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Abstract 

This review will outline a number of illustrative mathematical models 

describing the growth of avascular tumours. The aim of the review is to 

provide a relatively comprehensive list of existing models in this area and 

discuss several representative models in greater detail. In the latter part of 

the review, some possible future avenues of mathematical modelling of 

avascular tumour development are outlined together with a list of key 

questions. 
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1. Introduction 

Cancer is one of the main causes of morbidity and mortality in the world 

(http://www.who.org/). In the United Kingdom, one in four people will die of cancer, 

whilst one in three will at some point in their life be diagnosed to have cancer 

(http://www.cancerresearchuk.com/). Therefore, developed countries are investing 

large sums of money into cancer research in order to find cures and improve existing 

treatments. In comparison to molecular biology, cell biology and drug delivery 

research, mathematics has so far contributed relatively little to the area. A search in 

the PubMed bibliographic database (http://www.ncbi.nlm.nih.gov/PubMed/) shows 

that out of 1.5 million papers in the area of cancer research, approximately 5% are 

concerned with mathematical modelling.1 However, it is clear that mathematics could 

make a huge contribution to many areas of experimental cancer investigation since 

there is now a wealth of experimental data which requires systematic analysis. Indeed, 

one could argue that to exploit fully the data generated by this huge experimental 

effort requires such an approach [1]. 

 There are several different stages in the growth of a tumour before it becomes 

so large that it causes the patient to die or reduces permanently their quality of life. 

There is a lot of controversy over how exactly cancer is initiated, but it is a generally 

accepted view that it requires several gene mutations to turn a normal cell into a 

cancer cell (see the recent review [2]).  The factors that trigger these mutations are 

                                                 

1 A search using the terms “cancer mathematical model”, “cancer model”, “tumour mathematical 

model” and “tumour model” found fewer than 5% of the 1.5 million papers identified using the term 

“cancer”. 
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largely unknown, but are thought to include both environmental and hereditary 

effects. One of the outcomes of this series of mutations is an increase in the 

proliferation rate and a decrease in the death rate of the cells, giving rise to a clump of 

tumour cells growing faster than the host cells. However, even a fast growing clump 

of tumour cells cannot grow beyond a certain size, since there is a balance between 

cells inside the clump consuming nutrients and nutrient diffusion into the clump2. 

Therefore, one of the most important steps in malignant tumour growth is 

angiogenesis, which is the process by which tumours develop their own blood supply. 

For this reason novel drugs are being developed specifically to target tumour blood 

vessels. Once the tumours have acquired their own blood supply, the tumour cells can 

escape the primary tumour via the circulatory system (metastasis) and set up 

secondary tumours elsewhere in the body. After angiogenesis and metastasis, the 

patient is left with multiple tumours in different parts of the body that are very 

difficult to detect and even more difficult to treat.  

 

Because there are three distinct stages (avascular, vascular, and metastatic) to cancer 

development, researchers often concentrate their efforts on answering specific 

questions on each of these stages. This review aims to describe the current state of 

mathematical modelling of avascular tumour growth, i.e., tumours without blood 

vessels. This is not to say that this is the most important aspect of tumour growth - on 

the contrary, from a clinical point of view angiogenesis and vascular tumour growth 

                                                 

2 The exact manner of the nutrient-limited growth depends of course on the specific tumour type. For 

example, melanomas grow on the surface of the skin as a thin layer and therefore they can grow much 

bigger during the avascular stage than solid tumours inside tissues. However, for one reason or another 

even melanomas become angiogenic and can cause metastatic tumours. 
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together with metastasis are what cause the patient to die, and modelling and 

understanding these is crucial for cancer therapy. Nevertheless, when attempting to 

model any complex system it is wise to try and understand each of the components as 

well as possible before they are all put together. Avascular tumour growth is much 

simpler to model mathematically, and yet contains many of the phenomena which we 

will need to address in a general model of vascular tumour growth. Moreover, the 

ease and reproducibility of experiments with avascular tumours means that the quality 

and quantity of experimental evidence exceeds that for vascular tumours, for which it 

is often difficult to isolate individual effects. In particular, because some (but certainly 

not all) tumour cell lines grown in vitro form spherical aggregates [3], the relative 

cheapness and ease of in vitro experiments in comparison to animal experiments has 

made tumour spheroid assays very popular. 

