershynin [166],

P(σmin(An+1) ⩽ εn−1/2) ≲ sup
r∈R

PAn,X

(
|⟨A−1

n X,X⟩ − r| ⩽ ε∥A−1
n X∥2

)
, (3.7)

where we are ignoring the possibility of An being singular for now. We thus arrive at our main

technical focus of this chapter, which is bounding the quantity on the right-hand-side of (3.7).

We now make our two simplifying assumptions that shall allow us to give the overall shape of

our proof without any added complexity. We then layer-on further complexities as we discuss

how to remove these assumptions.

1Here and throughout we understand A ≲ B to mean that there exists an absolute constant C > 0 for which
A ⩽ CB.

2In this sketch we will be ignoring a few exponentially rare events, and so the inequalities listed here should
be understood as “up to an additive error of e−cn.”
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As a first simplifying assumption, let us assume that the collection of X that dominates the

probability at (3.7) satisfies

∥A−1
n X∥2 ≈ ∥A−1

n ∥HS, (3.8)

where we point out that ∥A−1
n ∥2HS = EX ∥A−1

n X∥22. This seems to be a fairly innocent assumption

at first, as the Hanson-Wright inequality tells us that ∥A−1
n X∥2 is concentrated about its mean,

for all reasonable A−1. However, as we will see, mere concentration is not enough for us here.

As a second assumption, let us assume that the relevant An in the right-hand-side of (3.7)

satisfies

∥A−1
n ∥HS ≈ cn1/2. (3.9)

This turns out to be a very delicate assumption, as we will soon see, but is not entirely unrea-

sonable to make for the moment: for example we have ∥A−1
n ∥HS = Θδ(n

1/2) with probability

1 − δ. This, for example, follows from Vershynin’s theorem [166] along with Corollary 3.8.5,

which is based on the work of [57].

With these assumptions, our task reduces to proving

min
r

PX
(
|⟨A−1X,X⟩ − r| ⩽ εn1/2

)
≲ ε, (3.10)

for all ε > e−cn, where we have written A−1 = A−1
n and think of A−1 as a fixed (pseudo-random)

matrix.

We observe, for a general fixed matrix A−1 there is no hope in proving such an inequality:

indeed if A−1 = n−1/2J , where J is the all-ones matrix, then the left-hand-side of (3.10) is

⩾ cn−1/2 for all ε > 0, falling vastly short of our desired (3.10).

Thus, we need to introduce a collection of fairly strong “quasi-randomness properties” of A

that hold with probably 1−e−cn. These will ensure that A−1 is sufficiently “non-structured” to

make our goal (3.10) possible. The most important and of these quasi-randomness conditions

is to show that all of the eigenvectors v of A satisfy

Dα,γ(v) > ecn,

for some appropriate α, γ, where Dα,γ(v) is the least common denominator of v defined at (3.4).

Roughly this means that none of the eigenvectors of A “correlate” with a re-scaled copy of the

integer lattice tZn, for any e−cn ⩽ t ⩽ 1.

To prove that these quasi-randomness properties hold with probability 1 − e−cn is a difficult

task and depends fundamentally on the ideas presented in Chapter 2. The details are carried

out in a supplementary paper [36].
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With these quasi-randomness conditions in tow, we can return to (3.10) and apply Esseen’s

inequality to bound the left-hand-side of (3.10) in terms of the characteristic function φ(θ) of

the random variable ⟨A−1X,X⟩,

min
r

PX
(
|⟨A−1X,X⟩ − r| ⩽ εn1/2

)
≲ ε

∫ 1/ε

−1/ε
|φ(θ)| dθ.

While this maneuver has been quite successful in work on characteristic functions for (linear)

sums of independent random variables, the characteristic function of such quadratic functions

has proved to be a more elusive object. For example, even the analogue of the Littlewood-

Offord theorem is not fully understood in the quadratic case [40, 108]. Here, we appeal to

our quasi-random conditions to avoid some of the traditional difficulties: we use an application

of Jensen’s inequality to decouple the quadratic form and bound φ(θ) point-wise in terms of

an average over a related collection of characteristic functions of linear sums of independent

random variables

|φ(θ)|2 ⩽ EY |φ(A−1Y ; θ)|,

where Y is a random vector with i.i.d. entries and φ(v; θ) denotes the characteristic function of

the sum
∑

i viXi, where Xi are i.i.d. distributed according to the original distribution ζ. We

can then use our pseudo-random conditions on A to bound

|φ(A−1Y ; θ)| ≲ exp
(
−cθ2

)
,

for all but exponentially few Y , allowing us to show∫ 1/ε

−1/ε
|φ(θ)| dθ ⩽

∫ 1/ε

−1/ε

[
EY |φ(A−1Y ; θ)|

]1/2
⩽
∫ 1/ε

−1/ε

(
exp

(
−cθ2

)
+ e−cn

)
dθ = O(1)

and thus completing the proof, up to our simplifying assumptions.

3.2.2 Removing the simplifying assumptions

While this is a good story to work with, the challenge starts when we turn to remove our

simplifying assumptions (3.8), (3.9). We also note that if one only applies standard methods

to remove these assumptions, then one would get stuck at the “base case” outlined below. We

start by discussing how to remove the simplifying assumption (3.9), whose resolution governs

the overall structure of the chapter.
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3.2.2.1 Removing the assumption (3.9)

What is most concerning about making the assumption ∥A−1
n ∥HS ≈ n−1/2 is that it is, in a

sense, circular : If we assume the modest-looking hypothesis E∥A−1∥HS ≲ n1/2, we would be

able to deduce

P(σmin(An) ⩽ ε/n1/2) = P(σmax(A
−1
n ) ⩾ n1/2/ε) ⩽ P(∥A−1

n ∥HS ⩾ n1/2/ε) ≲ ε,

by Markov. In other words, showing that ∥A−1∥HS is concentrated about n−1/2 (in the above

sense) actually implies Theorem 3.1.1. However this is not as worrisome as one might first

suspect: if we are trying to prove Theorem 3.1.1 for (n+ 1)× (n+ 1) matrices using the above

outline, we only need to control the Hilbert-Schmidt norm of the inverse of the minor A−1
n .

This suggests an inductive or (as we use) an iterative “bootstrapping argument” to successively

improve the bound. Thus, in effect, we look to prove

EA ∥A−1∥αHS1(σmin(An) ⩾ e−cn) ≈ nα/2,

for successively larger α ∈ (0, 1). Note we have to cut out the event of A being singular from

our expectation, as this event has non-zero probability.

3.2.2.2 Base case

In the first step of our iteration, we prove a “base case” of

P(σmin(An) ⩽ ε/
√
n) ≲ ε1/4 + e−cn (3.11)

without the assumption (3.9) which is equivalent to

EAn ∥A−1
n ∥1/4HS 1(σmin(An) ⩾ e−cn) ≈ n1/8.

To prove this “base case” we upgrade (3.7) to

P
(
σmin(An+1) ⩽

ε√
n

)
≲ ε+ sup

r∈R
P

(
|⟨A−1

n X,X⟩ − r|
∥A−1

n X∥2
⩽ Cε, ∥A−1

n ∥HS ⩽
n1/2

ε

)
. (3.12)

In other words, we can intersect with the event

∥A−1
n ∥HS ⩽ n1/2/ε (3.13)

at a loss of only Cε in probability.
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We then push through the proof outlined in Section 3.2.1 to obtain our initial weak bound

of (3.11). For this, we first use the Hanson-Wright inequality to give a weak version of (3.8),

and then use (3.13) as a weak version of our assumption(3.9). We note that this base step

(3.11) already improves the best known bounds on the least singular value problem for random

symmetric matrices.

3.2.2.3 Bootstrapping

To improve on this bound we use a “bootstrapping” lemma which, after applying it three times,

allows us to improve (3.11) to the near-optimal result

P(σmin(An) ⩽ ε/
√
n) ≲ ε

√
log 1/ε+ e−cn . (3.14)

Proving this bootstrapping lemma essentially reduces to the problem of getting good estimates

on

PX
(
∥A−1X∥2 ⩽ s

)
, (3.15)

for s ∈ (ε, n−1/2), where A is a matrix with ∥A−1∥op = δ−1 and δ ∈ (ε, cn−1/2) but is “otherwise

pseudo-random”. Here we require two additional ingredients.

To start unpacking (3.15), we use that ∥A−1∥op = δ−1 to see that if v is a unit eigenvector

corresponding to the largest eigenvalue of A−1 then

∥A−1X∥2 ⩽ s implies that |⟨X, v⟩| < δs.

While this leads to a decent first bound of O(δs) on the probability (3.15) (after using the

quasi-randomness properties of A), it is not enough for our purposes and we have to use that X

must also have small inner product with many other eigenvectors of A (assuming s is sufficiently

small). Working along these lines, we show that (3.15) is bounded above by

PX
(
|⟨X, v1⟩| ⩽ sδ and |⟨X, vi⟩| ⩽ σis for all i = 2, . . . , n− 1

)
, (3.16)

where wi is a unit eigenvector of A corresponding to the singular value σi = σi(A). Now, appeal-

ing to the quasi-random properties of the eigenvectors of A−1, we may apply our approximate

negative correlation theorem (Theorem 3.1.5) to see that (3.16) is at most

O(δs) exp(−cNA(−c/s, c/s)) (3.17)

where c > 0 is a constant and NA(a, b) denotes the number of eigenvalues of the matrix A in

the interval (a, b). The first O(δs) factor comes from the event |⟨X, v1⟩| ⩽ sδ and the second
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factor comes from approximating

PX
(
|⟨X,wi⟩| < c for all i s.t. sσi < c

)
≈ exp(−cNA(−c/s, c/s)) . (3.18)

This bound is now sufficiently strong for our purposes, provided the spectrum of A adheres

sufficiently closely to the typical spectrum of A.

This now leads us to understand the rest of the spectrum of An and, in particular, the next

smallest singular values σn−1, σn−2, . . .. This might seem like a step backwards as we are now

forced to understand the behavior of many singular values and not just the smallest. However,

this “loss” is outweighed by the fact that we need only to understand these eigenvalues (for the

most part) on scales of size Ω(n−1/2), which is now well understood due to the important work

of Erdős, Schlein and Yau [57]. Although some additional information is needed about how the

eigenvalues cluster on much smaller scales. Here we can use the work of Nguyen [115] and our

own Theorem 3.1.3 on the crowding of the spectrum.

These results ultimately allow us to derive sufficiently strong results on quantities of the form

(3.15), which in-turn allow us to prove our “bootstrapping lemma”. We then use this lemma

to prove the near-optimal result

P(σmin(An) ⩽ ε/
√
n) ≲ ε

√
log 1/ε+ e−cn . (3.19)

3.2.2.4 Removing the assumption (3.8) and the last jump to Theorem 3.1.1

We now turn to discuss how to remove our simplifying assumption (3.8), made above, which

will allow us to close the gap between (3.19) and Theorem 3.1.1.

To achieve this, we need to consider how ∥A−1X∥2 varies about ∥A−1∥HS. Now, the Hanson-

Wright inequality tells us that indeed ∥A−1X∥2 is concentrated about ∥A−1∥HS, on the scale of

≲ ∥A−1∥op. While this is certainly useful for us, it is far from enough to prove Theorem 3.1.1.

For this, we need to rule out any “macroscopic” correlation between the events

{|⟨A−1X,X⟩ − r| < Kε∥A−1∥HS} and {∥A−1X∥2 > K∥A−1∥HS} (3.20)

for all K > 0. Our first step towards understanding (3.20) is to replace the quadratic large

deviation event ∥A−1X∥2 > K∥A−1∥HS with a collection of linear large deviation events:

⟨X,wi⟩ > K log(i+ 1),
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where wn, wn−1, . . . , w1 are the eigenvectors of A corresponding to singular values σn ⩽ σn−1 ⩽

. . . ⩽ σ1 respectively and the log(i+ 1) factor should be seen as a weight function that assigns

more weight to the smaller singular values.

Interestingly, we run into a similar obstacle as before (although we don’t go into details here):

if the “bulk” spectrum of A−1 is behaving erratically this replacement step will be too lossy

for our purposes. Thus we are lead to prove another result showing that the spectrum of A−1

adheres sufficiently to its typical spectrum. This reduces to proving

EAn

[∑n
i=1 σ

−2
n−i−1(log i)

2∑n
i=1 σ

−2
n−i−1

]
= O(1),

where the left-hand-side is a statistic which measures the degree of distortion of the smallest

singular values of An. To prove this we again lean on the works of Erdős, Schlein and Yau [57],

Nguyen [115] and our own Theorem 3.1.3 on the crowding of the spectrum.

Thus we have reduced the task of proving the approximate independence of the events at (3.20)

to proving the approximate independence of the collection of events

{|⟨A−1X,X⟩ − r| < Kε∥A−1∥HS} and {⟨vi, X⟩ > K log(i+ 1)}.

This is something, it turns out, that we can handle on the Fourier side by using a quadratic

analogue of our negative correlation inequality, Theorem 3.1.4. The idea here is to prove an

Esseen-type bound of the form

P(|⟨A−1X,X⟩ − t| < δ, ⟨X,u⟩ ⩾ s) ≲ δe−s
∫ 1/δ

−1/δ

∣∣∣Ee2πiθ⟨A−1X,X⟩+⟨X,u⟩
∣∣∣ dθ . (3.21)

Which introduces this extra “exponential tilt” to the characteristic function. From here one

can carry out the plan sketched in Section 3.2.1 with this more complicated version of Esseen,

then integrate over s to upgrade (3.19) to Theorem 3.1.1.

3.2.3 Outline of the rest of the chapter

In the next short section we introduce some key definitions, notation, and preliminaries that we

use throughout this chapter. In Section 3.4 we establish a collection of crucial quasi-randomness

properties that hold for the random symmetric matrix An with probability 1−e−Ω(n) and that we

condition on for most of the chapter. In Section 3.5 we detail our Fourier decoupling argument

and establish an inequality of the form (3.21). This allows us to prove our new approximate

negative correlation result Lemma 3.5.2. In Section 3.6 we prepare the ground for our iterative

argument by establishing (3.12), thereby switching our focus to the study of the quadratic
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form ⟨A−1
n X,X⟩. In Section 3.7 we prove Theorem 3.1.2 and Theorem 3.1.3, which tell us

that the eigenvalues of A cannot ‘crowd’ small intervals. In Section 3.8 we establish regularity

properties for the bulk of the spectrum of A−1. In Section 3.9 we deploy the approximate

negative correlation result (Theorem 3.1.5) in order to carry out the portion of the proof sketched

between (3.15) and (6.9). In Section 3.10 we establish our base step (3.11) and bootstrap this to

prove the near optimal bound (3.19). In the final section, Section 3.11, we complete the proof

of our main Theorem 3.1.1.

3.3 Key Definitions and Preliminaries

We first need a few notions out of the way which are related to Chapter 2.

3.3.1 Subgaussian and matrix definitions

Throughout, ζ will be a mean-zero, variance 1 random variable. We define the subgaussian

moment of ζ to be

∥ζ∥ψ2 := sup
p⩾1

1
√
p
(E|ζ|p)1/p .

A mean 0, variance 1 random variable is said to be subgaussian if ∥ζ∥ψ2 is finite. We define Γ

be the set of subgaussian random variables and, for B > 0, we define ΓB ⊆ Γ to be subset of ζ

with ∥ζ∥ψ2 ⩽ B.

For ζ ∈ Γ, define Sym n(ζ) to be the probability space on n×n symmetric matrices A for which

(Ai,j)i⩾j are independent and distributed according to ζ. Similarly, we write X ∼ Col n(ζ) if

X ∈ Rn is a random vector whose coordinates are i.i.d. copies of ζ.

We shall think of the spaces {Sym n(ζ)}n as coupled in the natural way: the matrix An+1 ∼
Sym n+1(ζ) can be sampled by first sampling An ∼ Sym n(ζ), which we think of as the principle

minor (An+1)[2,n+1]×[2,n+1], and then generating the first row and column of An+1 by generating

a random column X ∼ Col n(ζ). In fact it will make sense to work with a random (n+1)×(n+1)

matrix, which we call An+1 throughout. This is justified as much of the work is done with the

principle minor An of An+1, due to the bound (3.7) as well as Lemma 3.6.1.

3.3.2 Compressible vectors

We shall require the now-standard notions of compressible vectors as defined by Rudelson and

Vershynin [129].
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For parameters ρ, δ ∈ (0, 1), we define the set of compressible vectors Comp (δ, ρ) to be the

set of vectors in Sn−1 that are distance at most ρ from a vector supported on at most δn

coordinates. We then define the set of incompressible vectors to be all other unit vectors, i.e.

Incomp (δ, ρ) := Sn−1 \Comp (δ, ρ). The following basic fact about incompressible vectors from

[129] will be useful throughout:

Fact 3.3.1. For each δ, ρ ∈ (0, 1) there is a constant cρ,δ ∈ (0, 1) so that for all v ∈ Incomp (δ, ρ)

we have that |vj |
√
n ∈ [cρ,δ, c

−1
ρ,δ] for at least cρ,δn values of j.

Fact 3.3.1 assures us that for each incompressible vector we can find a large subvector that

is “flat.” Using the work of Vershynin [166], we will safely be able to ignore compressible

vectors. In particular, [166, Proposition 4.2] implies the following Lemma. We refer the reader

to Appendix B in [34] for details.

Lemma 3.3.2. For B > 0 and ζ ∈ ΓB, let A ∼ Sym n(ζ). Then there exist constants ρ, δ, c ∈
(0, 1), depending only on B, so that

sup
u∈Rn

P
(
∃x ∈ Comp (δ, ρ), ∃t ∈ R : Ax = tu

)
⩽ 2e−cn

and

P
(
∃u ∈ Comp (δ, ρ), ∃t ∈ R : Au = tu

)
⩽ 2e−cn .

The first statement says, roughly, that A−1u is incompressible for each fixed u; the second states

that all unit eigenvectors are incompressible.

Remark 3.3.3 (Choice of constants, ρ, δ, cρ,δ). Throughout, we let ρ, δ denote the constants guar-

anteed by Lemma 3.3.2 and cρ,δ the corresponding constant from Fact 3.3.1. These constants

shall appear throughout this chapter and shall always be considered as fixed.

Lemma 3.3.2 follows easily from [166, Proposition 4.2] with a simple net argument.

3.3.3 Notation

We quickly define some notation. For a random variable X, we use the notation EX for the

expectation with respect to X and we use the notation PX analogously. For an event E , we
write 1E or 1{E} for the indicator function of the event E . We write EE to be the expectation

defined by EE [ · ] = E[ ·1E ]. For a vector v ∈ Rn and J ⊂ [n], we write vJ for the vector whose

ith coordinate is vi if i ∈ J and 0 otherwise.

We shall use the notation X ≲ Y to indicate that there exists a constant C > 0 for which

X ⩽ CY . In a slight departure from convention, we will always allow this constant to depend

on the subgaussian constant B, if present. We shall also let our constants implicit in big-O
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notation to depend on B, if this constant is relevant in the context. We hope that we have been

clear as to where the subgaussian constant is relevant, and so this convention is to just reduce

added clutter.

3.4 Quasirandomness properties

In this technical section, we define a list of “quasi-random” properties of An that hold with

probability 1−e−Ω(n). This probability is large enough that we can assume that these properties

hold for all the principle minors of An+1. Showing that several of these quasi-random properties

hold with probability 1− e−Ω(n) will prove to be a challenging task and our proof will depend

deeply on ideas presented in Chapter 2. Most of this work is not present in this chapter, but is

available in a supplementary paper [36].

3.4.1 Defining the properties

It will be convenient to assume throughout that every minor of An+1 is invertible and so we

will perturb the matrix slightly so that we may assume this. If we add to An+1 an independent

random symmetric matrix whose upper triangular entries are independent gaussian random

variables with mean 0 and variance n−n, then with probability 1− e−Ω(n) the singular values of

An+1 move by at most, say, n−n/3. Further, after adding this random gaussian matrix, every

minor of the resulting matrix is invertible with probability 1. Thus, we will assume without

loss of generality throughout that every minor of An+1 is invertible.

In what follows, we let A = An ∼ Sym n(ζ) and let X ∼ Col n(ζ) be a random vector, indepen-

dent of A. Our first quasi-random property is standard from the concentration of the operator

norm of a random symmetric matrix. We define E1 by

E1 = {∥A∥op ⩽ 4
√
n}. (3.22)

For the next property we need a definition. Let X,X ′ ∼ Col n(ζ) and define the random vector

in Rn as X̃ := XJ − X ′
J , where J ⊆ [n] is a µ-random subset, i.e. for each j ∈ [n] we have

j ∈ J independently with probability µ. The reason behind this definition is slightly opaque at

present, but will be clear in the context of Lemma 3.5.2 in Section 3.5. Until we get there it is

reasonable to think of X̃ as being essentially X; in particular, it is a random vector with i.i.d.

subgaussian entries with mean 0 and variance µ. We now define E2 to be the event in A defined

by

E2 =
{
P
X̃

(
A−1X̃/∥A−1X̃∥2 ∈ Comp (δ, ρ)

)
⩽ e−c2n

}
. (3.23)

79



We remind the reader that Comp (δ, ρ) is defined in Section 3.3.2, and δ, ρ ∈ (0, 1) are constants,

fixed throughout this chapter, and chosen according to Lemma 3.3.2. In the (rare) case that

X̃ = 0, we interpret P
X̃
(A−1X̃/∥A−1X̃∥2 ∈ Comp (δ, ρ)) = 1

Recalling the least common denominator defined at (3.4), we now define the event E3 by

E3 = {Dα,γ(u) ⩾ ec3n for every unit eigenvector u of A} . (3.24)

The next condition tells us that the random vector A−1X̃ is typically unstructured. We will

need a slightly stronger notion of structure than just looking at the LCD, in that we will need

all sufficiently large subvectors to be unstructured. For µ ∈ (0, 1), define the subvector least

common denominator as

D̂α,γ,µ(v) := min
I⊂[n]

|I|⩾(1−2µ)n

Dα,γ (vI/∥vI∥2) .

If we define the random vector v = v(X̃) := A−1X̃, then we define E4 to be the event that A

satisfies

E4 =
{
P
X̃

(
D̂α,γ,µ (v) < ec4n

)
⩽ e−c4n

}
. (3.25)

As is the case for E2, under the event that X̃ = 0, we interpret P
X̃
(D̂α,γ,µ(v) < ec4n) = 1.

We now define our main quasirandomness event E to be the intersection of these events:

E := E1 ∩ E2 ∩ E3 ∩ E4 . (3.26)

The following lemma essentially allows us to assume that E holds in what follows.

Lemma 3.4.1. For B > 0, ζ ∈ ΓB, and all sufficiently small α, γ, µ ∈ (0, 1), there exist

constants c2, c3, c4 ∈ (0, 1) appearing in (3.23), (3.24) and (3.25) so that

PA(Ec) ⩽ 2e−Ω(n). (3.27)

Remark 3.4.2 (Choice of constants, α, γ, µ). We take α, γ ∈ (0, 1) to be sufficient small so that

Lemma 3.4.1 holds. For µ we will choose it to be sufficiently small so that (1) Lemma 3.4.1

holds; (2) we have µ ∈ (0, 2−15) and so that; (3) µ > 0 is small enough to guarantee that every

set I ⊆ [n] with |I| ⩾ (1− 2µ)n satisfies

∥w∥2 ⩽ c−2
ρ,δ∥wI∥2, (3.28)

for every w ∈ Incomp (δ, ρ). This is possible by Fact 3.3.1. These constants α, γ, µ will appear

throughout this chapter and will always be thought of as fixed according to this choice.
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3.4.2 Statement of our master quasi-randomness theorem and the deduction

of Lemma 3.4.1

We will deduce Lemma 3.4.1 from a “master quasi-randomness theorem” together with a handful

of now-standard results in the area.

For the purposes of the following sections, we shall informally consider a vector as “structured”

if

D̂α,γ,µ(v) ⩽ ecΣn

where cΣ ∈ (0, 1) is a small constant, to be chosen shortly. Thus it makes sense to define the

set of “structured directions” on the sphere

Σ = Σα,γ,µ := {v ∈ Sn−1 : D̂α,γ,µ(v) ⩽ ecΣn} . (3.29)

We now introduce our essential quasi-randomness measure of a random matrix. For ζ ∈ Γ,

A ∼ Sym n(ζ), and a given vector w ∈ Rn, define

qn(w) = qn(w;α, γ, µ) := PA
(
∃v ∈ Σ and ∃s, t ∈ [−4

√
n, 4

√
n] : Av = sv + tw

)
(3.30)

and set

qn = qn(α, γ, µ) := sup
w∈Sn−1

qn(w) . (3.31)

We now state our “master quasi-randomness theorem”, from which we deduce Lemma 3.4.1.

Theorem 3.4.3 (Master quasi-randomness theorem). For B > 0 and ζ ∈ ΓB, there exist

constants α, γ, µ, cΣ, c ∈ (0, 1) depending only on B so that

qn(α, γ, µ) ⩽ 2e−cn .

The proof of Theorem 3.4.3 is quite similar to the proof of Theorem 2.1.1, albeit with a few

technical adaptations, and a complete proof is available in the supplementary paper [36]. Note

that qn(α, γ, µ) is monotone decreasing as α, γ and µ decrease. As such, Theorem 3.4.3 implies

that its conclusion holds for all sufficiently small α, γ, µ as well.

We now prove that our pseudorandom event E = E1 ∩ E2 ∩ E3 ∩ E4 holds with probability

1− e−Ω(n).
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Proof of Lemma 3.4.1. The event E1: From [61] we may deduce3 the following concentration

bound

P(∥A∥op ⩾ (3 + t)
√
n) ≲ e−ct

3/2n, (3.32)

which holds for all t ⩾ 0. Thus, by (3.32), the event E1 at (3.22) fails with probability ≲ e−Ω(n).

The event E2: By Lemma 3.3.2 there is a c > 0 so that for each u ̸= 0 we have

PA(A−1u/∥A−1u∥2 ∈ Comp (δ, ρ)) ⩽ e−cn .

Applying Markov’s inequality shows

PA
(
P
X̃

(
A−1X̃/∥A−1X̃∥2 ∈ Comp (δ, ρ), X̃ ̸= 0

)
> e−cn/2

)
⩽ e−cn/2 ,

and so the event in (3.23) fails with probability at most O
(
e−Ω(n)

)
, under the event X̃ ̸= 0. By

Theorem 3.1.1 in [167] we have that

P
X̃
(X̃ = 0) ⩽ e−Ω(µn) . (3.33)

Choosing c2 small enough shows an exponential bound on P(Ec2).

The event E3: If Dα,γ(u) ⩽ ec3n, for an u an eigenvector Au = λv, we have that

D̂α,γ,µ(u) ⩽ Dα,γ(u) ⩽ ec3n,

where the first inequality is immediate from the definition. Now note that if E1 holds then

λ ∈ [−4
√
n, 4

√
n] and so

P(Ec3) ⩽ P
(
∃u ∈ Σ, λ ∈ [−4

√
n, 4

√
n] : Au = λu

)
+ P(Ec1) ⩽ qn(0) + e−Ω(n),

where the first inequality holds if we choose c3 ⩽ cΣ. We now apply Theorem 3.4.3 to see

qn(0) ⩽ qn ≲ e−Ω(n), yielding the desired result.

The event E4: Note first that by (3.33), we may assume X̃ ̸= 0. For a fixed instance of X̃ ̸= 0,

we have

PA
(
D̂α,γ,µ

(
A−1X̃/∥X̃∥2

)
< ec4n

)
⩽ PA

(
∃v ∈ Σ : Av = X̃/∥X̃∥2

)
⩽ qn

(
X̃/∥X̃∥2

)
, (3.34)

which is at most e−Ω(n), by Theorem 3.4.3. Here the first inequality holds when c4 ⩽ cΣ.

3Technically, the result of [61] is sharper and for random matrices whose entries are symmetric random
variables. However (3.32) follows from [61] along with a “symmetrization trick”. The details are written out in
Appendix C of [34].
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We now write v = A−1X̃/∥X̃∥2 and apply Markov’s inequality

P(Ec4) = PA
(
PX̃
(
D̂α,γ,µ(v) < ec4n

)
⩾ e−c4n

)
⩽ ec4nEX̃PA(D̂α,γ,µ(v) < ec4n) = e−Ω(n),

where the last line follows when c4 is taken small relative to the implicit constant in the bound

on the right-hand-side of (3.34).

Since we have shown that each of E1, E2, E3, E4 holds with probability 1−e−Ω(n), the intersection

fails with exponentially small probability. □

3.5 Decoupling Quadratic Forms

In this section we will prove our Esseen-type inequality that will allow us to deal with a small

ball event and a large deviation event simultaneously.

Lemma 3.5.1. For B > 0, let ζ ∈ ΓB and X ∼ Col n(ζ). Let M be an n×n symmetric matrix,

u ∈ Rn, t ∈ R and s, δ ⩾ 0. Then

P(|⟨MX,X⟩ − t| < δ, ⟨X,u⟩ ⩾ s) ≲ δe−s
∫ 1/δ

−1/δ

∣∣∣E e2πiθ⟨MX,X⟩+⟨X,u⟩
∣∣∣ dθ . (3.35)

We will then bound the integrand (our so-called “titled” characteristic function) with a decou-

pling maneuver, somewhat similar to a “van der Corput trick” in classical Fourier analysis. This

amounts to a clever application of Cauchy-Schwarz inspired by Kwan and Sauermann’s work on

Costello’s conjecture [97] (a similar technique appears in [19]). We shall then be able to mix in

our quasi-random conditions on our matrix A to ultimately obtain Lemma 3.5.2, which gives us

a rather tractable bound on the left-hand-side of (3.35). To state this lemma, let us recall that

E (defined at (3.26)) is the set of symmetric matrices satisfying the quasi-randomness conditions

in the previous section, Section 3.4. Also recall that the constant µ ∈ (0, 2−15) is defined in

Section 3.4 so that Lemma 3.4.1 holds and is treated as fixed constant throughout this chapter.

Lemma 3.5.2. For B > 0, let ζ ∈ ΓB, X ∼ Col n(ζ) and let A be a real symmetric n × n

matrix with A ∈ E and set µ1 := σmax(A
−1). Also let s ⩾ 0, δ > e−cn and u ∈ Sn−1. Then

PX
(∣∣⟨A−1X,X⟩ − t

∣∣ ⩽ δµ1, ⟨X,u⟩ ⩾ s
)
≲ δe−s

∫ 1/δ

−1/δ
I(θ)1/2 dθ + e−Ω(n) ,

where

I(θ) := EJ,XJ ,X
′
J
exp

(
⟨(X +X ′)J , u⟩ − cθ2µ−2

1 ∥A−1(X −X ′)J∥22
)
,

X ′ ∼ Col n(ζ) is independent of X, and J ⊆ [n] is a µ-random set. Here c > 0 is a constant

depending only on B.
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While the definition of I(θ) (and therefore the conclusion of the lemma) is a bit mysterious at

this point, we assure the reader that this is a step in right direction.

All works bounding the singularity probability for random symmetric matrices contain a related

decoupling step [35, 37, 62, 87, 113, 166], starting with Costello, Tao and Vu’s breakthrough [41]

building off of Costello’s earlier work [40] on anticoncentration of bilinear and quadratic forms.

A subtle difference in the decoupling approach from [97] used here is that the quadratic form

is decoupled after bounding a small ball probability in terms of the integral of a characteristic

function rather than on the probability itself; the effect of this approach is that we do not lose

a power of δ, but only lose by a square root “under the integral” on the integrand I(θ).

3.5.1 Proofs

We now dive in and prove our Esseen-type inequality. For this we shall appeal to the classical

Esseen inequality [59]: if Z is a random variable taking values in R with characteristic function

φZ(θ) := EZ e2πiθZ , then for all t ∈ R we have

PX(|Z − t| ⩽ δ) ≲ δ

∫ 1/δ

−1/δ
|φZ(θ)| dθ.

We shall also use the following basic fact about subgaussian random vectors (see, for example,

[167, Prop. 2.6.1]): If ζ ∈ ΓB and Y ∼ Col n(ζ) then for every vector u ∈ Rn we have

EY e⟨Y,u⟩ ⩽ exp(2B2∥u∥22) . (3.36)

Proof of Lemma 3.5.1. Since 1{x ⩾ s} ⩽ ex−s, we may bound

PX(|⟨MX,X⟩ − t| < δ, ⟨X,u⟩ ⩾ s) ⩽ e−sE
[
1{|⟨MX,X⟩ − t| < δ}e⟨X,u⟩

]
. (3.37)

Define the random variable Y ∈ Rn by

P(Y ∈ U) = (E e⟨X,u⟩)−1E[1Ue⟨X,u⟩], (3.38)

for all open U ⊆ Rn. Note that the expectation Ee⟨X,u⟩ is finite by (3.36). We now use this

definition to rewrite the expectation on the right-hand-side of (3.37),

EX
[
1{|⟨MX,X⟩ − t| < δ}e⟨X,u⟩

]
=
(
E e⟨X,u⟩

)
PY (|⟨MY,Y ⟩ − t| ⩽ δ) .
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Thus, we may apply Esseen’s Lemma to the random variable Y to obtain

PY (|⟨MY,Y ⟩ − t| ⩽ δ) ≲ δ

∫ 1/δ

−1/δ
|EY e2πiθ⟨MY,Y ⟩| dθ .

By the definition of Y we have

EY e2πiθ⟨MY,Y ⟩ =
(
EX e⟨X,u⟩

)−1
E e2πiθ⟨MX,X⟩+⟨X,u⟩,

completing the lemma. □

To control the integral on the right-hand-side of Lemma 3.5.1, we will appeal to the following

decoupling lemma, which is adapted from Lemma 3.3 from [97].

Lemma 3.5.3 (Decoupling with an exponential tilt). Let ζ ∈ Γ, let X,X ′ ∼ Col n(ζ) be

independent and let J ∪ I = [n] be a partition of [n]. Let M be a n× n symmetric matrix and

let u ∈ Rn. Then∣∣∣EX e2πiθ⟨MX,X⟩+⟨X,u⟩
∣∣∣2 ⩽ EXJ ,X

′
J
e⟨(X+X′)J ,u⟩ ·

∣∣∣EXI
e4πiθ⟨M(X−X′)J ,XI⟩+2⟨XI ,u⟩

∣∣∣ .
Proof. After partitioning the coordinates of X according to J and writing EX = EXI

EXJ
, we

apply Jensen’s inequality to obtain

E :=
∣∣∣EX e2πiθ⟨MX,X⟩+⟨X,u⟩

∣∣∣2 = ∣∣∣EXI
EXJ

e2πiθ⟨MX,X⟩+⟨X,u⟩
∣∣∣2 ⩽ EXI

∣∣∣EXJ
e2πiθ⟨MX,X⟩+⟨X,u⟩

∣∣∣2 .
We now expand the square

∣∣EXJ
e2πiθ⟨MX,X⟩+⟨X,u⟩∣∣2 as

EXJ ,X
′
J
e2πiθ⟨M(XI+XJ ),(XI+XJ )⟩+⟨(XI+XJ ),u⟩−2πiθ⟨M(XI+X

′
J ),(XI+X

′
J )⟩+⟨(XI+X

′
J ),u⟩

= EXJ ,X
′
J
e4πiθ⟨M(XJ−X′

J ),XI⟩+⟨XJ+X
′
J ,u⟩+2⟨XI ,u⟩+2πi⟨MXJ ,XJ ⟩−2πi⟨MX′

J ,X
′
J ⟩,

where we used the fact that M is symmetric. Thus, swapping expectations yields

E ⩽ EXJ ,X
′
J
EXI

e4πiθ⟨M(XJ−X′
J ),XI⟩+⟨XJ+X

′
J ,u⟩+2⟨XI ,u⟩+2πi⟨MXJ ,XJ ⟩−2πi⟨MX′

J ,X
′
J ⟩

⩽ EXJ ,X
′
J

∣∣∣EXI
e4πiθ⟨M(XJ−X′

J ),XI⟩+⟨XJ+X
′
J ,u⟩+2⟨XI ,u⟩+2πi⟨MXJ ,XJ ⟩−2πi⟨MX′

J ,X
′
J ⟩
∣∣∣

= EXJ ,X
′
J
e⟨XJ+X

′
J ,u⟩

∣∣∣EXI
e4πiθ⟨M(X−X′)J ,XI⟩+2⟨XI ,u⟩

∣∣∣ ,
as desired. Here we could swap expectations since all expectations are finite, due to the sub-

gaussian assumption on ζ. □

We need a basic bound that will be useful for bounding our tilted characteristic function. This

bound appears in the proof of Theorem 6.3 in Vershynin’s work [166].
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Fact 3.5.4. For B > 0, let ζ ∈ ΓB, let ζ
′ be an independent copy of ζ and set ξ = ζ − ζ ′. Then

for all a ∈ Rn we have

∏
j

Eξ| cos(2πξaj)| ⩽ exp

(
−c min

r∈[1,c−1]
∥ra∥2T

)
,

where c > 0 depends only on B.

A simple symmetrization trick along with Cauchy-Schwarz will allow us to prove a similar bound

for the tilted characteristic function.

Lemma 3.5.5. For B > 0, let ζ ∈ ΓB, X ∼ Col n(ζ) and let u, v ∈ Rn. Then∣∣∣EXe2πi⟨X,v⟩+⟨X,u⟩
∣∣∣ ⩽ exp

(
−c min

r∈[1,c−1]
∥rv∥2T + c−1∥u∥22

)
, (3.39)

where c ∈ (0, 1) depends only on B.

Proof. Let ζ ′ be an independent copy of ζ and note that∣∣∣Eζ e2πiζvj+ζuj ∣∣∣2 = Eζ,ζ′ e2πi(ζ−ζ
′)vj+(ζ+ζ′)uj = Eζ,ζ′

[
e(ζ+ζ

′)uj cos(2π(ζ − ζ ′)vj)
]
.

