Background	Main results	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects

Symplectic Instanton homology: connected sum, Dehn surgery, and maps from cobordisms

Guillem Cazassus

Soutenance de thèse

12 avril 2016

Background ●00	Main results 00000	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects O
Origins				

Floer, 88': Y^3 homology sphere $\rightsquigarrow I_*(Y)$ "instanton homology".

Background ●00	Main results 00000	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects O
Origins				

Floer, 88': Y^3 homology sphere $\rightsquigarrow I_*(Y)$ "instanton homology". Atiyah, 90': $Y = H_0 \cup_{\Sigma} H_1$ Heegaard Splitting,

Background ●00	Main results 00000	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects O
Origins				

Background ●00	Main results 00000	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects O
Origins				

- $\Sigma \rightsquigarrow (M, \omega)$ symplectic manifold,
- $H_0, H_1 \rightsquigarrow L_0, L_1 \subset M$ Lagrangian submanifolds,

Background ●00	Main results 00000	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects O
Origins				

$$H_0 \qquad \Sigma \times [0, L] \qquad H_1 \qquad \rightarrow \qquad \bigcup_{L_1} L_0 \qquad (M, \omega)$$

- $\Sigma \rightsquigarrow (M, \omega)$ symplectic manifold,
- $H_0, H_1 \rightsquigarrow L_0, L_1 \subset M$ Lagrangian submanifolds,
- flat connections over $Y \rightsquigarrow L(H_0) \cap L(H_1)$ intersection points,
- instantons over $Y \times \mathbb{R} \rightsquigarrow$ pseudo-holomorphic disks.

Background ●00	Main results 00000	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects O
Origins				

$$H_0 \qquad \Sigma \times [0, L] \qquad H_1 \qquad \rightarrow \qquad \bigcup_{L_1} L_0 \qquad (M, \omega)$$

- $\Sigma \rightsquigarrow (M, \omega)$ symplectic manifold,
- $H_0, H_1 \rightsquigarrow L_0, L_1 \subset M$ Lagrangian submanifolds,
- flat connections over $Y \rightsquigarrow L(H_0) \cap L(H_1)$ intersection points,
- instantons over $Y \times \mathbb{R} \rightsquigarrow$ pseudo-holomorphic disks.

Atiyah-Floer conjecture: $I_*(Y) \simeq HF(L_0, L_1)$.

Background	Main results	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects
000				

Background	Main results	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects
000				

Anyway, this method gives a general procedure for producing 3-manifold invariants using symplectic geometry.

Background	Main results	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects
000				

Anyway, this method gives a general procedure for producing 3-manifold invariants using symplectic geometry.

• Ozsváth-Szabó, '01: "Heegaard-Floer Homology", symplectic analogue of Monopole Floer homology, with $\mathcal{M}(\Sigma)$ replaced by $Sym^g(\Sigma)$.

Background	Main results	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects
000				

Anyway, this method gives a general procedure for producing 3-manifold invariants using symplectic geometry.

- Ozsváth-Szabó, '01: "Heegaard-Floer Homology", symplectic analogue of Monopole Floer homology, with $\mathcal{M}(\Sigma)$ replaced by $Sym^{g}(\Sigma)$.
- Manolescu-Woodward, '08: "Symplectic Instanton homology" (HSI), replace $\mathscr{M}(\Sigma)$ by a smooth moduli space $\mathscr{N}(\Sigma \setminus D^2)$, with $\mathscr{N}(\Sigma \setminus D^2)/\!\!/SU(2) = \mathscr{M}(\Sigma)$.

Background	Main results	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects
000				

Anyway, this method gives a general procedure for producing 3-manifold invariants using symplectic geometry.

- Ozsváth-Szabó, '01: "Heegaard-Floer Homology", symplectic analogue of Monopole Floer homology, with $\mathcal{M}(\Sigma)$ replaced by $Sym^{g}(\Sigma)$.
- Manolescu-Woodward, '08: "Symplectic Instanton homology" (HSI), replace $\mathscr{M}(\Sigma)$ by a smooth moduli space $\mathscr{N}(\Sigma \setminus D^2)$, with $\mathscr{N}(\Sigma \setminus D^2)/\!\!/SU(2) = \mathscr{M}(\Sigma)$.
- Wehrheim-Woodward, '07: "Floer Field theory", use moduli spaces of twisted U(r)-bundles, provide a general framework for such kind of constructions.