 

Thus we see the modelling of avascular tumours as a first step towards building 

models for fully vascularised tumours. In addition, there are some questions 

concerning avascular tumours which may be interesting in their own right, including 

the recent controversial hypothesis that all humans have small dormant avascular 

tumours in their bodies [4]. There are also parallels between avascular tumour growth 

and the growth of a tumour tissue in the micro-region supported by a single blood 

vessel inside a vascular tumour, as illustrated in Figure 1, where the different regions 

of both, avascular and vascular, tumours (to be explained shortly) are shown. Thus, 

avascular tumour modelling can be of use when making predictions and designing 

experiments on vascular and metastatic tumours, which are much more time 

consuming and difficult as they have to be performed in vivo. 
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The main finding of in vitro tumour spheroid experiments so far has been that the 

spheroids grow until they reach a critical size, when growth stops [3]. This critical 

size is determined by a balance between cell proliferation and cell death inside the 

spheroid. The main experimental observations have been that when cancer cells are in 

a high nutrient environment they proliferate, in low nutrient levels the tumour cells 

trigger cell death (apoptosis), and in intermediate nutrient levels the tumour cells stay 

quiescent. This translates into the schematic growth curve shown in Figure 1. The 

different nutrient levels inside the tumour spheroid are determined by the movement 

and consumption of nutrients within the tumour. 

  

The fact that in vitro experiments have clearly shown that nutrient (in particular 

oxygen) diffusion limits tumour spheroid growth paved the way for the angiogenesis 

hypothesis.  This hypothesis is that, in order to grow large, tumours need to obtain 

their own blood vessels and therefore must recruit vessels from the host vasculature 

through angiogenesis [5]. This hypothesis has led to considerable research into a 

possible cure for cancer by identifying factors that would stop angiogenesis [6]. 

Currently, several clinical trials in their final stages are evaluating the efficacy and 

safety of antiangiogenic therapies and the scientific community is eagerly awaiting the 

results (see the webpage describing current clinical trials 

http://cancer.gov/clinicaltrials/developments/anti-angio-table/). There are also several 

models describing different aspects of angiogenesis (see the recent review by 

Mantzaris et al. [7]). However, in this review we will concentrate on the processes 

that take place before the commencement of angiogenesis, during the phase of 

avascular tumour growth. We will also not discuss models that address evolutionary 

questions about cancer, i.e., how and why cancer comes about and how a normal cell 
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turns into a cancer cell over the course of its lifetime [8-18], because there is a good 

recent review already available [2], nor will we discuss the adaptive response of 

tumours, although in many cases this can be analysed via a natural extension of the 

models we present. Finally, we will not discuss models describing drug delivery in 

this review. The mathematical modelling of drug delivery is so well established 

experimentally and theoretically that it itself requires a separate review; we refer the 

reader to the recent review by  Jain [19]. 

 

The process of nutrient consumption and diffusion inside tumours has been modelled 

since the mid 1960s. There have been several reviews [20-22] of this area of tumour 

modelling published over the last few years. However, they all focus on different 

aspects to those we address. For example, the most recent review [20] discusses the 

general concepts of modelling from a historical perspective, rather than focussing on 

particular models.  In the present review the aim is to describe some of the most 

widely used mathematical models and developments in the area of avascular tumour 

growth in more mathematical detail. Hopefully this will engage applied and pure 

mathematicians whilst not alienating the biologists and chemical engineers who work 

at the interface between mathematics and biology.  

 

In this review we can clearly not describe every model of avascular tumour growth. 

Most models fall into two categories:  (1) continuum mathematical models that use 

space averaging and thus consist of partial differential equations; and (2) discrete cell 

population models that consider processes that occur on the single cell scale and 

introduce cell-cell interaction using cellular automata type computational machinery. 

We will discuss each of the two approaches in detail and we aim to present a 
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comprehensive list of references for each category.  In addition, in each of the 

categories, we will discuss one or two models in depth.  We have chosen these 

representatives because they were published in or are frequently referenced in 

biological journals read by experimentalists in the area of cancer biology and in 

general make quantitative predictions that have been validated experimentally. This 

approach to choosing the representative models ensures that we are by default 

selecting examples that have had real impact thus far on the scientific research of 

cancer. However, such an approach does mean that we risk ignoring papers that have 

made crucial conceptual advances, or which have put forward important hypotheses 

which are too difficult to test experimentally at the moment, or whose significance has 

not yet been recognized by the experimental community. Therefore we  broaden our 

review by summarising these models also. 

 

In the conclusion section a critique of the current state of mathematical modelling will 

be presented and possible new emerging areas of mathematical and biological 

research will be highlighted. 