Let X̃ = (X̃i)
n
i=1, Ỹ = (Yi)

n
i=1 denote vectors with i.i.d. coordinates distributed as ξ := ζ − ζ ′

and ζ + ζ ′, respectively. We have

∣∣∣EXe2πi⟨X,v⟩+⟨X,u⟩
∣∣∣2 ⩽ E e⟨Ỹ ,u⟩

∏
j

cos(2πX̃jvj) ⩽
(
E
Ỹ
e2⟨Ỹ ,u⟩

)1/2∏
j

Eξ| cos(2πξvj)|

1/2

,

(3.40)

where we have applied the Cauchy-Schwarz inequality along with the bound | cos(x)|2 ⩽ | cos(x)|
to obtain the last inequality. By (3.36), the first expectation on the right-hand-side of (3.40) is

at most exp(O(∥u∥22)). Applying Fact 3.5.4 completes the Lemma. □

3.5.2 Quasi-random properties for triples (J,XJ , X
′
J)

We now prepare for the proof of Lemma 3.5.2 by introducing a quasi-randomness notion on

triples (J,XJ , X
′
J). Here J ⊆ [n] and X,X ′ ∈ Rn. For this we fix a n×n real symmetric matrix

A ∈ E and define the event F = F(A) as the intersection of the events F1,F2,F3 and F4, which

are defined as follows. Given a triple (J,XJ , X
′
J), we write X̃ := XJ −X ′

J .
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Define events F1,F2,F3(A) by

F1 := {|J | ∈ [µn/2, 2µn]} (3.41)

F2 := {∥X̃∥2n−1/2 ∈ [c, c−1]} (3.42)

F3(A) := {A−1X̃/∥A−1X̃∥2 ∈ Incomp (δ, ρ)} . (3.43)

Finally, we write v = v(X̃) := A−1X̃ and I := [n] \ J and then define F4(A) by

F4(A) :=

{
Dα,γ

(
vI

∥vI∥

)
> ecn

}
. (3.44)

We now define F(A) := F1 ∩F2 ∩F3(A)∩F4(A) and prove the following basic lemma that will

allow us to essentially assume that (3.41),(3.42),(3.43),(3.44) hold in all that follows. We recall

that the constants δ, ρ, µ, α, γ were chosen in Lemma 3.3.2 and Lemma 3.4.1 as a function of

the subgaussian moment B. Thus the only new parameter in F is the constant c in lines (3.42)

and (3.44).

Lemma 3.5.6. For B > 0, let ζ ∈ ΓB, let X,X
′ ∼ Col n(ζ) be independent and let J ⊆ [n] be

a µ-random subset. Let A be a n × n real symmetric matrix with A ∈ E. We may choose the

constant c ∈ (0, 1) appearing in (3.42) and (3.44) as a function of B and µ so that

PJ,XJ ,X
′
J
(Fc) ≲ e−cn .

Proof. For F1, we use Hoeffding’s inequality to see P(Fc
1) ≲ e−Ω(n). To bound P(Fc

2), we note

that the entries of X̃ are independent, subgaussian, and have variance 2µ, and so X̃/(
√
2µ) has

i.i.d. entries with mean zero, variance 1 and subgaussian moment bounded by B/
√
2µ. Thus

from Theorem 3.1.1 in [167] we have

P(|∥X̃∥2 −
√
2nµ| > t) < exp(−cµt2/B4).

For F3(A),F4(A), recall that A ∈ E means that (3.23) and (3.25) hold, thus exponential bounds

on P(Fc
3) and P(Fc

4) follow from Markov’s inequality. □

3.5.3 Proof of Lemma 3.5.2

We now prove Lemma 3.5.2 by applying the previous three lemmas in sequence.
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Proof of Lemma 3.5.2. Let δ ⩾ e−c1n where we will choose c1 > 0 to be sufficiently small later

in the proof. Apply Lemma 3.5.1 to write

PX
(∣∣⟨A−1X,X⟩ − t

∣∣ ⩽ δµ1, ⟨X,u⟩ ⩾ s
)
≲ δe−s

∫ 1/δ

−1/δ

∣∣∣∣EX e2πiθ ⟨A−1X,X⟩
µ1

+⟨X,u⟩
∣∣∣∣ dθ , (3.45)

where we recall that µ1 = σmax(A
−1). We now look to apply our decoupling lemma, Lemma 3.5.3.

Let J be a µ-random subset of [n], define I := [n] \ J and let X ′ be an independent copy of X.

By Lemma 3.5.3 we have∣∣∣∣EX e2πiθ ⟨A−1X,X⟩
µ1

+⟨X,u⟩
∣∣∣∣2 ⩽ EJEXJ ,X

′
J
e⟨(X+X′)J ,u⟩ ·

∣∣∣∣EXI
e
4πiθ

〈
A−1X̃

µ1
,XI

〉
+2⟨XI ,u⟩

∣∣∣∣ , (3.46)

where we recall that X̃ = (X −X ′)J .

We first consider the contribution to the expectation on the right-hand-side of (3.46) from

triples (J,XJ , X
′
J) ̸∈ F . For this let Y be a random vector such that Yj = Xj +X ′

j , if j ∈ J ,

and Yj = 2Xj , if j ∈ I. Applying the triangle inequality, we have

EFc

J,XJ ,X
′
J
e⟨(X+X′)J ,u⟩·

∣∣∣∣EXI
e
4πiθ⟨A

−1X̃
µ1

,XI⟩+2⟨XI ,u⟩
∣∣∣∣ ⩽ EFc

J,XJ ,X
′
J
e⟨(X+X′)J ,u⟩EXI

e2⟨XI ,u⟩ = EFc

J,X,X′e⟨Y,u⟩.

By Cauchy-Schwarz, (3.36) and Lemma 3.5.6, we have

EFc

J,X,X′ e⟨Y,u⟩ ⩽ EJ,X,X′

[
e⟨Y,2u⟩

]1/2
PJ,XJ ,X

′
J
(Fc)1/2 ≲ e−Ω(n) . (3.47)

We now consider the contribution to the expectation on the right-hand-side of (3.46) from

triples (J,XJ , X
′
J) ∈ F . For this, let w = w(X) := A−1X̃

µ1
and assume (J,XJ , X

′
J) ∈ F . By

Lemma 3.5.5, we have

∣∣EXI
e4πiθ⟨XI ,w⟩+⟨XI ,2u⟩

∣∣ ≲ exp

(
−c min

r∈[1,c−1]
∥2rθwI∥2T

)
. (3.48)

Note that ∥wI∥2 ⩽ ∥X̃∥2 ⩽ c−1√n, by the definition of µ1 = σmax(A
−1) and line (3.42) in the

definition of F(A).

Now, from property (3.44) in that definition and by the hypothesis δ > e−c1n, we may choose

c1 > 0 small enough so that

Dα,γ(wI/∥wI∥2) ⩾ 2c−2n1/2/δ ⩾ 2c−1∥wI∥2/δ.

By the definition of the least common denominator, for |θ| ⩽ 1/δ we have

min
r∈[1,c−1]

∥2rθwI∥T = min
r∈[1,c−1]

∥∥∥∥2rθ∥wI∥2 · wI
∥wI∥2

∥∥∥∥
T
⩾ min

{
γθ∥wI∥2,

√
α|I|

}
. (3.49)
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So for |θ| ⩽ 1/δ we use (3.49) in (3.48) to bound the right-hand-side of (3.46) as

EF
J,XJ ,X

′
J
e⟨(X+X′)J ,u⟩ ·

∣∣∣EXI
e4πiθ⟨w,XI⟩+2⟨XI ,u⟩

∣∣∣ ≲ EF
J,XJ ,X

′
J
e⟨(X+X′)J ,u⟩e−cmin{γ2θ2∥wI∥22,α|I|}.

(3.50)

We now use that (J,XJ , X
′
J) ∈ F to see that w ∈ Incomp (δ, ρ) and that we chose µ to be

sufficiently small, compared to ρ, δ, to guarantee that

∥w∥2 ⩽ C∥wI∥2,

for some C > 0 (see (3.28)). Thus the right-hand-side of (3.50) is

≲ EF
J,XJ ,X

′
J
e⟨(X+X′)J ,u⟩e−c

′θ2∥w∥22 + e−Ω(n) .

Combining this with (3.50), (3.46) obtains the desired bound in the case in the case (J,XJ , X
′
J) ∈

F . Combining this with (3.47) completes the proof of Lemma 3.5.2.

□

3.6 Preparation for the “Base step” of the iteration

As we mentioned at (3.7), Vershynin [166], gave a natural way of bounding the least singular

value of a random symmetric matrix:

P(σmin(An+1) ⩽ ε/n1/2) ≲ sup
r∈R

PAn,X

(
|⟨A−1

n X,X⟩ − r| ⩽ ε∥A−1
n X∥2

)
,

where we recall that An is obtained from An+1 by deleting its first row and column. The

main goal of this section is to prove the following lemma which tells us that we may intersect

with the event σmin(An) ⩾ ε/n1/2 in the probability on the right-hand-side at a loss of only

Cε. This will be crucial for the base step in our iteration, since the bound we obtain on

P(σmin(An+1) ⩽ ε/n1/2) deteriorates as σmin(An) decreases.

Lemma 3.6.1. For B > 0, ζ ∈ ΓB, let An+1 ∼ Sym n+1(ζ) and let X ∼ Col n(ζ). Then for all

ε > 0,

P
(
σmin(An+1) ⩽

ε√
n

)
≲ ε+ sup

r∈R
P
(
|⟨A−1

n X,X⟩ − r|
∥A−1

n X∥2
⩽ Cε, σmin(An) ⩾

ε√
n

)
+ e−Ω(n) ,

where C > 0 depends only on B.

We deduce this lemma from a geometric form of the lemma. For this, we let Xj denote the jth

column of An+1, let Hj be the linear span of X1, . . . , Xj−1, Xj+1, . . . , Xn+1, and let dj(An+1) :=

dist(Xj , Hj).
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Lemma 3.6.2. For B > 0, ζ ∈ ΓB, let An+1 ∼ Sym n+1(ζ). Then for all ε > 0,

P(σmin(An+1) ⩽ ε/
√
n) ≲ ε+ P

(
d1(An+1) ⩽ Cε and σmin(An) ⩾ ε/

√
n
)
+ e−Ω(n) ,

where C > 0 depends only on B.

3.6.1 Preparations

We require an elementary, but extremely useful, fact from linear algebra. This fact is actually

a key step in the work of Nguyen, Tao and Vu on eigenvalue repulsion in random matrices (see

[116, Section 4]) and we reproduce their short proof here for completeness. If M is a n × n

matrix and j ∈ [n], let M (j) denote the jth principle minor of M , i.e. M with the jth row and

column removed.

Fact 3.6.3. Let M be a n × n real symmetric matrix and let λ be an eigenvalue of M with

corresponding unit eigenvector u. Let j ∈ [n] and let λ′ be an eigenvector of the minor M (j)

with corresponding unit eigenvector v. Then

|⟨v,X(j)⟩| ⩽ |λ− λ′|/|uj |,

where X(j) is the jth column of M with the jth entry removed.

Proof. Without loss of generality, take j = n and express u = (w, un) where w ∈ Rn−1. Then

we have (M (n) − λI)w +X(n)un = 0. Multiplying on the left by vT yields

|un⟨v,X(n)⟩| = |λ− λ′||⟨v, w⟩| ⩽ |λ− λ′| .

□

We will apply Fact 3.6.3 to see that when both σmin(An+1) ⩽ εn−1/2 and σmin(A
(j)) ⩽ εn−1/2

hold we have |⟨v,X(j)⟩| ≲ ε, assuming that |uj | ≈ n−1/2. We then show that this latter event

holds, subject to appropriate pseudo-random conditions, with probably O(ε). The only wrinkle

in this line of thinking is that we cannot rule out the possibility that for a given j we have

|uj | ≪ n−1/2. We can, however, rule out the possibility that many such |uj | are small, which

will be enough for us. For this, we use a theorem of Rudelson and Vershynin [134] which we

state here in a specialized form.

Theorem 3.6.4 (Theorem 1.5 of [134]). For B > 0, ζ ∈ ΓB, let A ∼ Sym n(ζ) and let v denote

the unit eigenvector of A corresponding to the least singular value of A. Then there exists c2 > 0

such that for all sufficiently small c1 > 0 we have

P
(
|{j : |vj | ⩽ (c2c1)

6n−1/2}| ⩾ c1n
)
⩽ e−c1n ,
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for n sufficiently large.

To understand the event that |⟨v,X(j)⟩| ≲ ε (mentioned above), we need the Littlewood-Offord

theorem of Rudelson and Vershynin [129], which we state here in a specialized form. Recall

that Dα,γ(v) is the least common denominator of the vector v, as defined at (3.4).

Theorem 3.6.5. For n ∈ N, B > 0, γ, α ∈ (0, 1) and ε > 0, let v ∈ Sn−1 satisfy Dα,γ(v) > cε−1

and let X ∼ Col n(ζ), where ζ ∈ ΓB. Then

P(|⟨X, v⟩| ⩽ ε) ≲ ε+ e−cαn .

Here c > 0 depends only on B.

The final ingredient in the proof of Theorem 3.6.1 is the observation that the event

{σmin(A
(1)
n+1) ⩽ εn−1/2} ∩ {σmin(An+1) ⩽ εn−1/2}

(as in Lemma 3.6.1) is roughly equivalent to the event

{there exist ⩾ cn values of j for which σmin(A
(j)
n+1) ⩽ εn−1/2} ∩ {σmin(An+1) ⩽ εn−1/2}.

Before we make this rigorous we prove this latter event has probability ⩽ ε+ e−Ω(n).

Lemma 3.6.6. For B > 0, ζ ∈ ΓB, let An+1 ∼ Sym n+1(ζ). Then, for ε > 0, we have

P
(
σmin(An+1) ⩽ εn−1/2 and |{j : σmin(A

(j)
n+1

)
⩽ εn−1/2}| ⩾ cn

)
≲ ε+ e−Ω(n) , (3.51)

where c > 0 depends only on B.

Proof. Let A1 denote the event on left-hand-side of (3.51). Let v be a unit eigenvector corre-

sponding to the least singular value of An+1. We first show that ifA1 holds then with probability

1− e−Ω(n), we can find ⩾ cn/2 values of j ∈ [n] so that σmin(A
(j)
n+1) < εn−1/2 and |vj | ≳ n−1/2.

With this in mind we let

S1 := {j : σn(A(j)
n+1) ⩽ εn−1/2 } and S2 := {j : |vj | ⩽ (cc2/2)

6n−1/2}

where c2 is the constant from Theorem 3.6.4. We let A2 denote the event that |S2| < cn/2 and

apply Theorem 3.6.4 with c1 = c/2 to see that P(Ac
2) ⩽ e−cn/2. Now set S := S1 ∩ ([n] \ S2)

and note that if A1 ∩ A2 holds then |S| ⩾ cn/2.

Now, for j ∈ [n], let wj = w(A
(j)
n+1) denote a unit eigenvector of A

(j)
n+1 corresponding to the least

singular value of A
(j)
n+1. Note that if j ∈ S1 ∩ ([n] \ S2) then, by Fact 3.6.3, we have

|⟨wj , X(j)⟩| ⩽ 2ε/(c2c/2)
6 =: Cε . (3.52)
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Now let Qj be the event that wj satisfies Dα,γ(wj) ⩾ ec3n where α, γ, c3 are chosen according

to Lemma 3.4.1 and set Q = ∩jQj . By Lemma 3.4.1 we have P(Qc) ≲ e−Ω(n).

Putting this all together, we define the random variable

R := n−1
n∑
j=1

1
(
|⟨wj , X(j)⟩| ⩽ Cε and Qj

)
,

and then observe that

P(A1) ⩽ P(A1 ∩ A2 ∩Q) + e−Ω(n) ⩽ P(R ⩾ c/2) + e−Ω(n).

We now apply Markov and expand the definition of R to bound

P(R ⩾ c/2) ≲ n−1
n∑
i=1

E
A

(j)
n+1

PX(j)

(
|⟨wj , X(j)⟩| ⩽ Cε ∩Qj

)
≲ ε

where the last inequality follows from the fact that X(j) is independent of the event Qj and wj

and therefore we may put the property Qj to use by applying Theorem 3.6.5. □

To prove Lemma 3.6.2, we will also use a basic fact which is at the heart of the geometric

approach of Rudelson and Vershynin (see, e.g., [129, Lemma 3.5]).

Fact 3.6.7. Let M be an n × n matrix and v be a unit vector satisfying ∥Mv∥2 = σmin(M).

Then

σmin(M) ⩾ |vj | · dj(M) for each j ∈ [n] .

Proof. LetXj denote the jth column ofM and letHj denote the span of the remaining columns.

Then

σmin(M) = ∥Mv∥2 ⩾ dist(Mv,Hj) = dist(vjXj , Hj) = |vj |dj(M) .

□

3.6.2 Proofs of Lemma 3.6.2 and Lemma 3.6.1

With these preliminaries in-hand, we are now in a position to prove Lemma 3.6.2.

Proof of Lemma 3.6.2. We look to bound the quantity

P(σmin(An+1) ⩽ εn−1/2).

Let v denote a unit eigenvector corresponding to the least singular value of An+1. Let A denote

the event that v ∈ Incomp (δ, ρ): at least cρ,δn coordinates of v have absolute value at least
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cρ,δn
−1/2. By Lemma 3.3.2, P(Ac) ≲ e−Ω(n) and so

P(σmin(An+1) ⩽ εn−1/2) ⩽ P(σmin(An+1) ⩽ εn−1/2 and A) + e−Ω(n).

Now let c > 0 denote the constant from Lemma 3.6.6 and let B denote the event that at most

cn principal minors of An+1 satisfy σmin(A
(j)
n+1) ⩽ εn−1/2. Also note we may assume c ⩽ cρ,δ/2.

By Lemma 3.6.6 we have

P(σmin(An+1) ⩽ εn−1/2 and Bc) ≲ ε+ e−Ω(n)

and so

P(σmin(An+1) ⩽ εn−1/2) ⩽ P(σmin(An+1) ⩽ εn−1/2 and A ∩ B) + Cε+ e−Ω(n).

Now let

S := {j : dj(An+1) ⩽ ε/cρ,δ and σmin(A
(j)
n+1) ⩾ εn−1/2}.

Observe that if σmin(An+1) ⩽ ε/
√
n and j ∈ [n] is such that |vj | ⩾ cρ,δn

−1/2, then dj(An+1) ⩽

ε/cρ,δ, by Fact 3.6.7. Thus if σmin(An+1) ⩽ ε/
√
n and A hold, then then there are ⩾ cρ,δn

values of j for which dj(An+1) < ε/cρ,δ. If B holds in addition to σn+1(An+1) ⩽ ε/
√
n and A,

then at most cρ,δn/2 of these values of j have σmin(A
(j)
n+1) < εn−1/2. In other words,

A ∩ B ∩ {σn+1(An+1) ⩽ ε/
√
n} ⊆ {|S| ⩾ cρ,δn/2}. (3.53)

Using (3.53) along with Markov’s inequality tells us that

P(σmin(An+1) ⩽ ε/
√
n and A ∩ B) ⩽ P(|S| ⩾ cρ,δn/2) ⩽

2

cρ,δn
E|S|. (3.54)

If we write

|S| =
∑
j

1(dj(An+1) ⩽ ε/cρ,δ, σmin(A
(j)
n+1) ⩾ εn−1/2),

then we see that

E|S| = P
(
d1(An+1) ⩽ ε/cρ,δ, σmin(A

(1)
n+1) ⩾ ε/

√
n
)
, (3.55)

by symmetry. Putting (3.53),(3.54),(3.55) together gives us our desired conclusion. □

Lemma 3.6.1 now follows.

Proof of Lemma 3.6.1. If we set a1,1 to be the first entry of A = An+1 then, by [166, Prop. 5.1],

we have that

d1(An+1) =
|⟨A−1X,X⟩ − a1,1|√

1 + ∥A−1X∥22
.
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Additionally, by [166, Prop. 8.2], we have ∥A−1X∥2 > 1/15 with probability at least 1− e−Ω(n).

Replacing a1,1 with r and taking a supremum completes the proof of Lemma 3.6.1. □

3.7 Eigenvalue crowding (and the proofs of Theorem 3.1.2 and

Theorem 3.1.3)

The main purpose of this section is to prove the following theorem which gives an upper-bound

on the probability that k ⩾ 2 eigenvalues of a random matrix fall in an interval of length ε. This

will be key in our work on the “bulk” of the spectrum of A−1 in Section 3.8. This result is of

independent interest as the ε = 0 case of this theorem tells us that the probability that a random

symmetric matrix has simple spectrum (that is, has no repeated eigenvalue) is 1−e−Ω(n), which

is sharp and confirms a conjecture of Nguyen, Tao and Vu [116].

Given an n× n real symmetric matrix M , we let λ1(M) ⩾ . . . ⩾ λn(M) denote its eigenvalues.

Theorem 3.7.1. For B > 0, ζ ∈ ΓB, let An+1 ∼ Sym n+1(ζ). Then for each j ⩽ cn and all

ε ⩾ 0 we have

max
k⩽n−j

P(|λk+j(An)− λk(An)| ⩽ ε/
√
n) ⩽ (Cε)j + 2e−cn ,

where C, c > 0 are constants depending on B.

We suspect that the bound in Lemma 3.1.3 is actually far from the truth, for ε > e−cn and j ⩾ 1.

In fact, one expects quadratic dependence on j in the exponent of ε. This type of dependence

was recently confirmed by Nguyen [115] for ε > e−n
c
. As we shall also need Nguyen’s result, we

discuss it further in Section 3.8.

For the proof of Lemma 3.1.3, we remind the reader that if u ∈ Rn ∩ Incomp (ρ, δ) then at least

cρ,δn coordinates of u have absolute value at least cρ,δn
−1/2.

In what follows, for a n× n symmetric matrix A, we use the notation A(i1,...,ir) to refer to the

minor of A for which the rows and columns indexed by i1, . . . , ir have been deleted. We also

use the notation AS×T to refer to the |S| × |T | submatrix of A defined by (Ai,j)i∈S,j∈T .

The following fact contains the key linear algebra required for the proof of Theorem 3.1.3.

Fact 3.7.2. For 1 ⩽ k + j < n, let A be a n× n symmetric matrix for which

|λk+j(A)− λk(A)| ⩽ εn−1/2.

Let (i1, . . . , ik) ∈ [n]k be such that i1, . . . , ik are distinct. Then there exist unit vectors w(1), . . . , w(k)

for which

⟨w(r), Xr⟩ ⩽ (εn−1/2) · (1/|w(r−1)
ir

|),
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where Xr ∈ Rn−r is the irth column of A with coordinates indexed by i1, . . . , ir removed. That

is, Xr := A[n]\{i1,...,ir}×{ir} and w(r) is a unit eigenvector corresponding to λk(A
(i1,...,ir)).

Proof. For (i1, . . . , ij) ∈ [n]j , define the matrices M0,M1, . . . ,Mj by setting Mr = A(i1,...,ir) for

r = 1, . . . , j and then M0 := A. Now if

|λk+j(A)− λk(A)| ⩽ εn−1/2,

then Cauchy’s interlacing theorem implies

|λk(Mr)− λk(Mr−1)| ⩽ εn−1/2,

for all r = 1, . . . , j. So let w(r) denote a unit eigenvector of Mr corresponding to eigenvalue

λk(Mr). Thus, by Fact 3.6.3, we see that

|⟨w(r), Xr⟩| ⩽ (εn−1/2) · (1/|w(r−1)
ir

|),

for r = 1, . . . , j, where Xr ∈ Rn−r is the irth column of Mr−1, with the diagonal entry removed.

In other words, Xr ∈ Rn−r is the irth column of A with coordinates indexed by i1, . . . , ir

removed. This completes the proof of Fact 3.7.2. □

Proof of Theorem 3.1.3. Note may assume that ε > e−cn; the general case follows by taking

c sufficiently small. Now, define A to be the event that all unit eigenvectors v of all
(
n
j

)
of

the minors A
(i1,...,ij)
n lie in Incomp (ρ, δ) and satisfy Dα,γ(v) > ec3n, where α, γ, c3 are chosen

according to Lemma 3.4.1. Note that by Lemma 3.4.1 and Lemma 3.3.2, we have

P(Ac) ⩽

(
n

j + 1

)
e−Ω(n) ⩽ n

(
en

j

)j
e−Ω(n) ≲ e−cn,

by taking c small enough, so that j log(en/j) < cn is smaller than the Ω(n) term.

With Fact 3.7.2 in mind, we define the event, Ei1,...,ij , for each (i1, . . . , ij) ∈ [n]j , to be the event

that

|⟨w(r), Xr⟩| ⩽ ε/cρ,δ for all r ∈ [j] ,

where Xr ∈ Rn−r is the irth column of A with coordinates indexed by i1, . . . , ir removed and

w(r) is a unit eigenvector corresponding to λk(A
(i1,...,ir)).

If A holds then each w(r) has at least cρ,δn coordinates with absolute value at least cρ,δn
−1/2.

Thus, if additionally we have

|λk+j(An)− λk(An)| ⩽ εn−1/2,

Fact 3.7.2 tells us that Ei1,...,ij occurs for at least (cρ,δn/2)
j tuples (i1, . . . , ij).
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Define N to be the number of indices (i1, . . . , ij) for which Ei1,...,ij occurs, and note

P(|λk+j(An)− λk(An)| ⩽ ε/
√
n) ⩽ P(N ⩾ (cρ,δn/2)

j and A) +O(e−cn) (3.56)

⩽

(
2

cρ,δ

)j
P(E1,...,j ∩ A) +O(e−cn) (3.57)

where, for the second inequality, we applied Markov’s inequality and used the symmetry of the

events Ei1,...,ij .

Thus we need only show that there exists C > 0 such that P(E1,...,j ∩ A) ⩽ (Cε)j . To use

independence, we replace each of w(r) with the worst case vector, under A

P(E1,...,j ∩ A) ⩽ max
w1,...,wj :Dα,γ(wi)>ec3n

PX1,...,Xr

(
|⟨wr, Xr⟩| ⩽ ε/cρ,δ for all r ∈ [j]

)
(3.58)

⩽ max
w1,...,wj :Dα,γ(wi)>ec3n

j∏
r=1

PXr

(
|⟨wr, Xr⟩| ⩽ ε/cρ,δ

)
⩽ (Cε)j , (3.59)

where the penultimate inequality follows from the independence of theXr and the last inequality

follows from the fact that Dα,γ(wr) > ec3n ≳ 1/ε (by choosing c > 0 small enough relative to

c3), and the Littlewood-Offord theorem of Rudelson and Vershynin, Lemma 3.6.5.

Putting (3.57) and (3.59) together completes the proof of Theorem 3.1.3. □

Of course, the proof of Theorem 3.1.2 follows immediately.

Proof of Theorem 3.1.2. Simply take ε = 0 in Theorem 3.1.3. □

3.8 Properties of the spectrum

In this section we describe and deduce Lemma 3.8.1 and Lemma 3.8.2, which are the tools we

will use to control the “bulk ” of the eigenvalues of A−1. Here we understand “bulk” relative

to the spectral measure of A−1: our interest in an eigenvalue λ of A−1 is proportional to its

contribution to ∥A−1∥HS. Thus the most delicate and important aspect of our analysis amounts

to studying the smallest singular values of A.

For this we let σn ⩽ σn−1 ⩽ · · · ⩽ σ1 be the singular values of A and let µ1 ⩾ . . . ⩾ µn be the

singular values of A−1. Of course, we have µk = 1/σn−k+1 for 1 ⩽ k ⩽ n.

In short, these two lemmas, when taken together, tell us that

σn−k+1 ≈ k/
√
n, (3.60)

for all n ⩾ k ≫ 1 in some appropriate sense.
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Lemma 3.8.1. For p > 1, B > 0 and ζ ∈ ΓB, let A ∼ Sym n(ζ). There is a constant Cp

depending on B, p so that

E
(√

n

µkk

)p
⩽ Cp ,

for all k.

We shall deduce Lemma 3.8.1 from the “local semicircular law” of Erdős, Schlein and Yau [57],

which gives us good control of the bulk of the spectrum at “scales” of size ≫ n−1/2. The next

result is a type of “reverse” of Lemma 3.8.1 and will follow from a result of Nguyen [115] along

with our Theorem 3.1.3.

Lemma 3.8.2. For p > 1, B > 0 and ζ ∈ ΓB, let A ∼ Sym n(ζ). There exist constants

Cp, cp > 0 depending on B, p so that for all k ∈ [Cp, n] we have

E
[(

µkk√
n

)p
1{µ1 ⩽ ecpn}

]
⩽ Cp . (3.61)

We point out that the condition k ⩾ Cp is a very important assumption in Lemma 3.8.2 and

the above statement with k = 1 and p = 1 would imply our main theorem. Thus one might

think of Lemma 3.8.2 as a weaker relative of our main Theorem.

We also record a useful corollary of these two lemmas. For this, we define the function ∥ · ∥∗ for

a n× n symmetric matrix M to be

∥M∥2∗ =
n∑
k=1

σk(M)2(log(1 + k))2. (3.62)

The point of this definition is to give some measure to how the spectrum of A−1 is “distorted”

from what it “should be”, according to the heuristic at (3.60). Indeed if we have σn−k+1 =

Θ(k/
√
n) for all k, say, then we have that

∥A−1∥∗ = Θ(µ1).

Conversely, any deviation from this captures some macroscopic misbehavior on the part of the

spectrum. In particular, the “weight function” k 7→ (log(1+k))2 is designed to bias the smallest

singular values, and thus we are primarily looking at this range for any poor behavior.

Corollary 3.8.3. For p > 1, B > 0 and ζ ∈ ΓB, let A ∼ Sym n(ζ). Then there exists constants

Cp, cp > 0 depending on B, p such that

E
[(

∥A−1∥∗
µ1

)p
1{µ1 ⩽ ecpn}

]
⩽ Cp .
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In the remainder of this section we describe the results of Erdős, Schlein and Yau [57] and of

Nguyen [115] and show how to use them to deduce Lemma 3.8.1 and Lemma 3.8.2 respectively.

We then deduce Corollary 3.8.3.

3.8.1 The local semi-circular law and Lemma 3.8.1

For a < b we define NA(a, b) to be the number of eigenvalues of A in the interval (a, b). One of

the most fundamental results in the theory of random symmetric matrices is the semi-circular

law which says that

lim
n→∞

NA(a
√
n, b

√
n)

n
=

1

2π

∫ b

a
(4− x2)

1/2
+ dx,

almost surely, where A ∼ Sym n(ζ).

We use a powerful “local” version of the semi-circle law developed by Erdős, Schlein and Yau

in a series of important papers [50, 51, 57]. Their results show that the spectrum of a random

symmetric matrix actually adheres surprisingly closely to the semi-circular law. In this chapter,

we need control on the number of eigenvalues in intervals of the form [−t, t], where 1/n1/2 ≪
t≪ n1/2. The semi-circular law predicts that

NA(−t, t) ≈
n

2π

∫ t/n1/2

−t/n1/2

(4− x2)
1/2
+ dx =

2tn1/2

π
(1 + o(1)).

Theorem 1.11 of [56] makes this prediction rigorous.

Theorem 3.8.4. Let B > 0, ζ ∈ ΓB, and let A ∼ Sym n(ζ). Then for all t ∈ [Cn−1/2, n1/2] we

have

P
(∣∣NA(−t, t)/(n1/2t)− 2π−1

∣∣ > π
)
≲ exp

(
−c1(t2n)1/4

)
(3.63)

where C, c1 > 0 are absolute constants.

Lemma 3.8.1 follows quickly from Theorem 3.8.4. In fact we shall only use the follow corollary.

Corollary 3.8.5. Let B > 0, ζ ∈ ΓB, and let A ∼ Sym n(ζ). Then for all s ⩾ C and k ∈ N
satisfying sk ⩽ n we have

P
(√

n

µkk
⩾ s

)
≲ exp

(
− c(sk)1/2

)
,

where C, c > 0 are absolute constants.

Proof. Let C be the maximum of the constant C from Lemma 3.8.4 and π. If
√
n

µkk
⩾ s then

NA(−skn−1/2, skn−1/2) ⩽ k. We now apply Lemma 3.8.4 with t = skn−1/2 ⩾ sn−1/2 ⩾ Cn−1/2

to see that this event occurs with probability ≲ e−c
√
sk. □
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Proof of Lemma 3.8.1. Let C be the constant from Corollary 3.8.5. From bounds on the upper

tail of ∥A∥op (like (3.32)), we immediately see that for all k ⩾ n/C we have

E
(√

n

µkk

)p
⩽ EA

(
σ1(A)

√
n

k

)p
= Op((n/k)

p) = Op(1).

Thus we can restrict our attention to the case when k ⩽ n/C. Define the events

E1 =

{√
n

µkk
⩽ C

}
, E2 =

{√
n

µkk
∈ [C, n/k]

}
, E3 =

{√
n

µkk
⩾
n

k

}
.

We may bound

E
(√

n

µkk

)p
⩽ Cp + E

(√
n

µkk

)p
1E2 + E

(√
n

µkk

)p
1E3 . (3.64)

To deal with the second term in (3.64), we use Corollary 3.8.5 to see that

E
(√

n

µkk

)p
1E2 ≲

∫ n/k

C
psp−1e−c

√
skds = Op(1).

To deal with the third term in (3.64), we note that since n/k ⩾ C we may apply Corollary 3.8.5,

with s = n/k, to conclude that P(E3) ≲ e−c
√
n. Thus, by Cauchy-Schwarz, we have

E
(√

n

µkk

)p
1E3 ⩽

(
E
(
σ1

√
n

k

)2p
)1/2

P(E3)
1/2 ⩽ Op(1) · npe−c

√
n = Op(1),

where we have used the upper tail estimate at (3.32) to see Eσ2p1 = Op(n
p). □

3.8.2 Eigenvalue crowding and Lemma 3.8.2

In [115], Nguyen proved the following result which gives good estimates on the probability that

kth smallest singular value is much smaller than typical, where k ≫ 1. In fact he proved a more

general result which bounds the probability that k eigenvalues fall into any interval of length ε.

Here we need only the following less general result, which comes from Theorem 1.12 of [115].

Theorem 3.8.6. For B > 0, ζ ∈ ΓB, let A ∼ Sym n(ζ). Then for all k ∈ [b−1
1 , b1n] and ε > 0

we have

P
(
σn−k+1(A) ⩽ εn−1/2

)
⩽ (Cε/k)k

2/4 +O(e−n
b2
) ,

where C, b1, b2 > 0 are absolute constants.

With Nguyen’s result in hand, we quickly take care of the proof of Lemma 3.8.2.

Proof of Lemma 3.8.2. Let b1, b2 denote the constants b1, b2 from Theorem 3.8.6 and note that

we may assume k ⩽ b1n since for k > b1n we may bound µk ⩽ µb1n. We now may assume
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that Cp, the constant in the statement of Theorem 3.8.2, satisfies Cp ⩾ max{b−1
1 , 3p}. Thus we

may restrict our attention to k for which k ⩾ max{b−1
1 , 3p}. We let cp > 0 be a constant to be

determined later. We set R = en
b2 and integrate to see that

I := E
(
µkk√
n

)p
1{µ1 ⩽ ecpn}

is at most∫ R

0
kppsp−1P

(
σn−k+1 ⩽ n−1/2/s

)
ds+

∫ ecpn

R
pkpsp−1P

(
σn−k+1 ⩽ n−1/2/s

)
ds =: I0 + I1.

Here we could truncate the integral I1 at ecpn since σn−k+1 ⩾ σn = 1/µn ⩾ e−cpn.

We bound these two ranges by applying different results. To bound I0 we use Theorem 3.8.6

with ε = 1/s to see

P
(
σn−k+1 ⩽ n−1/2/s

)
⩽ (C/ks)2p +O(e−n

c2
),

since k ⩾ 2
√
p. Thus integrating gives I0 = Op(1).

To bound I1, we use our Theorem 3.1.3 with j = k ⩾ 3p and ε = 1/s to see that

P
(
σn−k+1 ⩽ n−1/2/s

)
⩽ sup

i
P
(
|λi+j − λi| ⩽ 2n−1/2/s

)
≲ (C/s)3p + exp(−b3n)

for some c3 > 0. Assuming that cp > 0 is small enough relative to b3 allows us to bound

I1 = Op(1). Thus we see I = I0 + I1 = Op(1), completing the proof of Lemma 3.8.2. □

3.8.3 Deduction of Corollary 3.8.3

We now conclude this section by deducing Corollary 3.8.3 from Lemma 3.8.1 and Lemma 3.8.2.

Proof of Corollary 3.8.3. Let c be the constant from Lemma 3.8.2 and C = C2p be the maximum

of the two constants from Lemmas 3.8.1 and 3.8.2. Now define the event E0 = {µ1 ⩽ ecpn} and

express

∥A−1∥2∗ =
n∑
k=1

µ2k(log(1 + k))2.

Note that we may omit the first C terms in this sum, as we can (trivially) bound µ2k ⩽ µ21.

Further, by Hölder’s inequality we may assume without loss of generality that p ⩾ 2. Applying

the triangle inequality for the Lp/2 norm givesEE0

(∑
k>C

µ2k(log 2(1 + k))2

µ21

)p/22/p

⩽
∑
k>C

(log(1 + k))2EE0
[
µpk
µp1

]2/p
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which is

∑
k>C

(log(1 + k))2

k2

(
EE0

(
µkk√
n

)p(√
n

µ1

)p)2/p

⩽
∑
k>C

(log(1 + k))2

k2

(
EE0

(
µkk√
n

)2p
)1/p(

E
(√

n

µ1

)2p
)1/p

,

by Cauchy-Schwarz. Thus Lemmas 3.8.1 and 3.8.2 tell us that this is Op(1), completing the

proof of Corollary 3.8.3. □

3.9 Controlling small balls and large deviations

The goal of this section is to prove the following lemma, which will be a main ingredient in our

iteration in Section 3.10. We shall then use it again in the final step and proof of Theorem 3.1.1,

in Section 3.11.

Lemma 3.9.1. For B > 0 and ζ ∈ ΓB, let A = An ∼ Sym n(ζ) and let X ∼ Col n(ζ). Let

u ∈ Rn−1 be a random vector with ∥u∥2 ⩽ 1 that depends only on A. Then, for δ, ε > e−cn and

s ⩾ 0, we have

EA sup
r

PX
(
|⟨A−1X,X⟩ − r|

∥A−1∥∗
⩽ δ, ⟨X,u⟩ ⩾ s,

µ1√
n
⩽ ε−1

)

≲ δe−s

[
EA
(
µ1√
n

)7/9

1

{
µ1√
n
⩽ ε−1

}]6/7
+ e−cn , (3.65)

where c > 0 depends only on B > 0.