 Background
 Main results
 Construction of twisted groups
 Proof of the Dehn surgery theorem
 Prospects

 Questions addressed in this thesis
 Operation
 Operation
 Operation
 Operation

Question: How does HSI behaves under:

- Connected sums?
- Dehn surgery?
- 4-dimensional cobordisms?

 Background
 Main results
 Construction of twisted groups
 Proof of the Dehn surgery theorem
 Prospects

 Questions addressed in this thesis
 Output
 Output
 Output
 Output
 Output

Question: How does HSI behaves under:

- Connected sums?
- Dehn surgery?
- 4-dimensional cobordisms?
- \rightarrow Need to define a twisted version.

Background	Main results ●0000	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects 0
Twisted	version			

Let Y be a closed oriented 3-manifold, and $c \in H_1(Y; \mathbb{Z}/2\mathbb{Z})$. We will define a $\mathbb{Z}/8\mathbb{Z}$ -relatively graded abelian group HSI(Y, c) such that HSI(Y, 0) = HSI(Y).

Background	Main results ●0000	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects O
Twisted	version			

Let Y be a closed oriented 3-manifold, and $c \in H_1(Y; \mathbb{Z}/2\mathbb{Z})$. We will define a $\mathbb{Z}/8\mathbb{Z}$ -relatively graded abelian group HSI(Y, c) such that HSI(Y, 0) = HSI(Y).

Remark: The class c can be seen as an isomorphism class of an SO(3)-bundle (whose second Stiefel-Whitney class is dual to c).

Background	Main results 0●000	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects O
Connec	ted sum			

Background	Main results 0●000	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects 0
Connec	ted sum			

Theorem (Connected sum formula, C.)

Let (Y_1, c_1) , (Y_2, c_2) be 3-manifolds with homology classes as previously, then:

 $HSI(Y_1 \# Y_2, c_1 + c_2) \simeq HSI(Y_1, c_1) \otimes HSI(Y_2, c_2) \\ \oplus Tor(HSI(Y_1, c_1), HSI(Y_2, c_2))[-1].$

Background	Main results 00●00	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects O
D I				

Dehn surgery

Definition (Surgery triad)

 Y^3 : compact oriented, with $\partial Y \simeq T^2$, α , β , $\gamma \subset \partial Y$ simple curves such that $\alpha.\beta = \beta.\gamma = \gamma.\alpha = -1$, Y_{δ} : Dehn fillings, obtained by gluing a solid torus with meridian mapped to $\delta \in \{\alpha, \beta, \gamma\}$.

Background	Main results 00●00	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects O
D I				

Dehn surgery

Definition (Surgery triad)

 Y^3 : compact oriented, with $\partial Y \simeq T^2$, α , β , $\gamma \subset \partial Y$ simple curves such that $\alpha.\beta = \beta.\gamma = \gamma.\alpha = -1$, Y_{δ} : Dehn fillings, obtained by gluing a solid torus with meridian mapped to $\delta \in \{\alpha, \beta, \gamma\}$.

Theorem (Dehn surgery exact sequence, C.)

 $c \in H_1(Y; \mathbb{Z}/2\mathbb{Z}), c_{\delta} \in H_1(Y_{\delta}; \mathbb{Z}/2\mathbb{Z})$ induced classes, $\delta \in \{\alpha, \beta, \gamma\}$ $k_{\alpha} \in H_1(Y_{\alpha}; \mathbb{Z}/2\mathbb{Z})$ core of the solid torus. There exists a long exact sequence:

$$HSI(Y_{\beta}, c_{\beta}) \longrightarrow HSI(Y_{\gamma}, c_{\gamma})$$

$$HSI(Y_{\alpha}, c_{\alpha} + k_{\alpha})$$

Background	Main results 000●0	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects O
4-dimen	sional co	bordisms		

Theorem (Maps from cobordisms, C.)

