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Massey Products

Ingredients
® v1o,vn3,v34 Closed forms;
o [v1ov23] = [v23v34] = O;
o 7= (=1)y:;
o dvi3z = U12023; dup4 = V23V34;
® U1ovUo4 + U13V34 IS @ closed form;

Definition
([vi2], [v23], [v34]) := [v12v24 + T13V34]

([v12], [v23], [vaa]) € H*/I([v12,v34])



The dd°-lemma (property)

A complex manifold M satisfies the dd“-lemma
if the following are equivalent

e a form « is d-exact and d°closed:

e a form « is d-exact and d-closed:;

o o« = dd°[3

Kahler manifolds have this property.

d¢ is d twisted by the complex structure.



e Deligne et al — 1975

Complex manifold Massey products vanish
+ =
dd®-lemma (uniformily)

e relies on the fact that

QP A QP4 - ptriatd



Massey Products in Symplectic Geometry

e Thurston (1976): Symplectic non-Kahler
manifold (symplectic fibrations);

e McDuff (1984): 1-connected symplectic non-
Kahler manifold (symplectic blow-up);

Both examples have nonvanishing Massey prod-
ucts!



Lefschetz property in (M?2",w)

W HP (M) — BT v

(Brylinski — 1988) A new differential oper-
ator

6 = Ad — dN\;

d is d twisted by the symplectic structure

(Yan & Mathieu — 1996)) Lefschetz prop-
erty gives a decomposition of cohomology
into primitives

Primitives are symplectic analogous of com-
plex p,q decomposition.



(Merkulov — 1998) Lefschetz property is equiv-
alent to

Symplectic dd-lemma: the following are equiv-
alent

e a form « is d-exact and Jd-closed:;

e a form « is d-exact and d-closed:;

o = dif.

(Gualtieri — 2003) Gen Cplx Geometry:
d® and ¢ are particular cases of a general rule.

Remark: Neither Thurston’'s nor McDuff's ex-
amples satisfy the Lefschetz property.



e Merkulov’'s result does not imply Massey
products vanish!

e Produt of primitives is not primitive

e (Babenko-Taimanov — 2000) Conjecture:

L efschetz property = vanishing of Massey
products



The cohomology of the blow-up:

o H*(X) = H*(X) +aH*2(M) +---
+ ak—lHo—2k+2(M);

o af = —PD(M)—acp,_1—---—aF2co—a""1cy.

e Symplectic form: & = w + ca.



Blowing up Massey Products

o If (o, 3,7) #0isa MP in X = Nonzero MP

~

in X:

(o, B,7) # 0 in X.

o If (a, 3,7) #0 is a MP in M and
co-dimension > 6 = Nonzero MP in X:

(ac,af3,av) = 0 in X.



Blowing up the Lefschetz property

e The map &' depends on how M sits inside
X;

e ¢ provides a 1l-parameter family of such
maps;

e [ he kernel of & is defined by a closed con-
dition.
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Blowing up the Kernel — M2

o for H*, i > 2,

dim(ker(Z™ %)) = dim(ker(w™ %)),

Lefschetz holds at level ¢ in X iff, it does
SO in X;

o for H?
if Ju € ker(w™2) st i*(v) # 0 then

dim(ker(@"2)) = dim(ker(w"2)) — 1,

otherwise these kernels have the same di-
mension:;

o for H!
if Jui,vo € ker(w™ 1) st i*(vy A vo) # O,
then

dim(ker(&™2)) < dim(ker(w™2)) — 2,
otherwise

dim(ker(@"2)) < dim(ker(w™2)).
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Blowing up the Kernel — M24

Assume M is Lefschetz

o for H*, i > 2d,
dim(ker(&”_i)) = dim(ker(wn_i)),

Lefschetz holds at level i in X iff, it does
SO in X;

o for 24
if Jv € ker(w™24) st ¢*(v) # 0 then

dim(ker(&™2)) = dim(ker(w™?)) — 1,

otherwise these kernels have the same di-
mension;

o for H', i < 2d
dim(ker(&" %)) < dim(ker(w™ %)),
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Overall

X, M Lefschetz = X Lefschetz.
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Examples
Let H be the 3-d Heisenberg group.
Let M3 =H/~. (0,0,12)
M3 has a nonvanishing Massey product.
St M3

M3 x M3 has a nonvanishing Massey prod-
uct and a symplectic form

w = e15 + €36 1+ €24;

the blow-up, N°, of M3 x M3 along S x St
has the Lefschetz property and nonvanish-
ing Massey products.
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A simply connected example

e The blow-up of CP” along N°® has the Lef-
schetz property and nonvanishing Massey
products.
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