Note that with this lemma we have eliminated all “fine-grained” information about the spectrum

of A−1 and all that remains is µ1, which is the reciprocal of the least singular value of the matrix

A. We also note that we will only need the full power of Lemma 3.9.1 in Section 3.11; until

then, we will apply it with s = 0, u = 0.

We now turn our attention to proving Lemma 3.9.1. We start with an application of Theo-

rem 3.1.5, our negative correlation theorem, which we restate here in its full-fledged form.

Theorem 3.9.2. For n ∈ N, α, γ ∈ (0, 1), B > 0 and µ ∈ (0, 2−15), there are constants c,R > 0

depending only on α, γ, µ,B so that the following holds. Let 0 ⩽ k ⩽ cαn and ε ⩾ exp(−cαn),
let v ∈ Sn−1, and let w1, . . . , wk ∈ Sn−1 be orthogonal. For ζ ∈ ΓB, let ζ

′ be an independent

copy of ζ and Zµ a Bernoulli variable with parameter µ; let X̃ ∈ Rn be a random vector whose

coordinates are i.i.d. copies of the random variable (ζ − ζ ′)Zµ.

If Dα,γ(v) > 1/ε then

PX

|⟨X̃, v⟩| ⩽ ε and

k∑
j=1

⟨wj , X̃⟩2 ⩽ ck

 ⩽ Rε · e−ck . (3.66)
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The proof of Theorem 3.9.2 is provided in [36]. We now prove Lemma 3.9.3.

Lemma 3.9.3. Let A be a n× n real symmetric matrix with A ∈ E and set µi := σi(A
−1), for

all i ∈ [n]. For B > 0, ζ ∈ ΓB, let X,X
′ ∼ Col n(ζ) be independent, let J ⊆ [n] be a µ-random

subset with µ ∈ (0, 2−15), and set X̃ := (X −X ′)J . If k ∈ [1, cn] is such that s ∈ (e−cn, µk/µ1)

then

P
X̃

(
∥A−1X̃∥2 ⩽ sµ1

)
≲ se−ck , (3.67)

where c > 0 depends only on B.

Proof. For each j ∈ [n] we let vj denote a unit eigenvector of A−1 corresponding to µj . Using

the resulting singular value decomposition of A−1, we may express

∥A−1X̃∥22 = ⟨A−1X̃, A−1X̃⟩ =
n∑
j=1

µ2j ⟨X̃, vj⟩2

and thus

P
X̃

(
∥A−1X̃∥2µ−1

1 ⩽ s
)
⩽ P

X̃

|⟨v1, X̃⟩| ⩽ s and

k∑
j=2

µ2j
µ21

⟨vj , X̃⟩2 ⩽ s2

 . (3.68)

We now use that s ⩽ 1 and µk/µ1 ⩽ 1 in (3.68) to obtain

P
X̃

(
∥A−1X̃∥2µ−1

1 ⩽ s
)
⩽ P

X̃

|⟨v1, X̃⟩| ⩽ s and
k∑
j=2

⟨vj , X̃⟩2 ⩽ 1

 . (3.69)

We now carefully observe that we are in a position to apply Theorem 3.1.5 to the right-hand-

side of (3.69). The coordinates of X̃ are of the form (ζ − ζ ′)Zµ, where Zµ is a Bernoulli

random variable taking 1 with probability µ ∈ (0, 2−15) and 0 otherwise. Also, the v2, . . . , vk are

orthogonal and, importantly, we use thatA ∈ E to learn that4 Dα,γ(v1) > 1/s by property (3.24),

provided we choose the constant c > 0 (in the statement of Lemma 3.9.3) to be sufficiently

small, depending on µ,B. Thus we may apply Theorem 3.1.5 and complete the proof of the

Lemma 3.9.3. □

With this lemma in hand, we establish the following corollary of Lemma 3.5.2.

Lemma 3.9.4. For B > 0 and ζ ∈ ΓB, let X ∼ Col n(ζ) and let A be a n × n real symmetric

matrix with A ∈ E. If s > 0, δ ∈ (e−cn, 1) and u ∈ Sn−1 then

sup
r

PX(
∣∣⟨A−1X,X⟩ − r

∣∣ ⩽ δµ1, ⟨X,u⟩ ⩾ s) ≲ δe−s
cn∑
k=2

e−ck
(
µ1
µk

)2/3

+ e−cn , (3.70)

where c > 0 is a constant depending only on B.
4Recall here that the constants α, γ > 0 are implicit in the definition of E and are chosen so that Lemma 3.4.1

holds.
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Proof. We apply Lemma 3.5.2 to the left-hand-side of (3.70) to get

sup
r

PX(
∣∣⟨A−1X,X⟩ − r

∣∣ ⩽ δµ1, ⟨X,u⟩ ⩾ s) ≲ δe−s
∫ 1/δ

−1/δ
I(θ)1/2 dθ + e−Ω(n) , (3.71)

where

I(θ) := EJ,XJ ,X
′
J
exp

(
⟨(X +X ′)J , u⟩ − c′θ2µ−2

1 ∥A−1(X −X ′)J∥22
)
,

and c′ = c′(B) > 0 is a constant depending only on B and J ⊆ [n] is a µ-random subset. Set

X̃ = (X −X ′)J and v = A−1X̃,

and apply Hölder’s inequality

I(θ) = EJ,XJ ,X
′
J

[
e⟨(X+X′)J ,u⟩e−c

′θ2∥v∥22/µ21
]
≲
(
E
X̃
e−c

′′θ2∥v∥22/µ21
)8/9 (

EJ,XJ ,X
′
J
e9⟨(X+X′)J ,u⟩

)1/9
.

(3.72)

Thus we apply (3.36) to see that the second term on the right-hand-side of (3.72) is O(1). Thus,

for each θ > 0 we have

I(θ)9/8 ≲B E
X̃
e−c

′′θ2∥v∥22/µ21 ⩽ e−c
′′θ1/5 + P

X̃
(∥v∥2 ⩽ µ1θ

−9/10) .

As a result, we have∫ 1/δ

−1/δ
I(θ)1/2 dθ ≲ 1 +

∫ 1/δ

1
P
X̃
(∥v∥2 ⩽ µ1θ

−9/10)4/9 dθ ≲ 1 +

∫ 1

δ
s−19/9P

X̃
(∥v∥2 ⩽ µ1s)

4/9 ds.

To bound this integral, we partition [δ, 1] = [δ, µcn/µ1]∪
⋃cn
k=2[µk/µ1, µk−1/µ1] and apply Lemma

3.9.3 to bound the integrand depending on which interval s lies in. Note this lemma is applicable

since A ∈ E . We obtain∫ µk−1/µ1

µk/µ1

s−19/9P
X̃
(∥v∥2 ⩽ µ1s)

4/9 ⩽ e−ck
∫ µk−1/µ1

µk/µ1

s−15/9 ds ⩽ e−ck(µ1/µk)
2/3,

while ∫ µcn/µ1

δ
s−19/9P

X̃
(∥v∥2 ⩽ µ1s)

4/9 ⩽ e−cnδ−3/2 ⩽ e−Ω(n).

Summing over all k and plugging the result into (3.71) completes the lemma. □

We may now prove Lemma 3.9.1 by using the previous Lemma 3.9.4 along with the properties

of the spectrum of A established in Section 3.8.

Proof of Lemma 3.9.1. Let E be our quasi-random event as defined in Section 3.4 and let

E0 = E ∩
{
µ1√
n
⩽ ε−1

}
.
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For fixed A ∈ E0 and u = u(A) ∈ Rn with ∥u∥2 ⩽ 1, we may apply Lemma 3.9.4 with

δ′ = δ ∥A
−1∥∗
µ1

to see that

sup
r∈R

PX
( ∣∣⟨A−1X,X⟩ − r

∣∣ ⩽ δ∥A∥∗, ⟨X,u⟩ ⩾ s
)
≲ δe−s

(
∥A−1∥∗
µ1

) cn∑
k=2

e−ck
(
µ1
µk

)2/3

+ e−cn .

By Lemma 3.4.1, PA(Ec) ≲ exp(−Ω(n)). Therefore it is enough to show that

EE0
A

(
∥A−1∥∗
µ1

)(
µ1
µk

)2/3

≲ k · EE0
A

[(
µ1√
n

)7/9
]6/7

, (3.73)

for each k ∈ [2, cn]. For this, apply Hölder’s inequality to the left-hand-side of (3.73) to get

EE0
A

(
∥A−1∥∗
µ1

)(
µ1
µk

)2/3

⩽ EE0
A

[(
∥A−1∥∗
µ1

)14
]1/14

EE0
A

[(√
n

µk

)28/3
]1/14

EE0
A

[(
µ1√
n

)7/9
]6/7

.

We now apply Corollary 3.8.3 to see the first term is O(1) and Lemma 3.8.1 to see that the

second term is O(k). This establishes (3.73) and thus Lemma 3.9.1. □

3.10 Intermediate bounds: Bootstrapping the lower tail

In this short section we will use the tools developed so far to prove an “up-to-logarithms” version

of Theorem 3.1.1. In the next section, Section 3.11, we will bootstrap this result (once again)

to prove Theorem 3.1.1.

Lemma 3.10.1. For B > 0, let ζ ∈ ΓB, and let An ∼ Sym n(ζ). Then for all ε > 0

P(σmin(An) ⩽ ε/
√
n) ≲ ε

√
log 1/ε+ e−Ω(n) .

To prove Lemma 3.10.1, we first prove the following “base step” (Lemma 3.10.3) which we then

improve upon in three steps, ultimately arriving at Lemma 3.10.1. This “base step” is an easy

consequence of Lemma 3.6.2 and Lemma 3.9.1 and actually already improves upon the best

known bounds on the least-singular value problem for random symmetric matrices. For this we

will need the well-known theorem due to Hanson and Wright [81, 175] (see also [167, Theorem

6.2.1]).

Theorem 3.10.2 (Hanson-Wright). For B > 0, let ζ ∈ ΓB, let X ∼ Col n(ζ) and let M be a

m× n matrix. Then for any t ⩾ 0, we have

PX
(
|∥MX∥2 − ∥M∥HS| > t

)
⩽ 2 exp

(
− ct2

B4∥M∥2

)
,

where c > 0 is absolute constant.
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We now prove the base step of our iteration.

Lemma 3.10.3 (Base step). For B > 0, let ζ ∈ ΓB and let An+1 ∼ Sym n+1(ζ). Then for all

ε > 0,

P(σmin(An+1) ⩽ ε/
√
n) ≲ ε1/4 + e−Ω(n) .

Proof. As usual, we let A := An. By Lemma 3.6.1, it will be sufficient to show that for r ∈ R,

PA,X
(
|⟨A−1X,X⟩ − r|

∥A−1X∥2
⩽ Cε, σn(A) ⩾

ε√
n

)
≲ ε1/4 + e−Ω(n) . (3.74)

By the Hanson-Wright inequality (Theorem 3.10.2), there exists C ′ > 0 so that

PX(∥A−1X∥2 ⩾ C ′√log 1/ε∥A−1∥HS) ⩽ ε (3.75)

and so the left-hand-side of (3.74) is bounded above by

ε+ PA,X
(
|⟨A−1X,X⟩ − r|

∥A−1∥HS
⩽ δ, σn(A) ⩾ ε/

√
n

)
,

where δ := C ′′ε
√

log 1/ε. Now, by Lemma 3.9.1 with the choice of u = 0, s = 0, we have

PA,X
(
|⟨A−1X,X⟩ − r|

∥A−1∥HS
⩽ δ, σn(A) ⩾

ε√
n

)
≲ δε−2/3 + e−Ω(n) ≲ ε1/4 + e−Ω(n) , (3.76)

where we have used that ∥A−1∥∗ ⩾ ∥A−1∥HS. We also note that Lemma 3.9.1 actually gives

an upper bound on EA supr PX(A), where A is the event on the left-hand-side of (3.80). Since

supr PA,X(A) ⩽ EA supr PX(A), the bound (3.76), and thus Lemma 3.10.3, follows. □

The next lemma is our “bootstrapping step”: given bounds of the form

P(σmin(An) ⩽ ε/
√
n) ≲ εκ + e−cn,

this lemma will produce better bounds for the same problem with An+1 in place of An.

Lemma 3.10.4. (Bootstrapping step) For B > 0, let ζ ∈ ΓB, let An+1 ∼ Sym n+1(ζ) and let

κ ∈ (0, 1) \ {7/10}. If for all ε > 0, and all n we have

P
(
σmin(An) ⩽ ε/

√
n
)
≲ εκ + e−Ω(n) , (3.77)

then for all ε > 0 and all n we have

P(σmin(An+1) ⩽ ε/
√
n) ≲ εmin{1,6κ/7+1/3}√log 1/ε+ e−Ω(n) .
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Proof. Let c > 0 denote the implicit constant in the exponent on the right-hand-side of (3.77).

Note that if 0 < ε < e−cn, by the assumption of the lemma, then we have

P(σmin(An) ⩽ ε/
√
n) ≲ e−Ω(n),

for all n, in which case we are done. So we may assume ε > e−cn.

As in the proof of the “base step”, Lemma 3.10.3, we look to apply Lemma 3.6.2 and Lemma 3.9.1

in sequence. For this we write A = An and bound (3.65) as in the conclusion of Lemma 3.9.1

EA
(
µ1√
n

)7/9

1

{
µ1√
n
⩽ ε−1

}
⩽
∫ ε−7/9

0
P
(
σmin(A) ⩽ x−9/7n−1/2

)
dx, (3.78)

where we used that σmin(A) = 1/µ1(A). Now use assumption (3.77) to see the right-hand-side

of (3.78) is

≲ 1 +

∫ ε−7/9

1
(x−9κ/7 + e−cn) dx ≲ max

{
1, εκ−7/9

}
. (3.79)

Now we apply Lemma 3.9.1 with δ = Cε
√
log 1/ε, s = 0 and u = 0 to see that

sup
r

PA,X
(
|⟨A−1X,X⟩ − r|

∥A−1∥HS
⩽ δ,

µ1√
n
⩽ ε−1

)
≲ max

{
ε, ε6κ/7+1/3

}√
log 1/ε+ e−Ω(n) , (3.80)

where we have used that ∥A−1∥HS ⩽ ∥A−1∥∗.

Now, by Hanson-Wright (Theorem 3.10.2), there exists C ′ > 0 such that

PX
(
∥A−1X∥2 ⩾ C ′∥A−1∥HS

√
log 1/ε

)
⩽ ε.

Thus we choose C ′′ to be large enough, so that

sup
r

PA,X
(
|⟨A−1X,X⟩ − r|

∥A−1X∥2
⩽ C ′′ε, σn(A) ⩾

ε√
n

)
≲ max

{
ε, ε6κ/7+1/3

}√
log 1/ε+ e−Ω(n) .

Lemma 3.6.1 now completes the proof of Lemma 3.10.4. □

Lemma 3.10.1 now follows by iterating Lemma 3.10.4 three times.

Proof of Lemma 3.10.1. By Lemma 3.10.3 and Lemma 3.10.4 we have

P(σmin(A) ⩽ ε/
√
n) ≲ ε13/21

√
log 1/ε+ e−Ω(n) ≲ ε13/21−η + e−Ω(n) ,

for some small η > 0. Applying Lemma 3.10.4 twice more gives an exponent of 127
147 − 6

7η and

then 1, for η small, thus completing the proof. □
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3.11 Proof of Theorem 3.1.1

We are now ready to prove our main result, Theorem 3.1.1. We use Lemma 3.6.1 (as in the

proof of Lemma 3.10.1)) and Lemma 3.26 to see that that it is enough to prove

PE
(
|⟨A−1X,X⟩ − r|

∥A−1X∥2
⩽ Cε, and σn(A) ⩾ εn−1/2

)
≲ ε+ e−Ω(n) , (3.81)

where C is as in Lemma 3.6.1 and the implied constants do not depend on r. Recall that E is

the quasi-random event defined in Section 3.4.

To prepare ourselves for what follows, we put E0 := E ∩ {σmin(A) ⩾ ε/
√
n} and

Q(A,X) :=
|⟨A−1X,X⟩ − r|

∥A−1X∥2
and Q∗(A,X) :=

|⟨A−1X,X⟩ − r|
∥A−1∥∗

where

∥A−1∥2∗ =
n∑
k=1

µ2k(log(1 + k))2 ,

as defined in Section 3.8. We now split the left-hand-side of (3.81) as

PE0 (Q(A,X) ⩽ Cε) ⩽ PE0 (Q∗(A,X) ⩽ 2Cε) + PE0
(
Q(A,X) ⩽ Cε,

∥A−1X∥2
∥A−1∥∗

⩾ 2

)
. (3.82)

We can take care of the first term easily by combining Lemma 3.9.1 and Lemma 3.10.1.

Lemma 3.11.1. For ε > 0,

PE0(Q∗(A,X) ⩽ 2Cε) ≲ ε+ e−Ω(n) .

Proof. Apply Lemma 3.9.1, with δ = 2Cε, u = 0 and s = 0 to obtain

PE0(Q∗(A,X) ⩽ 2Cε) ≲ ε

(
EA
(
µ1√
n

)7/9

1

{
µ1√
n
⩽ ε−1

})6/7

+ e−Ω(n) .

By Lemma 3.10.1 and the calculation at (3.79), the expectation on the right is bounded by a

constant. □

We now focus on the latter term on the right-hand-side of (3.82). By considering the dyadic

partition 2j ⩽ ∥A−1X∥2/∥A−1∥∗ ⩽ 2j+1 we have

PE0
(
Q(A,X) ⩽ Cε,

∥A−1X∥2
∥A−1∥∗

⩾ 2

)
≲

logn∑
j=1

PE0
(
Q∗(A,X) ⩽ 2j+1Cε ,

∥A−1X∥2
∥A−1∥∗

⩾ 2j
)

+ e−Ω(n) .

(3.83)
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Here we have dealt with j ⩾ log n by using Hanson-Wright (Theorem 3.10.2) and the fact that

∥A−1∥∗ ⩾ ∥A−1∥HS to see

PX
(
∥A−1X∥2 ⩾

√
n∥A−1∥∗

)
≲ e−Ω(n) .

We now show that the event ∥A−1X∥2 ⩾ t∥A−1∥∗ implies that X must correlate with one of

the eigenvectors of A.

Lemma 3.11.2. For t > 0, we have

PX
(
Q∗(A,X) ⩽ 2Ctε,

∥A−1X∥2
∥A−1∥∗

⩾ t

)
⩽ 2

n∑
k=1

PX (Q∗(A,X) ⩽ 2Ctε, ⟨X, vk⟩ ⩾ t log(1 + k))

where {vk} is an orthonormal basis of eigenvectors of A.

Proof. Assume that ∥A−1X∥2 ⩾ t∥A−1∥∗ and use the singular value decomposition associated

with {vk}k to write

t2
∑
k

µ2i (log(k + 1))2 = t2∥A∥2∗ ⩽ ∥A−1X∥22 =
∑
k

µ2k⟨vk, X⟩2.

Thus

{∥A−1X∥2 ⩾ t∥A−1∥∗} ⊂
⋃
k

{
|⟨X, vk⟩| ⩾ t log(k + 1)

}
.

To finish the proof of Lemma 3.11.2, we union bound and treat the case of −X the same as X

(by possibly changing the sign of vk) at the cost of a factor of 2. □

Proof of Theorem 3.1.1. Recall that it suffices to establish (3.81). Combining (3.82) with

Lemma 3.11.2 and Lemma 3.11.1 tells us that

PE0 (Q(A,X) ⩽ Cε) ≲ ε+ 2

logn∑
j=1

n∑
k=1

PE0 (Q∗(A,X) ⩽ 2j+1Cε, ⟨X, vk⟩ ⩾ 2j log(1 + k)
)
+ e−Ω(n) .

(3.84)

We now apply Lemma 3.9.1 for all t > 0, with δ = 2Ctε, s = t log(k+1) and u = vk to see that,

PE0(Q∗(A,X) ⩽ 2Ctε, ⟨X, vk⟩ ⩾ t log(1 + k)
)
≲ εt(k + 1)−t · I6/7 + e−Ω(n) . (3.85)

where

I := EA
(
µ1(A)√

n

)7/9

1

{
µ1(A)√

n
⩽ ε−1

}
.

Using (3.85) in (3.84) yields

PE0(Q(A,X) ⩽ Cε) ≲ εI6/7
logn∑
j=1

n∑
k=1

2j(k + 1)−2j + e−Ω(n) ≲ ε · I6/7 + e−Ω(n),
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since
∑∞

j=1

∑∞
k=1 2

j(k + 1)−2j = O(1). Now we write

I = EA
(
µ1(A)√

n

)7/9

1

{
µ1(A)√

n
⩽ ε−1

}
⩽
∫ ε−7/9

0
P
(
σmin(A) ⩽ x−9/7n−1/2

)
dx

and apply Lemma 3.10.1 to see∫ ε−7/9

0
P
(
σmin(A) ⩽ x−9/7n−1/2

)
dx ≲

∫ ∞

1
s−9/7 ds+ 1 ≲ 1.

Thus, Lemma 3.6.1 completes the proof of Theorem 3.1.1. □
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Chapter 4

A new proof of the efficient

container lemma

4.1 Introduction

In this chapter we will provide a much simpler proof of the efficient hypergraph container lemma,

with slightly improved bounds.

In order to state the main result of the chapter, we will need to introduce a couple of important

notions, which we will use to measure the ‘size’ of our containers. Let G and H be hypergraphs,

and write 〈
G
〉
=
⋃
E∈G

{
F ⊂ V (G) : E ⊂ F

}
for the up-set generated by G. We say that G is a cover for H if H ⊂

〈
G
〉
. In other words, G is

a cover for H if for every edge F ∈ H there exists an edge E ∈ G with E ⊂ F .

Next, for each p > 0, define the p-weight of G to be

wp(G) =
∑
E∈G

p|E|.

Note that wp(G) is just the expected number of edges of G in a p-random subset of V (G).
Finally, let I(H) denote the family of independent sets of H. We are now ready to state our

new container theorem.

Theorem 4.1.1. Let H be an r-uniform hypergraph with n vertices, and let 0 < p < 1/4r.

There exists a family S of subsets of V (H), and functions

g : I(H) → S and f : S → 2V (H),

such that:
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(a) For each I ∈ I(H) we have g(I) ⊂ I ⊂ f(g(I)).

(b) For each S ∈ S, we have |S| ⩽ 16r2pn.

(c) If X = f(S) for some S ∈ S, then there exists a cover G for H[X] with

wp(G) < p|X|

and |E| ⩾ 2 for all E ∈ G.

4.2 The algorithm

As in the original proofs of the container theorem, we will define f and g using an algorithm.

However, our algorithm will differ from previous ones in several important ways. We will first

give an informal description of the algorithm, and then provide a precise definition.

The algorithm will receive as inputs an r-uniform hypergraph H, and an independent set I ∈
I(H), and will output sets S,X ⊂ V (H), and a cover G for H[X]. The algorithm proceeds in

rounds: in round i, the inputs will be an r-bounded antichain H(i) and a set Si ⊂ V (H), and

the output will be an r-bounded antichain H(i+1) and a set Si+1 ⊂ V (H). The hypergraph

H(i+1) will moreover be a cover for H(i) (and thus for H). In order to define H(i+1), we will use

the p-degree

dG(L, p) :=
∑

L⊊E∈G
p|E|

of a set L ⊂ V (G). Note that the set itself does not count towards the p-degree.

We begin with H(0) = H and S0 = ∅, noting that since H is r-uniform it is an r-bounded

antichain. To perform round i, we first define a hypergraph

H(i)
∗ = G(i)

2 ∪ . . . ∪ G(i)
r where G(i)

j =
{
E ∈ H(i) : |E| = j

}
(4.1)

for each 1 ⩽ j ⩽ r. We also define a set Xi ⊂ V (H) by removing every vertex v ∈ V (H)

such that {x} is an edge of H(i). If wp(H(i)
∗ ) < p|Xi| then we will stop the algorithm and show

that g(I) = Si, f(Si) = Xi and G = H(i)
∗ have the required properties. On the other hand, if

wp(H(i)
∗ ) ⩾ p|Xi| then we define H(i+1) and Si+1 as follows.

Let s > 1 be minimal such that there exists L ⊂ Xi satisfying

dG(i)
s
(L, p) ⩾

p|L|

4r
(4.2)

and let L ⊂ Xi be a maximal set such that (4.2) holds. We now ask whether or not L ⊂ I, and

update H(i) and Si accordingly. To be precise, if L ⊂ I, then we will add L to the fingerprint
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Si, add the link graph

G(i)
s (L) =

{
E \ L : L ⊂ E ∈ G(i)

s

}
to H(i), and remove all edges of H(i) containing one of these added edges. That is, we set

Si+1 := Si ∪ L and

H(i+1) :=
(
H(i) \

〈
G(i)
s (L)

〉)
∪ G(i)

s (L).

On the other hand, if L ̸⊂ I then we set Si+1 := Si and define

H(i+1) :=
(
H(i) \

〈
L
〉)

∪
{
L
}
,

that is, we replace all edges of H(i) containing L with the single edge L.

We suspect that for most readers the above description of the algorithm will suffice; however,

for the benefit of those readers who prefer a more compact description, the algorithm is defined

as follows.

Definition 4.2.1. Let H be an r-uniform hypergraph, and let I ∈ I(H) be an independent set

of H. Set H(0) := H and S0 := ∅, and set i := 0. Repeat the following steps until STOP:

1. Define hypergraphs G(i)
j (for each 1 ⩽ j ⩽ r) and H(i)

∗ as in (4.1), and set

Xi := V (H) \
⋃

E∈G(i)
1

E. (4.3)

2. If wp(H(i)
∗ ) < p|Xi|, then set J := i and STOP.

3. Otherwise let s > 1 be minimal such that there exists L ⊂ Xi satisfying (4.2).

4. Let Li ⊂ Xi be a maximal set1 such that (4.2) holds with L = Li.

5. If Li ⊂ I, then set Si+1 := Si ∪ Li and H(i+1) :=
(
H(i) \

〈
G(i)
s (Li)

〉)
∪ G(i)

s (Li).

6. If Li ̸⊂ I then set Si+1 := Si and H(i+1) :=
(
H(i) \

〈
Li
〉)

∪
{
Li
}
.

Define G := H(J)
∗ , S := SJ and X = XJ . These are the outputs of the algorithm.

The motivation for the choice of Li above is that we always want to push weight towards the

smaller uniformities while also guaranteeing certain maximum co-degree conditions. This way

most of the weight will eventually go to edges of size 1, which will imply wp(H(i)
∗ ) < p|Xi|.

The condition that Li satisfies (4.2) will imply that the algorithm is always pushing enough

weight towards the smaller uniformities. On the other hand, the minimality of s guarantees

1If there is more than one maximal Li, fix a canonical way to choose among the maximal sets with the desired
property.
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that the co-degrees of G(i)
j will be appropriately bounded for all j < r and the maximality of Li

guarantees the same for G(i)
s (Li).

We will show in the analysis that we will always be able to reconstruct the process from SJ ,

that H(i) is a cover for H and, crucially, that I ∈ I(H(i)) for all 0 ⩽ i ⩽ J . This last

property motivates the dichotomy between Steps 5 and 6, since if Li ⊂ I and I ∈ I(H(i)) then

I ∈ I(G(i)
s (Li)), as we will see in Lemma 4.3.4. Otherwise if Li ̸⊂ I then by definition we may

add Li as an edge and I will still be an independent set.

4.3 The analysis

We will next prove various simple properties of the algorithm described in the previous section.

Throughout this section we fix the hypergraph H and the independent set I ∈ I(H) that were

the inputs of the algorithm. We will later see that the algorithm always terminates; for the

next few lemmas I will assume that it does in this case, and let G, S and X be the output of

the algorithm. The first step is to observe that H(i) is an antichain.

Lemma 4.3.1. For every 0 ⩽ i ⩽ J , the hypergraph H(i) is an antichain. In particular, every

edge of the hypergraph H(i)
∗ is contained in the set Xi.

Proof. Note that H(0) = H is an antichain, since it is r-uniform. For the induction step, suppose

that H(i) is an antichain, and that E,F ∈ H(i+1) with E ⊂ F . Note first that if E,F ∈ H(i),

then E = F , since H(i) is an antichain. Next, if E ∈ H(i+1) \ H(i), then H(i+1) ∩ ⟨E⟩ = E, by

Steps 5 and 6 of the algorithm, so in this case we must also have E = F . Finally, if E ∈ H(i)

and F ∈ H(i+1) \ H(i), then either F ∪ Li ∈ H(i) or F = Li. Since E ⊊ F ∪ Li and H(i) is

an antichain, we must have F = Li. However, if E ⊂ Li and E ∈ H(i), then since H(i) is an

antichain, Li would have degree 0, contradicting our choice of Li. This completes the induction

step, and hence shows that H(i) is an antichain.

To deduce that E ⊂ Xi for every edge E ∈ H(i)
∗ , observe that for each vertex x ∈ V (H) \ Xi

we have {x} ∈ H(i). Since H(i) is an antichain, it follows that no other edge of H(i) contains x,

and hence the only edges of H(i) that intersect V (H) \Xi have size 1, as claimed. □

Next, we need to observe that our lower bound on wp(H(i)
∗ ) implies that there exists s > 1 and

a set L ⊂ Xi such that (4.2) holds.

Lemma 4.3.2. If wp(H(i)
∗ ) ⩾ p|Xi|, then there exists s > 1 and L ⊂ Xi such that

dG(i)
s
(L, p) ⩾

p|L|

4r
.
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Proof. Observe first that there exists 2 ⩽ s ⩽ r such that wp(G(i)
s ) ⩾ p|Xi|/r, since

r∑
j=2

wp(G(i)
j ) = wp(H(i)

∗ ) ⩾ p|Xi|.

By Lemma 4.3.1, it follows that there exists v ∈ Xi such that dG(i)
s
(v, p) ⩾ sp/r, since

∑
v∈Xi

dG(i)
s
(v, p) = s · wp(G(i)

s ) ⩾
sp|Xi|
r

.

Taking L = {v} we have

dG(i)
s
(L, p) ⩾

sp

r
⩾

p|L|

4r
,

as claimed. □

We will next show that the output G, S and X of the algorithm has the desired properties. We

begin with property (c), which is straightforward to verify.

Lemma 4.3.3. G is a cover for H[X]. Moreover, wp(G) < p|X| and |E| ⩾ 2 for all E ∈ G.

Proof. Since G = H(J)
∗ , it follows immediately from the definition (4.1) of H(i)

∗ that |E| ⩾ 2 for

all E ∈ G. Similarly, the bound wp(G) < p|X| holds because the algorithm does not terminate

until wp(H(i)
∗ ) < p|Xi|. Thus we only need to show that G is a cover for H[X].

To do so, we claim first that H(i+1) is a cover for H(i) for each 0 ⩽ i < J . To show this, let

E ∈ H(i), and suppose first that Li ⊂ I. By Step 5 of the algorithm, either

E ∈ H(i+1) ⊂
〈
H(i+1)

〉
or E ∈

〈
G(i)
s (Li)

〉
⊂
〈
H(i+1)

〉
,

since H(i) \ H(i+1) ⊂
〈
G(i)
s (Li)

〉
and G(i)

s (Li) ⊂ H(i+1). On the other hand, if Li ̸⊂ I, then by

Step 6 of the algorithm, either

E ∈ H(i+1) ⊂
〈
H(i+1)

〉
or E ∈

〈
Li
〉
⊂
〈
H(i+1)

〉
,

since H(i) \H(i+1) ⊂ ⟨Li⟩ and Li ∈ H(i+1). Since in either case we have E ∈ ⟨H(i+1)⟩, it follows
that H(i+1) is a cover for H(i), as claimed.

Since being a cover is transitive2 this implies H(J) is a cover for H. To deduce that G = H(J)
∗

is a cover for H[X], let E ∈ H[X] and (recalling that H ⊂ ⟨H(J)⟩) let E′ ∈ H(J) be such that

E′ ⊂ E. Now, observe that if |E′| = 1, then E′ ∩ X = ∅, by the definition of X = XJ , a

contradiction with the fact that E′ ⊂ E ⊂ X. Therefore |E′| ⩾ 2, and so E′ ∈ H(J)
∗ = G. It

follows that G is a cover for H[X], as required. □

We next show that S and X satisfy property (a) of Theorem 4.1.1.

2Indeed, if Hi ⊂ ⟨Hi+1⟩ and Hi−1 ⊂ ⟨Hi⟩, then Hi−1 ⊂ ⟨Hi+1⟩.
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Lemma 4.3.4. S ⊂ I ⊂ X.

Proof. It follows immediately from Steps 5 and 6 of the algorithm that S ⊂ I, since S = SJ

and we only add Li to Si if Li ⊂ I. To show that I ⊂ X, we will prove that I is an independent

set in H(J), and therefore does not contain any singleton edge of H(J). Recall that I ∈ I(H(0));

we will prove that I ∈ I(H(i)) for every 0 ⩽ i ⩽ J by induction on i.

Let 0 ⩽ i < J , and assume that I ∈ I(H(i)). Suppose that I ̸∈ I(H(i+1)), and let E ∈ H(i+1)

with E ⊂ I. Note that E ̸∈ H(i), since I ∈ I(H(i)). If Li ⊂ I, then it follows from Step 5 of the

algorithm that E ∈ G(i)
s (Li), and therefore E ∪ Li ∈ H(i). Since E ⊂ I and Li ⊂ I, it follows

that I ̸∈ I(H(i)), which is a contradiction. Similarly, if Li ̸⊂ I then it follows from Step 6 of

the algorithm that E = Li. But this is again a contradiction, since we assumed that E ⊂ I.

Hence I ∈ I(H(i+1)), and this completes the induction step.

The induction above implies that I ∈ I(H(J)), and hence {x} ̸∈ G(J)
1 for every x ∈ I. By the

definition (4.3) of X = XJ , it follows that I ⊂ X, as required. □

It remains to show that the algorithm always terminates, and that |S| ⩽ 16r2pn. To do so, we

will show that wp(G(i)
<r) ⩽ 2pn, and that

wp(G(i+1)
<r ) ⩾ wp(G(i)

<r) +
1

8r
(4.4)

whenever Li ⊂ I, where G(i)
<r = G(i)

1 ∪ . . . ∪ G(i)
r−1. It follows from these bounds that there are at

most 16rpn rounds of the algorithm in which Li ⊂ I, and this implies the claimed bound on

the size of the fingerprint S, since |Li| < r. We will also show that

wp(G(i+1)
<r ) ⩾ wp(G(i)

<r) +
pr

2
(4.5)

when Li ⊂ I, which (together with the bounds above) implies that the algorithm terminates

after a finite number of rounds.

These three bounds are all fairly straightforward consequences of the following upper bound on

the co-degrees in the hypergraphs G(i)
s . Given a hypergraph G and ℓ ∈ N, we write

∆ℓ,p(G) = max
{
dG(L, p) : L ⊂ V (G), |L| = ℓ

}
for the maximum degree of a set of size ℓ in G. We will use the minimality of s and maximality

of Li in the proof of the next lemma, which is the crucial step in the proof.

Lemma 4.3.5. Let 0 ⩽ i ⩽ J . For every 2 ⩽ j ⩽ r − 1 and 1 ⩽ ℓ ⩽ j − 1, we have

∆ℓ,p

(
G(i)
j

)
⩽

pℓ

2r
. (4.6)
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Proof. We prove the lemma by induction on i. Note first that the base case i = 0 is trivial,

since H is r-uniform, so the hypergraph G(0)
s is empty for all 1 ⩽ s ⩽ r − 1.

For the induction step, assume that the lemma holds for some 0 ⩽ i < J . Let s > 1 be the

integer chosen in Step 2 of the algorithm, and observe that, by the minimality of s,

dG(i)
j

(L, p) <
p|L|

4r
(4.7)

for every j < s and L ⊂ Xi. Similarly, by the maximality of Li, we have

dG(i)
s
(Li ∪ L, p) <

p|Li|+|L|

4r
(4.8)

for every L ⊂ Xi \ Li. We will again consider two cases, depending on whether or not Li ⊂ I.

First, if Li ⊂ I, then by Step 5 of the algorithm we have H(i+1) \H(i) ⊂ G(i)
s (Li), and therefore

every new edge of H(i+1) has size exactly s− |Li|. We therefore have

dG(i+1)
j

(L, p) ⩽ dG(i)
j

(L, p) ⩽
p|L|

2r
,

for every j ̸= s− |Li| and every L ⊂ V (H), by the induction hypothesis. We are similarly done

if L ̸⊂ Xi \Li, since every edge of G(i)
s (Li) is contained in Xi, by Observation 4.3.1, and disjoint

from Li, by Step 5 of the algorithm. On the other hand, if j = s− |Li| and L ⊂ Xi \ Li, then
we have

dG(i+1)
j

(L, p) ⩽ dG(i)
j

(L, p) + p−|Li| · dG(i)
s
(Li ∪ L, p) ⩽

p|L|

2r
,

as required, where the final inequality follows using (4.7) and (4.8), since j = s− |Li| < s.

Now, if Li ̸⊂ I then, by Step 6 of the algorithm, the only edge of H(i+1) \ H(i) is Li. Note that

|Li| < s, since the set Li is not counted in the degree of Li, and Li has non-zero degree in G(i)
s .

Observe also that unless j = |Li| and L ⊊ Li, we have

dG(i+1)
j

(L, p) ⩽ dG(i)
j

(L, p) ⩽
pℓ

2r
,

by the induction hypothesis. Finally, if j = |Li| and L ⊊ Li, then we have

dG(i+1)
j

(L, p) ⩽ dG(i)
j

(L, p) + p|Li| ⩽
p|L|

4r
+ p|L|+1 ⩽

p|L|

2r

again using (4.7) (since j = |Li| < s), and the bounds |L| < |Li| and p < 1/4r. □

For each 0 ⩽ i ⩽ J , define G(i)
∗ = G(i)

2 ∪ . . .∪G(i)
r−1. We will actually use the following immediate

consequence of Lemma 4.3.5.

Lemma 4.3.6. For each 0 ⩽ i ⩽ J and 1 ⩽ ℓ ⩽ r − 1, we have

∆ℓ,p(G
(i)
∗ ) ⩽

pℓ

2
.
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We are now ready to prove the three inequalities, (4.4), (4.5), and wp(G(i)
<r) ⩽ 2pn, which

together will allow us to show that the algorithm terminates, and also to deduce the desired

bound on the size of S. We begin with the upper bound on wp(G(i)
<r).

