
A SHORT INTRODUCTION TO TORIC VARIETIES

ALEXANDER M. KASPRZYK

Abstract. Toric varieties form an important class of algebraic varieties whose partic-
ular strength lies in methods of construction via combinatorial data. Understanding
this construction has led to the development of a rich dictionary allowing combinatorial
statements to be translated into algebraic statements, and vice versa.

In this short summary, the basic details of the combinatorial approach to constructing
toric varieties are given. The constructions are motivated by specific examples from which
the more general methods can be deduced.

0. Introduction

Toric varieties form an important class of algebraic varieties. The structure of a toric

variety is intimately connected with a corresponding combinatorial description, allowing

one to easily illustrate such concepts as linear systems, invertible sheaves, cohomology,

and resolution of singularities.

The goal of this short note is to describe the main constructions of toric varieties,

highlighting the rich combinatorial structure which makes their study so rewarding. As

an introduction, our approach will differ from the standard reference [Ful93]; less emphasis

will be placed on proofs of combinatorial statements than might ordinarily be the case.

A substantial body of introductory literature exists on the subject of toric varieties. In

addition to the concise and instructive work [Ful93] already mentioned, [Ewa96] and [Oda78]

are invaluable. Of equal merit are [BB02] and [Dan78]. For a survey of the current state

of research in this field, consult [Cox02].

These notes are intended to supplement a talk given by the author to the “Calf” (junior

Cambridge Oxford Warwick) seminar in November 2004.

1. The fan associated with P2

Before a definition of what it means for an algebraic variety to be a toric variety is given,

let us consider the (complex) projective plane P2. This can be realised as a collection of

three isomorphic copies of C2 glued together in the appropriate fashion.

More specifically if (z0 : z1 : z2) are taken to be the homogeneous coordinates of P2, the

coordinate charts:

Ui := {(z0/zi : z1/zi : z2/zi) | zi 6= 0} i = 0, 1, 2
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are each isomorphic to C2. These charts glue together via maps of the form:

φ0,1 : U0 \ (z1/z0 = 0)→ U1 \ (z0/z1 = 0)

(1 : x : y) 7→ (1/x : 1 : y/x).

Associated to each chart Ui is the ring of regular functions, C[Ui];

C[U0] = C[z1/z0, z2/z0], C[U1] = C[z0/z1, z2/z1], C[U2] = C[z0/z2, z1/z2].

By setting X := z1/z0 and Y := z2/z0 we obtain:

C[U0] = C[X, Y ], C[U1] = C[X−1, X−1Y ], C[U2] = C[Y −1, XY −1].

Each C[Ui] is contained within the coordinate ring C[X±1, Y ±1]. This is the coordinate

ring associated with the algebraic torus (C∗)2 ∼= Spec (C[X±1, Y ±1]), from which toric

varieties derive their name.

Let M ∼= Z2 be the lattice of Laurent monomials in X and Y . Thus points in M

correspond to monomials XmY n for some (m,n) ∈ Z2. Let MR := M ⊗Z R ∼= R2. We

regard monomials in the coordinate rings C[Ui] as lattice points in MR. Thus C[U0]

corresponds to the cone1 with generators {X, Y } (i.e. the nonnegative quadrant of MR),

C[U1] corresponds to the cone with generators {X−1, X−1Y }, and C[U2] to that with

generators {Y −1, XY −1}. Thus to each coordinate ring C[Ui] we have associated a cone

in MR, denoted σ∨i .

To each cone σ∨i we associate its dual cone2 σi. These dual cones will lie in the vector

space NR ∼= R2 obtained from the lattice N := Hom (M,Z) ∼= Z2. To be precise:

σi := {v ∈ NR | 〈u, v〉 ≥ 0 for all u ∈ σ∨i } .

This gives cones σ0, σ1 and σ2 in NR with generators {(1, 0), (0, 1)} , {(0, 1), (−1,−1)} and

{(1, 0), (−1,−1)} respectively.

Let ∆ denote the collection consisting of the two-dimensional cones σi (i = 0, 1, 2),

the three one-dimensional cones generated by (1, 0), (0, 1) and (−1,−1), and the zero-

dimensional cone formed by the origin. The resulting cell complex ∆ is called the fan

associated with P2.