1. Let W be a smooth connected oriented 4-cobordism from Y_1 to Y_2 , and $c \in H^2(W; \mathbb{Z}/2\mathbb{Z})$. Then there exists an associated morphism

 $F_{W,c}$: $HSI(Y_1, c_1) \rightarrow HSI(Y_2, c_2)$,

where $c_i = PD(c_{|Y_i})$.

Background	Main results 000●0	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects O
4-dimer	nsional co	obordisms		

Theorem (Maps from cobordisms, C.)

1. Let W be a smooth connected oriented 4-cobordism from Y_1 to Y_2 , and $c \in H^2(W; \mathbb{Z}/2\mathbb{Z})$. Then there exists an associated morphism

$$F_{W,c}$$
: $HSI(Y_1, c_1) \rightarrow HSI(Y_2, c_2)$,

where $c_i = PD(c_{|Y_i})$.

2. Moreover, two arrows in the previous long exact sequence are such morphisms.

Background	Main results 000●0	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects O
4-dimen	sional co	obordisms		

Theorem (Maps from cobordisms, C.)

1. Let W be a smooth connected oriented 4-cobordism from Y_1 to Y_2 , and $c \in H^2(W; \mathbb{Z}/2\mathbb{Z})$. Then there exists an associated morphism

$$F_{W,c}$$
: $HSI(Y_1, c_1) \rightarrow HSI(Y_2, c_2)$,

where $c_i = PD(c_{|Y_i})$.

- 2. Moreover, two arrows in the previous long exact sequence are such morphisms.
- 3. If W contains an embedded 2-sphere S with either

•
$$S.S = 1$$
,
• $S.S = -1$ and $c_{|S} \neq 0$

then, $F_{W,c} = 0$.

Background	Main results 0000●	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects O		
Some computations						

The rank of HSI(Y, c) is minimal (i.e. equal to $CardH_1(Y, \mathbb{Z})$) for families of rational homology spheres including:

- branched double covers of quasi-alternating links,
- boundaries of plumbings associated to a weighted tree (G, m) such that m(v) ≥ d(v) for every vertex v, (d(v): incidence number, m(v): Euler class)
- n-surgery along a torus knot T(p,q), with $n \ge pq 1$.

Background	Main results 00000	Construction of twisted groups ●000000	Proof of the Dehn surgery theorem	Prospects ○
Floer Fi	eld Theo	ory		

 Cob_{n+1} : Category of compact connected (n + 1)-dimensional cobordisms between closed connected *n*-dimensional manifolds.

Definition (Wehrheim-Woodward, '07)

An (n+1)-Floer Field Theory is a functor $F: Cob_{n+1} \rightarrow Symp.$

Background	Main results 00000	Construction of twisted groups •000000	Proof of the Dehn surgery theorem	Prospects O
Floer Fi	ield Theo	bry		

 Cob_{n+1} : Category of compact connected (n + 1)-dimensional cobordisms between closed connected *n*-dimensional manifolds.

Definition (Wehrheim-Woodward, '07)

An (n+1)-Floer Field Theory is a functor $F: Cob_{n+1} \rightarrow Symp$.

Definition (Symp, Weinstein '80 (attempt))

- Objects: symplectic manifolds,
- Morphisms from M₀ to M₁: Lagrangian correspondences: Lagrangian submanifolds L₀₁ ⊂ M₀⁻ × M₁.

Background	Main results 00000	Construction of twisted groups ●000000	Proof of the Dehn surgery theorem	Prospects ○
Floer Fi	ield Theo	ory		

 Cob_{n+1} : Category of compact connected (n + 1)-dimensional cobordisms between closed connected *n*-dimensional manifolds.

Definition (Wehrheim-Woodward, '07)

An (n+1)-Floer Field Theory is a functor $F: Cob_{n+1} \rightarrow Symp.$

Definition (Symp, Weinstein '80 (attempt))

- Objects: symplectic manifolds,
- Morphisms from M₀ to M₁: Lagrangian correspondences: Lagrangian submanifolds L₀₁ ⊂ M₀⁻ × M₁.