Lemma 4.3.7. For all 0 ⩽ i ⩽ J , we have

wp(G(i)
<r) ⩽ 2pn.

Proof. Recall that G(i)
<r = G(i)

1 ∪ . . . ∪ G(i)
r−1, and observe that

wp(G(i)
<r) = wp(G(i)

1 ) +
r−1∑
s=2

1

s

∑
v∈V (H)

dG(i)
s
(v, p).

Since dG(i)
s
(v, p) ⩽ p/2r for every v ∈ V (H), by Lemma 4.3.5, it follows that

wp(G(i)
<r) ⩽ wp(G(i)

1 ) +

r−1∑
s=2

pn

2rs
⩽ pn+

pn log r

r
⩽ 2pn,

where in the second inequality we used the fact that G(i)
1 is a simple 1-uniform hypergraph, so

has at most n edges. □

We next prove (4.4), which says that wp(G(i)
<r) increases by at least 1/8r whenever Li ⊂ I.

Lemma 4.3.8. Let 0 ⩽ i ⩽ J . If Li ⊂ I, then

wp(G(i+1)
<r ) ⩾ wp(G(i)

<r) +
1

8r
.

Proof. Observe first that G(i)
s (Li) ∩ H(i) = ∅, since H(i) is an antichain, by Observation 4.3.1,

and Li ̸= ∅. By Step 5 of the algorithm, it follows that if Li ⊂ I, then

wp(G(i+1)
<r )− wp(G(i)

<r) ⩾ wp(G(i)
s (Li)) −

∑
E∈G(i)

s (Li)

dG(i)
<r
(E, p).

Using Lemma 4.3.6 to bound dG(i)
<r
(E, p) = dG(i)

∗
(E, p), it follows that

wp
(
G(i+1)
<r

)
− wp

(
G(i)
<r

)
⩾

∑
E∈G(i)

s (Li)

(
p|E| − p|E|

2

)
⩾

wp(G(i)
s (Li))

2
⩾

1

8r
,

by our choice of Li, as required. □

Finally, we prove (4.5), which implies that wp(G(i)
<r) increases in every round.

Lemma 4.3.9. Let 0 ⩽ i ⩽ J . If Li ̸⊂ I, then

wp(G(i+1)
<r ) ⩾ wp(G(i)

<r) +
pr

2
.
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Proof. Observe first that Li ̸∈ H(i), since H(i) is an antichain, by Observation 4.3.1, and Li has

non-zero degree in H(i). By Step 6 of the algorithm, it follows that if Li ̸⊂ I, then

wp(G(i+1)
<r )− wp(G(i)

<r) ⩾ p|Li| − dG(i)
<r
(Li, p).

Using Lemma 4.3.6 to bound dG(i)
<r
(Li, p) = dG(i)

∗
(Li, p), it follows that

wp
(
G(i+1)
<r

)
− wp

(
G(i)
<r

)
⩾ p|Li| − p|Li|

2
⩾

pr

2
,

as required, since |Li| ⩽ r. □

It follows immediately from Lemmas 4.3.7, 4.3.8 and 4.3.9 that the algorithm terminates after

a bounded number (to be precise, at most 4p1−rn) steps. The bound on |S| that is required for

property (b) of Theorem 4.1.1 also follows easily.

Lemma 4.3.10. |S| ⩽ 16r2pn

Proof. Suppose there are exactly m rounds of the algorithm in which Li ⊂ I. By Lemmas 4.3.8

and 4.3.9, we have
m

8r
⩽ wp(G(J)

<r ) ⩽ 2pn,

and hence m ⩽ 16rn. Since |Si| increases by at most r in each of these rounds, and does not

increase otherwise, the claimed bound follows immediately. □

4.4 The proof of the efficient container theorem

We are now almost ready to complete the proof of Theorem 4.1.1; the only missing observation

is that the container X of an independent set I ∈ I(H) is determined by S, the fingerprint of

I. This is shown in the following lemma.

Lemma 4.4.1. Suppose the algorithm applied to I, Ĩ ∈ I(H) outputs (S,X,G) and (S̃, X̃, G̃)
respectively. If S = S̃, then X = X̃.

Proof. The proof is not difficult, but it is a little subtle. Observe first that the algorithm only

depends on the hypergraph H and the decision (in each round) whether to perform Step 5 or

Step 6. Thus, if the outputs of the algorithm applied to I and Ĩ are different, then there must

be a round i for which Li ⊂ Ĩ but Li ̸⊂ I, or vice versa. Consider the first such round, and

note that (by symmetry) we may assume that Li ⊂ Ĩ and Li ̸⊂ I.

The crucial observation is now as follows. Note that by Steps 5 and 6 of the algorithm, we have

Li ⊂ S̃ and Li ∈ H(i+1). Since S is an independent set in H(i) for every 0 ⩽ i ⩽ J , it follows

that Li ̸⊂ S, giving the desired contradiction.
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To spell out the details, recall from the proof of Lemma 4.3.4 that I ∈ I(H(i)) for every

0 ⩽ i ⩽ J . Since S ⊂ I (again by Lemma 4.3.4, though in this case the proof was immediate),

it follows that we also have S ∈ I(H(i)) for every 0 ⩽ i ⩽ J . Now, since Li ∈ H(i+1), it follows

that Li ̸⊂ S, as claimed. □

We are now ready to prove Theorem 4.1.1.

Proof of Theorem 4.1.1. For each independent set I ∈ I(H), define g(I) := S and f(S) := X,

where (S,X,G) is the output of the algorithm with inputs H and I, and set S := {g(I) : I ∈
I(H)}. By Lemma 4.4.1, the function f is well-defined.

Now, by Lemma 4.3.4 we have g(I) ⊂ I ⊂ f(g(I)) for every I ∈ I(H), so property (a) holds.

By Lemma 4.3.10 we have |S| ⩽ 16r2pn for every S ∈ S, so property (b) holds. Finally, if

X = f(g(I)) then, by Lemma 4.3.3, the hypergraph G is a cover for H[X] with wp(G) < p|X|,
and moreover |E| ⩾ 2 for all E ∈ G, so property (c) holds. This completes the proof of the

efficient container theorem. □

4.5 Deducing the standard container theorems

In this section we will show that the usual formulations of the hypergraph container lemma can

be easily deduced from Theorem 4.1.1. Given an r-uniform hypergraph H and a set L ⊂ V (H),

let

dH(L) :=
∣∣{E ∈ H : L ⊂ E

}∣∣
and for each ℓ ⩾ 1 define

∆ℓ(H) := max
{
dH(L) : |L| = ℓ

}
.

We will first deduce the following slight strengthening of the efficient container lemma of Balogh

and Samotij [18, Theorem 1.1], which itself significantly strengthened the original container

lemmas of Balogh, Morris and Samotij [15] and Saxton and Thomason [142].

Corollary 4.5.1. Let H be an r-uniform hypergraph on n vertices. Suppose that τ ∈ (0, 1) and

K > 0 are such that

∆ℓ(H) ⩽ K ·
(

τ

25Kr2

)ℓ−1 e(H)

v(H)
. (4.9)

for every ℓ ∈ {1, . . . , r}. Then there exists a family S of subsets of V (H), and functions

g : I(H) → S and f : S → 2V (H),

such that

(a) For each I ∈ I(H) we have g(I) ⊂ I ⊂ f(g(I)),
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(b) For each S ∈ S we have |S| ⩽ τn,

(c) For each S ∈ S we have |f(S)| ⩽ (1− δ)n,

where δ = (2K)−1.

For comparison, in [18] the statement above was proved with 25Kr2 replaced by 106r5, and

with δ = (103r3K)−1, while in [15, 142] the parameters had super-exponential dependence on

r (see, for example, Section 3 of the survey [16]).

Proof of Corollary 4.5.1. We apply Theorem 4.1.1 with p = τ/16r2. We obtain a family S and

functions f and g satisfying properties (a) and (b), so we only need to verify property (c).

To do so, let S ∈ S and set X := f(S). By property (c) of Theorem 4.1.1, there exists a cover

G for H[X] with wp(G) < p|X| and |E| ⩾ 2 for all E ∈ G. It follows that

e
(
H[X]

)
⩽
∑
E∈G

dH(E) ⩽
∑
E∈G

(
p

2

)|E|−1 e(H)

v(H)
⩽ wp(G) ·

e(H)

2pn
<

e(H)

2
,

where the first inequality holds by the definition of a cover,3 the second follows by (4.9) and

our choice of p, the third follows from the definition of wp(G), and the fourth follows from the

bound wp(G) < p|X| ⩽ pn. In the second and third steps we also used the fact that |E| ⩾ 2 for

all E ∈ G.

On the other hand, if |X| > (1− δ)n, then

e
(
H[X]

)
⩾ e(H)−

(
n− |X|

)
∆1(H) ⩾

e(H)

2
,

since ∆1(H) ⩽ K · e(H)
v(H) and δ = (2K)−1. This contradiction shows that |f(S)| ⩽ (1 − δ)n for

every S ∈ S, as required, and therefore completes the proof of the container lemma. □

Remark 4.5.2. A careful examination of the proof allows one to improve the bounds in Corol-

lary 4.5.1 somewhat further. To be precise, we only needed the bounds

∆1(H) ⩽ K · e(H)

v(H)
and ∆ℓ(H) ⩽

(
τ

25r2

)ℓ−1 e(H)

v(H)

for ℓ ⩾ 2. Moreover, if we halt the algorithm as soon as |X| ⩽ (1− δ)n, then we gain a factor

of roughly r/ log r in Lemma 4.3.7 (since the bound on ∆1(H) implies that K ⩾ r), and hence

also in the size of the fingerprint S. In this case the bounds

∆1(H) ⩽ K · e(H)

v(H)
and ∆ℓ(H) ⩽

(
τ

25r log r

)ℓ−1 e(H)

v(H)

would suffice to obtain the conclusion of Corollary 4.5.1.

3Indeed, for every edge F ∈ H[X], there exists an edge E ∈ G with E ⊂ F .
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In most applications of the method of hypergraph containers one needs to iterate the hypergraph

container lemma, and doing gives a ‘packaged’ hypergraph container theorem, see e.g. [18,

Theorem 1.6]. We can deduce the following much cleaner packaged version with better bounds

by applying Theorem 4.1.1 directly.

Corollary 4.5.3. Let H be an r-uniform hypergraph with n vertices. Suppose that 0 < τ <

1/4r2 and m ⩾ n are such that

∆ℓ(H) ⩽
τ ℓ−1m

n
(4.10)

for every ℓ ∈ {2, . . . , r}. Then there exists a family C of subsets of V (H), with

|C| ⩽ exp
(
16r2 log

(
(r2τ)−1

)
τn
)
,

such that

(i) For every I ∈ I(H), there exists C ∈ C such that I ⊂ C.

(ii) For every C ∈ C, we have e(H[C]) < m.

Proof. We apply Theorem 4.1.1 to H with p = τ , and set

C =
{
f(S) : S ∈ S

}
.

Observe that

|C| ⩽ |S| ⩽
16r2τn∑
s=0

(
n

s

)
⩽ exp

(
16r2 log

(
(r2τ)−1

)
τn
)
,

since by property (b) of Theorem 4.1.1 we have |S| ⩽ 16r2τn for every S ∈ S. Note also that

for each I ∈ I(H) there exists C = f(g(I)) ∈ C such that I ⊂ C, by property (a).

Finally, let C ∈ C, and observe that, by property (c) of Theorem 4.1.1, there exists a cover G
for H[C] with wτ (G) < τ |C|. It follows that

e
(
H[C]

)
⩽
∑
E∈G

dH(E) ⩽
∑
E∈G

τ |E|−1m

n
< m,

where the first inequality holds by the definition of a cover, the second follows4 by (4.10), and

the third follows from the definition of wτ (G) and from the bound wτ (G) < τ |C| ⩽ τn. □

Finally, we conjecture that the dependence on r in the bound on the size of the fingerprint in

Theorem 4.1.1 can be removed completely.

Conjecture 4.5.4. There exists a constant C > 0 such that the following holds. Let H be an

r-uniform hypergraph with n vertices, and let p > 0. There exists a family S of subsets of V (H),

4Note that (4.10) holds for ℓ ⩾ 2, and that |E| ⩾ 2 for all E ∈ G.
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and functions

g : I(H) → S and f : S → 2V (H),

such that:

(a) For each I ∈ I(H) we have g(I) ⊂ I ⊂ f(g(I)).

(b) For each S ∈ S, we have |S| ⩽ Cpn.

(c) If X = f(S) for some S ∈ S, then there exists a cover G for H[X] with

wp(G) < p|X|

and |E| ⩾ 2 for all E ∈ G.
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Chapter 5

On the number of sets with a given

doubling constant

This chapter is adapted from the paper [31] which has been published at Israel Journal of

Mathematics.

5.1 Introduction

Our main theorem in this chapter confirms Conjecture 1.4.1 for all K = o(s/(log n)3).

Theorem 5.1.1. Let s, n be integers and 2 ⩽ K ⩽ o
(

s
(logn)3

)
. The number of sets J ⊂ [n] with

|J | = s such that |J + J | ⩽ K|J | is at most

2o(s)
(1

2Ks

s

)
.

We will in fact prove stronger bounds on the error term than those stated above, see Theorem

5.4.1. Nevertheless, we are unable to prove the conjecture in the range K = Ω(s/(log n)3), and

actually the conjecture is false for a certain range of values of s andK ≫ s/ log n. More precisely,

for any integers n, s, and any positive numbers K, ϵ with min{s, n1/2−ϵ} ⩾ K ⩾ 4 log(24C)s
ϵ logn , there

are at least ( n
2
K
4

)( Ks
8

s− K
4

)
⩾

(
CKs

s

)
sets J ⊂ [n] with |J | = s and |J + J | ⩽ Ks. The construction is very simple: let P be an

arithmetic progression of size Ks/8 and set J = J0 ∪ J1, where J0 is any subset of P of size

s−K/4, and J1 is any subset of [n] \ P of size K/4. For convenience we provide the details in

the appendix of [31].
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Our methods also allow us to characterize the typical structure of an s-set with doubling constant

K, and obtain the following result.

Theorem 5.1.2. Let s, n be integers and 2 ⩽ K ⩽ o
(

s
(logn)3

)
. For almost all sets J ⊂ [n]

with |J | = s such that |J + J | ⩽ K|J |, there is a set T ⊂ J such that J \ T is contained in an

arithmetic progression of size 1+o(1)
2 Ks and |T | = o(s).

In the case s = Ω(n) (and hence K = O(1)), this result was proved by Mazur [105]. We will

provide better bounds for the error terms in Theorem 5.5.1, below.

5.1.1 Abelian Groups

Notice that the doubling constant is defined for finite subsets of any abelian group. So, given

a finite subset Y of an abelian group, one might ask: how many subsets of Y of size s with

doubling constant K there are? We are also able to provide an answer to this more general

question. From now on, fix an arbitrary abelian group G throughout this chapter. To state our

main result formally in the context of general abelian groups we define, for each positive real

number t, the quantity β(t) to be the size of the biggest subgroup of G of size at most t, that

is,

β(t) = max
{
|H| : H ⩽ G, |H| ⩽ t

}
. (5.1)

Theorem 5.1.3. Let s, n be integers, 2 ⩽ K ⩽ o( s
(logn)3

), and Y ⊂ G with |Y | = n. The

number of sets J ⊂ Y with |J | = s such that |J + J | ⩽ K|J | is at most

2o(s)
(1

2(Ks+ β)

s

)
,

where β := β((1 + o(1))Ks).

Again we will actually prove somewhat stronger (although slightly more convoluted) bounds

for Theorem 5.1.3, see Theorem 5.4.1. We remark that Theorem 5.1.3 implies Theorem 5.1.1,

since the only finite subgroup of Z is the trivial one, so in this case β(t) = 1 for all t. Finally let

us remark that Theorem 5.1.3 is best possible in many cases. Indeed suppose for some integers

l,m, that the largest subgroup H ⩽ G with |H| ⩽ m ⩽ |G| is of size β = m
2l−1 , then there are

at least (m+β
2

s

)
sets J ⊂ G of size s such that |J + J | ⩽ m. To see this, take an arithmetic progression

P ⊂ G/H of size l (there exists one because of the choice of H) and consider B = P +H. Since

|B + B| ⩽ |P + P ||H| = m, for every set J ⊂ B of size s we have |J + J | ⩽ |B + B| ⩽ m.

Therefore, there are at least ( lm
2l−1

s

)
=

(m+β
2

s

)
124



sets J ⊂ B of size s with |J + J | ⩽ m.

5.2 The Asymmetric Container Lemma

In this section we will state our main tool and give a brief explanation of how we will apply it

to our problem. Let Y ⊂ G, with |Y | = n, and observe that when trying to count sets J ⊂ Y

with |J | = s and |J+J | ⩽ Ks, one may instead count sets J ⊂ Y such that there is a set I ⊂ Y

with J + J ⊂ I and |I| ⩽ Ks. Keeping this in mind, the following definition will be useful.

Definition 5.2.1. Given disjoint copies of Y +Y and Y , namely Y0, Y1 respectively, and A ⊂ Y0

and B ⊂ Y1, we define H(A,B) to be the hypergraph with vertex set V (H(A,B)) := (Y0 \A)∪B
and edge set

E(H(A,B)) :=
{
({c}, {a, b}) : c ∈ Y0 \A, a, b ∈ B, a+ b = c

}
.

Sometimes when A and B are clear from the context we will denote H(A,B) simply by H.

Notice that H(A,B) is not uniform since there are edges ({c}, {a}) corresponding to a+ a = c,

but these will not be a problem. The usefulness of Definition 5.2.1 is that now for every pair of

sets (I, J) with J + J ⊂ I we know that (Y0 \ I) ∪ J doesn’t contain any edges of H(A,B), so

(Y0 \ I) ∪ J would usually be called an independent set, but instead we will call the pair (I, J)

independent for convenience. Since we have a method for counting what are usually called

independent sets in hypergraphs, and each of those is in correspondence to what we call an

independent pair, we can obtain a theorem for counting independent pairs.

To state the main tool in this chapter we will need to go into some more slightly technical

definitions. We first define a useful generalization of uniform hypergraphs, that includes the

hypergraph presented in Definition 5.2.1. Given disjoint finite sets V0, V1 we define an (r0, r1)-

bounded hypergraph H on the vertex set V = V0∪V1 to be a set of edges E(H) ⊂
(
V0
⩽r0

)
×
(
V1
⩽r1

)
.

Note that the hypergraph in Definition 5.2.1 is (1, 2)-bounded. Given a pair (W0,W1) ∈ 2V0 ×
2V1 , we say (W0,W1) violates (e0, e1) ∈ E(H) if e0 ⊂ V0 \W0 and e1 ⊂ W1. If a set (W0,W1)

doesn’t violate any (e0, e1) ∈ E(H) then we call (W0,W1) independent with respect to H. Let

F⩽m(H) ⊂ 2V (H) be the family of independent pairs (W0,W1) such that |W0| ⩽ m, and observe

that for any pair of sets (I, J), with |I| ⩽ m and J + J ⊂ I, we have (I, J) ∈ F⩽m(H(∅, Y )).

We define the codegree d(L0,L1)(H) of L0 ⊂ V0, L1 ⊂ V1 to be the size of the set

{(e0, e1) ∈ E(H) : L0 ⊂ e0, L1 ⊂ e1}

and we define the maximum (ℓ0, ℓ1)-codegree of H to be

∆(ℓ0,ℓ1) := max{d(L0,L1)(H) : L0 ⊂ V0, L1 ⊂ V1, |L0| = ℓ0, |L1| = ℓ1}.
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With all of this in mind we introduce a variant of the asymmetric container lemma of Morris,

Samotij and Saxton [111] that we can, once we have suitable supersaturation theorem to check

the codegree condition, apply iteratively and prove Theorem 5.1.1.

Theorem 5.2.2. For all non-negative integers r0, r1, not both zero, and each R > 0, the

following holds. Suppose that H is a non-empty (r0, r1)-bounded hypergraph with V (H) = V0∪V1,
and b, m, and q are integers with b ⩽ min{m, |V1|}, satisfying

∆(ℓ0,ℓ1)(H) ⩽ R
bℓ0+ℓ1−1

mℓ0 |V1|ℓ1
e(H)

(
m

q

)1[ℓ0>0]

(5.2)

for every pair (ℓ0, ℓ1) ∈ {0, 1, . . . , r0} × {0, 1, . . . , r1} \ {(0, 0)}. Then there exists a family

S ⊂
(
V0

⩽r0b

)
×
(
V1

⩽r1b

)
and functions

f : S → 2V0 × 2V1 and g : F⩽m(H) → S,

such that, letting δ = 2−(r0+r1+1)(r0+r1)R−1:

(i) If f(g(I, J)) = (A,B) with A ⊂ V0 and B ⊂ V1, then A ⊂ I and J ⊂ B.

(ii) For every (A,B) ∈ f(S) either |A| ⩾ δq or |B| ⩽ (1− δ)|V1|.

(iii) If g(I, J) = (S0, S1) and f(g(I, J)) = (A,B) then S0 ⊂ V0 \ I and S1 ⊂ J , and |S0| > 0

only if |A| ⩾ δq.

The proof of this variant of the asymmetric container lemma is virtually identical to that in [111],

but, for the sake of completeness, it is provided in the appendix of [31]. Let us remark that the

main difference between this statement of the asymmetric container lemma and the one in [111]

is that we partition the vertex set in two parts and treat them differently, which is essential in

our application. More specifically, we will apply the container lemma iteratively in such a way

that V1 will shrink much more than V0, and to account for this imbalance we must differentiate

between the two sets of the partition. Another small difference is that the hypergraph H doesn’t

need to be uniform. Finally we observe that if S0 is non-empty, where g(I, J) = (S0, S1), then

we must have |A| ⩾ δq, where f(g(I, J)) = (A,B).

5.3 The Supersaturation Results

We would like to remind the reader that G will always be a fixed abelian group throughout this

chapter. To apply Theorem 5.2.2 to our setting we will need, for sets A,B ⊂ G, bounds on the

number of pairs (b1, b2) ∈ B × B such that b1 + b2 ̸∈ A. In the case G = Z, one such result is

Pollard’s Theorem [123], which tell us that if |B| ⩾ (1/2+ ϵ)|A| and ϵ < 1/2 then at least an ϵ2

proportion of all pairs (b1, b2) ∈ B × B are such that b1 + b2 ̸∈ A. To prove similar results for
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arbitrary abelian groups one has to have some control on the structure of the group. With this

in mind, we define the following quantity.

Definition 5.3.1. Given finite sets U, V ⊂ G, we define

α(U, V ) = max
{
|V ′| : V ′ ⊂ G, |V ′| ⩽ |V |, |⟨V ′⟩| ⩽ |U |+ |V | − |V ′|

}
.

Given U, V ⊂ G and x ∈ G we will use the notation 1U ∗ 1V (x) to denote the number of pairs

(u, v) ∈ U × V such that u + v = x. The following theorem is the generalization we want of

Pollard’s theorem for arbitrary abelian groups. It is a simple variant of a result of Hamidoune

and Serra [80], but for completeness we provide a proof in the appendix of [31].

Theorem 5.3.2. Let t be a positive integer and U, V ⊂ G with t ⩽ |V | ⩽ |U | <∞. Then∑
x∈G

min(1U ∗ 1V (x), t) ⩾ t
(
|U |+ |V | − t− α

)
, (5.3)

where α := α(U, V )

This implies the following corollary.

Corollary 5.3.3. Let A,B ⊂ G be finite and non-empty sets, let 0 < ϵ < 1
2 and set β :=

β((1 + 4ϵ)|A|). If |B| ⩾ (12 + ϵ)(|A| + β) then there are at least ϵ2|B|2 pairs (b1, b2) ∈ B2 such

that b1 + b2 ̸∈ A.

Proof. Note first that if |B| ⩾ (1 + ϵ)|A| then the result is trivial, since for each element a ∈ A

there are at most |B| pairs (b1, b2) ∈ B2 with b1 + b2 = a, and therefore there are at least

|B|2 − |A||B| ⩾ ϵ2|B|2 pairs in B whose sum is not in A. When |B| ⩽ (1 + ϵ)|A| we will apply

Theorem 5.3.2 with U = V = B and t = ϵ|B|. We first observe that

α(B,B) ⩽ max
(
β, 2|B| − (1 + 4ϵ)|A|

)
.

Indeed, suppose that B′ ⊂ G satisfies |⟨B′⟩| ⩽ 2|B| − |B′|. If |⟨B′⟩| > (1 + 4ϵ)|A| then

|B′| ⩽ 2|B| − |⟨B′⟩| ⩽ 2|B| − (1 + 4ϵ)|A|. Otherwise, if |⟨B′⟩| ⩽ (1 + 4ϵ)|A|, then by the

definition (5.1) of β, we have |B′| ⩽ |⟨B′⟩| ⩽ β.

Now by Theorem 5.3.2, we have∑
x∈G

min(1B ∗ 1B(x), ϵ|B|) ⩾ ϵ|B|
(
(2− ϵ)|B| −max

(
β, 2|B| − (1 + 4ϵ)|A|

))
.

By subtracting from both sides the sum over x ∈ A, we obtain∑
x∈G\A

min(1B ∗ 1B(x), ϵ|B|) ⩾ ϵ|B|
(
(2− ϵ)|B| −max

(
β, 2|B| − (1 + 4ϵ)|A|

)
− |A|

)
.
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Now, if 2|B| − (1 + 4ϵ)|A| ⩾ β, then, using that |B| ⩽ 2|A|,∑
x∈G\A

1B ∗ 1B(x) ⩾ ϵ|B|
(
4ϵ|A| − ϵ|B|

)
⩾ ϵ2|B|2

as required. Otherwise, if β ⩾ 2|B| − (1 + 4ϵ)|A|, then∑
x∈G\A

1B ∗ 1B(x) ⩾ ϵ|B|
(
(2− ϵ)|B| − β − |A|

)
⩾ ϵ2|B|2,

since |B| ⩾ (12 + ϵ)(|A|+ β) and 0 < ϵ < 1
2 , so (2− ϵ)− 2

1+2ϵ ⩾ ϵ. □

To prove a stability theorem for almost all sets with a given size and doubling constant we will

also need the following result of Mazur [105].

Theorem 5.3.4. Let l and t be positive integers, with t ⩽ l/40, and let B ⊂ Z be a set of size

l. Suppose that ∑
x∈Z

min(1B ∗ 1B(x), t) ⩽ (2 + δ)lt,

for some 0 < δ ⩽ 1/8. Then there is an arithmetic progression P of length at most (1+2δ)l+6t

containing all but at most 3t points of B.

From Theorem 5.3.4 we can easily deduce the following corollary:

Corollary 5.3.5. Let s be an integer, K > 0, and 0 < ϵ < 2−10. If A,B ⊂ Z, with (1− ϵ)Ks2 ⩽

|B| ⩽ (1 + 2ϵ)Ks2 and |A| ⩽ Ks then one of the following holds:

(a) There are at least 4ϵ2K2s2 pairs (b1, b2) ∈ B2 such that b1 + b2 ̸∈ A.

(b) There is an arithmetic progression P of size at most Ks
2 + 32ϵKs containing all but at

most 8ϵKs points of B.

Proof. Suppose first that ∑
x∈Z

min(1B ∗ 1B(x), t) ⩽ (2 + 8ϵ)2ϵ|B|Ks. (5.4)

In this case we apply Theorem 5.3.4 with l := |B|, δ := 8ϵ, and t = 2ϵKs ⩽ l/40, and deduce

that (b) holds. Therefore suppose (5.4) doesn’t hold, in this case∑
x∈Z\A

min(1B ∗ 1B(x), t) ⩾ (2 + 8ϵ)(1− ϵ)ϵK2s2 − t|A|,

since |B| ⩾ (1− ϵ)12Ks. Noting that t|A| ⩽ 2ϵK2s2 it follows that∑
x∈Z\A

1B ∗ 1B(x) ⩾
(
(2 + 8ϵ)(1− ϵ)− 2

)
ϵK2s2 ⩾ 4ϵ2K2s2,

since ϵ < 2−10, so (a) holds as required. □
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5.4 The Number of Sets with a given Doubling

In this section we prove the following statement which implies Theorems 5.1.1 and 5.1.3.

Theorem 5.4.1. Let s, n be integers, let 2 ⩽ K < 2−36 s
(logn)3

, and let Y ⊂ G with |Y | = n.

The number of sets J ⊂ Y with |J | = s such that |J + J | ⩽ K|J | is at most

exp
(
29λK1/6s5/6

√
log n

)(1
2(Ks+ β)

s

)
,

where β := β
(
Ks+ 26K7/6s5/6

√
log n

)
and λ := min

{
K
K−2 , log s

}
.

Theorem 5.4.1 will follow easily from the following container theorem combined with Corollary

5.3.3. We will also use it together with Corollary 5.3.5 to prove Theorem 5.5.1.

Theorem 5.4.2. Let m,n be integers with m ⩾ (log n)2, let Y ⊂ G with |Y | = n, and let

0 < ϵ < 1
4 . There is a family A ⊂ 2Y+Y × 2Y of pairs of sets (A,B), of size

|A| ⩽ exp
(
216

1

ϵ2
√
m(log n)3/2

)
(5.5)

such that:

(i) For every pair of sets J ⊂ Y , I ⊂ Y +Y , with J + J ⊂ I and |I| ⩽ m there is (A,B) ∈ A
such that A ⊂ I and J ⊂ B.

(ii) For every (A,B) ∈ A, |A| ⩽ m and either |B| ⩽ m
logn or there are at most ϵ2|B|2 pairs

(b1, b2) ∈ B ×B such that b1 + b2 ̸∈ A.

Proof that Theorem 5.4.2 implies Theorem 5.4.1. Let A be a family given by Theorem 5.4.2

applied with m := Ks and ϵ > 0 to be chosen later. Then by condition (i), for every s-set J

with doubling constant K there is a pair (A,B) ∈ A such that J ⊂ B and A ⊂ J + J . Define

B to be the family of all sets B that are in some container pair, that is

B = {B ⊂ Y : ∃A such that (A,B) ∈ A}.

Observe that, by Corollary 5.3.3 and condition (ii) on A, for every B ∈ B we have |B| ⩽

(12 + ϵ)(m + β), where β := β((1 + 4ϵ)m), since the number of pairs (b1, b2) ∈ B2 such that

b1 + b2 ̸∈ A is at most ϵ2|B|2 and m
logn ⩽ (12 + ϵ)(m+ β). Therefore the number of sets of size s

with doubling constant K is at most

|B|max
B∈B

(
|B|
s

)
⩽ exp

(
216

1

ϵ2

√
Ks(log n)3/2

)((1+2ϵ
2 )(Ks+ β)

s

)
. (5.6)
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Let λ := min{ K
K−2 , log s}, suppose first that K

K−2 ⩽ log s. By applying the inequality
(
cn
k

)
⩽

( cn−kn−k )
k
(
n
k

)
with k = s, c = 1 + 2ϵ and n = Ks+β

2 , it follows that in this case (5.6) is at most

exp
(
216

1

ϵ2

√
Ks(log n)3/2 + 2ϵλs

)(Ks+β
2

s

)
.

Now choosing ϵ := 24
(
K
s

)1/6√
log n, by our restrictions on K we see that

ϵ < 24
( 1

236(log n)3

)1/6√
log n =

1

4
.

It follows that there are at most exp
(
29λK1/6s5/6

√
log n

)( 1
2
(Ks+β)
s

)
sets of size s with doubling

constant K, when K
K−2 ⩽ log s. If log s ⩽ K

K−2 we use the binomial estimate

(
(1+2ϵ

2 )(Ks+ β)

s

)
⩽ exp

(
4ϵs log

1

ϵ

)(Ks+β
2

s

)
and the result follows by a similar calculation. Since β(m+4ϵm) = β(Ks+26K7/6s5/6

√
log n),

this proves the theorem. □

Before we proceed with the proof of Theorem 5.4.2, let us give a brief overview of how we will

deduce it from Theorem 5.2.2. We fix from now on a finite subset Y ⊂ G with |Y | = n, and

recall that the (1, 2)-bounded hypergraph H(A,B) in Definition 5.2.1 was defined to have as

edges pairs ({c}, {a, b}) where a + b = c, with a, b ∈ B and c ̸∈ A. Note that condition (ii)

in Theorem 5.4.2 implies that H(A,B) has at most ϵ2

2 |B|2 edges, as long as |B| > m
logn . We

remind the reader that a pair of sets I ⊂ Y + Y and J ⊂ Y with J + J ⊂ I correspond to an

independent set in H(A,B) for any A ⊂ Y +Y and B ⊂ Y , since there are no c ̸∈ I and a, b ∈ J

such that a+ b = c. If we additionally assume that (I, J) ∈ F⩽m(H), then we know that every

J that is in such an independent pair satisfies |J + J | ⩽ m.

Our strategy will be to iteratively apply the container lemma until either there are few edges in

the hypergraph H(A,B), or |A| > m, in which case the container doesn’t contain any elements

of F⩽m(H). More precisely we will build a rooted tree T with root H(∅, Y ) whose vertices

correspond to hypergraphs H(A,B) and whose leaves correspond to a family A satisfying the

conclusion of Theorem 5.4.2. Given a vertex H(A,B) of the tree, such that |A| ⩽ m, |B| > m
logn

and

e(H(A,B)) >
ϵ2

2
|B|2, (5.7)

we will generate its children by applying the following procedure:

(a) Apply the asymmetric container lemma (Theorem 5.2.2) to H := H(A,B) setting

R :=
2

ϵ2
, q :=

m

log n
, b :=

√
m

log n
.
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Notice that the co-degrees of H satisfy

max
{
∆(1,0)(H),∆(0,1)(H)

}
⩽ |B| = 2

ϵ2
ϵ2|B|2

2|B|
⩽ R

e(H)

|B|

and

∆(0,2)(H) = ∆(1,1)(H) = ∆(1,2)(H) = 1 =
2

ϵ2
b2

q|B|2
ϵ2

2
|B|2 ⩽ R

b2

q|B|2
e(H),

since (5.7) holds. Since b < q < |B|, it follows that

∆(0,2)(H) ⩽ R
b2

q|B|2
e(H) ⩽ R

b

|B|2
e(H),

∆(1,1)(H) ⩽ R
b2

q|B|2
e(H) ⩽ R

b

q|B|
e(H)

and

∆(1,0)(H) ⩽ R
e(H)

|B|
⩽ R

e(H)

q
,

as required.

(b) By Theorem 5.2.2, there exists a family C ⊂ 2(Y+Y )\A × 2B of at most(
n2

b

)(
|B|
2b

)
⩽ n4b ⩽ e4

√
m logn, (5.8)

pairs of sets (C,D) that satisfies the conditions of the container lemma. That is for each

independent pair (I, J) ∈ F⩽m(H), with I ⊂ Y + Y and J ⊂ Y , there is (C,D) ∈ C such

that C ⊂ I and J ⊂ D, and either |C| ⩾ δ m
logn , or D ⩽ (1− δ)|B|.

(c) For each (C,D) ∈ C, let H(A ∪ C,D) be a child of H(A,B) in the tree T .

Now to count the number of leaves of T we will first bound its depth.

Lemma 5.4.3. The tree T has depth at most d = 214ϵ−2 log n.

Proof. We will prove that after d iterations either |A| > m, |B| ⩽ m
logn e(H(A,B)) ⩽ ϵ2

2 |B|2.
Notice that the δ provided by Theorem 5.2.2 in this application is 2−13ϵ2 and in each iteration

either we increase the size of A by δq or we decrease the size of B by δ|B|. After d iterations,

either we would have increased the size of A more than d
2 times, in which case

|A| > d

2
δq =

213 log n

ϵ2
2−13ϵ2

m

log n
= m,

or we would have reduced the size of B at least d
2 times, in which case

|B| ⩽ (1− δ)
d
2n < e−

δd
2 n ⩽ e− lognn = 1.
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In either case, we would have stopped already by this point because we only generate children

of H(A,B) if |A| ⩽ m, |B| > m
logn and (5.7) holds. □

Proof of Theorem 5.4.2. Let L be the set of leaves of the tree T constructed above, and define

A := {(A,B) : A ⊂ Y + Y, B ⊂ Y, H(A,B) ∈ L, |A| ⩽ m}.

Notice that for every (A,B) ∈ A, we have either the bound e(H(A,B)) ⩽ ϵ2

2 |B|2 or |B| ⩽ m
logn ,

since they come from the leaves of T and |A| ⩽ m. Since the edges of H(A,B) correspond

exactly to pairs a, b ∈ B such that a+ b ̸∈ A, it follows that A has property (ii).

To bound the size of A, notice that the number of leaves of the tree T is at most Zd where Z

denotes the maximum number of children of a vertex of the tree and d denotes its depth. Thus,

by (5.8) and Lemma 5.4.3,

|A| ⩽ |L| ⩽ Zd ⩽ exp
(
216

1

ϵ2
√
m(log n)3/2

)
,

so A satisfies (7.4), as required.

Finally, observe that for every pair of sets J ⊂ Y, I ⊂ Y +Y with J +J ⊂ I and |I| ⩽ m, there

is (A,B) ∈ A such that A ⊂ I and J ⊂ B. Indeed (I, J) ∈ F⩽m
(
H(∅, Y )

)
and therefore, by

property (b) of our containers, there exists a path from the root to a leaf of T such that A ⊂ I

and J ⊂ B for every vertex H(A,B) of the path, so (i) holds. □

5.5 Typical Structure Result

In this section we use Theorem 5.4.2 to determine the typical structure of a set J ⊂ [n] of a

given size with doubling constant K.

Theorem 5.5.1. Let s, n be integers, let 2 ⩽ K ⩽ s
2120(logn)3

, and let J ⊂ [n] be a uni-

formly chosen random set with |J | = s and |J + J | ⩽ K|J |. With probability at least 1 −
exp(−K1/6s5/6

√
log n) the following holds: there is a set T ⊂ J , of size |T | ⩽ 215K1/6s5/6

√
log n,

such that J \ T is contained in an arithmetic progression of size

Ks

2
+ 217K7/6s5/6

√
log n.

The proof of Theorem 5.5.1 is similar to that of Theorem 5.4.1, but we use Corollary 5.3.5 as

well as Corollary 5.3.3.