 

2. Continuum Cell Population Models 

 

Mathematical models describing continuum cell populations and their development 

classically consider the interactions between the cell number density and one or more 

chemical species that provide nutrients or influence the cell cycle events of a tumour 

cell population. Thus these models typically consist of reaction- diffusion-convection 

equations. One of the best parametrised of these models is due to Casciari et al. [23], 

and will be described in the first part of this section. In the second part of this section 
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we describe models from a relatively new and emerging area of avascular tumour 

modelling that deals with modelling of the mechanical interaction between the tumour 

cells and their surroundings. 

 

Cell Population and Nutrient Consumption Model 

The paper that first proposed that diffusion and nutrient consumption might be 

limiting solid tumour growth was probably Burton [24], and since then a large number 

of studies have described the spatio-temporal interactions between tumour cell 

populations and nutrients [21, 23-81]. Early models of nutrient-limited tumour growth 

calculated the nutrient concentration profiles as a function of tumour spheroid radius 

that was changing due to the rate of cell proliferation [24, 28, 43, 48, 49, 57, 58, 65, 

71]. The later models have incorporated differing degrees of complexity for cell 

movement. For example, cells can be considered to move in either a convective 

manner [36, 44, 61, 66, 78] or actively in a diffusive manner [64, 70, 74, 76, 79], or in 

a diffusive/chemotactic manner [55, 61, 64]. Most models consider tumour cell 

proliferation and death to be dependent on only one generic nutrient (most often 

oxygen).  However, some consider the effect of several nutrients and pH on the cell 

population [23, 82]. Whilst the details of any particular model in a specific 

experimental context are different, the fundamental underlying principle behind these 

models can be captured in the following short statement (see also Figure 1): 

 

Tumour cells consume nutrients. Nutrients diffuse into the tumour tissue from 

the surrounding tissue. Therefore, if the tumour is very large the nutrients 

cannot reach all parts of the tumour tissue. This leads to a decrease in tumour 

cell proliferation and eventual cell death in regions lacking nutrients. The 
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steady size of the tumour spheroid is reached when the cell proliferation in 

regions rich in nutrients balances cell death in regions poor in nutrients. 

 

As the models which treat both diffusion/consumption of nutrients and cell 

movement, rather than solely nutrient diffusion/consumption, are more biologically 

relevant we wish to discuss one of these models as a representative of the class. One 

can find very few experimentally validated models for simultaneous cell population 

and nutrient interaction. Of these, we have chosen Casciari et al. [23] because it is a 

very good example of the class and it includes a sufficient level of biochemical 

complexity for it to be experimentally relevant. This model considers a spherical 

tumour and the interaction of tumour cells with oxygen, glucose, lactate, carbon 

dioxide, and bicarbonate, chloride, and hydrogen ions and aims to answer quantitative 

questions on the expected pH inside tumours.  

 

Equations for chemical species inside the spheroid 

The equations describing the distribution of molecular species inside the tumour 

spheroid are classical transport/mass conservation equations. Figure 2 shows the 

schematic model for pH regulation inside the tumour cells [23]. The conservation 

equations for the different chemical species are  

 ,ii
i PN

t
C

=⋅∇+
∂
∂                                         (1)

 

where Ci are the concentrations of the chemical species, subindex a for oxygen, b for 

glucose, c for lactate ion, d for carbon dioxide, e for bicarbonate ion, f for chloride 

ion, and g for hydrogen ion concentration; Ni is the flux of each of the chemical 

species inside the tumour spheroid; and Pi is the net rate of consumption/production 
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of the chemical species both by the tumour cells and due to chemical reactions with 

other species. 

 

For uncharged molecules, i.e., glucose, oxygen and carbon dioxide, the flux is given 

by Fick’s law, 

 iii CDN ∇−= , (2)

where Di are (positive) constant diffusion coefficients. 