Problem

Composition is not always defined

Background	Main results 00000	Construction of twisted groups 0●00000	Proof of the Dehn surgery theorem	Prospects O
Defin	ition (Geo	metric composition)		

Let $L_{01} \subset M_0^- imes M_1$ and $L_{12} \subset M_1^- imes M_2$,

 $L_{01} \circ L_{12} = \{ (x_0, x_2) \mid \exists x_1 \in M_1 : (x_0, x_1) \in L_{01}; (x_1, x_2) \in L_{12} \}$

Background	Main results 00000	Construction of twisted groups ○●○○○○○	Proof of the Dehn surgery theorem	Prospects 0
Defir	nition (Geo	metric composition)		
Let I	$L_{01} \subset M_0^-$	\times M_1 and $L_{12} \subset M_1^- imes$	<i>M</i> ₂ ,	
L_{01}	$_{1}\circ L_{12}=\{$	$(x_0, x_2) \mid \exists x_1 \in M_1 : (x_1 \in M_1)$	$(x_0, x_1) \in L_{01}; (x_1, x_2) \in L_{12}$	<u>2</u> }
	$=\pi$	$_{02}(L_{01} \times M_2 \cap M_0 \times L_1)$		

Background
coolMain results
coolConstruction of twisted groups
coolProof of the Dehn surgery theorem
coolProspects
coolDefinition (Geometric composition)
Let $L_{01} \subset M_0^- \times M_1$ and $L_{12} \subset M_1^- \times M_2$,
 $L_{01} \circ L_{12} = \{(x_0, x_2) \mid \exists x_1 \in M_1 : (x_0, x_1) \in L_{01}; (x_1, x_2) \in L_{12}\}$
 $= \pi_{02}(L_{01} \times M_2 \cap M_0 \times L_{12}).$ Proof of the Dehn surgery theorem
coolProspects
cool

Definition (Embedded geometric composition)

- $L_{01} \times M_2 \pitchfork M_0 \times L_{12}$ transverse intersection.
- π_{02} induces an embedding of $L_{01} \times M_2 \cap M_0 \times L_{12}$.

 $L_{01} \circ L_{12}$ is also a Lagrangian correspondence.

Background
occordMain results
occordConstruction of twisted groups
o
o
oProof of the Dehn surgery theorem
occordProspects
oDefinition (Geometric composition)
Let $L_{01} \subset M_0^- \times M_1$ and $L_{12} \subset M_1^- \times M_2$,
 $L_{01} \circ L_{12} = \{(x_0, x_2) \mid \exists x_1 \in M_1 : (x_0, x_1) \in L_{01}; (x_1, x_2) \in L_{12}\}$
 $= \pi_{02}(L_{01} \times M_2 \cap M_0 \times L_{12}).$

Definition (Embedded geometric composition)

- $L_{01} \times M_2 \pitchfork M_0 \times L_{12}$ transverse intersection.
- π_{02} induces an embedding of $L_{01} \times M_2 \cap M_0 \times L_{12}$.

 $L_{01} \circ L_{12}$ is also a Lagrangian correspondence.

Definition (Category Symp, Wehrheim-Woodward '10)

- Objects: symplectic manifolds,
- Morphisms: sequences $\underline{L} = M_0 \xrightarrow{L_{01}} \cdots \xrightarrow{L_{(k-1)k}} M_k$, identifying $(\cdots, L_{(i-1)i}, L_{i(i+1)}, \cdots)$ with $(\cdots, L_{(i-1)i} \circ L_{i(i+1)}, \cdots)$ provided the composition is embedded.

Background	Main results 00000	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects O
Quilted	Floer Ho	omology		

Definition (Quilted Floer Homology)

Let $\underline{L} = (L_0, L_{01}, \dots) \in \operatorname{Hom}_{Symp}(pt, pt)$ (with extra assumptions), define inside $M_0^- \times M_1 \times M_2^- \cdots$:

 $HF(\underline{L}) = HF(L_0 \times L_{12} \times L_{34} \cdots, L_{01} \times L_{23} \cdots).$

Generators of the chain complex: $\mathcal{I}(\underline{L}) = \{(x_0, \cdots, x_k) \mid (x_i, x_{i+1}) \in L_{i(i+1)}\},\$

Differential: counts pseudo-holomorphic "quilts".