The structure of the fan ∆ reflects the structure of P2. We see three two-dimensional

cones, which correspond to the two-dimensional subvarieties U0, U1 and U2. Each two-

dimensional cone σi is glued to σj along a one-dimensional cone; these correspond to the

subvarieties Ui ∩ Uj, for i 6= j. Finally, all the cones are glued together in the zero-

dimensional cone given by the origin. This zero-dimensional cone corresponds to the

algebraic torus, and “is” the subvariety U0 ∩ U1 ∩ U2.

1A cone (or more precisely a finitely generated rational polyhedral cone) in MR is a set of the form{∑k
i=1 λiui ∈ MR | λi ≥ 0

}
for some finite collection of elements u1, . . . , uk in M .

2The dual to a cone σ is usually denoted by σ∨. Since it can easily be shown (eg. [Ful93, pg. 9]) that
(σ∨)∨ = σ, the expression above conforms to this notation.
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2. Cones and Fans

The procedure in Section 1 is reversible, and the methods involved generalise to any

fan. Indeed, the driving force behind the study of toric varieties is the fact that fans

and toric varieties are in one-to-one correspondence. Before the method of constructing

a toric variety from a fan is described, a definition of what it means for a variety to be a

toric variety is long overdue.

Definition 2.1. A toric variety of dimension n over an algebraically closed field k = k

is a normal variety X that contains a torus T ∼= (k∗)n as a dense open subset, together

with an action T ×X → X of T on X that extends the natural action of T on itself.

Let M ∼= Zn be a lattice, and N = Hom (M,Z) ∼= Zn be its dual lattice. In NR we

define a fan ∆.

Definition 2.2. A fan ∆ is defined to be a finite collection of cones in NR such that:

(i) If σ ∈ ∆, then σ ∩ (−σ) = {0}. Such a cone is said to be strongly convex 3.

(ii) If σ ∈ ∆ and τ is a face of σ, then τ ∈ ∆.

(iii) If σ, σ′ ∈ ∆, then σ ∩ σ′ ∈ ∆.

Note that the fan derived in Section 1 satisfies this definition. It is possible run the

construction in reverse and recover the unique toric variety associated to each fan.

For each cone σ ∈ ∆ there exists a dual cone σ∨ ⊂ MR. We define the semigroup

Sσ := σ∨ ∩M . This semigroup is finitely generated, by Gordon’s Lemma [Ful93, pg. 12].

We now define the corresponding affine ring Aσ := C[Sσ]. We denote by χu the element

in the C-algebra corresponding to the semigroup element u ∈ Sσ. We require that χuχu′ :=

χu+u′ . The elements of C[Sσ] are thus given by finite sums
∑

ciχ
ui , where ci ∈ C, ui ∈ Sσ.

Finally, the affine variety Uσ corresponding to a cone σ is given by:

Uσ := Spec (C[Sσ]) .

These affine varieties can be glued together via the following Lemma:

Lemma 2.3. If τ is a face of σ then the map Uτ → Uσ embeds Uτ as a principal open

subset of Uσ.

Proof. See [Ful93, pg. 18]. ¤

Since any two cones σ, σ′ ∈ ∆ share a common face, there are injections φ : Uσ∩σ′ → Uσ

and ϕ : Uσ∩σ′ → Uσ′ . The identification is then given by:

f : φ(Uσ∩σ′)→ ϕ(Uσ∩σ′)

x 7→ ϕ(φ−1(x)),

3A cone is strongly convex if it contains no one-dimensional vector space.
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with inverse y 7→ φ(ϕ−1(y)). Patching for all σ ∈ ∆ gives the toric variety denoted by

X∆.4

Note that since {0} ⊂ NR is a face of every cone in ∆, so U{0} can be regarded as sitting

inside each affine variety Uσ. Now S{0} = M , where we regard the lattice M as a semigroup

with 2n generators. In particular if N is generated (as a lattice) by e1, . . . , en, then M is

generated (as a semigroup) by ±e∗1, . . . ,±e∗n. Setting Xi := χe∗i and X−1
i := χ−e∗i we see

that:

U{0} = Spec
(
C[X1, X

−1
1 , . . . , Xn, X−1

n ]
) ∼= (C∗)n.