Proof of Theorem 5.5.1. Let G := Z and apply Theorem 5.4.2 to the set Y := [n] with m := Ks

and ϵ > 0 to be chosen later. We say B ⊂ [n] is (ϵ,Ks)-close to an arithmetic progression if

there is an arithmetic progression P with |P | ⩽ Ks
2 +25ϵKs, and a set T ⊂ B with |T | ⩽ 25ϵ|B|
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such that B \ T ⊂ P . We claim that if A is the family provided by Theorem 5.4.2, then for

every pair (A,B) ∈ A either

(I) |B| ⩽ (1− ϵ)Ks2 or

(II) B is (ϵ,Ks)-close to an arithmetic progression.

To see this, note first that, by condition (ii) in Theorem 4.2, for every pair (A,B) ∈ A either

there are at most ϵ2|B|2 pairs b1, b2 ∈ B with b1 + b2 ̸∈ A or |B| ⩽ m
logn , and so, by Corollary

5.3.3, |B| ⩽ (1 + 2ϵ)Ks2 . Now, if (I) doesn’t hold, that is |B| ⩾ (1 − ϵ)Ks2 , then, by Corollary

5.3.5, (II) holds, since there are at most ϵ2|B|2 < 4ϵ2K2s2 pairs b1, b2 ∈ B such that b1+b2 ̸∈ A.

Now we will count the number of sets J of size s and doubling constant K such that J is not

(24ϵ,Ks)-close to an arithmetic progression. Recall from Theorem 5.4.2 (i) that, for any such

set, there exists (A,B) ∈ A such that J ⊂ B. Now, observe that there are at most |A|
(
(1−ϵ)Ks

2
s

)
sets J of size s that are contained in a set B such that (A,B) ∈ A and |B| ⩽ (1−ϵ)Ks2 . Choosing

ϵ := 26(Ks )
1/6√

log n < 2−10 and using the bound (7.4) on the size of A, we obtain

|A|
(
(1− ϵ)Ks2

s

)
⩽ exp

(
216ϵ−2

√
Ks(log n)3/2 − ϵs

)(Ks
2

s

)
⩽ exp

(
− 25K1/6s5/6(log n)1/2

)(Ks
2

s

)
.

(5.9)

Finally we count the number of sets J of size s that are not (24ϵ,Ks)-close to an arithmetic

progression and are contained in a set B such that (A,B) ∈ A and B is (ϵ,Ks)-close to

an arithmetic progression. For each such B, let P be an arithmetic progression with |P | ⩽
Ks
2 + 25ϵKs, and T ⊂ B be a set with |T | ⩽ 25ϵ|B| ⩽ 25ϵKs, such that B \ T ⊂ P . Observe

that, there at most ∑
s′⩾29ϵs

(
(1 + 2ϵ)Ks2
s− s′

)(
25ϵKs

s′

)
(5.10)

s-sets J ⊂ B that are not (24ϵ,Ks)-close to an arithmetic progression, since they must have

s− s′ elements in B \ T and s′ elements in T for some s′ ⩾ 29ϵs. Indeed, otherwise J \ T ⊂ P ,

with |P | ⩽ Ks+ 29ϵKs and |J ∩ T | < 29ϵ|J |. To bound this we will use(
a

c− d

)(
b

d

)
⩽

(
a

c

)(4bc
ad

)d
,
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valid for d ⩽ c ⩽ a/4. Note that, by our choice of ϵ, we have |A| ⩽ eϵs (cf. (5.9)). Hence

summing (5.10) over (A,B) ∈ A we obtain1

|A| · s max
s′⩾29ϵs

(1 + 4ϵ)s
( Ks

2

s− s′

)(
25ϵKs

s′

)
⩽ |A| · s max

s′⩾29ϵs
(1 + 4ϵ)s

(Ks
2

s

)(28ϵs
s′

)s′
⩽
(28ϵs
29ϵs

)29ϵs
26ϵs

(Ks
2

s

)
⩽ exp

(
− 211K1/6s5/6

√
log n

)(Ks
2

s

)
.

(5.11)

Finally observe that the bound (5.9) and (5.11) imply the probability we claimed in the state-

ment since, by taking all subsets of size s of an arithmetic progression of length Ks
2 , there are

at least
(Ks

2
s

)
sets of size s and doubling constant K. □

1We remark that if K < 16 then
(
25ϵKs

s′

)
= 0 for all s′ ⩾ 29ϵs, so we may suppose that K ⩾ 16.
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Chapter 6

The typical structure of sets with

small sumset

This chapter presents joint work with Mauŕıcio Collares, Robert Morris, Natasha Morrison

and Victor Souza. It is adapted from the paper [32] which has been published in the journal

International Mathematics Research Notices.

6.1 Introduction

Here we will obtain a significantly more precise structural description in the case λ = O(1). For

each λ ⩾ 3 and ε > 0, define

c(λ, ε) := 220λ2 log(1/ε) + 2560λ32. (6.1)

Our main theorem, which determines (up to an additive constant) the length of the smallest

arithmetic progression containing a typical set with bounded doubling1, is as follows.

Theorem 6.1.1. Fix λ ⩾ 3 and ε > 0, let n ∈ N be sufficiently large, and let k ⩾ (log n)4. Let

A ⊂ [n] be chosen uniformly at random from the sets with |A| = k and |A + A| ⩽ λk. Then

there exists an arithmetic progression P with

A ⊂ P and |P | ⩽ λk

2
+ c(λ, ε)

with probability at least 1− ε.

1We (informally) call |A+A|/|A| the doubling of A, so A has bounded doubling if |A+A| = O(|A|).
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When λ is large and ε is very small the constant c(λ, ε) is not far from best possible. Indeed,

a simple construction (see Section 6.10) shows that with probability at least ε the smallest

arithmetic progression containing A has size λk/2 + Ω
(
λ2 log(1/ε)

)
.

We will use Theorem 6.1.1 to deduce the following counting result.

Corollary 6.1.2. For every λ ⩾ 3, and every n, k ∈ N with (log n)4 ⩽ k = o(n), we have

∣∣{A ⊂ [n] : |A| = k, |A+A| ⩽ λk
}∣∣ = Θλ(1) ·

n2

k

(
λk/2

k

)
. (6.2)

The upper bound in Corollary 6.1.2 is an almost immediate consequence of Theorem 6.1.1, and

our lower bound follows from a straightforward calculation (see Sections 6.9 and 6.10). For both

bounds we obtain a constant of the form exp
(
λΘ(1)

)
for λ large, and it would be interesting to

determine the correct exponent of λ.

We remark that similar results can be deduced from our proof for all 2 < λ < ko(1) (see

Section 6.9), but the constant given by our method tends to infinity as λ → 2. In order to

keep the calculations as simple as possible, we have chosen to focus on the case λ ⩾ 3. Let us

note here also that the bound k ⩾ (log n)4 can be improved somewhat (see Theorem 6.9.1);

however, some polylogarithmic factor is necessary, since (as was observed in Chapter 5) the

union of an arithmetic progression of length k − λ + 2 with λ − 2 arbitrary points satisfies

|A| = k and |A + A| ⩽ λk, and there are at least Θ(nλ) such sets, which is larger than (6.2)

when k = o(log n). It seems plausible, however, that Theorem 6.1.1 and Corollary 6.1.2 could

hold (for λ fixed) whenever k/ log n→ ∞.

In order to understand why Theorem 6.1.1 should be true, recall first that, by Frĕıman’s theorem,

a set has bounded doubling if and only if it is a subset of positive density of a generalised

arithmetic progression of bounded dimension. Now, there are O(nd+1) generalised arithmetic

progressions P of dimension d, and if A were a random subset of P of positive density, then

A + A would be unlikely to ‘miss’ many elements of P + P , which implies that (typically)

|A + A| ⩾ (d + 1 + o(1)) · |P |.2 This suggests that the number of choices for A should be

roughly nd+1 ·
(λk/(d+1)

k

)
, which (for k ≫ log n) is maximised by taking d = 1, and this leads to

the intuition that most sets of bounded doubling should in fact be contained in an arithmetic

progression of size roughly |A + A|/2. As explained in Chapter 5, this intuition was partially

confirmed in previous works, which showed that there typically exists an arithmetic progression

P of length (1/2 + o(1))|A+A| such that |A \ P | = o(|A|).

The main tool in the proof of Theorem 6.1.1 is Theorem 5.4.2 proved in Chapter 5. We will

use this container theorem in three different ways: first, to control the rough structure of a

2The factor of d + 1 is attained by a union of d (unrelated) arithmetic progressions; for most d-dimensional
generalised arithmetic progressions the doubling would be even larger.
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set with bounded doubling (see Theorem 6.3.3 and Lemma 6.5.2); then to prove a variant of a

probabilistic lemma of Green and Morris [76] (see Lemma 6.4.1); and finally to control the fine

structure of the set near the ends of the progression containing it (see Section 6.8). We consider

this last step to be the most interesting aspect of the proof, since we are not aware of any

previous application of containers to the task of ‘cleaning up’ a set, that is, replacing a rough

structural result with a precise one. We hope that our proof will inspire further applications of

this type in other combinatorial settings.

6.2 An overview of the proof

In this section we will prepare the reader for the details of the proof by giving a rough outline

of the main ideas. Let us fix λ ⩾ 3, and let k ∈ N be sufficiently large. We will mostly work

with sets of integers that are ‘close’ to being a subset of the interval [λk/2], since Theorem 5.5.1

implies that almost all of the sets that we need to count are close to an arithmetic progression

of length λk/2, and any such progression can be mapped into [λk/2] (see Section 6.5 for the

details).3

Given a set A ⊂ Z, let us write

b(A) := |A \ [λk/2]| and r(A) := max(A)−min(A)− λk/2. (6.3)

Let us also fix ε > 0 and set δ := 2−32λ−3. By Lemma 6.5.1, below, the problem will reduce to

bounding the size of the following family of sets.

Definition 6.2.1. Let I denote the family of sets A ⊂ {−λk/2, . . . , λk} with |A| = k and

|A+A| ⩽ λk, such that

b(A) ⩽ δk and r(A) ⩾ c(λ, ε),

and the sets
{
x ∈ A : x ⩽ 0

}
and

{
x ∈ A : x > λk/2

}
are non-empty.

We will partition the family I according to the ‘density’ of the set B := A \ [λk/2]. To be

precise, set

f(λ) := 210λ3, (6.4)

and say that B is sparse if r(A) > f(λ)b(A). The following lemma, which is proved in Sec-

tion 6.6, bounds the number of sets A ∈ I such that B is sparse.

3For simplicity, we will assume throughout the paper that λk/2 is an integer.
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Lemma 6.2.2. For every λ ⩾ 3 and ε ∈ (0, 1), and every k ∈ N, we have∣∣∣{A ∈ I : r(A) > f(λ)b(A)
}∣∣∣ ⩽ ε

λ3

(
λk/2

k

)
.

To bound the number of choices forA, we will bound separately the choices forB andA′ := A\B.

Assume (for simplicity) that min(A) = 0, so max(A) = λk/2+r. The proof of Lemma 6.2.2 uses

the following simple idea: the set (A′ +max(A)) \ [λk] typically contains about 2r/λ elements,

and this restricts the size of the set A′ + A′, and hence the number of choices for A′. More

precisely, we will use a straightforward counting argument when (A′ +max(A)) \ [λk] is much

smaller than r/λ (see Lemma 6.6.3), and an application of the container theorem when it is

larger (see Lemma 6.6.4). Moreover, the assumption that B is sparse allows us to (trivially)

bound the number of choices for B.

We remark that our application of the container theorem in the proof of Lemma 6.2.2 proceeds

via a probabilistic lemma (Lemma 6.4.1), which is a generalisation of a result of Green and

Morris [76]. This lemma gives a (close to tight) upper bound on the number of k-subsets of

[n] whose sumset missed many elements of {2, . . . , 2n}, and is proved in Section 6.4, using

Theorem 5.4.2.

When r(A) ⩽ f(λ)b(A), we will say that the set is dense. In Sections 6.7 and 6.8 we will prove

the following lemma, which bounds the number of dense sets in I.

Lemma 6.2.3. For every λ ⩾ 3 and ε ∈ (0, 1), and every k ∈ N, we have∣∣∣{A ∈ I : r(A) ⩽ f(λ)b(A)
}∣∣∣ ⩽ ε

λ3

(
λk/2

k

)
.

The proof of Lemma 6.2.3 is significantly more difficult than that of Lemma 6.2.2, and is the

most interesting and novel part of the argument, involving a surprising and unusual application

of the container method. Set A′ := A ∩ [λk/2] and B := A \ A′, as before, and suppose that

|B| = b and |(B + B) \ [λk]| = µb. The main difficulties arise when r = O(µb) and µ = Θ(λ),

and we first take care of the remaining cases in Section 6.7.

For these ‘easy’ cases (see Lemmas 6.7.4 and 6.7.5) we use similar ideas to those used in the

proof of Lemma 6.2.2 (see the sketch above), except that instead of using a trivial bound, we

will need to apply the container theorem (via Theorem 6.3.2) in order to bound the number of

choices for the set B (see Lemma 6.7.2), and the calculations are significantly more delicate.

In particular, we will need to use our bounds on the size of both (A′ + max(A)) \ [λk] and

(B +B) \ [λk] to bound the size of A′ +A′, and thus the number of choices for A′.

Counting the sets with r = O(µb) and µ = Θ(λ) is the most interesting part of the proof. The

key idea is to use the container theorem to obtain a collection of ‘containers’ (C,D) for the
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‘missing’ set M(A) := [λk] \ (A+A), which is typically (see Lemma 6.8.2) contained in the set

Y + Y , where Y is the set of points that are ‘close’ to the endpoints of [λk/2]. The containers

satisfy M(A) ⊂ C and A ∩ Y ⊂ D, and moreover D misses roughly |C|/2 points of Y (for the

precise statement, see Corollary 6.8.1). The key step (Lemma 6.8.3) then uses these properties

to bound the number of sets A corresponding to each container. Taking a union bound over

containers, it follows that there are at most

exp

(
− r

219λ2

)(
λk/2

k

)
sets A ∈ I with r(A) = r ⩽ f(λ)b(A), and this easily implies Lemma 6.2.3.

The rest of the paper is organised as follows. First, in Section 6.3, we recall the main results

of Chapter 5, and deduce the container theorem we will use in the proof (Corollary 6.3.4). In

Section 6.4 we use this container theorem to prove the probabilistic lemma mentioned above

(Lemma 6.4.1), and in Section 6.5 we will use the results of Chapter 5 to reduce the problem

to that of bounding the size of the set I. In Section 6.6 we prove Lemma 6.2.2, in Sections 6.7

and 6.8 we prove Lemma 6.2.3, and in Section 6.9 we put the pieces together and prove The-

orem 6.1.1. Finally, in Section 6.10, we provide two simple constructions that show that the

upper bounds in Theorem 6.1.1 and Corollary 6.1.2 are not far from best possible.

6.3 The container theorem

In this section we will recall the main results of Chapter 5, which will play an important role

in the proofs of our main theorems. We begin by restating the main container theorem from

Chapter 5 in a slightly simpler form.

Theorem 6.3.1 (Theorem 5.4.2). Let m ⩾ (log n)2, let Y ⊂ Z with |Y | = n, and let 0 < γ <

1/4. There is a family A ⊂ 2Y+Y × 2Y of pairs of sets (A,B), of size

|A| ⩽ exp
(
216γ−2√m (log n)3/2

)
, (6.5)

such that:

(i) For each J ⊂ Y with |J + J | ⩽ m, there is (A,B) ∈ A with A ⊂ J + J and J ⊂ B.

(ii) For every (A,B) ∈ A, |A| ⩽ m and either |B| ⩽ m
logn or there are at most γ2|B|2 pairs

(b1, b2) ∈ B ×B such that b1 + b2 /∈ A.
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The reader may find it useful to imagine4 the statement of Theorem 6.3.1 as saying that for

each set J ⊂ Y , there exists a ‘container’ (A,B) ∈ A such that

J ⊂ B, B +B ≈ A and A ⊂ J + J.

Moreover, and crucially, the number of containers is sub-exponential in m.

We will also use the following two consequences of Theorem 6.3.1, which were both proved in

Chapter 5. The first determines the number of sets A ⊂ [n] with |A| = k and |A+A| ⩽ λk up

to a factor of 2o(k). We will use it in Section 6.7 to bound the number of choices for A \ [λk/2].

Theorem 6.3.2 (Theorem 5.4.1). Let n, k ∈ N, and let 2 < λ < 2−36 k
(logn)3

. The number of

sets A ⊂ [n] with |A| = k such that |A+A| ⩽ λk is at most

exp
(
29λ1/6k5/6 log k

√
log n

)(λk/2
k

)
.

The second gives structural information about a typical set with small doubling; we will use it

in Section 6.5. The following is a slight generalisation of Theorem 5.5.1, but follows from the

same proof; the details can be found in [32, Appendix A].

Theorem 6.3.3 (Theorem 5.5.1). Let n, k ∈ N and 2 ⩽ λ ⩽ 2−120 k
(logn)3

. Suppose that

28λ1/6k−1/6
√
log n ⩽ γ < 2−8. For all but at most

e−γk
(
λk/2

k

)
sets A ⊂ [n] with |A| = k and |A + A| ⩽ λk, the following holds: there exists T ⊂ A, with

|T | ⩽ 29γk, such that A \ T is contained in an arithmetic progression of size λk/2 + 27γλk.

The upper bounds on λ in Theorems 6.3.2 and 6.3.3 are the reason why we require the bound

k ⩾ (log n)4 in Theorem 6.1.1 and Corollary 6.1.2. We remark that some log-factor is necessary

here, since it was observed in Chapter 5 that the conclusions of the theorems fail to hold if

k = o
(
λ log n

)
.

We will apply Theorem 6.3.1 (in Sections 6.4 and 6.8) via the following corollary.

Corollary 6.3.4. Let 0 < γ < 1/4, let S1, S2 ⊂ Z be intervals, and set

Y := S1 ∪ S2 and X := (S1 + S1) ∪ (S2 + S2). (6.6)

Then there is a family B ⊂ 2X × 2Y of size at most

exp
(
217γ−2

√
|Y |
(
log |Y |

)3/2)
(6.7)

4This intuition will be sufficient in this chapter; however, in Chapter 7 we will need a more refined notion of
B +B ≈ A.
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such that:

(a) For every pair of sets U ⊂ Y and W ⊂ X \ (U + U), there exists (C,D) ∈ B such that

W ⊂ C and U ⊂ D.

(b) For every (C,D) ∈ B,

|D| ⩽ max

{
(1 + 4γ)|Y | − |C|

2
,

3|Y |
log |Y |

}
. (6.8)

Note that replacing W ⊂ X \ (U +U) by W = X \ (U +U) in part (a) would give an equivalent

statement; however, we will find this formulation convenient. To deduce Corollary 6.3.4 from

Theorem 6.3.1, we will need the following easy lemma.

Lemma 6.3.5. Let γ > 0, let S1, S2 ⊂ Z be intervals, and set

Y := S1 ∪ S2 and X := (S1 + S1) ∪ (S2 + S2).

Let C ⊂ X and D ⊂ Y . If

|D| ⩾ (1 + 4γ)|Y | − |C|/2

then there are at least γ2|D|2 pairs (b1, b2) ∈ D ×D such that b1 + b2 ∈ C.

Proof. Suppose first that S1 ∩ S2 is non-empty, so X = Y + Y , and let the elements of D be

d1 < · · · < dℓ. Then D +D ⊂ X contains the 2ℓ− 1 elements

d1 + d1 < d1 + d2 < · · · < d1 + dℓ < d2 + dℓ < · · · < dℓ + dℓ,

and 2ℓ−1 ⩾ (2+8γ)|Y |−|C|−1 = |X|−|C|+8γ|Y |, since |X| = 2|Y |−1. Since C ⊂ X, it follows

that there are at least 8γ|Y | pairs (b1, b2) ∈ D×D such that b1 + b2 ∈ C and {b1, b2} ∩ {d1, dℓ}
is non-empty. Removing d1 and dℓ from D, and repeating the argument γ|Y | times, we obtain

γ2|Y |2 pairs (b1, b2) ∈ D ×D such that b1 + b2 ∈ C.

When S1 and S2 are disjoint, we simply apply the argument above for the two sets D1 := D∩S1
and D2 := D ∩ S2. To spell out the details, for each i ∈ {1, 2} there are 2|Di| − 1 pairs

(b1, b2) ∈ Di×Di with distinct sums such that either b1 = min(Di) or b2 = max(Di). Moreover,

D1 +D1 and D2 +D2 are disjoint subsets of X, and

2|D| − 2 ⩾ (2 + 8γ)|Y | − |C| − 2 = |X| − |C|+ 8γ|Y |,

since |X| = 2|Y |−2. As before, it follows that there are at least 8γ|Y | pairs (b1, b2) ∈ D×D such

that b1 + b2 ∈ C and either b1 ∈ {min(D1), min(D2)} or b2 ∈ {max(D1), max(D2)}. Removing

the minimum and maximum elements of D1 and D2, and repeating the argument γ|Y | times,

we obtain γ2|Y |2 pairs (b1, b2) ∈ D ×D such that b1 + b2 ∈ C, as claimed. □

141



Proof of Corollary 6.3.4. Applying Theorem 6.3.1 with n := |Y | and m := 3|Y |, we obtain a

family A ⊂ 2Y+Y × 2Y , with

|A| ⩽ exp
(
217γ−2

√
|Y |
(
log |Y |

)3/2)
,

satisfying properties (i) and (ii) of the theorem. We claim that

B :=
{
(X \A,B) : (A,B) ∈ A

}
⊂ 2X × 2Y

satisfies properties (a) and (b) of Corollary 6.3.4.

To show that property (a) holds, let U ⊂ Y and W ⊂ X \ (U + U), and set J := U . Noting

that J ⊂ Y , and that

|J + J | ⩽ |Y + Y | ⩽ 3|Y | = m,

it follows from Theorem 6.3.1(i) that there exists (A,B) ∈ A with A ⊂ J + J and J ⊂ B, and

hence there exists (C,D) = (X \A,B) ∈ B such that W ⊂ C and U ⊂ D.

For property (b), let (C,D) ∈ B, and observe that, by Theorem 6.3.1(ii), either |D| ⩽ 3|Y |
log |Y | , or

there are at most γ2|D|2 pairs (b1, b2) ∈ D × D such that b1 + b2 ∈ C. In the latter case, we

have |D| ⩽ (1 + 4γ)|Y | − |C|/2, by Lemma 6.3.5. Since |B| ⩽ |A|, the corollary follows. □

6.4 A probabilistic lemma

Green and Morris [76, Theorem 1.3] used their bounds on the number of sets with small sumset

to prove that if S is a random subset of N, with each element included in S independently with

probability 1/2, then

P
(∣∣N \

(
S + S

)∣∣ ⩾ m
)
= 2−m/2+o(m).

We will use Corollary 6.3.4 to prove the following generalisation of their theorem. We remark

that a similar result (with a slightly larger error term) for larger values of k can be deduced

from exactly the same proof.

Lemma 6.4.1. Let n, k ∈ N, with k ⩽ 2n/3, and set p := k/n. If S is a uniformly-chosen

random subset of [n] of size k, then

P
(∣∣{2, . . . , 2n} \ (S + S

)∣∣ ⩾ m
)
⩽ exp

(
216m7/8

)
·
(
1− p

)m/2
. (6.9)

In the proof of Lemma 6.4.1 we will also use the following well-known inequality (see, e.g., [3,

Lemma 5.2]).
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Lemma 6.4.2 (Pittel’s inequality). Let n, k ∈ N with k ⩽ n, and set p := k/n. If I is a

monotone decreasing property on [n], then

P
(
I holds for a random k-subset of [n]

)
⩽ 2 · P

(
I holds for a p-random subset of [n]

)
.

Proof. Following the proof in [3], recall that Bin(n, p) ⩽ ⌈pn⌉ = k holds with probability at

least 1/2. Since I is monotone decreasing, the claimed bound follows. □

We first prove a simple lemma that will also be useful in Section 6.8.

Lemma 6.4.3. Let n ∈ N and k ∈ [n], set p := k/n, and let M ∈ N. If S is a uniformly-chosen

random subset of [n] of size k, then

P
({
M + 1, . . . , 2n−M + 1

}
̸⊂ S + S

)
⩽

8

p2
·
(
1− p2

)M/2
.

Proof. Observe that the left-hand side is at most

2n−M+1∑
x=M+1

P
(
x /∈ S + S

)
⩽ 2

n+1∑
x=M+1

P
(
x /∈ S + S

)
,

since, by symmetry, P
(
x /∈ S + S

)
= P

(
2n + 2 − x /∈ S + S

)
. Now, for x ⩽ n + 1, we can use

Pittel’s inequality to bound

P
(
x /∈ S + S

)
= P

( ⌊x/2⌋⋂
i=1

({
i /∈ S

}
∪
{
x− i /∈ S

}))
⩽ 2
(
1− p2

)(x−1)/2
.

It follows that

P
({
M + 1, . . . , 2n−M + 1

}
̸⊂ S + S

)
⩽ 4

∞∑
x=M+1

(
1− p2

)(x−1)/2
⩽

8

p2
(
1− p2

)M/2
,

as claimed. □

We are now ready to deduce Lemma 6.4.1 from Corollary 6.3.4.

Proof of Lemma 6.4.1. Observe first that, since 1 − p ⩾ e−2p for 0 ⩽ p ⩽ 2/3, the claimed

bound holds trivially if pm ⩽ 216m7/8. We may therefore assume that m ⩾ 2128p−8.

We will use Lemma 6.4.3 to deal with the case that the ‘middle’ is not covered by S+S. To be

precise, setM := ⌈4m/p⌉ and let us write E for the event that
{
2M+1, . . . , 2n−2M+1

}
⊂ S+S.

Note that if E holds, then

{2, . . . , 2n} \ (S + S) ⊂ X :=
{
2, . . . , 2M

}
∪
{
2n− 2M + 2, . . . , 2n

}
.
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Setting W := X \ (S + S), it follows that

P
(∣∣{2, . . . , 2n} \ (S + S

)∣∣ ⩾ m
)
⩽ P

(
|W | ⩾ m

)
+ P(Ec).

By Lemma 6.4.3, we have5

P(Ec) ⩽ 8

p2
(
1− p2

)M
⩽

8

p2
(
1− p

)m
,

where the second inequality follows since 1− x2 ⩽ (1− x)x/2 for all 0 ⩽ x ⩽ 1.

To complete the proof, we will use Corollary 6.3.4 to bound the probability that |W | ⩾ m.

Indeed, applying the corollary to the set

Y :=
{
1, . . . ,M

}
∪
{
n−M + 1, . . . , n

}
,

and noting that the set X defined above is the same as that defined in (6.6), we obtain a family

B ⊂ 2X × 2Y of containers of size at most

exp
(
218γ−2

√
M(logM)3/2

)
=
(
1− p

)−γM
, (6.10)

where γ > 0 is chosen so that the equality holds. In particular, if (C,D) ∈ B, then

|D| ⩽ max

{
(1 + 4γ)|Y | − |C|

2
,

3|Y |
log |Y |

}
, (6.11)

and if U ⊂ Y and W ⊂ X \ (U + U), then there exists (C,D) ∈ B with W ⊂ C and U ⊂ D.

To apply Corollary 6.3.4, we need to check that γ < 1/4. Using the bounds 1 − p ⩽ e−p and

M ⩾ m/p, and noting that the function x 7→ (log x)3/2/
√
x is decreasing for x > 25, it follows

from (6.10) that

γ3 ⩽
218(logM)3/2

p
√
M

⩽
218
√
pm

(
log

m

p

)3/2

.

Therefore, since M ⩽ 8m/p, we have

γM ⩽
8γm

p
⩽

29m5/6

p7/6

(
log

m

p

)1/2

< m, (6.12)

where the final inequality follows from the assumption that m ⩾ 2128p−8. Since M ⩾ 4m, it

follows from (6.12) that γ < 1/4, and so this is a valid choice of γ in Corollary 6.3.4.

We next claim that

P
(
|W | ⩾ m

)
⩽

∑
(C,D)∈B

P
((
W ⊂ C

)
∩
(
S ∩ Y ⊂ D

))
. (6.13)

5Note that if m ⩾ pn/4, then M ⩾ n, and so the event E holds trivially.
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To see this, observe first that

W = X \ (S + S) ⊂ X \
(
(S ∩ Y ) + (S ∩ Y )

)
since S∩Y ⊂ S. By the property of B guaranteed by Corollary 6.3.4(a), applied with U := S∩Y ,

it follows that there exists a pair (C,D) ∈ B with W ⊂ C and S ∩ Y ⊂ D.

To bound the right-hand side of (6.13), observe first that

P
(
S ∩ Y ⊂ D

)
⩽

(
n− |Y \D|

pn

)(
n

pn

)−1

(6.14)

for every (C,D) ∈ B, since S is a uniformly-chosen set of size k = pn, and if S ∩ Y ⊂ D then

S ∩ (Y \D) = ∅. Moreover, by (6.11), if |W | ⩾ m then

|Y \D| ⩾ |Y | − |D| ⩾ m

2
− 8γM (6.15)

for every (C,D) ∈ B with W ⊂ C. It follows from (6.10), (6.13), (6.14) and (6.15) that

P
(
|W | ⩾ m

)
⩽
(
1− p

)−γM(n−m/2 + 8γM

pn

)(
n

pn

)−1

⩽
(
1− p

)m/2−9γM
, (6.16)

where the second inequality follows from the standard binomial inequality(
a− c

b

)
⩽

(
a− b

a

)c(a
b

)
. (6.17)

Combining (6.12) and (6.16), and noting that 1− p ⩾ e−2p for 0 ⩽ p ⩽ 2/3, it follows that

P
(
|W | ⩾ m

)
⩽ exp

(
214m5/6p−1/6(logm)1/2

)
·
(
1− p

)m/2
.

Since p−1/6(logm)1/2 ⩽ m1/24, by our lower bound on m, the claimed bound follows. □

We will usually apply Lemma 6.4.1 in the following form. Recall that δ = 2−32λ−3.

Corollary 6.4.4. Let λ ⩾ 3 and k,m, b ∈ N, with m ⩾ 2400λ24 and b ⩽ δk. There are at most

e2δm
(
λ− 2

λ

)m/2(λk/2
k − b

)
sets A′ ⊂ [λk/2] of size k − b such that

∣∣[λk] \ (A′ +A′)
∣∣ ⩾ m.

Proof. We simply apply Lemma 6.4.1 with p = 2(k − b)/λk ⩽ 2/3, and observe that

exp
(
216m7/8

)(
1− p

)m/2
⩽ e2δm

(
λ− 2

λ

)m/2
,
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by our bounds on b and m. To spell out the details, note that

216m7/8 ⩽ δm,

since δ = 2−32λ−3 and m ⩾ 2400λ24. Now, observe that

(
1− p

)m/2
⩽

(
λ− 2 + 2δ

λ

)m/2
⩽ exp

(
δm

λ− 2

)(
λ− 2

λ

)m/2
.

Since λ ⩾ 3, the claimed bound follows. □

Since we will often only need a weaker bound, let us note here, for convenience, that

e2δm
(
λ− 2

λ

)m/2
⩽

(
λ− 1

λ

)m/2
, (6.18)

since δ = 2−32λ−3.

6.4.1 Tools and inequalities

To finish this section, let us state some standard tools that we will use in the proof of Theo-

rem 6.1.1. The first is known as Ruzsa’s covering lemma (see, e.g., [151, Lemma 2.14]), and was

first proved in [137]. For completeness, we give the proof.

Lemma 6.4.5 (Ruzsa’s covering lemma). Let A,B ⊂ Z be non-empty sets of integers, and

suppose that |A+B| ⩽ µ|A|. Then there exists a set X ⊂ B with |X| ⩽ µ such that

B ⊂ A−A+X.

Proof. Let X ⊂ B be maximal such that the sets A + x for x ∈ X are disjoint. Observe that

|A+B| ⩾ |A||X|, and therefore |X| ⩽ µ. Now, since X is maximal, A+ b intersects A+X for

every b ∈ B \X, and hence B ⊂ A−A+X, as claimed. □

We will also use the following special case of the Plünnecke–Ruzsa inequalities [121, 122, 136],

which is also an immediate consequence of Ruzsa’s triangle inequality [135].

Lemma 6.4.6 (Plünnecke–Ruzsa inequality). If |A+A| ⩽ λ|A|, then |A−A| ⩽ λ2|A|.

Proof. To prove that |A−A| · |A| ⩽ |A+A|2, it suffices to construct an injective map φ : (A−
A) × A → (A + A)2. To do so, choose an arbitrary function f : A − A → A2 such that if

f(x) = (a, b) then a − b = x, and define φ(x, c) 7→ (a + c, b + c), where (a, b) = f(x). To see

that φ is injective, observe that x = (a+ c)− (b+ c) and that (a, b) = f(x). □

In Section 6.7 we will use a simple special case of the following result of Frĕıman [68].
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Lemma 6.4.7 (Frĕıman’s 3k − 4 theorem). If |A + A| ⩽ 3|A| − 4, then A ⊂ P for some

arithmetic progression P of size |A+A| − |A|+ 1.

We will also make frequent use of the following standard inequality in the calculations below:(
a− c

b− d

)
⩽

(
a− c

a

)b−d( b

a− b

)d(a
b

)
. (6.19)

In particular, note that (
λk/2

k − b

)
⩽

(
2

λ− 2

)b(λk/2
k

)
. (6.20)

We will also use the following inequality once, in Section 6.7.

Observation 6.4.8. (
ca

a

)
⩽

(
cc

(c− 1)c−1

)a
,

for every a ∈ N and 1 < c ∈ R.

Proof. Set y = (c− 1)1/c, and note that y/(c− 1) = y1−c. It follows that(
cc

(c− 1)c−1

)a
=

((
1 +

1

c− 1

)
(c− 1)1/c

)ca
=
(
y + y1−c

)ca
=

ca∑
i=0

(
ca

i

)
yca−i · y(1−c)i ⩾

(
ca

a

)
,

where the last step follows by considering the term i = a. □

6.5 Reducing to an interval

Let us fix λ ⩾ 3, and for each n, k ∈ N define

Λ = Λ(n, k) :=
{
A ⊂ [n] : |A| = k and |A+A| ⩽ λk

}
. (6.21)

Let us also fix ε ∈ (0, 1) (since Theorem 6.1.1 holds trivially for ε ⩾ 1) and, writing ℓ(A) for

the length of the smallest arithmetic progression containing A, define

Λ∗ = Λ∗(n, k) :=
{
A ∈ Λ : ℓ(A) ⩽ λk/2 + c(λ, ε)

}
. (6.22)

In this section we will prove the following lemma, which reduces the problem of bounding |Λ\Λ∗|
to that of bounding |I| (see Definition 6.2.1). Recall that δ = 2−32λ−3.
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Lemma 6.5.1. Let λ ⩾ 3 and n, k ∈ N, with k ⩾ 2400λ25(log n)3. We have

|Λ \ Λ∗| ⩽ n2

k
· |I|+ exp

(
− δk

210λ

)(
λk/2

k

)
.

To prove Lemma 6.5.1, we will successively refine Λ\Λ∗, at each step showing that some subset

with a particular property is small. The first step in the proof of Lemma 6.5.1 is the following

stability lemma, which is an almost immediate consequence of Theorem 6.3.3.

Lemma 6.5.2. Let λ ⩾ 3 and n, k ∈ N, with k ⩾ 2400λ25(log n)3. There are at most

exp

(
− δk

29λ

)(
λk/2

k

)
sets A ∈ Λ such that

|A \ P | ⩾ δk

for every arithmetic progression P of size λk/2.

Proof. Set γ = 2−9λ−1δ = 2−41λ−4, and observe that, since k ⩾ 2400λ25(log n)3, we have

28λ1/6k−1/6
√
log n ⩽ γ < 2−8.

Therefore, by Theorem 6.3.3, for all but at most

exp

(
− δk

29λ

)(
λk/2

k

)
sets A ∈ Λ, there exists T ⊂ A, with |T | ⩽ (29 + 27λ)γk < δk (moving some elements of

the progression given by the theorem into T ), such that A \ T is contained in an arithmetic

progression of size λk/2, as required. □

The next step is to show that almost all sets A ∈ Λ are contained in an arithmetic progression

of length 3λk/2. Let us write F for the family of sets A ∈ Λ such that

A ⊂
{
a+ jd : −λk/2 ⩽ j ⩽ λk

}
and

∣∣A \
{
a+ jd : 1 ⩽ j ⩽ λk/2

}∣∣ ⩽ δk

for some a, d ∈ Z. Recall that we assume, for simplicity, that λk/2 is an integer.

Lemma 6.5.3. Let λ ⩾ 3 and n, k ∈ N, with k ⩾ 2400λ25(log n)3. Then

|Λ \ F| ⩽ exp

(
− δk

210λ

)(
λk/2

k

)
.

Proof. Fix an arithmetic progression P =
{
a+ jd : 1 ⩽ j ⩽ λk/2

}
. We will bound the number

of sets A ∈ Λ \ F with |A \ P | ⩽ δk, and then sum over choices of P . We will then use

Lemma 6.5.2 to count the remaining sets, and hence prove the lemma.
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Note first that if A ∈ Λ \ F and |A \ P | ⩽ δk, then

A ̸⊂ P + P − P,

so let Z := A \ (P + P − P ) and choose an element x ∈ Z. We will first count the possible sets

A′ := A ∩ P , and then (given A′) the choices for B := A \ P . Observe that

(
x+A′) ∩ (A′ +A′) = ∅,

since A′ ⊂ P , and that if |A \ P | ⩽ δk, then |x + A′| = |A′| ⩾ k − δk. Since A ∈ Λ, it follows

that

|A′ +A′| ⩽ λk −
(
k − δk

)
⩽ λk − k/2.

Hence, by Corollary 6.4.4 (applied with m = k/2 ⩾ 2400λ24), and using (6.18) and (6.20), it

follows that, for each b ⩽ δk, there are at most(
λ− 1

λ

)k/4(λk/2
k − b

)
⩽ exp

(
− k

8λ

)(
λk/2

k

)
choices for the set A′ = A ∩ P such that |A′| = k − b.