Background	Main results 00000	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects O
Quilted	Floer Ho	omology		

Definition (Quilted Floer Homology)

Let $\underline{L} = (L_0, L_{01}, \dots) \in \operatorname{Hom}_{Symp}(pt, pt)$ (with extra assumptions), define inside $M_0^- \times M_1 \times M_2^- \cdots$:

$$HF(\underline{L}) = HF(L_0 \times L_{12} \times L_{34} \cdots, L_{01} \times L_{23} \cdots).$$

Generators of the chain complex: $\mathcal{I}(\underline{L}) = \{(x_0, \cdots, x_k) \mid (x_i, x_{i+1}) \in L_{i(i+1)}\},\$

Differential: counts pseudo-holomorphic "quilts".

Theorem (Wehrheim-Woodward, Lekili-Lipyanskiy)

If the composition $L_{(i-1)i} \circ L_{i(i+1)}$ is embedded, then $HF(\cdots, L_{(i-1)i}, L_{i(i+1)}, \cdots) \simeq HF(\cdots, L_{(i-1)i} \circ L_{i(i+1)}, \cdots).$

 Background
 Main results
 Construction of twisted groups
 Proof of the Dehn surgery theorem
 Prospects

 A Floer Field theory with boundary

Definition (Category \widetilde{Cob}_{2+1} , cobordisms with vertical boundaries)

- Objects: connected surfaces with one parametrized boundary,
- Morphisms: (diffeomorphism classes of) tuples (W, c), where
 - *W*: compact connected oriented 3-manifold, with $\partial W = \Sigma_0 \cup \partial^{vert} W \cup \Sigma_1$, $\partial^{vert} W$ parametrized tube,
 - $c \in H_1(W, \mathbb{Z}/2\mathbb{Z}).$
- Composition: gluing cobordisms and adding classes.

Surfaces: Σ → N(Σ) = moduli space of flat connexions on the trivial SU(2)-bundle over Σ, A ∈ Ω¹(Σ) ⊗ su(2), such that A_{|∂Σ} = θds, with |θ| < π√2 and s ∈ ∂Σ parameter, modulo gauge transformations fixing ∂Σ. (Huebschmann-Jeffrey, '93)

Definition of a functor $Cob_{2+1} \rightarrow Symp$

- Surfaces: Σ → N(Σ) = moduli space of flat connexions on the trivial SU(2)-bundle over Σ, A ∈ Ω¹(Σ) ⊗ su(2), such that A_{|∂Σ} = θds, with |θ| < π√2 and s ∈ ∂Σ parameter, modulo gauge transformations fixing ∂Σ. (Huebschmann-Jeffrey, '93)
- Cobordisms: $(W, c) \mapsto \underline{L}(W, c)$
 - If W is elementary (at most one handle): take a smooth representative C of c, $L(W, c) = \{([A_{|\Sigma_0}], [A_{|\Sigma_1}])\}$, for flat connexions A on $W \setminus C$, with holonomy -I around C, and such that $A = \theta ds$ on $\partial^{vert} W$.

 Background
 Main results
 Construction of twisted groups
 Proof of the Dehn surgery theorem
 Prospects

 000
 0000
 000
 000
 000
 000

Definition of a functor $Cob_{2+1} \rightarrow Symp$

- Surfaces: Σ → 𝒩(Σ) = moduli space of flat connexions on the trivial SU(2)-bundle over Σ, A ∈ Ω¹(Σ) ⊗ su(2), such that A_{|∂Σ} = θds, with |θ| < π√2 and s ∈ ∂Σ parameter, modulo gauge transformations fixing ∂Σ. (Huebschmann-Jeffrey, '93)
- Cobordisms: $(W, c) \mapsto \underline{L}(W, c)$
 - If W is elementary (at most one handle): take a smooth representative C of c, $L(W, c) = \{([A_{|\Sigma_0}], [A_{|\Sigma_1}])\}$, for flat connexions A on $W \setminus C$, with holonomy -I around C, and such that $A = \theta ds$ on $\partial^{vert} W$.
 - If *W* is not elementary: decompose it into elementary pieces, and take the corresponding sequence of correspondences.