 

The flux of ionic species, i.e., lactate, bicarbonate, and hydrogen ions, in dilute 

solution must take into account both electric field driven charge migration and 

diffusion, and is given by 

 iiiiii CDFCuzN ∇−Φ∇−= , (3)

where zi is the ionic charge of species, ui is the mobility, F is Faraday’s constant and 

Φ is the electrical potential. For dilute solutions Casciari et al.  [23]  take ui to be 

given by the Nernst-Einstein equation 

 ,/ TRDu gii =  (4)

where Rg is the gas constant, T is the absolute temperature, and Di is the diffusion 

constant. By applying the assumption that there is zero net electrical current, so that 
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Thus, the flow of a specific ionic species depends on the concentration gradients of all 

the ionic species present in the tissue. 
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Finally, by considering the breakdown of glucose through glycolysis and the Krebs 

cycle3 [83] and the detailed metabolic pathway for pH regulation (see Figure 2 for 

schematic representation) on a single cell level, Casciari et al.  [23]  arrive at the 

following terms describing the consumption of oxygen and glucose by the tumour 

cells and interactions between the other chemicals and ionic species in this cascade: 
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(6)

where Ω is the number of cells per unit volume of spheroid, assumed to be constant. 

In equations (6) the relations for Pc, Pd, Pe, Pf and Pg were derived using the detailed 

consideration of the Krebs cycle, and the parameters kf and kr are determined from the 

detailed chemical reaction schemes. The functional form of oxygen consumption Pa, 

and glucose consumption Pb were derived empirically from experiments. In particular, 

independent measurements of (a) oxygen consumption at different levels of glucose 

and pH, and (b) glucose consumption at different levels of oxygen and pH, were 

conducted and the empirical functional forms in equation (6) were fitted to the data. 

Our understanding is that this fitting was done by eye, rather than through a statistical 

                                                 

3 The Krebs cycle is a sequence of 10 biochemical reactions, brought about by mitochondrial enzymes, 

that involves the oxydisation of a molecule of acetyl-CoA, to two molecules of carbon dioxide and 

water. Each turn of the cycle can result in the formation of 12 molecules of ATP (direct source of 

energy for cells) per molecule of acetyl-CoA [83]. 
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analysis (as is common in mathematical biology, since often only a few data points 

are available when estimating a nonlinear curve). Thus the functional forms for 

oxygen and glucose consumption should be considered representative, rather than cast 

in stone - many other functional forms could be chosen. Indeed, it is almost certain 

that different cancer cell lines would have different oxygen and glucose consumption 

rates, and it is not clear that they can all be approximated by the functional forms in 

(6); each would have to be assessed individually against available experimental data. 

Moreover, even Casciari et al. themselves use a different functional form at low levels 

of oxygen and glucose, where they set [23] 
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where bbbaaa ςβφςβφ ,,,, , are new fitting parameters which are again determined by 

comparison with experimental data. 

 

The chemical species conservation equations require boundary conditions. Casciari et 

al.  [23] assumed that on the boundary of the spheroid, r=R, there is a flux of 

chemical species given by the difference in concentration of chemical species in the 

bulk medium outside the spheroid ( outiC , ) and concentration at the boundary of the 

spheroid, i.e., 

 ),( , ioutiiRri CCKN −=
=

 (7)

where Ki is the mass transfer coefficient of species i. The coefficients in equation (7) 

were measured using a Bellco spinner flask and the values were found to depend on 

the diffusivity of the molecule in question, viscosity of the culture medium, and 

spinner flask characteristics (the exact experimental setup is described in [84]). The 
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boundary condition (7) is equivalent to Newton’s law of cooling, and assumes that the 

culture medium is well mixed. If this is not the case, then it may be necessary to solve 

for the concentration of species in the culture also, imposing continuity of 

concentration and flux across the spheroid boundary.  

 

In the case of spherical symmetry we also impose 

 ,0
0
=∇

=riC  (8)

so that there is no singularity in the concentrations at the origin. 

Equations for cell movement and proliferation 

The spheroid growth equations proposed in [23]  are based on the law of mass 

conservation, so that the velocity of cell movement v  is given by  

 ),( iCFv λ=⋅∇  (9)

where λ is the maximum rate of cell proliferation and F(Ci) is the scaling function for 

the nutrient/chemical species dependent proliferation. To find the functional form of 

F(Ci) Casciari et al.  [23] conducted a series of experiments to measure the cell 

population dynamics in cell monolayer cultures at different levels of pH and oxygen 

and glucose concentration. Monolayer cultures are a good experimental tool for 

determining reaction kinetics and cell proliferation characteristics, since nutrient and 

other chemical concentrations can be precisely controlled without spatial variation. Of 

course, cell signalling cues arising from cell-cell contact may be different in 

monolayers and spheroids, but such effects are taken to be secondary and are not 

included in the model. Casciari et al.  [23] fitted the data with the following empirical 

function describing the rate of cell proliferation in different chemical environments: 
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where the Gi’s are fitting parameters. Again, this functional form should be taken as 