Thus the torus is a principal open subset of all the Uσ. For more details consult any of

the introductory texts listed in Section 0. This is why X∆ is called a toric variety.

3. Examples

Example 3.1. Consider the two-dimensional cone σ ⊂ NR ∼= R2 generated by e2 and

2e1 − e2, where e1, e2 is a basis for N . The dual cone is generated by e∗1 and e∗1 + 2e∗2,
however the corresponding semigroup Sσ := σ∨ ∩ M has three generators, χe∗1 , χe∗1+2e∗2 ,

and χe∗1+e∗2 . Writing X := χe∗1 and Y := χe∗2 , we see that C[Uσ] = C[X,XY, XY 2].

Under the ring homomorphism C[u, v, w] → C[Sσ] defined by:

u 7→ X, v 7→ XY, w 7→ XY 2,

we observe that uw − v2 = 0, since e∗1 + (e∗1 + 2e∗2) = 2(e∗1 + e∗2). Hence we have that

Aσ = C[u, v, w]/ 〈uw − v2〉, and so:

Uσ =
{
(u, v, w) ∈ C3 | uw = v2

}
.

This is the affine cone over a conic, also known as the du Val singularity of type A1.

Example 3.2. Consider the three-dimensional cone σ ⊂ NR ∼= R3 generated by e1, e2, e3,

and e1 + e3− e2 (where e1, e2, e3 form a basis of N). This has dual cone σ∨ generated by:

u1 := e∗1, u2 := e∗3, u3 := e∗1 + e∗2, and u4 := e∗2 + e∗3.

Setting Xi := χe∗i we see that Aσ = C[X1, X3, X1X2, X2X3].

Under the ring homomorphism C[x, y, z, w] → C[Sσ] defined by:

w 7→ X1, x 7→ X3, y 7→ X1X2, and z 7→ X2X3,

one sees that wz−xy 7→ 0 (since u1+u4 = u2+u3). Hence C[w, x, y, z]/〈wz − xy〉 ∼= C[Sσ],

and so Uσ is the hypersurface defined by wz = xy in C4.

4The patching can also be constructed at the level of C-algebras. For any cones σ, σ′ ∈ ∆ there exists
u ∈ (−σ′)∨ ∩ σ∨ such that σ ∩ u⊥ = σ′ ∩ σ = σ′ ∩ u⊥ (this is known as the Separation Lemma, [Ful93,
pg. 13]). Then C[Sσ]χu ∼= C[Sσ∩σ′ ] ∼= C[Sσ′ ]χu .



A SHORT INTRODUCTION TO TORIC VARIETIES 5

Example 3.3. Consider the one-dimensional fan ∆ = {{0} ,R≥0,R≤0}. Since (R≥0)
∨ is

generated by e∗1, so the corresponding semigroup is generated by X. Similarly SR≤0
is

generated by X−1. Finally, the zero cone {0} has semigroup S{0} generated by X and

X−1.

Now both C[X] and C[X−1] are isomorphic - they can both be regarded as affine rings

for C. We make the identification X 7→ X−1. We claim that under this identification,

these two copies of C glue to give P1.

Let (z0 : z1) be homogeneous coordinates for P1, and set X = z1/z0. Thus C[X] ∼=
U0 = {(1 : z1/z0) | z0 6= 0} and, since X−1 = z0/z1, we have that C[X−1] ∼= U1 (where U1

is the affine open subset of P1 on which z1 6= 0).

To obtain P1 we require that, on U0 ∩ U1, both z0 6= 0 and z1 6= 0. This is given in the

toric variety by the isomorphism (on the intersection)X 7→ X−1. z1/z0 is identified with

z0/z1; i.e. (1 : z1/z0) = (z0/z1 : 1).

Example 3.4. Let σ1 be the two dimensional cone generated by e1 and e2. Let σ2 by

the cone generated by −e1 and e2. Let ∆ be the fan generated by σ1 and σ2. i.e.