To count the sets B (given A′), we apply Ruzsa’s covering lemma (Lemma 6.4.5) to the pair

(A′, B) to obtain a set X ⊂ B, with |X| ⩽ |A′ + B|/|A′| ⩽ λk/(k − b) ⩽ 2λ, such that

B ⊂ A′ −A′ +X. Moreover, by the Plünnecke–Ruzsa inequality (Lemma 6.4.6),

|A′ −A′ +X| ⩽ |X| · |A′ −A′| ⩽ 2λ3k.

Hence, choosing X first and then B \ X, and recalling that b ⩽ δk = 2−32λ−3k, and that

k ⩾ 2400λ25(log n)3, it follows that there are at most

n2λ
(

2λ3k

b− 2λ

)
⩽ exp

(
δk log

(
2eλ3/δ

)
+ 2λ log n

)
⩽ exp

(
δ1/2k

)
choices for the set B, given a set A′ with |A′| = k − b.

Combining the bounds above on the number of choices for A′ and B, it follows that the number

of sets A ∈ Λ with Z non-empty is at most

δk∑
b=1

exp

(
δ1/2k − k

8λ

)(
λk/2

k

)
⩽ exp

(
− k

24λ

)(
λk/2

k

)
,

Summing over choices of P , and using Lemma 6.5.2 to bound the number of sets such that

|A \ P ′| ⩾ δk for every arithmetic progression P ′ of size λk/2, the lemma follows. □

Finally, to bound |Λ \Λ∗| in terms of |I|, we need to map our arithmetic progression P into the

interval [λk/2]. Lemma 6.5.1 will follow from Lemma 6.5.3 and the following bound.
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Lemma 6.5.4. Let λ ⩾ 3 and n, k ∈ N. Then

|F \ Λ∗| ⩽ n2

k
· |I|.

Proof. We will define a function φ : F \ Λ∗ → I such that |φ−1(S)| ⩽ n2/k for every S ∈ I,
which will suffice to prove the lemma. To do so, let A ∈ F \ Λ∗, and choose a, d ∈ N such that

A ⊂
{
a+ jd : −λk/2 ⩽ j ⩽ λk

}
and such that the sets

{
x ∈ A : x ⩽ a

}
and

{
x ∈ A : x > a+ λkd/2

}
(6.23)

are both non-empty and together contain at most δk elements. Indeed, to obtain such a pair,

take the arithmetic progression given by the definition of F , and (recalling the definition (6.22)

of Λ∗) translate it if necessary so that the sets in (6.23) are both non-empty. Now define

φ(A) :=
{
j ∈ Z : a+ jd ∈ A

}
,

and observe that φ(A) ⊂ {−λk/2, . . . , λk}, and that

b
(
φ(A)

)
=
∣∣{x ∈ φ(A) : x ⩽ 0

}∣∣+ ∣∣{x ∈ φ(A) : x > λk/2
}∣∣ ⩽ δk.

Moreover, we have

r
(
φ(A)

)
= max

(
φ(A)

)
−min

(
φ(A)

)
− λk

2
> c(λ, ε),

since A ̸∈ Λ∗, and hence φ(A) ∈ I, as required.

Finally, observe that |φ−1(S)| is bounded from above by the number of pairs (a, d) ∈ Z2 such

that A := {a+ jd : j ∈ S} ⊂ [n]. For each set S of size k there are at most

n∑
a=1

n− a

k − 1
⩽

n2

k

such pairs (a, d). Hence |φ−1(S)| ⩽ n2/k, as claimed, and the lemma follows. □

We are now ready to prove Lemma 6.5.1.

Proof of Lemma 6.5.1. By Lemmas 6.5.3 and 6.5.4, we have

|Λ \ Λ∗| ⩽ |Λ \ F|+ |F \ Λ∗| ⩽ exp

(
− δk

210λ

)(
λk/2

k

)
+
n2

k
· |I|,

as claimed. □
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6.6 Counting the sparse sets in I

Recall that, for any A ⊂ Z,

b(A) = |A \ [λk/2]| and r(A) = max(A)−min(A)− λk/2,

and that f(λ) = 210λ3, and (recalling Definition 6.2.1) let us write

S :=
{
A ∈ I : r(A) > f(λ)b(A)

}
for the family of ‘sparse’ sets in I. In this section we will bound the size of S, and hence prove

the following quantitative version of Lemma 6.2.2.

Lemma 6.6.1. Let λ ⩾ 3 and ε ∈ (0, 1), and let k ∈ N. Then

|S| ⩽ exp

(
− c(λ, ε)

29λ2

)(
λk/2

k

)
.

For each B ⊂ {−λk/2, . . . , λk} \ [λk/2], let us define6

G(B) :=
{
A ∈ I : A \ [λk/2] = B

}
. (6.24)

Recalling Definition 6.2.1, observe that G(B) = ∅ if either min(B) > 0 or max(B) ⩽ λk/2, and

also if either |B| > δk or r(B) < c(λ, ε) (note that r(A) = r(B) for every A ∈ G(B)).

We will deduce Lemma 6.6.1 from the following bound on the size of G(B) by summing over

r ⩾ c(λ, ε) and sets B with |B| < r/f(λ).

Lemma 6.6.2. If B ⊂ {−λk/2, . . . , λk} \ [λk/2], then

|G(B)| ⩽ exp

(
− r

26λ2

)(
λk/2

k − b

)
where b = |B| and r = r(B).

For each A ∈ G(B), set A′ := A \ B. The idea of the proof is simple: if A′ contains many

elements close to its ends, then we can add these to min(B) and max(B), and obtain many

elements of A+A outside [λk]. Therefore, either A′+A′ misses many elements of [λk], in which

case we can apply Corollary 6.4.4 to bound the number of choices, or it has few elements close

to its ends, and it is straightforward to count sets A′ with this property.

6Note that we include sets of I \S in G(B); we will not need to use the bound r(A) > f(λ)b(A) when bounding
the size of G(B) (we use it only when counting the choices for the set B), and we shall also want to reuse our
bounds on |G(B)| in Section 6.7, below, where we will be dealing with dense sets.
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To be precise, define

Y :=
{
x ⩽ 0 : x−min(B) ∈ A′} ∪ {x > λk : x−max(B) ∈ A′}, (6.25)

and set m(B) := r(B)/8λ. The following bound follows from some simple counting.

Lemma 6.6.3. If B ⊂ {−λk/2, . . . , λk} \ [λk/2], then there are at most

e−m(B)

(
λk/2

k − b

)
sets A ∈ G(B) with |Y | ⩽ m(B).

Proof. We claim first that if r := r(B) ⩾ λk/2, then there are no such sets A ∈ G(B). Indeed,

if max(B)−min(B) ⩾ λk then for each y ∈ A′ either y+min(B) ⩽ 0, or y+max(B) > λk, and

therefore |Y | ⩾ |A′|. It follows that if A ∈ G(B) with |Y | ⩽ m := m(B), then m ⩾ |Y | ⩾ |A′| =
k − b ⩾ k/4, since b(A) ⩽ δk for every A ∈ I. But this implies that r = 8λm > λk, which is

impossible. Let us therefore assume that r < λk/2.

Now, the number of sets A ∈ G(B) with |Y | ⩽ m is at most

m∑
ℓ=0

(
r

ℓ

)(
λk/2− r

k − b− ℓ

)
⩽

m∑
ℓ=0

(
er

ℓ

)ℓ(
1− 2r

λk

)k−b−ℓ( 2

λ− 2

)ℓ(λk/2
k − b

)
, (6.26)

where the inequality holds by (6.19). Now, observe that(
1− 2r

λk

)k−b−ℓ
⩽

(
1− 2r

λk

)k/2
⩽ exp

(
− r

λ

)
= e−8m,

since b+ ℓ ⩽ k/2 and r = 8λm, and that

m∑
ℓ=0

(
er

ℓ
· 2

λ− 2

)ℓ
⩽

m∑
ℓ=0

(
24eλ

λ− 2
· m
ℓ

)ℓ
⩽ (m+ 1)

(
24eλ

λ− 2

)m
⩽
(
27e
)m
,

since r = 8λm and λ ⩾ 3, and since (C/x)x is increasing for x < C/e. It follows that the

right-hand side of (6.26) (and hence the number of sets A ∈ G(B) with |Y | ⩽ m) is at most(
2

e

)7m(λk/2
k − b

)
⩽ e−m

(
λk/2

k − b

)
,

as claimed. □

It remains to count sets A ∈ G(B) with |Y | > m. To do so, set X := A′ +A′, and observe that

X and Y are disjoint subsets of A+A. Since |A+A| ⩽ λk, it follows that

∣∣[λk] \X∣∣ ⩾ |Y | > m(B). (6.27)
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We will use Corollary 6.4.4 to count the sets with |[λk] \X| ⩾ m(B).

Lemma 6.6.4. If B ⊂ {−λk/2, . . . , λk} \ [λk/2], then there are at most(
λ− 1

λ

)m(B)/2(λk/2
k − b

)
sets A ∈ G(B) with |[λk] \X| ⩾ m(B).

Proof. We want to bound the number of sets A′ ⊂ [λk/2], with |A′| = k − b, such that |[λk] \
(A′ + A′)| ⩾ m := m(B). Recall that |B| ⩽ δk and r(B) ⩾ c(λ, ε) (otherwise G(B) is empty),

and note that therefore m = r(B)/8λ ⩾ 2400λ24. It follows, by Corollary 6.4.4 and (6.18), that

there are at most (
λ− 1

λ

)m/2(λk/2
k − b

)
sets A ∈ G(B) such that |[λk] \ (A′ +A′)| ⩾ m, as claimed. □

We can now easily deduce the claimed upper bound on the size of G(B).

Proof of Lemma 6.6.2. By (6.27), |G(B)| is at most the sum of the bounds in Lemmas 6.6.3

and 6.6.4. Recalling that m(B) = r(B)/8λ, this gives

|G(B)| ⩽
(
e−m(B) + e−m(B)/2λ

)(λk/2
k − b

)
⩽ exp

(
− r(B)

25λ2

)(
λk/2

k − b

)
,

as required. □

Lemma 6.6.1 is a straightforward consequence.

Proof of Lemma 6.6.1. Fix b and r, and consider the sets B ⊂ {−λk/2, . . . , λk} \ [λk/2] with
|B| = b and r(B) = r. We may assume that r > f(λ)b and r ⩾ c(λ, ε), since otherwise

G(B) ∩ S = ∅. The number of choices for B (given b and r) is therefore at most(
r

b

)
⩽
(
210eλ3

)2−10λ−3r
⩽ exp

(
r

27λ2

)
since r/b > f(λ) = 210λ3. By Lemma 6.6.2, it follows that

∣∣{A ∈ S : b(A) = b, r(A) = r
}∣∣ ⩽ exp

(
− r

27λ2

)(
λk/2

k − b

)
⩽ exp

(
− r

28λ2

)(
λk/2

k

)
,

where the second inequality follows from (6.20), since r/b > f(λ) and λ ⩾ 3.

Summing over choices of r ⩾ c(λ, ε) and b < r/f(λ), it follows that

|S| ⩽
∑

r⩾c(λ,ε)

r

f(λ)
exp

(
− r

28λ2

)(
λk/2

k

)
⩽ exp

(
− c(λ, ε)

29λ2

)(
λk/2

k

)
,
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as required. □

6.7 Counting the moderately dense sets

Recall from Definition 6.2.1 and (6.3) the definitions of b(A), r(A) and I, and let us write

D :=
{
A ∈ I : r(A) ⩽ f(λ)b(A)

}
(6.28)

for the family of ‘dense’ sets in I, where f(λ) = 210λ3. In the next two sections we will prove

the following quantitative version of Lemma 6.2.3.

Lemma 6.7.1. Let λ ⩾ 3 and ε ∈ (0, 1), and let k ∈ N. Then

|D| ⩽ exp

(
− c(λ, ε)

220λ2

)(
λk/2

k

)
.

Let us fix λ ⩾ 3, ε ∈ (0, 1) and k ∈ N until the end of the proof of Lemma 6.7.1. In this section,

we will deal with some relatively easy cases using the method of the previous section. Observe

that

b(A) ⩾
c(λ, ε)

f(λ)
⩾ 2550λ29 (6.29)

for every A ∈ D, since r(A) ⩾ c(λ, ε) for every A ∈ I, and by the definition (6.1) of c(λ, ε).

For convenience, let us define, for each b ∈ N and µ ⩾ 1,

D(b, µ) :=
{
A ∈ D : |B| = b and |(B +B) \ [λk]| = µb, where B = A \ [λk/2]

}
. (6.30)

The first step is to use Theorem 6.3.2 to bound the number of choices for B = A \ [λk/2]. We

will use the following lemma several times in the proof of Lemma 6.7.1.

Lemma 6.7.2. Let b ∈ N and µ > 2. There are at most

e2δb
(
µ− 2

2

)b( µ

µ− 2

)µb/2
(6.31)

sets B such that B = A \ [λk/2] for some A ∈ D(b, µ).

We will use the following observation in the proof of Lemma 6.7.2, and then again (several

times) in the applications below.

Observation 6.7.3.

(x− 2) ·
(

x

x− 2

)x/2
⩽ (y − 2)

(
y

y − 2

)x/2
for every x, y > 2.
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Proof. Set q(x, y) := (x/y)x/2 ·
(
(y − 2)/(x− 2)

)(x−2)/2
, and observe that

log
(
q(x, y)2/x

)
=

2

x
· log x

y
+
x− 2

x
· log

(
x(y − 2)

y(x− 2)

)
⩽ log

(
2

x
· x
y
+
x− 2

x
· x(y − 2)

y(x− 2)

)
= 0,

using the concavity of the log function. □

Proof of Lemma 6.7.2. Set B1 := {x ∈ B : x ⩽ 0} and B2 := {x ∈ B : x > λk/2}, and recall

from (6.29) that b ⩾ 2550λ29, and that δ = 2−32λ−3. Observe first that, since r(A) ⩽ f(λ)b for

each A ∈ D(b, µ), for each i ∈ {1, 2} there are at most(
f(λ)b

b3/4

)
⩽ exp

(
b3/4 log b

)
⩽ eδb (6.32)

choices for the set Bi with |Bi| ⩽ b3/4. Moreover, by Lemma 6.4.7, if |Bi+Bi| ⩽ 2|Bi|, then Bi
is contained in an arithmetic progression of size |Bi|+ 1, and so in this case there are at most

r3 ⩽ 230λ9b3 ⩽ eδb choices for Bi. Note that µ−2
2

( µ
µ−2

)µ/2
⩾ 1 for every µ > 2, so these bounds

suffice when either |Bi| ⩽ b3/4 or |Bi +Bi| ⩽ 2|Bi|.

Now, set bi = |Bi| and µibi = |Bi+Bi|, and suppose that bi ⩾ b3/4, and µi > 2. In this case we

will use Theorem 6.3.2 to count the number of choices for Bi, and hence prove that, for each

i ∈ {1, 2}, the bound (6.31) holds with the pair (B, b) replaced by (Bi, bi). Since b = b1 + b2,

multiplying these two bounds will give (6.31) for the pair (B, b).

To check the condition on µi, observe that Bi+Bi ⊂ [2min(B), 2max(B)] \ [λk], and therefore

µibi ⩽ 2 · r(A) ⩽ 2f(λ)b, (6.33)

for every A ∈ D(b, µ), by (6.3) and (6.28). Since bi ⩾ b3/4, and recalling that b ⩾ 2550λ29, it

follows that7

µi ⩽
2f(λ)b

bi
⩽ 2−36 bi(

log(f(λ)b)
)3 .

Hence, by Theorem 6.3.2, the number of choices for Bi (given bi and µi) is at most

exp
(
29µ

1/6
i b

5/6
i log bi

√
log(f(λ)b)

)(µibi/2
bi

)
⩽ eδb

(
µibi/2

bi

)
, (6.34)

where the final inequality holds since µ
1/6
i b

5/6
i ⩽ (µibi)

1/6b3/4 ⩽ 4λ · b5/6, by (6.33), so

29µ
1/6
i b

5/6
i log bi

√
log(f(λ)b) ⩽ 211λ · b5/6(log b)2 ⩽ δb,

since δ = 2−32λ−3 and b ⩾ 2550λ29.

7Using the bound bi ⩾ b3/4, the second inequality reduces to b ⩾ 274f(λ)2
(
log(f(λ)b)

)6
, which follows (with

room to spare) from b ⩾ 2550λ29, since f(λ) = 210λ3.
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Now, by Observations 6.4.8 and 6.7.3, it follows that

(
µibi/2

bi

)
⩽

(
µi − 2

2
·
(

µi
µi − 2

)µi/2)bi
⩽

(
µ− 2

2

)bi( µ

µ− 2

)µibi/2
. (6.35)

Since µb = µ1b1 + µ2b2, the lemma follows from (6.32), (6.34) and (6.35). □

We can now bound the number of sets A ∈ D(b, µ) such that r(A) ⩾ 211µb.

Lemma 6.7.4. Let b ∈ N and µ ⩾ 1. If r ⩾ 211µb, then there are at most

exp

(
− r

27λ2

)(
λk/2

k

)
sets A ∈ D(b, µ) with r(A) = r.

Proof. Observe first that if µ ⩽ 2, then B is contained in two arithmetic progressions of com-

bined size at most |B|+ 2, by Lemma 6.4.7 (cf. the proof of Lemma 6.7.2), and so in this case

there are at most r6 choices for B. By Lemma 6.6.2 and (6.20), it follows that there are at most

∑
B

|G(B)| ⩽ r6 exp

(
− r

26λ2

)(
2

λ− 2

)b(λk/2
k

)
(6.36)

sets A ∈ D(b, µ) with r(A) = r, where the sum is over sets with |(B + B) \ [λk]| ⩽ 2|B| = 2b

and r(B) = r. Now, since r ⩾ 211b ⩾ 2561λ29, by (6.29), and λ ⩾ 3, we have8

r6
(

2

λ− 2

)b
⩽ exp

(
r

27λ2

)
,

and combining this with (6.36), we obtain the claimed bound.

Let us therefore assume from now on that µ > 2. By Lemma 6.7.2 and Observation 6.7.3, it

follows that there are at most

e2δb
(
λ− 2

2

)b( λ

λ− 2

)µb/2
(6.37)

sets B such that B = A \ [λk/2] for some A ∈ D(b, µ). In order to count the sets A for a

given B, we will need to consider three cases. For each set B that is counted in (6.37), set

m := m(B) = r(B)/8λ, and for each A ∈ G(B), let Y = Y (A) be the set defined in (6.25).

Case 1: |Y | ⩽ m.

8Indeed, if λ ⩾ 4 then note that r6 ⩽ exp
(
r/27λ2

)
, and if λ ⩽ 4 then note that r62r/2

11

⩽ exp
(
r/211

)
.
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By Lemma 6.6.3 and (6.20), for each set B there are at most

e−m
(
λk/2

k − b

)
⩽ e−m

(
2

λ− 2

)b(λk/2
k

)
sets A ∈ G(B) with |Y | ⩽ m. Summing over sets B as in (6.37), noting that if r(B) = r then

µb ⩽ 2−11r ⩽ 2−8λm, and recalling that λ ⩾ 3, it follows that there are at most9

e2δb
(

λ

λ− 2

)µb/2
e−m

(
λk/2

k

)
⩽ e−m/2

(
λk/2

k

)
(6.38)

sets A ∈ D(b, µ) with r(A) = r and |Y | ⩽ m.

Counting the sets with larger Y is somewhat more delicate, and we will need to partition into

two cases, depending on the intersection of Y with the set B +B.

Case 2: |Y | ⩾ m and |Y ∩ (B +B)| ⩽ m/2.

In this case we will apply Corollary 6.4.4. To do so, observe first that

|A′ +A′|+ |Y ∪ (B +B) \ [λk]| ⩽ |A+A| ⩽ λk,

since A′ + A′ ⊂ [λk] and Y ⊂ (A′ + B) \ [λk], by (6.25). Recall that |(B + B) \ [λk]| = µb for

each A ∈ D(b, µ), by (6.30). Therefore, if |Y | ⩾ m and |Y ∩ (B +B)| ⩽ m/2, then

|[λk] \ (A′ +A′)| ⩾ µb+m/2.

Moreover, if D(b, µ) is non-empty then 2400λ24 ⩽ b ⩽ δk, by (6.29) and Definition 6.2.1, and

since D(b, µ) ⊂ D ⊂ I. Hence, by Corollary 6.4.4 and (6.20), it follows that for each set B

counted in (6.37), there are at most

exp
(
2δ · (µb+m/2)

)(λ− 2

λ

)µb/2+m/4( 2

λ− 2

)b(λk/2
k

)
sets A ∈ G(B) such that |Y | ⩾ m and |Y ∩ (B +B)| ⩽ m/2.

Summing over sets B, and using (6.37), it follows that there are at most

exp
(
2δ · (b+ µb+m/2)

)(λ− 2

λ

)m/4(λk/2
k

)
choices for A in this case. Now, since µb ⩽ 2−8λm and δ = 2−32λ−3, we have

exp
(
2δ · (b+ µb+m/2)

)(λ− 2

λ

)m/4
⩽ exp

(
δλm− m

2λ

)
⩽ exp

(
− m

4λ

)
,

9Indeed, if λ ⩽ 4 then 3µb ⩽ 3m/26 ⩽ em/25 , and otherwise λ/(λ− 2) ⩽ e2/(λ−2) ⩽ e4/λ.
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and hence the number of sets A with |Y | ⩾ m and |Y ∩ (B +B)| ⩽ m/2 is at most

exp

(
− m

4λ

)(
λk/2

k

)
= exp

(
− r

25λ2

)(
λk/2

k

)
. (6.39)

Finally, we count sets such that Y has large intersection with B +B.

Case 3: |Y | ⩾ m and |Y ∩ (B +B)| > m/2.

Let B be such that B = A \ [λk/2] for some A ∈ D(b, µ), and consider the set

Z :=
{
x ∈ [λk/2] : x+min(B) ∈ (B +B) \ [λk] or x+max(B) ∈ (B +B) \ [λk]

}
.

Observe that |A′ ∩ Z| > m/2 and |Z| ⩽ |(B + B) \ [λk]|. It follows that the number of choices

for A′ is at most

∑
ℓ>m/2

(
µb

ℓ

)(
λk/2

k − b− ℓ

)
⩽
∑
ℓ>m/2

(
eµb

ℓ
· 2

λ− 2

)ℓ(λk/2
k − b

)
⩽ 2−m

(
2

λ− 2

)b(λk/2
k

)
,

where the inequalities follow from (6.20) and the bounds µb ⩽ 2−8λm and λ ⩾ 3, which together

imply that
2eµb

m
· 2

λ− 2
⩽

eλ

25(λ− 2)
⩽

1

4
.

By (6.37), and recalling again that µb ⩽ 2−8λm, it follows that there are at most

e2δb
(

λ

λ− 2

)µb/2
2−m

(
λk/2

k

)
⩽ 2−m/2

(
λk/2

k

)
⩽ exp

(
− r

25λ

)(
λk/2

k

)
(6.40)

choices for A in this case. Summing (6.38), (6.39) and (6.40) gives the required bound on the

number of sets A ∈ D(b, µ) with r(A) = r. □

It will be useful in the next section (which deals with the case r ⩽ 211µb) to be able to assume

that µ = Θ(λ). The next lemma, which follows from Corollary 6.4.4, provides a suitable bound

on the size of D(b, µ) when this is not the case.

Lemma 6.7.5. Let b ∈ N. If r ⩽ 211µb and either µ ⩽ 2 or µ ̸∈ (λ/2, 2λ), then there are at

most

exp

(
− r

216λ

)(
λk/2

k

)
sets A ∈ D(b, µ) with r(A) = r.

Proof. For each A ∈ D(b, µ), set A′ := A ∩ [λk/2] and B := A \ [λk/2], and observe that∣∣[λk] \ (A′ +A′)∣∣ ⩾ ∣∣(B +B
)
\ [λk]

∣∣ = µb,
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since |A+A| ⩽ λk. Hence, by Corollary 6.4.4 applied with m = µb ⩾ 2400λ24, and using (6.20),

there are at most

e2δµb
(
λ− 2

λ

)µb/2( 2

λ− 2

)b(λk/2
k

)
, (6.41)

choices for the set A′.

Suppose first that µ > 2, and recall from Lemma 6.7.2 that in this case there are at most

e2δb
(
µ− 2

2

)b( µ

µ− 2

)µb/2
(6.42)

sets B with B = A \ [λk/2] for some A ∈ D(b, µ). Moreover, applying Observation 6.7.3 with

x = µ and y = 2λ− 2 gives(
µ− 2

2

)b( µ

µ− 2

)µb/2
⩽ (λ− 2)b

(
λ− 1

λ− 2

)µb/2
.

Thus, if µ ⩾ 2λ (and therefore µ ⩾ 6), then the product of (6.41) and (6.42) is at most10

e3δµb · 2b
(
λ− 1

λ

)µb/2(λk/2
k

)
⩽ exp

(
− µb

25λ

)(
λk/2

k

)
⩽ exp

(
− r

216λ

)(
λk/2

k

)
,

since r ⩽ 211µb.

Next, if µ > 2 and λ > 4, then applying Observation 6.7.3 with x = µ and y = λ/2 gives(
µ− 2

2

)b( µ

µ− 2

)µb/2
⩽

(
λ− 4

4

)b( λ

λ− 4

)µb/2
.

Thus, if 2 < µ ⩽ λ/2 (and therefore λ > 4), then the product of (6.41) and (6.42) is at most

e3δµb ·
(
λ− 2

λ− 4

)µb/2( λ− 4

2λ− 4

)b(λk/2
k

)
⩽ 2−b/4

(
λk/2

k

)
,

where the final step holds since δ = 2−32λ−3, µ ⩽ λ/2, and

24 ·
(
λ− 2

λ− 4

)λ( λ− 4

2λ− 4

)4

=

(
1 +

2

λ− 4

)λ−4

⩽ e2.

Since r ⩽ 211µb ⩽ 210λb, it follows that if 2 < µ ⩽ λ/2 then there are at most

exp

(
− r

213λ

)(
λk/2

k

)
sets A ∈ D(b, µ) with r(A) = r.

10For the penultimate step, recall that δ ⩽ 2−7λ−1, and apply the inequality 2 · e−x/2 < e−x/16, which holds
for all x ⩾ 2, with x = µ/λ.
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Finally, if µ ⩽ 2 then B is contained in two arithmetic progressions of combined size at most

|B| + 2, by Lemma 6.4.7, and so in this case there are at most r6 ⩽ 272b6 ⩽ eδb choices for B,

by (6.29). Noting that µb ⩾ 2b− 2, it follows from (6.41) that there are at most

e5δb
(
λ− 2

λ

)b−1( 2

λ− 2

)b(λk/2
k

)
⩽ exp

(
− r

214

)(
λk/2

k

)
choices for A, where the last inequality holds since λ ⩾ 3 and r ⩽ 211µb ⩽ 212b. □

6.8 Counting the very dense sets with containers

It remains to bound the size of the family11

D∗(b, µ) :=
{
A ∈ D(b, µ) : r(A) ⩽ 211µb

}
(6.43)

of very dense sets, for each µ > 2 with λ/2 ⩽ µ ⩽ 2λ. To do so, we will once again use

Theorem 6.3.1, but this time our application of it will be rather different. Recall first, from

Lemma 6.4.3, that the ‘missing’ set M(A) := [λk] \ (A+A) is typically contained near the ends

of [λk] (see Lemma 6.8.2, below). We will use Corollary 6.3.4 to find a family of 2o(b) containers

(C,D) for the parts of A ‘close’ to the endpoints, and for M(A) (see Corollary 6.8.1). We will

then, in Lemma 6.8.3, bound the number of sets A ∈ D∗(b, µ) corresponding to each container.

Our bound decreases exponentially with b, and we will therefore be able to take a union bound

over containers.

To state the version of Corollary 6.3.4 we will use, we need a little additional notation. First,

for each b ∈ N, set Y (b) := Y1 ∪ Y2 and X(b) := (Y1 + Y1) ∪ (Y2 + Y2), where

Y1 :=
{
0, . . . , 218λ2b

}
, and Y2 :=

{
λk/2− 218λ2b, . . . , λk/2

}
,

Moreover, define M(A) := [λk] \ (A+A) and

T (b) :=
{
A ∈ I : b(A) = b and M(A) ⊂ X(b)

}
.

As we will see below (see Lemma 6.8.2), this family contains almost all of D∗(b, µ).

Our key tool in this section will be the following immediate consequence of Corollary 6.3.4.

Corollary 6.8.1. For each b ∈ N, there exists a family B(b) ⊂ 2X(b) × 2Y (b) of size at most

exp
(
250λ2b7/8

)
11Recall that the family D(b, µ) was defined in (6.30).
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such that:

(a) For each A ∈ T (b), there exists (C,D) ∈ B(b) with M(A) ⊂ C and A ∩ Y (b) ⊂ D.

(b) For every (C,D) ∈ B(b),

|D| ⩽ max

{
|Y (b)| − |C|

2
+ |Y (b)|5/6, 3|Y (b)|

log |Y (b)|

}
.

Proof. We apply Corollary 6.3.4 with S1 = Y1, S2 = Y2 and γ = |Y (b)|−1/6/4. The bound on

the size of B(b) follows from (6.7), since log |Y (b)| ⩽ 26(λ2b)1/36 and

217γ−2
√
|Y (b)| = 221|Y (b)|5/6 ⩽ 221

(
220λ2b

)5/6
⩽ 241λ5/3b5/6,

where in both cases we used the bound |Y (b)| ⩽ 220λ2b.

The bound on |D| for each (C,D) ∈ B(b) follows from (6.8). Finally, for each A ∈ T (b) we

apply Corollary 6.3.4(a) with U := A∩Y (b) and W :=M(A) ⊂ X(b) \ (U +U). It follows that

there exists (C,D) ∈ B(b) such that M(A) ⊂ C and A ∩ Y (b) ⊂ D, as claimed. □

Recall from (6.29) that b(A) ⩾ 2550λ29 for every A ∈ D∗(b, µ) ⊂ D. Since δ = 2−32λ−3, it

follows that

|Y (b)|5/6 ⩽ δb. (6.44)

In the calculations below, we will also need the inequalities(
a+ c

b

)
⩽

(
1 +

c

a− b

)b(a
b

)
and

(
a− c

b− c

)
⩽

(
b

a

)c(a
b

)
(6.45)

Before bounding the number of sets in each container, let’s first observe that, by our choice of

X(b), most members of D∗(b, µ) are also in T (b).

Lemma 6.8.2. For each b ⩽ δk and µ ⩽ 2λ, there are at most

e−b
(
λk/2

k

)
(6.46)

sets A ∈ D∗(b, µ) such that M(A) ̸⊂ X(b).

Proof. Recalling (6.43), let A be a uniformly random k-subset of L := [−211µb, λk/2 + 211µb],

and observe that

P
(
M(A) ̸⊂ X(b)

)
⩽ P

({
M ′ + 1, . . . , λk −M ′ − 1

}
̸⊂ A+A

)
,
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where M ′ := 219λ2b, by the definitions of M(A) = [λk] \ (A + A) and X(b). By Lemma 6.4.3

(applied with n = λk/2 + 212µb+ 1 and M =M ′ + 212µb+ 2), it follows that

P
(
M(A) ̸⊂ X(b)

)
⩽

8

p2
·
(
1− p2

)M/2
,

where p = k
(
λk/2 + 212µb + 1

)−1
. Now, recall that b ⩽ δk and µ ⩽ 2λ, and observe that

therefore p ⩾ 1/λ. Since M ⩾M ′ = 219λ2b, it follows that

P
(
M(A) ̸⊂ X(b)

)
⩽ 8λ2 · e−M/2λ2 ⩽ exp

(
− 217b

)
,

since b ⩾ 2550λ29. In order to deduce a bound on the number of sets such that M(A) ̸⊂ X(b),

we simply need to multiply by the total number of k-subsets of L. There are at most(
λk/2 + 212µb+ 1

k

)
⩽

(
1 +

213µb+ 2

(λ− 2)k

)k(λk/2
k

)
⩽ exp

(
216b

)(λk/2
k

)
such sets, where the first inequality holds by (6.45), and the second because λ ⩾ 3 and µ ⩽ 2λ.

Hence, there are at most

exp
(
− 217b+ 216b

)(λk/2
k

)
⩽ e−b

(
λk/2

k

)
sets A ∈ D∗(b, µ) with M(A) ̸⊂ X(b), as claimed. □

To deduce Lemma 6.7.1 from Corollary 6.8.1, we will need to bound the size of the containers

in B(b). The following lemma provides the bound we need.

Lemma 6.8.3. Let b ⩽ δk and µ > 2, with λ/2 ⩽ µ ⩽ 2λ. For each (C,D) ∈ B(b), there are

at most

e−b/32λ
(
λk/2

k

)
sets A ∈ D∗(b, µ) such that M(A) ⊂ C and A ∩ Y (b) ⊂ D.

In the proof of Lemma 6.8.3, we will need the following binomial inequalities, whose (straight-

forward, but slightly tedious) proofs are given in [32, Appendix B]. Set α := 225λ2δ = 2−7λ−1.

Observation 6.8.4. Let b ⩽ δk and µ > 2, with λ/2 ⩽ µ ⩽ 2λ, and let s ⩽ t ⩽ 222λ2b. Then(
λk/2− µb− s

k − b− s

)
⩽ eαb

(
λ− 2

λ

)µb( 2

λ− 2

)b(λk/2− s

k − s

)
,

and (
λk/2− µb/2− s/2− t+ δb

k − b− s

)
⩽ eαb

(
λ− 2

λ

)µb/2( 2

λ− 2

)b(λk/2− s/2− t

k − s

)
.

We are now ready to prove our key lemma.
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Proof of Lemma 6.8.3. First, by Lemma 6.7.2 and Observation 6.7.3, there are at most

e2δb
(
µ− 2

2

)b( µ

µ− 2

)µb/2
⩽ e2δb

(
λ− 2

2

)b( λ

λ− 2

)µb/2
(6.47)

sets B such that B = A \ [λk/2] for some A ∈ D∗(b, µ) ⊂ D(b, µ). Fix such a set B, let

A ∈ D∗(b, µ) with B = A\[λk/2], and recall thatM(A) = [λk]\(A+A). Note that |M(A)| ⩾ µb,

since |A+A| ⩽ λk and |(B +B) \ [λk]| = µb. Now, define12

C̃ := C − {min(B),max(B)} and D̃ :=
(
[λk/2] \ Y (b)

)
∪D, (6.48)

and observe that if A ∩ Y (b) ⊂ D, then A′ ⊂ D̃, where (as usual) A′ = A ∩ [λk/2]. Set

S := C̃ ∩A′ and T := C̃ ∩ D̃,

and observe that S ⊂ T , and that for each x ∈ S, either x+max(B) or x+min(B) is contained

in C ∩ (A+A). Moreover, the sets S +max(B) and S +min(B) are disjoint, since S ⊂ [λk/2]

and max(B)−min(B) > λk/2. It follows that if M(A) ⊂ C, then

|C| ⩾ |M(A)|+ |S| ⩾ µb+ |S|. (6.49)

For each s, t ∈ N, let us write g(s, t) for the number of sets A ∈ D∗(b, µ) such that M(A) ⊂ C

and A ∩ Y (b) ⊂ D, and such that

|S| = s and |T | = t.

Since S ⊂ T , we have at most
(
t
s

)
choices for S. We will bound g(s, t) in two different ways,

depending on the values of s and t.

Claim: If s ⩽ b/16 and t ⩽ λb, then

g(s, t) ⩽ e−b/8
(
λk/2

k

)
. (6.50)

Proof of claim. In this case we will use the bound

|D̃ \ C̃| ⩽ λk

2
− |C| ⩽ λk

2
− µb− s. (6.51)

The second inequality is (6.49), and therefore, recalling that D̃ ⊂ [λk/2], to prove (6.51) it will

suffice to show that ∣∣C̃ ∩ [λk/2]
∣∣ ⩾ |C|. (6.52)

12To avoid any possible confusion, we emphasize that C̃ is the union of two shifted copies of the set C.
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To prove (6.52), observe first that 219λ2b ⩽ λk/8, since b ⩽ δk and δ = 2−32λ−3, and therefore

C ⊂ X(b) ⊂
{
0, . . . , λk/8

}
∪
{
7λk/8, . . . , λk

}
. (6.53)

Moreover, r(A) ⩽ 211µb ⩽ 212λ · δk ⩽ λk/8 for every A ∈ D∗(b, µ), and therefore

−λk/8 < min(B) ⩽ 0 and λk/2 < max(B) < 5λk/8. (6.54)

It follows from (6.53) and (6.54) that
∣∣C̃ ∩ [λk/2]

∣∣ ⩾ |C|, as claimed.

Now, recalling that A′ ⊂ D̃ and S = C̃ ∩A′, it follows from (6.47) and (6.51) that

g(s, t) ⩽ e2δb
(
λ− 2

2

)b( λ

λ− 2

)µb/2(λk/2− µb− s

k − b− s

)(
t

s

)
.

Observe that s ⩽ t ⩽ |C̃| ⩽ 2|C| ⩽ 2|X(b)| ⩽ 222λ2b. Thus, by Observation 6.8.4, we have(
λk/2− µb− s

k − b− s

)
⩽ eαb

(
λ− 2

λ

)µb( 2

λ− 2

)b(λk/2− s

k − s

)
,

and therefore, by (6.45),

g(s, t) ⩽ e2αb
(
λ− 2

λ

)µb/2(λk/2− s

k − s

)(
t

s

)
⩽ e2αb

(
λ− 2

λ

)µb/2( 2

λ
· et
s

)s(λk/2
k

)
.

Since s ⩽ b/16 and t ⩽ λb, and recalling that µ ⩾ λ/2, it follows that

g(s, t) ⩽ e2αb · e−b/2 ·
(
32e
)b/16(λk/2

k

)
⩽ e−b/8

(
λk/2

k

)
,

as claimed. □

We may therefore assume that either s ⩾ b/16 or t ⩾ λb. In this case observe that |D̃| =
λk/2− |Y (b)|+ |D|, by (6.48) (and since D ⊂ Y (b) ⊂ [λk/2]), and therefore

|D̃| ⩽ λk

2
− |C|

2
+ |Y (b)|5/6 ⩽

λk − µb− s

2
+ δb, (6.55)

by Corollary 6.8.1(b), together with (6.44) and (6.49). Since A′ ⊂ D̃ and S = C̃ ∩A′, it follows

from (6.47) and (6.55) that

g(s, t) ⩽ e2δb
(
λ− 2

2

)b( λ

λ− 2

)µb/2(λk/2− µb/2− s/2− t+ δb

k − b− s

)(
t

s

)
.