$$\pi_1(T',*) = \langle \alpha, \beta \rangle, \partial T' = [\alpha, \beta],$$

$$\pi_{1}(T', *) = \langle \alpha, \beta \rangle, \partial T' = [\alpha, \beta],$$
$$A = Hol_{\alpha}, B = Hol_{\beta} \in SU(2),$$

,

Both moduli spaces and correspondences admit explicit representation-theoretic descriptions.

$$\pi_{1}(T',*) = \langle \alpha, \beta \rangle, \partial T' = [\alpha, \beta],$$
$$A = Hol_{\alpha}, B = Hol_{\beta} \in SU(2),$$
$$\mathcal{N}(T') = \left\{ (\theta, A, B) \mid e^{\theta} = [A, B] \right\}$$

$$\pi_{1}(T', *) = \langle \alpha, \beta \rangle, \partial T' = [\alpha, \beta],$$

$$A = Hol_{\alpha}, B = Hol_{\beta} \in SU(2),$$

$$\mathcal{N}(T') = \left\{ (\theta, A, B) \mid e^{\theta} = [A, B] \right\},$$

$$= \{ (A, B) \mid [A, B] \neq -I \}.$$

,

Both moduli spaces and correspondences admit explicit representation-theoretic descriptions.

• $\Sigma = T'$ punctured torus,

$$\pi_1(T',*) = \langle \alpha, \beta \rangle, \partial T' = [\alpha, \beta],$$

$$A = Hol_{\alpha}, B = Hol_{\beta} \in SU(2),$$

$$\mathcal{N}(T') = \left\{ (\theta, A, B) \mid e^{\theta} = [A, B] \right\}$$

$$= \{ (A, B) \mid [A, B] \neq -I \}.$$

• W solid torus, α bounds a disk,

• $\Sigma = T'$ punctured torus,

$$\pi_{1}(T', *) = \langle \alpha, \beta \rangle, \partial T' = [\alpha, \beta],$$

$$A = Hol_{\alpha}, B = Hol_{\beta} \in SU(2),$$

$$\mathcal{N}(T') = \left\{ (\theta, A, B) \mid e^{\theta} = [A, B] \right\},$$

$$= \{ (A, B) \mid [A, B] \neq -I \}.$$

 $\bullet~{\it W}$ solid torus, α bounds a disk,

Background	Main results	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects
		000000		

Theorem (Functoriality)

The previous construction defines a functor: $\underline{L}(W, c)$, as a morphism of Symp, doesn't depend on the decomposition of W.

(proof involves Cerf theory.)

Background	Main results	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects
		000000		

Theorem (Functoriality)

The previous construction defines a functor: $\underline{L}(W, c)$, as a morphism of Symp, doesn't depend on the decomposition of W.

(proof involves Cerf theory.)

Definition

 Y^3 compact, $c \in H_1(Y, \mathbb{Z}/2\mathbb{Z})$ class, $W = Y \setminus (D^2 \times [0, 1])$, viewed as a cobordism from D^2 to D^2 . Take then $HSI(Y, c) = HF(\underline{L}(W, c))$.

Functoriality and the geometric composition theorem: the isomorphism type of HSI(Y, c) is well-defined.

Background	Main results 00000	Construction of twisted groups	Proof of the Dehn surgery theorem ●000	Prospects O
Dehn tv	vists			

• Dehn twists on a surface:

Background	Main results 00000	Construction of twisted groups	Proof of the Dehn surgery theorem ●000	Prospects 0
Dehn tv	vists			

• Dehn twists on a surface:

Remark

Let $\alpha, \beta, \gamma \subset T^2$ three curves such that $\alpha.\beta = \beta.\gamma = \gamma.\alpha = -1$. Then, $\tau_{\alpha}(\gamma) = \beta^{-1}$

Background	Main results 00000	Construction of twisted groups	Proof of the Dehn surgery theorem ●000	Prospects 0
Dehn tv	vists			

• Dehn twists on a surface:

Remark

Let $\alpha, \beta, \gamma \subset T^2$ three curves such that $\alpha.\beta = \beta.\gamma = \gamma.\alpha = -1$. Then, $\tau_{\alpha}(\gamma) = \beta^{-1}$

• Generalization to symplectic manifolds:

 $S \subset (M, \omega)$ Lagrangian sphere, $\nu S \simeq D_{\epsilon}^* S$ $R \colon \mathbb{R} \to \mathbb{R}$ with R(t) = 0 for $t \ge \epsilon$, and R(-t) = R(t) - t, $H \colon D_{\epsilon}^* S \to \mathbb{R}$ defined by H(q, p) = R(|p|) $\Rightarrow \tau_S$ time 2π Hamiltonian flow extends to S. "generalized Dehn twist around S"

Background	Main results 00000	Construction of twisted groups	Proof of the Dehn surgery theorem ○●○○	Prospects 0
Outline	of the p	roof of the exact s	equence	

Two steps:

• Understand the effect of a Dehn twist of the punctured torus T' on the moduli space $\mathcal{N}(T')$.

Background	Main results 00000	Construction of twisted groups	Proof of the Dehn surgery theorem ○●○○	Prospects O
Outline	of the p	roof of the exact s	equence	

Two steps:

• Understand the effect of a Dehn twist of the punctured torus T' on the moduli space $\mathcal{N}(T')$.

Apply the following theorem:

Theorem (Seidel, Wehrheim-Woodward, C.)

Let $L_0 \subset M_0$, $\underline{L} \in Hom_{Symp}(M_0, pt)$, $S \subset M_0$ Lagrangian sphere, $\tau_S \in Symp(M_0)$: generalized Dehn twist around S. Then, there exists a long exact sequence:

Background	Main results 00000	Construction of twisted groups	Proof of the Dehn surgery theorem ००●०	Prospects O
Step 1				

A Dehn twist along a non-separating curve α on the punctured torus T' induces (almost) a generalized Dehn twist around $S = \{[A] \mid Hol_{\alpha}A = -I\} \subset \mathcal{N}(T').$

Background	Main results 00000	Construction of twisted groups	Proof of the Dehn surgery theorem ००●०	Prospects O
Step 1				

A Dehn twist along a non-separating curve α on the punctured torus T' induces (almost) a generalized Dehn twist around $S = \{[A] \mid Hol_{\alpha}A = -I\} \subset \mathcal{N}(T').$

Sketch of the proof:

Cut T' open along α, associate to it a moduli space N(T'_{cut}),

Background	Main results 00000	Construction of twisted groups	Proof of the Dehn surgery theorem ००●०	Prospects O
Step 1				

A Dehn twist along a non-separating curve α on the punctured torus T' induces (almost) a generalized Dehn twist around $S = \{[A] \mid Hol_{\alpha}A = -I\} \subset \mathcal{N}(T').$

Sketch of the proof:

- Cut T' open along α, associate to it a moduli space N(T'_{cut}),
- Isotope the twist to the identity on *T'_{cut}*: express it as a Hamiltonian flow on (*T'_{cut}*),

Background	Main results 00000	Construction of twisted groups	Proof of the Dehn surgery theorem ००●०	Prospects O
Step 1				

A Dehn twist along a non-separating curve α on the punctured torus T' induces (almost) a generalized Dehn twist around $S = \{[A] \mid Hol_{\alpha}A = -I\} \subset \mathcal{N}(T').$

Sketch of the proof:

- Cut T' open along α, associate to it a moduli space N(T'_{cut}),
- Isotope the twist to the identity on *T'_{cut}*: express it as a Hamiltonian flow on (*T'_{cut}*),
- Seturn to $\mathcal{N}(T')$ using reduction:

$$\mathscr{N}(T') \setminus S = \mathscr{N}(T'_{cut}) / SU(2).$$

Background	Main results 00000	Construction of twisted groups	Proof of the Dehn surgery theorem 000●	Prospects O
Step 2				

Define the following Lagrangian spheres of $\mathcal{N}(T')$:

- $L_{\alpha}^{-} = \{ [A] | \operatorname{Hol}_{\alpha} A = -I \},$
- $L_{\beta} = \{ [A] | \operatorname{Hol}_{\beta} A = I \},\$
- $L_{\gamma} = \{ [A] | \operatorname{Hol}_{\gamma} A = I \}.$

Background	Main results 00000	Construction of twisted groups	Proof of the Dehn surgery theorem 000●	Prospects O
Step 2				