representative rather than set in stone. One limitation of the functional form (10) is the 

fact that the cell proliferation term F is always strictly positive. This implies that for 

the EMT6/Ro spheroids considered in  [23] there can never be a necrotic core, that is, 

a region where there is only cell death. Since the cells are proliferating everywhere 

there cannot be a steady state for the tumour radius. Thus this model is applicable for 

transient, pre-plateau phase spheroids. To model growth saturation and necrosis fully 

we would need to include a cell death term in the right hand side of equation (9). This 

would make the model parametrisation much more difficult since in addition to 

measuring nutrient-dependent cell proliferation, one would also need to 

simultaneously measure cell death, which can in principle also depend on the levels of 

metabolites inside the spheroid. 

 

Equation (9) implies that the cells are incompressible and there is no change in cell 

density at any given point in space, so that as a cell proliferates the cells surrounding 

it move accordingly to accommodate the new arrivals. These assumptions are 

probably reasonable for spheroids grown in free suspension culture, but are more 

questionable in a confined environment.  

 

In the symmetrical case of a spherical tumour we may suppose that the cells move 

radially so that there is only one nonzero velocity component, which depends only on 

the distance from the spheroid centre, r, and time. In this case equation (9) is 

sufficient to determine the movement of the tumour cells and the spheroid boundary. 
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However, in any nonsymmetric situation conservation of mass alone is not enough to 

determine the cell velocity, and some form of force balance, along with an additional 

constitutive relation, needs to be considered. Such an extension complicates the model 

considerably, and leads to difficult questions concerning continuum mechanics in 

growing media. These are seen by most biologists as peripheral to the central 

biochemical nature of cancer. While this is undeniable, in the absence of symmetry it 

is difficult to see how to close a biochemical model such as (1)-(9) without some 

discussion of mechanics. We will return to this question later when we discuss 

generalisations of the model of Casciari et al. [23], but for the moment we continue to 

make the assumption of radial symmetry. 

 

By solving equation (9) with spherical symmetry we find that the radial cell velocity 

vr at a point inside the spheroid and the evolution of the tumour boundary R are given 

by 
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Equations (1)-(11) form a closed system and can be solved numerically or further 

simplified to enable approximate analytic solutions to be obtained.  

 

We stress that whilst the model by Casciari et al. [23] includes several 

phenomenological functions and parameters, it is one of the best parametrised models 

and the relatively small number of phenomenological constants makes it possible to 

compare the results of the model to experiments. Using the model Casciari et al. [23] 
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predicted that the oxygen and glucose concentrations will fall in the middle of the 

spheroid resulting in a significantly reduced rate of proliferation. This gives rise to the 

viable rim, that is, a region of high cell proliferation near the edge of the spheroid. 

The width of the viable rim can be measured experimentally using 

immunohistochemical techniques to stain the cells at specific checkpoints in the cell 

cycle.  Casciari et al. [23] report that the experimentally measured width of the viable 

rim is in agreement with that predicted by the model, although it should be noted that 

the experiments involved a limited number of trials and gave a mean width of the 

viable rim (7±23)% greater than that predicted by the model; the large spread in the 

result was due to the high variability in the experimental data. The model also predicts 

that the pH inside the tumour spheroid should be different to that in the external 

medium, with higher acidity at the tumour centre than near the tumour boundary. This 

quantitative prediction has also been confirmed experimentally [23].  

 

The study of Casciari et al. [23] is an example of the success of mathematical 

modelling in tumour biology (see for example Figure 3 for a comparison between the 

predicted and experimental measurements of oxygen and glucose consumption), but it 

also highlights some of the dangers. Even with such a well parameterised model, the 

quantitative agreement of model prediction and experiment is only satisfactory (far 

worse than could be expected in physics, for example), and the experiments 

themselves show a huge variation. This highlights the need for accurate measurements 

in order to generate accurate parameter estimates, but also warns against placing too 

much emphasis on fitting models to data – what is more important is to get the 

biochemistry correct qualitatively (which, of course, is what Casciari et al. are trying 
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to do when they choose functional forms such as (10)), and to be able to predict 

general features of the solution (such as higher acidity at the tumour centre) reliably.  

 

There is a delicate balance when building any model between reliability and realism. 

As more and more is discovered about the detailed biochemistry of tumours we have 

to guard against the tendency to develop overly complex or detailed mathematical 

models for which we cannot hope to realistically or reliably estimate all the parameter 

values. While such models may seem sophisticated, their predictions are likely to be 

less accurate that a better-parameterised simpler model. One of the advantages of 

mathematical modelling in this regard is its ability to determine what qualitative 

details are sacrificed when simpler models are used.  