Since s ⩽ t ⩽ 222λ2b, it follows by Observation 6.8.4 that

g(s, t) ⩽ e2αb
(
λk/2− s/2− t

k − s

)(
t

s

)
. (6.56)
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Now, if s ⩾ b/16 then, by (6.17), we have(
λk/2− s/2− t

k − s

)(
t

s

)
⩽

(
λk/2− s/2

k

)
⩽

(
λ− 2

λ

)s/2(λk/2
k

)
⩽ e−b/16λ

(
λk/2

k

)
.

On the other hand, if s ⩽ b/16 and t ⩾ λb, then using (6.45) and (6.17), and noting that

t− s/2 ⩾ t/2, we obtain(
λk/2− s/2− t

k − s

)(
t

s

)
⩽

(
2

λ
· et
s

)s(λk/2 + s/2− t

k

)
⩽

(
2et

λs

)s(λ− 2

λ

)t/2(λk/2
k

)
.

Now, observe that (for s ⩽ b/16 and t ⩾ λb) the right-hand side is increasing in s and decreasing

in t, since 2et/λs ⩾ 32e (and by simple calculus). It follows that(
2et

λs

)s(λ− 2

λ

)t/2
⩽
(
32e
)b/16 · e−b ⩽ e−b/2.

Combining these bounds, and recalling that α = 2−7λ−1, we obtain

g(s, t) ⩽ e2αb
(
e−b/16λ + e−b/2

)(λk/2
k

)
⩽ e−b/24λ

(
λk/2

k

)
. (6.57)

Finally, summing the bounds (6.50) and (6.57) over s ⩽ t ⩽ 222λ2b, and recalling that b ⩾

2550λ29, we obtain the claimed bound. □

We are finally ready to prove Lemma 6.7.1.

Proof of Lemma 6.7.1. Let us fix b, r ∈ N and µ ⩾ 1, and bound the number of sets A ∈ D(b, µ)

with r(A) = r. Recall first that if r ⩾ 211µb then, by Lemma 6.7.4, there are at most

exp

(
− r

27λ2

)(
λk/2

k

)
such sets, and if r ⩽ 211µb and either µ ⩽ 2, µ ⩽ λ/2 or µ ⩾ 2λ, then by Lemma 6.7.5 there

are at most

exp

(
− r

216λ

)(
λk/2

k

)
such sets. Now, if r ⩽ 211µb and λ/2 ⩽ µ ⩽ 2λ, then by Lemma 6.8.2 there are at most

e−b
(
λk/2

k

)
⩽ exp

(
− r

212λ

)(
λk/2

k

)
such sets that are not in T (b). Moreover, by Corollary 6.8.1, there exists a family B(b) of size
at most

exp
(
250λ2b7/8

)
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such that for every A ∈ T (b), there exists (C,D) ∈ B(b) with M(A) ⊂ C and A ∩ Y (b) ⊂ D.

Finally, by Lemma 6.8.3, for each (C,D) ∈ B(b) there are at most

e−b/32λ
(
λk/2

k

)
⩽ exp

(
− r

218λ2

)(
λk/2

k

)
sets A ∈ T (b) ∩ D∗(b, µ) such that M(A) ⊂ C and A ∩ Y (b) ⊂ D.

Combining these bounds, it follows that there are at most

exp
(
250λ2b7/8

)
exp

(
− r

218λ2

)(
λk/2

k

)
sets A ∈ D(b, µ) with r(A) = r. Now, summing over choices of b ⩽ r and µ ⩽ 2r/b such that

µb ∈ N, and recalling that r ⩾ 2560λ32, it follows that there are at most

exp

(
− r

219λ2

)(
λk/2

k

)
sets A ∈ D with r(A) = r.

Finally, summing over r ⩾ c(λ, ε), we deduce that

|D| ⩽ exp

(
− c(λ, ε)

220λ2

)(
λk/2

k

)
,

as claimed. □

6.9 The proof of Theorem 6.1.1

In this section we will prove the following quantitative version of Theorem 6.1.1, which allows

us to control the typical structure of A when λ = ko(1). Recall that δ = 2−32λ−3.

Theorem 6.9.1. Let λ ⩾ 3 and n, k ∈ N be such that k ⩾ 2400λ25(log n)3, and let ε > e−δ
2k.

Let A ⊂ [n] be chosen uniformly at random from the sets with |A| = k and |A+A| ⩽ λk. Then

there exists an arithmetic progression P with

A ⊂ P and |P | ⩽ λk

2
+ c(λ, ε)

with probability at least 1− ε.

There is only one piece still missing in the proof of Theorem 6.9.1: a lower bound on the size

of the set

Λ =
{
A ⊂ [n] : |A| = k and |A+A| ⩽ λk

}
.
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The following very simple bound will suffice for our current purposes; a stronger lower bound

(at least, for large λ) will be proved in Section 6.10.

Lemma 6.9.2. Let λ ⩾ 3 and n, k ∈ N, with λk ⩽ n. Then

∣∣{A ⊂ [n] : |A| = k, |A+A| ⩽ λk
}∣∣ ⩾ 1

λ3
· n

2

k

(
λk/2

k

)
.

Proof. We consider, for each arithmetic progression P of length λk/2 in [n], all subsets A ⊂ P of

size k containing both endpoints of P . All of these sets are distinct, and all satisfy |A+A| ⩽ λk.

There are at least n2/2λk choices for the arithmetic progression, and therefore

|Λ| ⩾ n2

2λk

(
λk/2− 2

k − 2

)
⩾

n2

λ3k

(
λk/2

k

)
,

as claimed, where the final step follows since
(
a
b

)
= a(a−1)

b(b−1)

(
a−2
b−2

)
. □

We can now deduce Theorem 6.9.1 from Lemmas 6.5.1, 6.6.1, 6.7.1 and 6.9.2.

Proof of Theorem 6.9.1. For simplicity, we will assume that λk ⩽ n; the case λk > n is dealt

with in [32, Appendix C]. Recall from (6.22) that Λ∗ denotes the collection of sets A ∈ Λ

that are contained in an arithmetic progression of length λk/2 + c(λ, ε). Observe first that, by

Lemma 6.5.1 and our assumption that ε > e−δ
2k, we have

|Λ \ Λ∗| ⩽ n2

k
· |I|+ exp

(
− δk

210λ

)(
λk/2

k

)
⩽
n2

k
· |I|+ ε

2λ3

(
λk/2

k

)
.

Now, by Lemmas 6.6.1 and 6.7.1, and recalling that S ∪ D = I, we have

|I| = |S|+ |D| ⩽ 2 · exp
(
− c(λ, ε)

220λ2

)(
λk/2

k

)
⩽

ε

2λ3

(
λk/2

k

)
since c(λ, ε) = 220λ2 log(1/ε) + 2560λ32. By Lemma 6.9.2, it follows that

|Λ \ Λ∗| ⩽ ε

λ3
· n

2

k

(
λk/2

k

)
⩽ ε|Λ|,

as required. □

When λ ∈ (2, 3), the proof of Theorem 6.9.1 implies the following weaker bound.

Theorem 6.9.3. For each γ > 0, there exists a constant C(γ) > 0 such that the following holds.

Let 2 + γ ⩽ λ ⩽ 3 and ε > 0 be fixed, let n be sufficiently large, and let k ⩾ (log n)4. If A ⊂ [n]

is chosen uniformly at random from those sets with |A| = k and |A+A| ⩽ λk, then there exists

an arithmetic progression P with

A ⊂ P and |P | ⩽ λk

2
+ C(γ) log(1/ε)
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with probability at least 1− 2ε.

Theorem 6.9.3 follows by repeating the (entire) proof of Theorem 6.9.1, replacing (everywhere)

the condition λ ⩾ 3 by the condition λ ⩾ 2 + γ, and the conditions r(A) ⩾ c(λ, ε) and

k ⩾ 2400λ25(log n)3 by the conditions r(A) ⩾ C(γ) log(1/ε) and k ⩾ (log n)4. We leave the

details to the reader.

To finish the section, let us quickly deduce Corollary 6.1.2.

Proof of Corollary 6.1.2. The lower bound follows from Lemma 6.9.2 (see also Proposition 6.10.2,

below), so it remains to prove the upper bound. To do so, note that (by increasing the implicit

constant in the upper bound if necessary) we may assume that log n ⩾ 2320λ25, and hence we

may apply Theorem 6.9.1 with ε := 1/2. Since there are at most n2/k arithmetic progressions

of length λk/2 + c(λ, ε), it follows that

|Λ| ⩽ 2n2

k

(
λk/2 + c(λ, ε)

k

)
⩽ exp

(
2c(λ, ε)

λ

)
n2

k

(
λk/2

k

)
⩽ exp

(
c(λ, ε)

)
· n

2

k

(
λk/2

k

)
,

as required. □

6.10 The lower bounds

In this section, we prove lower bounds for the size of Λ, and for the typical size of the smallest

arithmetic progression containing a set A ∈ Λ. The bounds we obtain indicate that the upper

bounds in Theorem 6.1.1 and Corollary 6.1.2 are not far from best possible. We begin with the

construction for the typical structure, which is very simple.

Proposition 6.10.1. Given λ ⩾ 4, let ε > 0 be sufficiently small, and let n, k ∈ N be sufficiently

large. If A ⊂ [n] is chosen uniformly at random from the sets with |A| = k and |A + A| ⩽ λk,

then with probability at least ε,

|P | ⩾ λk

2
+ 2−6λ2 log(1/ε)

for every arithmetic progression P containing A.

Proof. Set r := 2−6λ2 log(1/ε), and consider the family A(r) of sets A = A′ ∪ {0, v}, where
A′ ⊂ [λk/2 − 8r/λ] with |A′| = k − 2, and v = λk/2 + r. We claim that most such sets

satisfy |A + A| ⩽ λk. Indeed, since A′ + A′ ⊂ [λk − 16r/λ], this holds as long as the set

{x ∈ A′ : x > λk/2− r − 16r/λ} has at most 16r/λ elements. If k ⩾ 16r/λ, then the expected

number of elements of this set is

k − 2

λk/2− 8r/λ
·
(
r +

8r

λ

)
<

2(λ+ 8)

λ− 1
· r
λ

⩽
8r

λ
,
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since λ ⩾ 4, and it follows by Markov’s inequality that |A + A| ⩽ λk with probability at least

1/2, as claimed. Now, observe that

|A(r)| =
(
λk/2− 8r/λ

k − 2

)
⩾

2

λ2
exp

(
− 16r

λ(λ− 1)

)(
λk/2

k

)
⩾

√
ε

λ2

(
λk/2

k

)
,

where the first inequality follows from the binomial inequalities(
a

b− 2

)
⩾

b2

2a2

(
a

b

)
and

(
a− c

b

)
⩾

(
1− b

a− c

)c(a
b

)
,

again using the bound k ⩾ 16r/λ, and the second follows since r ⩽ 2−5λ(λ− 1) log(1/ε). Now,

for each a ∈ [n/λk] and b ∈ [n/4], and each set A as above, we apply the linear map x 7→ ax+ b

to A. We obtain at least⌊
n

λk

⌋
· n
4
· 1
2
·
√
ε

λ2

(
λk/2

k

)
⩾ ε2/3 · n

2

k

(
λk/2

k

)
(6.58)

distinct sets A ⊂ [n] with |A| = k and |A+A| ⩽ λk.

Finally, note that few of these sets A are contained in a shorter arithmetic progression, since

such an arithmetic progression would have length at most λk/4 + r/2 < λk/3. Recalling the

upper bound on |Λ| given by Corollary 6.1.2, and that ε was chosen sufficiently small, it follows

that the right-hand side of (6.58) is at least ε|Λ|, as required. □

Obtaining our lower bound on the size of |Λ| will be slightly more delicate.

Proposition 6.10.2. If λ ⩾ 230 and n, k ∈ N are sufficiently large, then

∣∣{A ⊂ [n] : |A| = k, |A+A| ⩽ λk
}∣∣ ⩾ exp

(
2−8λ1/2

)n2
k

(
λk/2

k

)
. (6.59)

In the proof of Lemma 6.10.2, we will need the following simple bound on the number of

independent sets of a given size in a graph.

Lemma 6.10.3. Let G be a graph with n vertices, m edges and ℓ loops. Let R be a uniformly

chosen random subset of k vertices, where k ⩽ ⌊n/2⌋. If B is the event that R is an independent

set, then

P(B) ⩾ exp

(
−9mk2

2n2
− 3ℓk

n

)
− exp

(
− k

16

)
.

Lemma 6.10.3 is an almost immediate consequence of the FKG inequality for the hypergeometric

distribution, see, e.g., [17, Lemma 3.2].

Lemma 6.10.4 (Hypergeometric FKG Inequality). Suppose that {Bi}i∈I is a family of subsets

of an n-element set Ω. Let t ∈ {0, . . . , ⌊n/2⌋}, let R be the uniformly chosen random t-subset

169



of Ω, and let B denote the event that Bi ⊈ R for all i ∈ I. Then for every η ∈ (0, 1),

P(B) ⩾
∏
i∈I

(
1−

(
(1 + η)t

n

)|Bi|
)

− exp
(
− η2t/4

)
.

Proof of Lemma 6.10.3. The claimed bound follows immediately from Lemma 6.10.4, applied

with t = k and η = 1/2, and with the sets Bi being the edges and loops of G, using the fact

that 1− x ⩾ e−2x for 0 ⩽ x ⩽ 3/4. □

Proof of Proposition 6.10.2. Set c := 2−8 and r := 2cλ3/2. We will first prove that there are at

least exp
(
2cλ1/2

)(λk/2
k

)
subsets A ⊂ [λk/2 + r] of size k with |A + A| ⩽ λk, each containing

the endpoints 1 and λk/2+ r. Since this bound can be applied in each of the (at least) n2/4λk

arithmetic progressions of length λk/2 + r in [n], and since the sets A obtained for different

arithmetic progressions are distinct, it will follow that

|Λ| ⩾ n2

4λk
· exp

(
2cλ1/2

)(λk/2
k

)
⩾ exp

(
cλ1/2

)n2
k

(
λk/2

k

)
,

as required.

To prove the claimed bound, let R be a uniformly chosen subset of [2, λk/2+r−1] with exactly

k − 2 elements, and set A := R ∪ {1, λk/2 + r}. Observe first that(
λk/2 + r − 2

k − 2

)
⩾

1

λ2

(
λk + 2r

λk

)k(λk/2
k

)
⩾ exp

(
3cλ1/2

)(λk/2
k

)
, (6.60)

where the first inequality holds since
(
a
b

)
= a(a−1)

b(b−1)

(
a−2
b−2

)
and using (6.19), and the second follows

since r = 2cλ3/2, and because λ and k were chosen sufficiently large.

It will therefore suffice to prove that |A+ A| ⩽ λk with probability at least exp
(
− cλ1/2

)
. To

do so, define

A′ :=
{
x ∈ A : x ⩽ λk/2− r

}
and B :=

{
x ∈ A : x > λk/2− r

}
,

and set b := 16cλ1/2. Observe that E[|B|] ⩽ 4r/λ = b/2, and hence

P
(
|B +B| ⩾ b2

)
⩽ P

(
|B| ⩾ b

)
⩽ exp

(
− cλ1/2

)
, (6.61)

by Hoeffding’s inequality. We claim that, setting X := [λk − 2r + 1, λk − 2r + b2], we have

P
(
(A′ +B) ∩X = ∅

)
⩾ 2 · exp

(
− cλ1/2

)
. (6.62)
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Before proving (6.62), observe that, together with (6.60) and (6.61), it will suffice to deduce the

proposition. Indeed, if (A′ +B) ∩X = ∅ and |B +B| ⩽ b2 = |X|, then

|A+A| ⩽ λk − 2r + |(A′ +B) \ [λk − 2r]|+ |B +B| ⩽ λk,

since A′ +A′ ⊂ [λk − 2r] and A′ +B ⊂ [λk], and noting that b2 = 28c2λ ⩽ 4cλ3/2 = 2r.

To prove (6.62) we will use Lemma 6.10.3. To do so, we define a graph G with vertex set

[λk/2 + r] and edge set

E(G) =
{
xy : x ⩽ λk/2− r, y > λk/2− r and x+ y ∈ X

}
∪
{
x : x+ λk/2 + r ∈ X

}
.

Observe that if R is an independent set in G, then (A′ +B)∩X = ∅. Note that G has at most

2rb2 ⩽ 210c3λ5/2 edges and at most b2 = 28c2λ loops, and that

9 · 210c3λ5/2k2

2(λk/2 + r)2
+

3 · 28c2λk
λk/2 + r

⩽ 215c3λ1/2 + 211c2 ⩽ cλ1/2 − 1,

since c = 2−8 and λ ⩾ 230. It follows by Lemma 6.10.3 that

P
(
(A′ +B) ∩X = ∅

)
⩾ exp

(
− cλ1/2 + 1

)
− exp

(
− k/16

)
⩾ 2 · exp

(
− cλ1/2

)
as required, since k is sufficiently large. This completes the proof of Proposition 6.10.2. □
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Chapter 7

The number of sumsets of a given

size

7.1 Introduction

In this chapter we will consider another natural counting problem in additive combinatorics:

how many sumsets of a given size are there in Zn? Our main result is the following theorem,

which provides a sharp bound on the number of sumsets of a given size and doubling constant.

Theorem 7.1.1. Let n be a prime, and let m, k ∈ N with m ⩾ (2 +
√
5)k and k ⩾ (log n)4.

There are at most

2o(m)

(m−k
2

k

)
(7.1)

sets of the form A+A for some A ⊂ Zn with |A| = k and |A+A| = m.

Observe that (7.1) is maximised with m/k = Θ(1), and so our main focus will be on sets with

bounded doubling. In fact, when m/k → ∞ a stronger bound follows from Theorem 5.1.1, by

simply counting all sets A of size k with |A+A| ⩽ m.

We will also prove the following (sharp) bound when m ⩽ (2 +
√
5)k.

Theorem 7.1.2. Let n be a prime, and let m, k ∈ N with k ⩾ (log n)4 and m = λk for some

fixed 2 < λ ⩽ 2 +
√
5. There are

2o(m)

(1+
√
5

2
√
5
(m− 2k)

1√
5
(m− 2k)

)
, (7.2)

sets of the form A+A for some A ⊂ Zn with |A| = k and |A+A| = m.

In order to deduce an upper bound on the number of sumsets of size m, we simply sum (7.1)

and (7.2) over k, noting that the maximum occurs for some k ∈ (5m, 6m).
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The following construction provides a matching lower bound (in the critical range (2 +
√
5)k ⩽

m = O(k)) when m− k + 1 ⩽ 2n/3. Let

P =

{
x ∈ Zn :

n

3
< x ⩽

n

3
+
m− k + 1

2

}
,

and note for any {0} ⊂ A ⊂ {0} ∪ P we have (A + A) ∩ P = A. Moreover, since m = O(k),

there are roughly
(m−k

2
k

)
such sets A of size k for which P +P ⊂ A+A. Since (P +P )∩P = ∅,

for each such set we have |A+A| = |P + P |+ |A| = m.

The construction showing that Theorem 7.1.2 is sharp is slightly more complicated. Set s :=⌊(
1+

√
5

2
√
5

)
(m− 2k)

⌋
and t :=

⌊
1√
5
(m− 2k)

⌋
, and consider k-sets of the form A = A′ ∪Q ∪ {−s},

where

Q =
{
x ∈ Zn : s < x < s+ k − t

}
and A′ ⊂ P =

{
x ∈ Zn : 0 < x ⩽ s

}
. Note that there are

(
s
t

)
choices for A′, and that if

m ⩽ 2n/3 then (A+ A) ∩ (P − s) = A′ − s, since 2(s+ k − t) < n− s. Moreover, it is easy to

check that if A′ +A′ = P + P then |A+A| ≈ m.

The rest of the chapter is organised as follows. In Section 7.2 we will deduce the container

theorem we need from Theorem 5.4.2 using a removal lemma due to Shao [143], in Section 7.3

we will prove a lemma about counting neighborhoods in graphs, and in Section 7.4 we will put

the pieces together and prove Theorems 7.1.1 and 7.1.2.

7.2 A container theorem for sumsets

In this section we prove our main container theorem for sumsets, Theorem 7.2.1, below. Since

in this part of the argument we will not require any specific properties of Zn, we will work in

an arbitrary subset X of a general abelian group G.

We will find a relatively small family of “containers” C such that for all J ⊂ X with bounded

doubling, there is a corresponding triple (A,B,Υ) ∈ C, where A ⊂ X +X and B,Υ ⊂ X, with

certain useful properties. More precisely, we will have

J ⊂ B ∪Υ and J + J = A ∪
(
(J \Υ) + Υ

)
,

and also (less precisely) Υ is ‘small’ and B +B ≈ A.

To see why this is a useful family to consider, it may help to consider the construction of sumsets

described in the introduction, where we set P to be an interval of length (λ−1)k
2 , letting m = λk,

and took all sumsets J + J with {0} ⊂ J ⊂ {0} ∪ P . In this case one should think of B = P

and A = P + P , so A is the ‘structured’ part of the sumset, and Υ = {0}.

173



Theorem 7.2.1. Fix λ ⩾ 1 and δ > 0, and let n ∈ N be sufficiently large. Let k ∈ N with

k ⩾ (log n)4, let G be an abelian group, and let X ⊂ G with |X| = n. Then there exists a family

C of triples (A,B,Υ), where A ⊂ X +X and B,Υ ⊂ X, with

|C| ⩽ exp
(
3δk
)
, (7.3)

such that

(a) For all J ⊂ X with |J | = k and |J + J | = λk, there exists (A,B,Υ) ∈ C such that

J + J = A ∪
(
(J \Υ) + Υ

)
and Υ ⊂ J ⊂ B ∪Υ.

(b) For all (A,B,Υ) ∈ C we have |(B +B) \A| ⩽ δk and |Υ| ⩽ δk.

Roughly speaking, Property (b) says that B + B is a good approximation for the structured

part A of the sumset J + J . In particular, this will allow us to deduce that J + J has a large

structured part. Property (a) tells us that the part of J + J that is not structured comes from

the sum of J with a small fixed set Υ.

We will deduce Theorem 7.2.1 from Theorem 5.4.2 which we restate here for convenience.

Theorem 7.2.2 (Theorem 5.4.2). Let m,n be integers with m ⩾ (log n)2, let G be an abelian

group, let X ⊂ G with |X| = n, and let 0 < ϵ < 1
4 . There exists a family A ⊂ 2X+X × 2X of

size

|A| ⩽ exp
(
216

1

ϵ2
√
m(log n)3/2

)
(7.4)

such that:

(i) For every set J ⊂ X with |J + J | ⩽ m, there exists (C,D) ∈ A such that

C ⊂ J + J and J ⊂ D.

(ii) For every (C,D) ∈ A we have |C| ⩽ m, and moreover either |D| ⩽ m
logn or there are at

most ϵ2|D|2 pairs (d1, d2) ∈ D ×D such that d1 + d2 ̸∈ C.

One might initially think that D + D ≈ C for every (C,D) ∈ A, since for almost all pairs

(d1, d2) ∈ D ×D we have d1 + d2 ∈ C. However, notice that by adding a few random elements

to D, we can make D +D much larger than C without having many bad pairs. The point of

Theorem 7.2.1 is that we can remove these ‘unstructured’ elements and put them in a set Υ,

so that for B = D \ Υ we have B + B ≈ C. The following theorem of Shao [143] will be the

fundamental tool that allows us to make this intuition precise.

Theorem 7.2.3. Let G be an abelian group, and let D ⊂ G. Let K ⩾ 1 and ϵ > 0, and let

Γ ⊂ D×D with |Γ| ⩾ (1−ϵ2)|D|2. If |D+ΓD| ⩽ K|D|, then there exists δ := δ(ϵ,K) = oϵ→0(1)

and a subset B ⊂ D such that

|B| ⩾ (1− δ)|D| and |(B +B) \ (D +Γ D)| ⩽ δ|D|.
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We are now ready to prove Theorem 7.2.1.

Proof of Theorem 7.2.1. Let A be the family given by Theorem 5.4.2 applied with m = λk and

ϵ :=

(
232λ(log n)3

δ2k

)1/4

⩽ (log n)−1/8,

by choosing n large enough with respect to λ and δ. Notice that, with this choice of parameters,

|A| ⩽ exp
(
216

1

ϵ2
√
m(log n)3/2

)
= exp(δk). (7.5)

Now let J ⊂ X with |J | = k and |J + J | = λk. By Property (i) of Theorem 5.4.2, there exists

(C,D) ∈ A such that C ⊂ J + J and J ⊂ D. Observe that

k = |J | ⩽ |D| ⩽ 2λk, (7.6)

since for each d1 ∈ D there are at least |D| − |C| choices for d2 ∈ D such that d1 + d2 ̸∈ C,

and thus if |D| ⩾ 2λk = 2|J + J | ⩾ 2|C|, then there would be at least 1
2 |D|2 pairs (d1, d2) ∈ D2

with d1 + d2 ̸∈ C, contradicting Property (ii) of Theorem 5.4.2.

We apply Theorem 7.2.3 to D, with K = λ and

Γ =
{
(d1, d2) ∈ D ×D : d1 + d2 ∈ C

}
.

Notice that, by (7.6) and Properties (i) and (ii) of Theorem 5.4.2, we have

|Γ| ⩾ (1− ϵ2)|D|2 and |D +Γ D| ⩽ |C| ⩽ |J + J | = λk ⩽ λ|D|,

so the conditions of the theorem hold. It follows that there exists a subset B ⊂ D such that

|B| ⩾
(
1− δ

2λ

)
|D| and |(B +B) \ C| ⩽ δ

2λ
|D|, (7.7)

since ϵ→ 0 as n→ ∞, and we chose n large with respect to δ and λ.

Now, let A′ ⊂ A denote the collection of (C,D) ∈ A as above, i.e., that are the container of

some set J ⊂ X with |J | = k and |J + J | = λk. For each (C,D) ∈ A′ denote by B(C,D) the

set B ⊂ D satisfying (7.7) given by Theorem 7.2.3, define

C(C,D) :=
{
(A,B,Υ) : B = B(C,D), Υ ⊂ D \B, and

A = T ∪ (Υ + Υ) for some (B +B) ∩ C ⊂ T ⊂ B +B
}
,

and set

C :=
⋃

(C,D)∈A′

C(C,D).

In order to prove that C has the required properties, we will first verify Property (b), then

deduce the bound (7.3) on the size of C, and finally show that Property (a) holds.
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To show that Property (b) holds, let (C,D) ∈ A′ and (A,B,Υ) ∈ C(C,D). Note first that, by

the definition of C(C,D), there exists a set T such that (B + B) ∩ C ⊂ T ⊂ A. Using (7.6)

and (7.7), it follows that

|(B +B) \A| ⩽ |(B +B) \ C| ⩽ δ

2λ
|D| ⩽ δk.

Similarly, recall that Υ ⊂ D\B, by the definition of C(C,D), and that B ⊂ D. Again using (7.6)

and (7.7), it follows that

|Υ| ⩽ |D \B| = |D| − |B| ⩽ δ

2λ
|D| ⩽ δk.

Having verified Property (b), we can now bound the size of C. To do so, recall that A′ ⊂ A,

and thus by (7.5) we have |A′| ⩽ |A| ⩽ exp(δk). Now let (C,D) ∈ A′, and note that B is

uniquely determined by (C,D), that there are at most 2δk choices for Υ, since Υ ⊂ D \B and

|D \ B| ⩽ δk, and that there are at most 2δk choices for T , since (B + B) ∩ C ⊂ T ⊂ B + B

and |(B +B) \ C| ⩽ δk. It follows that

|C| ⩽
∑

(C,D)∈A′

|C(C,D)| ⩽ exp(δk) · 22δk ⩽ exp(3δk).

It remains to show Property (a) holds, so let J ⊂ X with |J | = k and |J + J | = λk, let

(C,D) ∈ A be the container of J (so C ⊂ J + J and J ⊂ D), and set B = B(C,D). We claim

that if

Υ = J \B and A =
(
(B +B) ∩ (J + J)

)
∪
(
Υ+Υ

)
, (7.8)

then (A,B,Υ) ∈ C(C,D), and moreover that

J + J = A ∪
(
(J \Υ) + Υ

)
and Υ ⊂ J ⊂ B ∪Υ,

as required. First, observe that since J ⊂ D and C ⊂ J + J , we have

J \B ⊂ D \B and (B +B) ∩ C ⊂ (B +B) ∩ (J + J) ⊂ B +B.

Hence, setting T = (B + B) ∩ (J + J), it follows that (A,B,Υ) ∈ C(C,D). Next, note that

Υ ⊂ J ⊂ B ∪ Υ follows immediately from the definition of Υ = J \ B. Finally, observe that

J \Υ = B ∩ J , so

J + J =
(
(J \Υ) + (J \Υ)

)
∪
(
Υ+Υ

)
∪
(
(J \Υ) + Υ

)
⊂
(
(B +B) ∩ (J + J)

)
∪
(
Υ+Υ

)
∪
(
(J \Υ) + Υ

)
= A ∪

(
(J \Υ) + Υ

)
.

Since Υ ⊂ J , it follows from (7.8) that in fact J + J = A ∪
(
(J \ Υ) + Υ

)
. This proves

Property (a), and hence completes the proof of the theorem. □
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7.3 Counting Neighborhoods

For k ∈ N and m ⩾ 2k the problem we are interested in is essentially to bound the size of the

following family

Sm,k =
{
I ∈

(
Zn
m

)
: ∃ J with I = J + J, |J | = k

}
. (7.9)

Theorem 7.2.1 provides us with a collection of containers (A,B,Υ) for this family of sets. For

any triple of sets A,B,Υ ⊂ Zn define the family

Tm,k(A,B,Υ) =

{
I ∈

(
Zn
m

)
: ∃S ⊂ B with I = A ∪ (Υ + S), |S| = k − |Υ|

}
, (7.10)

and observe that if C is the family of containers given by Theorem 7.2.1, and (A,B,Υ) ∈ C is

the container corresponding to J , then J+J ∈ Tλk,k(A,B,Υ). Since the number of containers is

eo(k), we are thus left with the task of bounding |Tm,k(A,B,Υ)| for each container (A,B,Υ) ∈ C.
The aim of this section is to provide suitable bounds.

We begin with a simple observation, which will suffice when |B| ⩽ (λ−1)k
2 .

Lemma 7.3.1. Let n be a prime, and let k and m be integers. For any A,B,Υ ⊂ Zn,

|Tm,k(A,B,Υ)| ⩽
(

|B|
k − |Υ|

)

Proof. We only need to count the number of choices for S ⊂ B with |S| = k − |Υ|, since every

element of Tm,k(A,B,Υ) is of the form A ∪ (Υ + S), where A and Υ are fixed. □

Proving a sufficiently strong bound on the size of Tm,k(A,B,Υ) when |B| ⩾ (λ−1)k
2 will not be

quite so easy. To do so, we’ll prove a general lemma about counting neighborhoods in graphs

(Lemma 7.3.2, below), and apply it to the auxiliary bipartite graph

F (A,B,Υ) :=
{
(x, y) ∈ (Zn \A)×B : x− y ∈ Υ

}
. (7.11)

To motivate this definition, observe that each set I ′ := (Υ+S) \A that we need to count is the

neighborhood in the graph F = F (A,B,Υ) of some set S ⊂ B, i.e., a set of the form

NF (S) :=
⋃
x∈S

NF (x).

Our main lemma for counting neighborhoods in graphs is as follows.

Lemma 7.3.2. Let t, ℓ ∈ N, let F be a graph, and let B ⊂ V (F ) be an independent set. Then

there are at most

2 ·
(
|B|+ t− ℓ

t

)
sets of the form NF (S) with S ⊂ B, |S| = ℓ, and |NF (S)| ⩽ t.
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When t ⩽ ℓ, Lemma 7.3.2 is tight up to a factor of 2, since if F is a matching with |B|+ t− ℓ

edges, and B contains one endpoint of each edge of F , then every set S as in the lemma contains

exactly t vertices of degree 1, and all ℓ − t vertices in B of degree 0. Since each such set has

a distinct neighborhood, it follows that in this case there are exactly
(|B|+t−ℓ

t

)
sets of the form

NF (S) with S as described. We remark also that the slightly weaker1 bound

t∑
s=0

(
|B|
s

)
(7.12)

follows easily from the observation that if |NF (S)| ⩽ t, then there exists a subset S′ ⊂ S such

that |S′| ⩽ t and NF (S
′) = NF (S). It follows that the number of sets S′ ⊂ B with |S′| ⩽ t is

an upper bound on the number of neighborhoods NF (S) with S ⊂ B and |NF (S)| ⩽ t. This

simple bound is actually enough to prove Theorem 7.1.1 when λ ⩾ 5, but for λ < 5 we will need

the stronger bound given by Lemma 7.3.2.

The basic idea of our proof of Lemma 7.3.2 is quite simple: for each set S as in the lemma, we

will carefully choose a subset S′ ⊂ S of size at most t that ‘encodes’ the neighborhood of S,

and then count the sets S′ formed via this process. Our choice of S′ is inspired by the proof

of the graph container lemma: in each step we select a ‘maximum-degree’ vertex vi and reveal

whether or not it is in S. If vi ∈ S, then we remove its neighborhood from the graph. Crucially,

the choice of vi will only depend on the set S ∩ {v1, . . . , vi−1}.

The key observation about this process is given by the following simple lemma, which will allow

us to bound the number of sets S′ of a given size that can be produced by the algorithm in a

given number of steps.

Lemma 7.3.3. Let B be a finite set, and let f : 2B×N → B be an arbitrary function. For each

set S ⊂ B, define a sequence (vi,S)i∈N of elements of B by setting

Si−1 := S ∩ {v1,S , . . . , vi−1,S} and vi,S := f(Si−1, i)

for each i ∈ N. Then ∣∣{Sa : S ⊂ B, |Sa| = b
}∣∣ ⩽ (a

b

)
for every a, b ∈ N.

Proof. We claim that, for each S ⊂ B and i ∈ N, the set Si is uniquely defined by the set of

indices {j ∈ [i] : vj,S ∈ Si}. Since when |Sa| = b the number of choices for the set of indices is

exactly
(
a
b

)
, this will suffice to prove the lemma.

To prove the claim, simply note that it holds for i = 0 (since S0 is always the empty set), and

that the choice of vi,S depends only on Si−1. We may therefore use induction on i, and deduce

1In fact, if t−ℓ is sufficiently large then this bound is slightly stronger than that given by the lemma; however,
our main interest will be in the case t ⩽ ℓ.
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that if two sets S and T satisfy{
j ∈ [i] : vj,S ∈ Si

}
=
{
j ∈ [i] : vj,T ∈ Ti

}
,

then Si−1 = Ti−1 (by the induction hypothesis), vi,S ∈ S if and only if vi,T ∈ T , and moreover

vi,S = vi,T . Hence Si = Ti, as claimed. □

We are now ready to prove Lemma 7.3.2.

Proof of Lemma 7.3.2. Fix a set S ⊂ B with |S| = ℓ and |NF (S)| ⩽ t. We will define a sequence

(v1, . . . , v|B|) of elements of B, and an auxiliary sequence (Ai, Bi, Fi)
|B|+1
i=1 , where Ai ⊂ V (F ),

Bi ⊂ B and Fi ⊂ F for each i, as follows:

(a) Set A1 := V (F ), B1 := B and F1 := F .

Now, for each 1 ⩽ i ⩽ |B|, if we have already defined (v1, . . . , vi−1) and (Ai, Bi, Fi), then:

(b) Choose vi ∈ Bi with dFi(vi) (the degree of vi in Fi) maximal.2

(c) If vi ∈ S, then set

Ai+1 := Ai \NFi(vi), Bi+1 := Bi \ {vi} and Fi+1 := F [Ai+1].

If vi ̸∈ S, then set Ai+1 := Ai, Bi+1 := Bi \ {vi} and Fi+1 := Fi.

Note that the choice of vi is determined by (Ai, Bi, Fi), and that (Ai+1, Bi+1, Fi+1) is determined

by (Ai, Bi, Fi) and the event {vi ∈ S}. It follows that for each 1 ⩽ i ⩽ |B|, there exists a function
fi : 2

B → B such that vi = fi(Si−1), where Si = S ∩ {v1, . . . , vi}. Crucially, observe that these

functions do not depend on S.

The next observation we will need is that

NF (Si) =
⋃
vj∈S
j⩽i

NFj (vj) (7.13)

for every i ∈ N, where Si := S ∩ {v1, . . . , vi}. One direction is trivial, since Fj ⊂ F for every

j ∈ N, and the other direction holds because Fj = F [Aj ], and any vertex in V (F ) \Aj must be

contained in NFj′ (vj′) for some j′ < j such that vj′ ∈ S. Note also that the union in (7.13) is

in fact a disjoint union, that is

NFj (vj) ∩NFj′ (vj′) = ∅ (7.14)

for every 1 ⩽ j < j′ ⩽ i with vj , vj′ ∈ S, because vj ∈ S implies that NFj (vj) is removed from

Aj′ in the algorithm, and recalling that Fj′ = F [Aj′ ].

Now define

a = a(S) := min
{
i ∈ N : NF (Si) = NF (S)

}
,

2If there is more than one vertex with the maximum degree in Bi, then choose vi according to some arbitrary
(but fixed) rule.
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and note that this is well-defined since B is independent, so no vertex of B is ever deleted from

Ai, and thus every vertex of B appears in the sequence (v1, . . . , v|B|). We will use Lemma 7.3.3

to bound the number choices for Sa, and hence the number of sets NF (S). To do so we will

need the following bounds on a and the size of Sa.

Claim 7.3.4. a ⩽ |B|+ |Sa| − ℓ and |Sa| ⩽ t.

Proof. Observe first that

|NFi(vi)| ⩾ |NFi+1(vi+1)| (7.15)

for every 1 ⩽ i < |B|, since the degree of vi in Fi is maximal amongst vertices of Bi, and since

Fi+1 ⊂ Fi and Bi+1 ⊂ Bi. It follows that |NFi(vi)| ⩾ 1 for all i ⩽ a, and hence, by (7.13)

and (7.14), we deduce that |Sa| ⩽ |NF (S)| ⩽ t. To bound a, simply note that

|B| − a = |B \ {v1, v2 . . . , va}| ⩾ |S \ {v1, v2 . . . , va}| = ℓ− |Sa|,

because S ⊂ B and |S| = ℓ. It follows that a ⩽ |B|+ |Sa| − ℓ, as claimed. □

It moreover follows from the proof of Claim 7.3.4 that if |Sa| = t then dF (v) ⩽ 1 for every v ∈ S.