∆ = {{0} ,±R≥0e1,R≥0e2, σ1, σ2}.
We have that C[σ1] = C[X, Y ] and C[σ2] = C[X−1, Y ]. These two rings are isomorphic

to C[x, y], and so Uσ1 and Uσ2 are both homeomorphic to C2. The gluing is given by

(X,Y ) 7→ (X−1, Y ). In particular Y remains unchanged, whilst the behaviour of X is the

same as in Example 3.3. Thus we deduce that X∆ = P1 × C.5

4. The Character Group and the 1-Parameter Subgroups

Let T ∼= (C∗)n be the algebraic torus of dimension n. Associated with T are two groups:

Definition 4.1. The character group of T is the group:

M := {χ : T → C∗ | χ is a morphism} .

The 1-parameter subgroups of T is the group:

N := {λ : C∗ → T | λ is a morphism} .

Indeed, our choice of labelling is no coincidence (see [Ful93, §2.3] for an alternative

derivation):

Lemma 4.2. M ∼= Zn where, for any u = (u1, . . . , un) ∈ Zn, we have that χu(t1, . . . , tn) =

tu1
1 . . . tun

n , and N ∼= Zn where, for any v = (v1, . . . , vn) ∈ Zn, we have that λv(t) =

(tv1 , . . . , tvn).

5This is a specific case of a more general result. If ∆ is a fan in NR and ∆′ is a fan in N ′
R, then the set

of products σ×σ′, σ ∈ ∆, σ′ ∈ ∆′, forms a fan denoted by ∆×∆′ in (N ⊕N ′)R. At the level of varieties
we have that X∆×∆′ = X∆ ×X∆′ .
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Proof. Any morphism M 3 χ : (C∗)n → C∗ corresponds to a ring homomorphism

χ∗ : C[Y, Y −1] → C[X1, X
−1
1 , . . . , Xn, X−1

n ].

By definition, 1 = χ∗(Y Y −1) = χ∗(Y )χ∗(Y −1), and since C[X1, X
−1
1 , . . . , Xn, X−1

n ] =

C[X1, . . . , Xn]X1...Xn we have that there exist G, H ∈ C[X1, . . . , Xn] such that:

G ·H = Xa1
1 . . . Xan

n for some a1, . . . , an ∈ Z.

This forces G and H to be monomials. Hence χ∗(Y ) (and χ∗(Y −1)) is a monomial in

X±1
1 , . . . , X±1

n .

Conversely any monomial Xu1
1 . . . Xun

n in X±1
1 , . . . , X±1

n clearly defines a ring homomor-

phism, sending Y 7→ Xu1
1 . . . Xun

n and Y −1 7→ X−u1
1 . . . X−un

n .

Similarly for λ ∈ N . ¤

Let χ ∈ M and λ ∈ N . The composition χ ◦ λ : C∗ → C∗ gives a map t 7→ tk for some

k ∈ Z. We define 〈χ, λ〉 := k. In fact the map is given by:

〈·, ·〉 : M ×N → Z
(χu, λv) 7→ u1v1 + · · ·+ unvn,

and is a perfect pairing (see [Ful93, pg. 37]).

Let X be a toric variety with torus T ∼= (C∗)n. Consider some point u ∈ M ∼= Zn. This

corresponds to a morphism χu : T → C∗, and since T is a dense subvariety of X, we can

regard χu as a rational function on X.

Since X is normal, associated to this rational function is a divisor div(χu). It is sup-

ported on the complement X \ T , which we can write as the union of a finite set of

irreducible divisors, i.e.

X \ T = D1 ∪ · · · ∪Dr.

Hence we can write:

div(χu) =
r∑

i=1

aiDi,

where the ai := ordDi
(div(χu)) ∈ Z are the order of vanishing of χu along Di.

In fact, for each i = 1, . . . , r, there exist a unique element vi ∈ N such that 〈u, vi〉 = ai.

It transpires that these lattice points vi ∈ N generate the one-dimensional cones (or rays)

of the fan ∆ corresponding to X. See [Ful93, §3.3] for a proof of this remarkable claim.

This suggests yet another method for deriving the fan associated with a toric variety.
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