 

Generalisations of Cell Movement and Proliferation Equation 

Several modifications of the cell proliferation equations (9) and (10) have been 

presented in the literature. We outline the main approaches below.  The most general 

modification of the model of Casciari et al.  [23] would be to take into account 

explicitly that the tumour comprises cells, interstitial fluid, and possibly extracellular 

matrix, and to treat the tumour as a multiphase material with these as the different 

phases. The model will then need to describe the mechanical and biochemical 

interactions that take place between all the phases considered. If we include random 

cell migration and cell death, each phase can be described by 

 ),,(),()()( iiiiiiiiii
i CCDv

t
Φ−Φ+Φ∇⋅∇=Φ⋅∇+

∂
Φ∂ µλ

(12)

where, for phase i, iΦ  is the volume fraction ( 1=Φ∑i i ), vi is the velocity, Di is the 

random motility or diffusion, ),( iii CΦλ  is the chemical and phase dependent 
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production, and ),( iii CΦµ  is the chemical and phase dependent degradation/death. 

The most common models consider only the cell phase (as in Casciari et al.  [23]), or 

cell and interstitial fluid phases.  

 

The simplest version of equation (12), which has been used extensively, is a two 

phase model with the two phases being live cells and dead cells [66, 67]. If we know 

the average volume of the live and dead cells, VL and VD respectively, then the volume 

fraction equations can be converted into equations for the live and dead cell number 

density n and m, respectively, giving 
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∂
∂ (13)

where, of course, dead cells have no random motion. Usually D is constant, but 

occasionally (13) is modified to include non-linear diffusion of tumour cells [64, 75, 

76] by setting D=D(n,Ci). Most models consider only one chemical species (usually 

oxygen or some generic nutrient), so that the biochemistry is much simpler than that 

of Casciari et al.  [23].  It is common to assume that the convective movement of both 

cell types is the same, so that vn = vm = v, say [66, 67]. Then, combining the equations 

(13) with the volume conservation relation nVL+mVD=1, we obtain an expression for 

the cell velocity,  

 ),)(,(),()( DLiLiL VVCnVCnVnDv −−+∇⋅∇=⋅∇ µλ (14)

which is the analogue of (9). In the case of radial symmetry this is again enough to 

determine v, without needing to worry about force balances.  

 



 19

In principle, the multiphase approach can be extended to include three or even more 

phases (including different cell subpopulations, such as cancer and normal cells, or 

cells with and without a certain gene, or even drug carrying microbeads, etc.). 

However, it has to be noted that with the addition of each phase the parameterisation 

of the model becomes more and more difficult, since large numbers of independent 

experiments are needed to validate the model. The general multiphase model (12) 

needs to be supplemented by equations describing the velocity of each phase. The 

usual practice is again to assume that all phases move with the same velocity, so that 

with the further assumption of radial symmetry, conservation of mass allows the 

velocity to be found without worrying about constitutive relations and force balances. 

However, there seems to be no reason for the velocities of the components to be the 

same or even of the same sign, especially when there is transfer between the phases. 

When the assumption of radial symmetry is dropped, so that force balances need to be 

considered to close the model anyway, there seems no advantage to assuming that all 

the velocities are the same, and they may be better approximated by using constitutive 

laws for each phase and accounting for momentum transfer between phases. We will 

describe this approach in the next section when we consider mechanochemical models 

of tumour growth. 

 

Several mathematicians have analysed generic nutrient limited tumour spheroid 

growth equations with the aim of understanding qualitatively the sort of behaviours 

that can arise as a result of different biological effects. For example, Burkowski [85] 

and Byrne [86] analyse the effect of the incorporation of time delays in the cell 

proliferation and death terms in a generic-nutrient limited, spheroid growth model. 

This approach results in delay differential equations that the authors hypothesise are 
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able to describe the oscillatory growth of tumour spheroids. Byrne and Gourley [34] 

considered what effect growth factors influencing signal transduction pathways of 

tumour cells have on generic-nutrient limited spheroid growth. Chaplain et al. [79] 

hypothesised that  the prepatterning of growth inhibitors and growth promoters on the 

tumour surface by a reaction-diffusion mechanism involving two unidentified 

chemical species could explain the asymmetries that arise during tumour growth.   