Define the following Lagrangian spheres of $\mathcal{N}(T')$:

•
$$L_{\alpha}^{-} = \{[A] | \operatorname{Hol}_{\alpha} A = -I \},$$

• $L_{\beta} = \{[A] | \operatorname{Hol}_{\beta} A = I \},$
• $L_{\gamma} = \{[A] | \operatorname{Hol}_{\gamma} A = I \}.$
From $\tau_{\alpha} \gamma = \beta^{-1}$ one obtains $\tau_{L_{\alpha}^{-}} L_{\gamma} = L_{\beta}$, (for a generalized Dehn twist $\tau_{L_{\alpha}^{-}}$ around L_{α}^{-}).

Background	Main results 00000	Construction of twisted groups	Proof of the Dehn surgery theorem 000●	Prospects O
Step 2				

Define the following Lagrangian spheres of $\mathcal{N}(T')$:

•
$$L_{\alpha}^{-} = \{[A] | \operatorname{Hol}_{\alpha} A = -I \},$$

• $L_{\beta} = \{[A] | \operatorname{Hol}_{\beta} A = I \},$
• $L_{\gamma} = \{[A] | \operatorname{Hol}_{\gamma} A = I \}.$
From $\tau_{\alpha} \gamma = \beta^{-1}$ one obtains $\tau_{L_{\alpha}^{-}} L_{\gamma} = L_{\beta}$, (for a generalized Dehn
twist $\tau_{L_{\alpha}^{-}}$ around L_{α}^{-}).
Apply the Dehn twist exact sequence with:

•
$$M_0 = \mathcal{N}(T')$$
,

- $S = L_{\alpha}^{-}$,
- $L_0 = L_\gamma$,
- $\underline{L} = L(Y, c)$.

Background	Main results 00000	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects ●
Prospec	ts			

• Naturality: define HSI not only up to isomorphism,

Background	Main results 00000	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects ●
Prospec	ts			

- Naturality: define HSI not only up to isomorphism,
- Relations with the *SU*(2)-representation variety: corresponds to the intersection of the Lagrangians,

Background	Main results 00000	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects ●
Prospec	ts			

- Naturality: define HSI not only up to isomorphism,
- Relations with the SU(2)-representation variety: corresponds to the intersection of the Lagrangians,
- Invariants for knots and sutured manifolds: allow several vertical tubes,

Background	Main results	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects ●
Prospec	cts			

- Naturality: define HSI not only up to isomorphism,
- Relations with the *SU*(2)-representation variety: corresponds to the intersection of the Lagrangians,
- Invariants for knots and sutured manifolds: allow several vertical tubes,
- Equivariant version: $HF^{G}(L, L')$ " = " $HF(L/\!\!/ G, L'/\!\!/ G)$,

Background	Main results	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects ●
Prospec	cts			

- Naturality: define HSI not only up to isomorphism,
- Relations with the SU(2)-representation variety: corresponds to the intersection of the Lagrangians,
- Invariants for knots and sutured manifolds: allow several vertical tubes,
- Equivariant version: $HF^G(L, L')$ " = " $HF(L/\!\!/ G, L'/\!/ G)$,
- Extend the FFT functor to a 3-functor $\textit{Cob}_{1+1+1+1} \rightarrow \mathcal{C}$:

Background	Main results 00000	Construction of twisted groups	Proof of the Dehn surgery theorem	Prospects ●
Prospects				

- Naturality: define HSI not only up to isomorphism,
- Relations with the SU(2)-representation variety: corresponds to the intersection of the Lagrangians,
- Invariants for knots and sutured manifolds: allow several vertical tubes.
- Equivariant version: $HF^G(L, L')$ " = " $HF(L/\!\!/ G, L'/\!\!/ G)$,
- Extend the FFT functor to a 3-functor $Cob_{1+1+1+1} \rightarrow C$:
- 1-manifold
- 2-manifold with boundary \rightarrow Hamiltonian manifold
- 4-manifold with corners
- \rightarrow lie group
- 3-manifold with corners \rightarrow equivariant Lagrangian correspondence
 - equivariant Floer cochain. \rightarrow