It follows that if B has x vertices of degree 0 in F , then the number of choices for NF (S) with

|Sa| = t is at most
t∑

s=ℓ−x

(
|B| − x

s

)
⩽

(
|B|+ t− ℓ

t

)
,

with equality when x ∈ {ℓ − t, ℓ − t + 1}. Moreover, by Lemma 7.3.3, the number of sets Sa
such that S ⊂ B and |Sa| ⩽ t− 1 is at most

t−1∑
s=0

(
|B|+ s− ℓ

s

)
=

(
|B|+ t− ℓ

t

)
.

Since NF (Sa) = NF (S), by the definition of a = a(S), the lemma follows. □

Applying Lemma 7.3.2 to the graph F (A,B,Υ), defined in (7.11), we obtain the following bound

on the size of the set Tm,k(A,B,Υ), which was defined in (7.10).

Lemma 7.3.5. Let n be a prime, and let k, m and t be integers. Then

|Tm,k(A,B,Υ)| ⩽ 2 ·
(
|B|+ |Υ|+ t− k

t

)
for any sets A,B,Υ ⊂ Zn with |A| ⩾ m− t.

Proof. Fix A,B,Υ ⊂ Zn, with |A| = m − t + 1. By the definition (7.10) of Tm,k(A,B,Υ), our

task is to bound the number of sets I ′ ⊂ Zn with |I ′| = m− |A| ⩽ t such that I ′ = (Υ+ S) \A
for some S ⊂ B with |S| = k − |Υ|. Set F = F (A,B,Υ), and observe that for each such pair

(I ′, S) we have I ′ = NF (S). By Lemma 7.3.2, applied with ℓ = k− |Υ|, it follows that there are
at most

2 ·
(
|B|+ |Υ|+ t− k

t

)
such sets I ′, as claimed. □
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7.4 Putting together the pieces to count sumsets

Theorems 7.1.1 and 7.1.2 are both fairly straightforward consequences of Theorem 7.2.1 and

Lemmas 7.3.1 and 7.3.5. We will also use the following simple fact.

Fact 7.4.1. For each x > 0, the function f(s) =
(x+s

2
s

)
is maximised with s = x/

√
5 + O(1).

Moreover,

max
s

(x+s
2

s

)
=
(
1 + o(1)

)( (1+
√
5)x

2
√
5

x√
5

)
as x→ ∞.

Proof of Theorems 7.1.1 and 7.1.2. Fix λ ⩾ 2 and δ > 0, and let n be a sufficiently large

prime and k ⩾ (log n)4. Set m := λk, and (recalling (7.9)) observe that in order to prove

Theorem 7.1.1, it will suffice to show that

|Sm,k| ⩽ (λ/δ)4δk
( (λ−1)k

2

k

)
.

By Theorem 7.2.1, and recalling the definition (7.10) of Tm,k(A,B,Υ), there exists a family C
of triples (A,B,Υ), where A ⊂ X +X and B,Υ ⊂ X, such that

|Sm,k| ⩽ e3δk max
(A,B,Υ)∈C

|Tm,k(A,B,Υ)|.

Indeed, property (a) of Theorem 7.2.1 guarantees that for each sumset J + J ∈ Sm,k, there
exists (A,B,Υ) ∈ C such that J + J ∈ Tm,k(A,B,Υ).

In order to bound |Tm,k(A,B,Υ)|, we will split into two cases, depending on the size of the set

B. When |B| ⩽ (λ−1)k
2 , it suffices to use Lemma 7.3.1, which implies that

|Tm,k(A,B,Υ)| ⩽
( (λ−1)k

2

k − |Υ|

)
⩽

(
λk

δk

)( (λ−1)k
2

k

)
⩽ (λ/δ)2δk

( (λ−1)k
2

k

)
,

where the second inequality follows since |Υ| ⩽ δk and
(
a
b−c
)
⩽
(
a
b

)(
a
c

)
.

To deal with the case |B| > (λ−1)k
2 , observe first that, by Lemma 7.3.5, we have

|Tm,k(A,B,Υ)| ⩽ 2 ·
(
|B|+ |Υ|+ s− k

s

)
, (7.16)

where s = m−|A|. To bound the right-hand side of (7.16), recall that |Υ| ⩽ δk, by property (b)

of Theorem 7.2.1, and observe that

|A| ⩾ |B +B| − δk ⩾ 2|B| − 1− δk = m− t, (7.17)

where t := (1+ δ)k− 1. Indeed, the first inequality follows since |(B+B) \A| ⩽ δk, the second

by Cauchy–Davenport3, and the third since |B| > (λ−1)k
2 and m = λk.

3If B +B = Zn, then m ⩾ |A| ⩾ n− δk (since A ⊂ J + J and |(B + B) \ A| ⩽ δk), and so there are at most(
n
δk

)
⩽

(
m/4
k

)
sumsets J + J of size m in Zn, as required.
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It follows from (7.17) that s ⩽ t, and that |B| ⩽ |A|+δk+1
2 ⩽ m−s

2 + δk, and hence(
|B|+ |Υ|+ s− k

s

)
⩽

( (λ−2)k+s
2 + 2δk

s

)
⩽

(
λk

2δk

)( (λ−2)k+s
2

s

)
⩽ (λ/δ)3δk

( (λ−2)k+s
2

s

)
,

since |Υ| ⩽ δk, and using the inequality
(
a+c
b

)
⩽
(
a
b

)(
a+c
c

)
, which holds for all a ⩾ b ⩾ c.

Now, if λ ⩾ 2 +
√
5 then, by Fact 7.4.1 applied with x = (λ− 2)k, we have

max
s⩽t

( (λ−2)k+s
2

s

)
⩽ λδk

( (λ−1)k+δk
2

k

)
⩽ (λ/δ)2δk

( (λ−1)k
2

k

)
,

as required. On the other hand, if 2 ⩽ λ ⩽ 2 +
√
5, then

max
s⩽t

( (λ−2)k+s
2

s

)
⩽ 2 ·

( (1+
√
5)θ

2

θ

)
,

where θ = (λ−2)k√
5

, again by Fact 7.4.1, and since k is sufficiently large. Combining the bounds

above, we obtain Theorems 7.1.1 and 7.1.2. □
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Chapter 8

Towards Hadwiger’s conjecture via

Bourgain Slicing

This chapter presents joint work with Peter van Hintum, Robert Morris and Marius Tiba. It is

adapted from the paper [38] which has been submitted for publication.

8.1 Introduction

Define

N(K) = min
{
N ∈ N : ∃x1, . . . , xN ∈ Rd such that K ⊂

N⋃
i=1

(
xi + int(K)

)}
.

Hadwiger [78] conjectured in 1957 that N(K) ⩽ 2d for all convex K ⊂ Rd. Note that this bound
is attained by the cube [0, 1]d. The conjecture was proved when d ⩽ 2 by Levy [99] in 1955, but

for over 60 years the best known bound for general d was

N(K) ⩽
(
d log d+ d log log d+ 5d

)(2d
d

)
= O

(
4d
√
d log d

)
.

A few years ago, Huang, Slomka, Tkocz and Vritsiou [83] proved that

N(K) ⩽ e−Ω(
√
d) · 4d. (8.1)

Here we will prove the following almost-exponential improvement of their bound.

Theorem 8.1.1. If K ⊂ Rd is a convex body, then

N(K) ⩽ exp

(
− Ω

(
d

(log d)8

))
· 4d

183



as d→ ∞.

Given a convex body K ⊂ Rd, define the isotropic constant of K to be

LK =

(√
det(ΣK)

Vold(K)

)1/d

,

where ΣK = E[X ⊗X] is the covariance matrix of the random variable X ∼ Unif(K), that is,

X is a uniformly random point of K. A consequence of a theorem of Klartag and Lehec [92] is

that for every convex body K ⊂ Rd it holds that LK = O(log d)4.

Our main result is the following bound on the covering number of a convex body. Since LK =

O(log d)4, it implies the bound in Theorem 8.1.1 for Hadwiger’s conjecture.

Theorem 8.1.2. If K ⊂ Rd is a convex body, then

N(K) ⩽ exp

(
− Ω(d)

L2
K

)
· 4d

as d→ ∞.

One of the key innovations of [83] was a method of deducing bounds on the covering number

N(K) from bounds on the Kövner–Besicovitch measure of symmetry

∆KB(K) := max
x∈Rd

|K ∩ (x−K)|
|K|

.

In particular, the authors of [83] improved the (straightforward, but until then best known)

lower bound ∆KB(K) ⩾ 2−d by a factor of eΩ(
√
d), and used that bound to prove (8.1). We will

similarly deduce Theorem 8.1.2 from the following lower bound on ∆KB(K).

Theorem 8.1.3. If K ⊂ Rd is a convex body, then

∆KB(K) ⩾ exp

(
d

215L2
K

)
· 2−d.

In addition to the application to Hadwiger’s conjecture described above, our method also has an

application to the geometry of numbers. To be precise, Ehrhart [44] conjectured in 1964 that a

convex body in Rd centred at the origin1 whose interior contains no lattice point other than the

origin has volume at most (d + 1)d/d! (this bound is attained by a simplex). The best-known

upper bound for the volume of K is of the form e−Ω(
√
d) ·4d, obtained by Huang, Slomka, Tkocz

and Vritsiou [83]. We will use the bound on LK proved by Klartag and Lehec [92] to deduce

the following almost-exponential improvement of their bound.

1We say that a convex body K ⊂ Rd is centred at its centre of mass E[X], where X ∼ U(K).
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Theorem 8.1.4. Let K ⊂ Rd be a convex body centred at the origin. If K ∩ Zd = {0}, then

|K| ⩽ exp

(
− Ω

(
d

(log d)8

))
· 4d

as d→ ∞.

In order to prove Theorem 8.1.4, we will need a variant of Theorem 8.1.3 that provides a similar

lower bound on the ratio |K ∩ (−K)|/|K| (see Theorem 8.4.1). The application of such bounds

to Ehrhart’s conjecture was first observed by Henk, Henze and Hernández Cifre [82], who used

the bound |K ∩ (−K)|/|K| ⩾ 2−d, due to Milman and Pajor [110], together with Minkowski’s

theorem, to prove an upper bound of 4d for Ehrhart’s conjecture.

The rest of this note is organised as follows. In Section 8.2 we will prove Theorem 8.1.3, in

Section 8.3 we will deduce Theorems 8.1.1 and 8.1.2, and in Section 8.4 we will prove Theo-

rem 8.1.4.

8.2 Bounding the Kövner–Besicovitch measure

One of the key ideas introduced in [83] was that a lower bound on ∆KB(K) can be obtained by

considering the maximum density of the random variableX+Y , whereX and Y are independent

uniform elements of K. More precisely, they made the following observation. We write fX for

the probability density function of a random variable X.

Lemma 8.2.1. Let K ⊂ Rd be a convex body of volume 1, and let X and Y be independent

uniformly-chosen random elements of K. Then, for any z ∈ K,

fX+Y
2

(z) = 2d ·
∣∣K ∩

(
2z −K

)∣∣.
Proof. Observe first that

2−d · fX+Y
2

(z) = fX+Y (2z) =

∫
x∈Rd

fX(x)fY (2z − x) dx.

Now simply note that∫
x∈Rd

fX(x)fY (2z − x) dx =

∫
x∈Rd

1
[
x ∈ K

]
1
[
2z − x ∈ K

]
dx

=

∫
x∈Rd

1
[
x ∈ K ∩ (2z −K)

]
dx = |K ∩ (2z −K)|,

as claimed. □
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It follows immediately from Lemma 8.2.1 that if |K| = 1, then

∆KB(K) ⩾ 2−d ·
∥∥fX+Y

2

∥∥
∞ ⩾ 2−d ·

P
(
X+Y

2 ∈ A
)

P(X ∈ A)
(8.2)

for any measurable set A ⊂ Rd. In order to prove their lower bound on ∆KB(K), the authors

of [83] observed that the random variable
∥∥X+Y

2

∥∥
2
is typically about

√
2 times smaller than

∥X∥2, and applied the inequality (8.2) to a ball A with radius halfway between these two typical

values. They then used a ‘thin-shell’ theorem of Guédon and Milman [76], which implies that

if K ⊂ Rd is a convex body in isotropic position then, for any fixed c > 0,

P
(∣∣∥X∥2 −

√
d
∣∣ ⩾ c

√
d
)
⩽ exp

(
− Ω

(√
d
))
, (8.3)

to deduce that P
(
X+Y

2 ∈ A
)
≈ 1 and P(X ∈ A) ⩽ e−Ω(

√
d) for this set A, giving their bound

∆KB(K) ⩾ eΩ(
√
d) · 2−d.

The Guédon–Milman bound (8.3) is best possible (to see this, consider the simplex), so it may

seem at first sight that there is not much hope of using the method of [83] to prove a significantly

stronger lower bound on ∆KB(K). In order to do so, we will replace the thin-shell estimate (8.3)

by a ‘small-ball’ bound which depends on LK , and the random variable X + Y by a sum of

arbitrarily many independent random variables.

To be more precise, let X1, X2, . . . be a sequence of independent random variables, each chosen

uniformly at random from the set K, and for each k ∈ N, define

Sk :=
1

2k

2k∑
i=1

Xi. (8.4)

Since K is convex, it follows from the Prékopa–Leindler inequality that fSk
is log-concave.

The key step is the following lemma, which bounds fSk
(z) in terms of fX+Y

2
(z).

Lemma 8.2.2. For any convex body K ⊂ Rd with volume 1, we have

fSk
(z) ⩽

(
fX+Y

2
(z)
)2k−1

for all z ∈ Rd and every k ∈ N.

Proof. The proof is by induction on k. Note that the conclusion holds trivially in the case

k = 1, so let k ⩾ 1 and assume that the inequality holds for k; we will prove that it holds

for k + 1. Define Tk := 2−k
∑2k

i=1X2k+i, and note that Sk+1 = Sk+Tk
2 , and that Sk and Tk are

independent and identically distributed random variables with support K. It follows that

fSk+1
(z) = fSk+Tk

2

(z) = 2d
∫
y∈K

fSk
(y)fSk

(2z − y) dy

186



for every z ∈ K. Moreover, since fX and fY are indicator functions on K, and fSk
is a log-

concave function supported on K,∫
y∈K

fSk
(y)fSk

(2z − y) dy ⩽ fSk
(z)2

∫
y∈K

fX(y)fY (2z − y) dy.

Now, by the induction hypothesis, we have

fSk
(z) ⩽

(
fX+Y

2
(z)
)2k−1

,

and therefore, noting again that∫
y∈K

fX(y)fY (2z − y) dy = 2−d · fX+Y
2

(z),

we obtain

fSk+1
(z) ⩽

(
fX+Y

2
(z)
)2(2k−1)

fX+Y
2

(z) =
(
fX+Y

2
(z)
)2k+1−1

,

for every z ∈ K, as required. □

We remark that in order to prove Theorem 8.1.3 (and hence also Theorems 8.1.1 and 8.1.2) we

will only need the inequality

∥fSk
∥∞ ⩽

(∥∥fX+Y
2

∥∥
∞

)2k−1
.

However, in the proof of Theorem 8.1.4 we shall require the full strength of Lemma 8.2.2.

Recall that, for any convex body K ⊂ Rd, there exists an affine transformation that maps K to

a convex body K ′ of volume 1 such that ΣK′ = L2
KId, where ΣK′ = E[X ⊗X] is the covariance

matrix of the uniform random variable X ∼ U(K ′), and Id is the identity matrix. For such a

convex body K ′, it is straightforward to calculate the covariance matrix of Sk.

Lemma 8.2.3. Let K be a convex body, let X ∼ U(K), and suppose that E[X ⊗X] = L2
KId.

Then

E
[
Sk ⊗ Sk

]
= 2−kL2

KId

for every k ∈ N.

Proof. Since Sk = 2−k
∑2k

i=1Xi and the Xi are uniform and independent, it follows that

E
[
Sk ⊗ Sk

]
=

1

22k

2k∑
i,j=1

E
[
Xi ⊗Xj

]
=

1

22k

2k∑
i=1

E
[
Xi ⊗Xi

]
= 2−kL2

KId,

as claimed. □

We are now ready to prove Theorem 8.1.3.
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Proof of Theorem 8.1.3. By applying an affine transformation, we may assume that K has

volume 1 and is centred at the origin, and that E[X⊗X] = L2
KId, where X ∼ U(K). Fix k ∈ N

such that

215L2
K ⩽ 2k ⩽ 216L2

K ,

set R := 2−7
√
d, and observe that, by Markov’s inequality and Theorem 8.2.3, we have

P
(
∥Sk∥2 ⩾ R

)
⩽

214

d
· E
[
∥Sk∥22

]
=

214

d
·

d∑
i=1

2−kL2
K =

214L2
K

2k
⩽

1

2
.

Moreover, bounding P
(
∥X∥2 ⩽ R

)
simply by the volume of the ball of radius R, we obtain

P
(
∥X∥2 ⩽ R

)
⩽

πd/2Rd

Γ(d2 + 1)
⩽

(
2eπR2

d

)d/2
⩽ e−2d−1.

Combining these two bounds, we deduce that

∥fSk
∥∞ ⩾

P
(
∥Sk∥2 ⩽ R

)
P
(
∥X∥2 ⩽ R

) ⩾
e2d+1

2
⩾ e2d. (8.5)

Now, by Lemma 8.2.2, it follows that∥∥fX+Y
2

∥∥
∞ ⩾

(
∥fSk

∥∞
)1/(2k−1)

⩾ ed/2
k−1

,

and hence, by Lemma 8.2.1 and since 2k ⩽ 216L2
K , we obtain

∆KB(K) ⩾ 2−d ·
∥∥fX+Y

2

∥∥
∞ ⩾ exp

(
d

215L2
K

)
· 2−d,

as required. □

We remark that the constant 2−15 in Theorem 8.1.3 could be improved somewhat by taking R

a little larger (and thus k a little smaller); however, we shall need (8.5) again in Section 8.4,

and we chose the constants in the proof above with the application there in mind.

8.3 Hadwiger’s conjecture

In this section we will deduce Theorems 8.1.1 and 8.1.2 from Theorem 8.1.3. We begin with

the proof of Theorem 8.1.2, for which we will need the following asymmetric variant of N(K):

given convex bodies A and B in Rd, define

N(A,B) = min
{
N ∈ N : ∃x1, . . . , xN ∈ Rd such that A ⊂

N⋃
i=1

(
xi + int(B)

)}
.
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We will use the following classical fact (see [127] or [112, Corollary 3.5]), which follows from

Rogers’ bound [125] on the density of coverings of Rd with translates of convex bodies.

Lemma 8.3.1. If A,B ⊂ Rd are convex bodies, then

N(A,B) ⩽ O
(
d log d

)
· |A−B|

|B|
.

We are now ready to deduce Theorem 8.1.2 from Theorem 8.1.3.

Proof of Theorem 8.1.2. By Theorem 8.1.3, there exists x ∈ Rd such that

|K ∩ (x−K)|
|K|

⩾ exp

(
d

215L2
K

)
· 2−d. (8.6)

Set S := K ∩ (x−K), and note that

N(K) ⩽ N(K,S) and |K − S| ⩽ |K +K| = 2d · |K|,

since S ⊂ K and S ⊂ x−K, respectively. It therefore follows from Theorem 8.3.1 that

N(K) ⩽ N(K,S) ⩽ O(d log d) · |K − S|
|S|

⩽ O(d log d) · 2d · |K|
|S|

,

and hence, by (8.6), we obtain

N(K) ⩽ O(d log d) · exp
(
− d

215L2
K

)
· 4d = exp

(
− Ω(d)

L2
K

)
· 4d

as d→ ∞, as required. □

In order to deduce Theorem 8.1.1 and Theorem 8.1.4, we will need the following theorem of

Klartag and Lehec [92].

Theorem 8.3.2. If K ⊂ Rd is a convex body, then

LK = O(log d)4.

Theorem 8.1.1 now follows immediately.

Proof of Theorem 8.1.1. By Theorems 8.1.2 and 8.3.2, it follows that

N(K) ⩽ exp

(
− Ω(d)

L2
K

)
· 4d ⩽ exp

(
− Ω

(
d

(log d)8

))
· 4d

as d→ ∞, as required. □
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8.4 Ehrhart’s conjecture

In order to prove Theorem 8.1.4, we will need the following variant of Theorem 8.1.3.

Theorem 8.4.1. If K ⊂ Rd is a convex body centred at the origin, then

∆KB(K) ⩾
|K ∩ (−K)|

|K|
⩾ exp

(
d

216L2
K

)
· 2−d.

We will deduce Theorem 8.4.1 from the proof of Theorem 8.1.3, together with the following

bound on the value of a log-concave function at its centre of mass [65, Theorem 4].

Theorem 8.4.2. If f : Rd → R+ is a log-concave function, then

f(y) ⩾ e−d · ∥f∥∞,

where y =
∫
x∈Rd f(x) · x dx is the centre of mass of f .

Theorem 8.4.1 now follows from Lemma 8.2.2, as before.

Proof of Theorem 8.4.1. Recall that the function fSk
is log-concave, where Sk is the random

variable defined in (8.4), and note that, since K is centred at the origin, the centre of mass of

fSk
is also the origin. By Theorem 8.4.2 and (8.5), it follows that

fSk
(0) ⩾ e−d · ∥fSk

∥∞ ⩾ ed.

Now, by Lemma 8.2.2, it follows that

fX+Y
2

(0) ⩾
(
fSk

(0)
)1/(2k−1)

⩾ ed/2
k
,

and hence, by Lemma 8.2.1 and since 2k ⩽ 216L2
K , we obtain

|K ∩ (−K)|
|K|

= 2−d · fX+Y
2

(0) ⩾ exp

(
d

216L2
K

)
· 2−d,

as claimed. □

Finally, to deduce Theorem 8.1.4, recall that, by Minkowski’s theorem, every convex body

K ⊂ Rd such that K = −K and K ∩ Zd = {0} has volume at most 2d.

Proof of Theorem 8.1.4. By Minkowski’s inequality and Theorems 8.3.2 and 8.4.1, we have

2d

|K|
⩾

|K ∩ (−K)|
|K|

⩾ exp

(
d

216L2
K

)
· 2−d ⩾ exp

(
Ω

(
d

(log d)8

))
· 2−d

as d→ ∞, as required. □
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Appendix A

The Proofs of two Esseen-type

lemmas

This appendix presents joint work with Matthew Jenssen, Marcus Michelen and Julian Sa-

hasrabudhe. In this appendix we prove our two Esseen-type lemmas, Lemma 2.3.2 and Lemma 2.5.2,

for random variables of the form W T τ , where τ is a µ-lazy random vector in {−1, 0, 1}2d and

W is a (fixed) 2d× ℓ matrix for some ℓ ∈ N. Recall that for a vector u ∈ Rℓ, we let ∥u∥T denote

the Euclidean distance from u to the integer lattice Zℓ.

A.1 Basics of Fourier representation

As above, we let τ be a µ-lazy random vector in {−1, 0, 1}2d and let W be a 2d × ℓ matrix.

Recall the characteristic function φX of a vector valued random variable X is defined as

φX(θ) = E exp(2πi⟨X, θ⟩),

and so we may express characteristic function of W T τ as

φ(θ) = E exp(2πi⟨τ,Wθ⟩) =
2d∏
j=1

(
(1− µ) + µ cos(2π(Wθ)j)

)
.

We note the elementary fact that for µ ∈ [0, 1/4] we have

µ∥x∥2T ⩽ − log (1− µ+ µ cos(2πx)) ⩽ 32µ∥x∥2T , (A.1)

from which we deduce

exp
(
−32µ ∥Wθ∥2T

)
⩽ φ(θ) ⩽ exp

(
−µ ∥Wθ∥2T

)
. (A.2)
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We now note a standard fact regarding Fourier inversion (see [151] p.290).

Fact A.1.1 (Fourier inversion). Let X be a random vector in Rℓ, then for w ∈ Rℓ we have

E exp

(
−π∥X − w∥22

2

)
=

∫
Rℓ

e−π∥θ∥
2
2 · e−2πi⟨w,θ⟩φX(θ) dθ .

In particular, letting g ∼ N (0, (2π)−1Iℓ), we have

E exp

(
−π∥X − w∥22

2

)
= Eg(e−2πi⟨w,g⟩φX(g)) .

A.2 Proof of Lemma 2.3.2 and Lemma 2.5.2

Recall that for ℓ ∈ N, γℓ denotes the ℓ dimensional Gaussian measure defined by γℓ(S) = P(g ∈
S), where g ∼ N (0, (2π)−1Iℓ). We begin with the proof of Lemma 2.3.2.

Proof of Lemma 2.3.2. Let w ∈ Rℓ. We apply Markov’s inequality to obtain

Pτ
(
∥W T τ − w∥2 ⩽ β

√
ℓ
)
⩽ exp

(π
2
β2ℓ
)
Eτ exp

(
−π∥W

T · τ − w∥22
2

)
.

As above, let φ be the characteristic function ofW T τ . We apply Fact A.1.1 and (A.2) to obtain

Eτ exp
(
−π∥W

T · τ − w∥22
2

)
= Eg[e−2πi⟨w,g⟩φ(g)] ⩽ Eg[exp(−ν∥Wg∥2T)].

The right-hand-side of the above may be rewritten as∫ 1

0
Pg(exp(−ν∥Wg∥2T) ⩾ t) dt = ν

∫ ∞

0
Pg(∥Wg∥2T ⩽ u)e−νu du = ν

∫ ∞

0
γℓ(SW (u))e−νu du,

where for the first equality we made the change of variable t = e−νu.

Choosing m to maximize γℓ(SW (u))e−νu/2 (as a function of u), we may bound

ν

∫ ∞

0
γℓ(SW (u))e−νudu ⩽ νγℓ(SW (m))e−νm/2

∫ ∞

0
e−νu/2du = 2γℓ(SW (m))e−νm/2 .

Putting everything together we obtain

Pτ (∥W T τ − w∥2 ⩽ 2β
√
ℓ) ⩽ 2eπβ

2ℓ/2e−νm/2γℓ(SW (m)) .

□

The proof of Lemma 2.5.2 proceeds in much the same way.
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Proof of Lemma 2.5.2. Let us set X = ∥W T · τ∥2 and write

EXe−πX
2/2 = EX 1(X ⩽ β

√
ℓ)e−πX

2/2 + EX 1
(
X ⩾ β

√
ℓ
)
e−πX

2/2 ⩽ PX(X ⩽ β
√
ℓ) + e−πβ

2ℓ/2

and therefore, using that exp(−πβ2ℓ/2) ⩽ exp(−β2ℓ),

Eτ exp
(
−π∥W T · τ∥22

2

)
⩽ Pτ (∥W T · τ∥2 ⩽ β

√
ℓ) + e−β

2ℓ.

As before, we let φ be the characteristic function ofW T τ , and let g be a standard ℓ-dimensional

Gaussian random variable with standard deviation (2π)−1/2. By Fact A.1.1 and (A.2) we obtain

Eτ exp
(
−π∥W

T · τ∥22
2

)
= Eg[φ(g)] ⩾ Eg[exp(−32µ∥Wg∥2T)].

Similar to the proof of Lemma 2.3.2, we write

Eg[exp(−32µ∥Wg∥2T)] = 32µ

∫ ∞

0
γℓ(SW (u))e−32µudu ⩾ 32µγℓ(SW (t))

∫ ∞

t
e−32µu du,

where we have used that γℓ(SW (b)) ⩾ γℓ(SW (a)) for all b ⩾ a. This completes the proof of

Lemma 2.5.2. □
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Appendix B

Relating A to the zeroed out matrix

M .

This appendix presents joint work with Matthew Jenssen, Marcus Michelen and Julian Sa-

hasrabudhe. In this appendix we prove Lemma 2.8.1 and Lemma 2.9.6. To prove these results,

we compare Fourier transforms (that is the characteristic functions) of the random variables

Mv and Av, for fixed v. We first record the characteristic functions of these random variables.

For ξ ∈ Rn we have

ψv(ξ) := E e2πi⟨Av,ξ⟩ =

(
n∏
k=1

cos(2πvkξk)

)
·

∏
j<k

(
2π(ξjvk + ξkvj)

)
and

χv(ξ) := E e2πi⟨Mv,ξ⟩ =
d∏
j=1

n∏
k=d+1

(
3

4
+

1

4
cos
(
2π(ξjvk + ξkvj)

))
.

Our comparison is based on two main points. First we have that χv(ξ) ⩾ 0. Second, we have

ψv(ξ) ⩽ χv(2ξ) , (B.1)

which follows from | cos(t)| ⩽ 3
4 + 1

4 cos(2t) and | cos(t)| ⩽ 1.

Fact B.1.1. For v ∈ Rn, and t ⩾ TL(v), we have

E exp(−π∥Mv∥22/t2) ⩽ (9Lt)n.

Proof. Now E exp(−π∥Mv∥22/t2) is at most

P(∥Mv∥2 ⩽ t
√
n) +

√
n

∫ ∞

t
exp

(
−s

2n

t2

)
P(∥Mv∥2 ⩽ s

√
n) ds . (B.2)
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and since t ⩾ TL(v), we have P(∥Mv∥2 ⩽ s
√
n) ⩽ (8Ls)n for all s ⩾ t, and so we may bound

√
n

∫ ∞

t
exp

(
−s

2n

t2

)
P(∥Mv∥2 ⩽ s

√
n) ds ⩽

√
n(8Lt)n

∫ ∞

t
exp

(
−s

2n

t2

)
(s/t)n ds .

Changing variables u = s/t, the right hand side is equal to

t−1√n(8Lt)n
∫ ∞

1
exp(−u2n)un du ⩽ t−1√n(8Lt)n

∫ ∞

1
exp(−u2/2) du ⩽ (9Lt)n,

as desired. □

Proof of Lemma 2.8.1. Apply Markov’s inequality to bound

P(∥Av − w∥2 ⩽ t
√
n) ⩽ exp(πn/2)E exp

(
−π∥Av − w∥22/2t2

)
. (B.3)

Using the Fourier inversion formula in Fact A.1.1 we write

EA exp
(
−π∥Av − w∥22/2t2

)
=

∫
Rn

e−π∥ξ∥
2
2 · e−2πit−1⟨w,ξ⟩ψv(t

−1ξ) dξ . (B.4)

Rescaling, applying (B.1) and non-negativity of χv yields that the RHS of (B.4) is at most∫
Rn

e−π∥ξ∥
2
2χv(2t

−1ξ) dξ ⩽ EM exp(−2π∥Mv∥22/t2).

Now use Fact B.1.1 along with the assumption t ⩾ TL(v) to obtain

EM exp(−2π∥Mv∥22/t2) ⩽ (9Lt)n,

as desired. □

We prove Lemma 2.9.6 in a similar manner. Recall ρε(v) = maxb∈Rn P (
∑

i viεi ∈ (b− ε, b+ ε)).

Proof of Lemma 2.9.6. Set ε = TL(v) and let B be a n × n matrix uniformly drawn from all

matrices with entries in {±1} and apply Markov’s inequality to bound

ρε(v)
n ⩽ max

w∈Rn
P(∥Bv − w∥2 ⩽ ε

√
n) ⩽ max

w∈Rn
exp(πn/2)E exp

(
−π∥Bv − w∥22/2ε2

)
. (B.5)

Apply Fact A.1.1 to write

E exp
(
−π∥Bv − w∥22/2ε2

)
=

∫
Rn

e−π∥ξ∥
2
2 · e−2πiε−1⟨w,ξ⟩

∏
1⩽j,k⩽n

cos(2πε−1vjξk) dξ (B.6)
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and use Hölder’s inequality to bound the RHS of (B.6)

⩽

(∫
Rn

e−2π∥ξ∥22/3 dξ

)3/4
∫

Rn

e−2π∥ξ∥22
∏

1⩽j,k⩽n

cos(2πε−1vjξk)
4 dξ

1/4

. (B.7)

Now use
∫
Rn e

−2π∥ξ∥22/3 dξ =
(
3
2

)n/2
and (cos(a) cos(b))4 ⩽ 3

4 + 1
4 cos(2(a+ b)), to see (B.7) is

⩽

(
3

2

)3n/8(
2−n/2

∫
Rn

e−π∥ξ∥
2
2χv(

√
2ε−1ξ) dξ

)1/4

⩽

(
27

128

)n/8 (
E exp

(
−π∥Mv∥22/ε2

))1/4
.

(B.8)

Taken together, lines (B.5), (B.6), (B.7), (B.8) tell us that

ρε(v)
n ⩽ (3/2)3n/8(exp(π/2)/

√
2)n
(
E exp

(
−π∥Mv∥22/ε2

))1/4
. (B.9)

Now apply Fact B.1.1 to bound E exp
(
−π∥Mv∥22/ε2

)
⩽ (9Lε)n and so ρε(v)

n ⩽ (212Lε)n/4 , as

desired. □
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[3] Noga Alon, József Balogh, Robert Morris, and Wojciech Samotij. Counting sum-free sets

in abelian groups. Israel Journal of Mathematics, 199(1):309–344, 2014.

[4] Noga Alon, Andrew Granville, and Adrián Ubis. The number of sumsets in a finite field.

Bull. London Math. Soc, 42(5):784–794, 2010.

[5] Ryan Alweiss, Shachar Lovett, Kewen Wu, and Jiapeng Zhang. Improved bounds for the

sunflower lemma. Annals of Mathematics, 194(3):795–815, 2021.

[6] Greg W Anderson, Alice Guionnet, and Ofer Zeitouni. An introduction to random matri-

ces. Number 118. Cambridge University Press, 2010.

[7] Milla Anttila, Keith Ball, and Irini Perissinaki. The central limit problem for convex

bodies. Transactions of the American Mathematical Society, 355(12):4723–4735, 2003.

[8] Gérard Ben Arous and Paul Bourgade. Extreme gaps between eigenvalues of random

matrices. The Annals of Probability, 41(4):2648–2681, 2013.

[9] David Arthur, Bodo Manthey, and Heiko Röglin. Smoothed analysis of the k-means
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[24] Paul Bourgade, Laszlo Erdős, Horng-Tzer Yau, and Jun Yin. Fixed energy universality

for generalized Wigner matrices. Comm. Pure Appl. Math., 69(10):1815–1881, 2016.

[25] Jean Bourgain. Geometry of Banach spaces and harmonic analysis. In Proceedings of the

International Congress of Mathematicians, 1986.

[26] Jean Bourgain. On high dimensional maximal functions associated to convex bodies.

American Journal of Mathematics, 108(6):1467–1476, 1986.

198



[27] Jean Bourgain. On the distribution of polynomials on high dimensional convex sets. In

Geometric aspects of functional analysis, pages 127–137. Springer, 1991.

[28] Jean Bourgain. On the isotropy-constant problem for “psi-2”-bodies. In Geometric aspects

of functional analysis, pages 114–121. Springer, 2003.

[29] Jean Bourgain. On a problem of Farrell and Vershynin in random matrix theory. In

Geometric aspects of functional analysis, volume 2169 of Lecture Notes in Math., pages

65–69. Springer, Cham, 2017.

[30] Jean Bourgain, Van H. Vu, and Philip Matchett Wood. On the singularity probability of

discrete random matrices. J. Funct. Anal., 258(2):559–603, 2010.

[31] Marcelo Campos. On the number of sets with a given doubling constant. Israel Journal

of Mathematics, 236(2):711–726, 2020.
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Discrete Analysis, 2019.

[144] Steve Smale. On the efficiency of algorithms of analysis. Bulletin (New Series) of The

American Mathematical Society, 13(2):87–121, 1985.

[145] Daniel Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: why the simplex

algorithm usually takes polynomial time. In Proceedings of the Thirty-Third Annual ACM

Symposium on Theory of Computing, pages 296–305. ACM, New York, 2001.

[146] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms. In Proceedings

of the International Congress of Mathematicians, Vol. I (Beijing, 2002), pages 597–606.

Higher Ed. Press, Beijing, 2002.

[147] Richard P Stanley. Weyl groups, the hard Lefschetz theorem, and the Sperner property.

SIAM Journal on Algebraic Discrete Methods, 1(2):168–184, 1980.

[148] Stanislaw J. Szarek. Condition numbers of random matrices. Journal of Complexity,

7(2):131–149, 1991.

[149] Terence Tao. Topics in random matrix theory, volume 132. American Mathematical Soc.,

2012.

[150] Terence Tao. The asymptotic distribution of a single eigenvalue gap of a Wigner matrix.

Probability Theory and Related Fields, 157(1-2):81–106, 2013.

[151] Terence Tao and Van Vu. Additive Combinatorics, volume 105. Cambridge University

Press, 2006.

[152] Terence Tao and Van Vu. On random ±1 matrices: singularity and determinant. Random

Structures Algorithms, 28(1):1–23, 2006.

[153] Terence Tao and Van Vu. On the singularity probability of random Bernoulli matrices.

J. Amer. Math. Soc., 20(3):603–628, 2007.

[154] Terence Tao and Van Vu. Random matrices: A general approach for the least singular

value problem. preprint, 2008.

[155] Terence Tao and Van Vu. Inverse Littlewood-Offord theorems and the condition number

of random discrete matrices. Ann. of Math., 169(2):595–632, 2009.

[156] Terence Tao and Van Vu. Random matrices: The distribution of the smallest singular

values. Geometric and Functional Analysis, 20(1):260–297, 2010.

207



[157] Terence Tao and Van Vu. A sharp inverse Littlewood-Offord theorem. Random Structures

& Algorithms, 37(4):525–539, 2010.

[158] Terence Tao and Van Vu. Smooth analysis of the condition number and the least singular

value. Mathematics of computation, 79(272):2333–2352, 2010.

[159] Terence Tao and Van Vu. Random matrices: universality of local eigenvalue statistics.

Acta Math., 206(1):127–204, 2011.

[160] Terence Tao and Van Vu. The Wigner-Dyson-Mehta bulk universality conjecture for

Wigner matrices. Electron. J. Probab., 16:no. 77, 2104–2121, 2011.

[161] Terence Tao and Van Vu. The Littlewood-Offord problem in high dimensions and a
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