 

An important set of experiments which give information about the movement of cells 

in tumour spheroids were conducted by Dorie et al. [87, 88]. The experiments 

involved attaching labelled tumour cells (in both homotypic and heterotypic 

combinations), and inert polystyrene microspheres to the outside of EMT6 cultured 

tumour spheroids. The results showed that while the distribution of labelled cells or 

microspheres always spread out (as it would due to random motion), if the labelled 

cells were the same type as the tumour spheroid then the maximum of the distribution 

remained at the spheroid edge, while labelled cells heterotypic with the spheroid and 

inert microbeads migrated towards the centre of the spheroids, a process known as 

internalisation. Even when tumour cell proliferation was stopped by irradiation, this 

internalisation was still seen. These experiments have been modelled by several 

authors using multiphase continuum models [59, 61, 75]. Some of these models 

include active cell migration to nutrient rich areas, with the microspheres forced into 

the centre of the tumour as the cells squeeze past them; others explain the motion of 

the microspheres using only passive cell motion, as  the cells at the centre die and the 

outer cells replace them, carrying the microspheres with them. It is still not clear 

which, if either, of these effects is responsible for the internalisation process. 
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Several authors have modelled the invasion of tumours into other tissue using 

travelling-wave solutions of diffusion-based tumour-cell-population models [54, 55, 

64, 72, 74]. Sherratt [64] performs a travelling-wave analysis of a non-linear diffusion 

model for the interaction of tumour cells and the extracellular matrix with the aim of 

proposing a mechanism for the formation of connective tissue capsules around 

avascular tumours. These capsules around solid tumours are highly collagenous layers 

of connective tissue surrounding the tumour and are most commonly found in large 

vascular tumours. Marchant et al. [54] analyse a model for tumour cell migration and 

interaction with connective tissue and protease. Using a travelling-wave analysis they 

are able to identify a range of possible behaviours, such as the development of spatial 

heterogeneity, travelling waves with wavy tails, etc. In particular, their models 

address the question of how the tumour cell interaction with connective tissue and 

protease influences tumour growth. They find that under certain circumstances tumour 

cell profiles, as well as connective tissue profiles, can advance or recede like 

travelling waves.  

 

As set out above there are a relatively large number of continuum cell population and 

nutrient consumption models. However very few of them have been well 

parameterised and tested against experimental data. Whilst experimental validation is 

undoubtedly crucial to the success of any model, phenomenological models can 

provide a framework in which to think about the physical system, allow us to explore 

the effects of different hypotheses, advance our conceptual understanding, and even 

make predictions. An example of the latter is given by the model by Gatenby and 

Gawlinski [89] which describes the transition from benign to malignant growth using 

the acid-mediated invasion hypothesis. It consists of three coupled reaction-diffusion 
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equations for cancer cells, normal cells and acidity and explores the hypothesis that, 

as a result of anaerobic metabolism, cancer cells create an acidic environment which 

kills normal cells. The model predicts the existence of an interstitial gap at the 

tumour-host interface and this prediction has been confirmed experimentally (see on 

Figure 4). This example shows the power of an interdisciplinary approach and 

illustrates its potential. It is unfortunate that many model predictions are not tested 

experimentally. 

Tissue Mechanics Models 

Tissue mechanics models consider the mechanical interactions between tumour cells 

with the aim of answering questions about how the mechanical properties of the 

tumour, and the tissue in which the tumour grows, influence tumour growth.  Since 

the late seventies there have been several models that in one way or another have 

introduced the concept of pressure or force between tumour cells [35, 36, 38, 39, 42, 

46, 49, 51, 59, 61-63, 90-101]. In addition, there have been a number of papers which 

have proposed ways to include the effects of mechanical interaction between tumour 

cells into the existing mathematical framework of nutrient limited spheroid growth. 

This research coincided with a conceptual change in cell biology away from a picture 

of cells as simple fluid bags to cells having some structural integrity, which was 

brought about by experimental evidence showing that cells have micro-skeletons 

which give them mechanical strength. A theoretical framework for understanding 

these micro-skeletons was pioneered by Ingber, who introduced the concept of 

tensegrity structures to biology (Figure 5), which are mechanical systems that are 

stabilized by continuous tension. One example of this is the human body which is 

stabilized and controlled by tension in muscles and ligaments. However, this approach 

to modelling the mechanical properties of cells is in its infancy (we know of only one 
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paper [102], which deals with a very simplified case), although it might become more 

popular in the future. Most models of cell tissue mechanics assume some bulk 

constitutive relation between stress and strain/strain rate, averaged over many cells. 

 

The early models built on the nutrient diffusion/cell proliferation models discussed in 

the previous section by introducing a pressure inside the tumour. An example is the 

model by Greenspan for avascular tumour growth [49], which was further developed 

by Byrne and Chaplain [90]. In this model the diffusion of a single, generic nutrient c, 

is considered to be in pseudoequilibrium in time, so that inside the tumour spheroid 

0)(2 =−∇ cc λ , where λ is the rate of nutrient consumption by the tumour cells. As in 

the previous section, mass conservation of incompressible tumour cells results in a 

tumour cell velocity v given by )( cSv =⋅∇ , where S(c) is the nutrient-

concentration-dependent net cell proliferation rate. The authors introduce the concept 

of the spheroid internal pressure p, and relate it to the cell velocity v by introducing a 

constitutive equation  

 pv ∇−= µ , (15)

where  µ is a positive constant describing the viscous-like properties of tumour cells. 

This constitutive equation can be interpreted in two different ways. The first 

interpretation is as an overdamped force balance, in which the force on a cell 

maintains its velocity rather than accelerates it. The second interpretation says that the 

tumour tissue is “fluid-like” and that tumour cells flow through the fixed extracellular 

matrix like flow through a porous medium, obeying Darcy’s law. Whatever the 

interpretation, this constitutive relation is used to derive the equation for spheroid 

internal pressure, )(2 cSp =∇− µ . The model is closed by giving boundary conditions 

on the (moving) tumour boundary, ,0),( =Γ tr say.  The equation of motion for any 
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boundary point is given by npnv
dt

rdn ⋅∇−=⋅=⋅ µ , where n  is the unit outward 

normal.  

 

The pressure on the tumour boundary is taken to be equal to the external pressure ∞p  

(Greenspan [49] includes surface tension effects so that the pressure is proportional to 

the mean curvature on the tumour boundary). The second boundary condition is on 

the nutrient concentration c. Byrne and Chaplain [90] hypothesise that energy is 

expended in maintaining the cell-cell bonds on the tumour surface with the requisite 

amount of energy increasing with the local curvature of the boundary. Assuming that 

the nutrient acts as a source of energy for cell-cell adhesion, the authors take the 

concentration of nutrient at the tumour boundary to be given by the Gibbs-Thomson 

relation, i.e., )21( γκ−= ∞cc , where κ is the mean curvature of the tumour surface, γ 

is the surface tension of the tumour surface, and ∞c  is the nutrient concentration in the 

culture medium outside the spheroid.  

 

In summary, the model equations are: 

 ,0)(,0)( 22 =+∇=−∇ cSpcc µλ  inside ,0),( =Γ tr  

np
dt

rdn ⋅∇−=⋅ µ  on ,0),( =Γ tr  

∞∞ =−= ppcc ),21( γκ  on ,0),( =Γ tr  

 

(16) 

together with initial conditions. 

 

This model raises a number of interesting mathematical and experimental points. The 

first point to note is that in the case of radial symmetry the constitutive equation (15) 
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is not needed. The model is very similar to (a simplified version of) (1)-(11) of the 

previous section (except for the boundary condition on c at the tumour surface), and 

as before conservation of mass is enough to determine vr. However, the constitutive 

relation (15) and the boundary condition ∞= pp  at the tumour boundary enable us to 

determine the velocity of the cells when we do not have radial symmetry. Such an 

approach would be one way to close the model (1)-(11) when we do not have radial 

symmetry, and is probably the simplest way we could think of doing so. 

 

The second new feature of (16) is the hypothesised Gibbs-Thomson relation in the 

nutrient boundary condition. This seems a much more speculative addition, but it may 

be possible to check its veracity since experimental techniques for measuring the 

strength of cell-cell adhesion in different nutrient environments are available. One 

note of caution when moving away from radially symmetric solutions is sounded if 

we set γ=0, in which case Byrne and Chaplain [90] find that the radially symmetric 

steady state is unstable to small asymmetric perturbations, with the growth rate of the 

most unstable mode tending to infinity as the wavelength tends to zero, so that the 

model seems to be ill-posed in this case. This illustrates some of the difficulties in 

determining simple but sensible constitutive relations for tumour tissue mechanics. 

Further analyses of the model, including a weakly nonlinear stability analysis, are 

conducted in [38, 39, 90]. Other modifications of the early cell mechanics models 

include the effect of growth inhibitors on the development of avascular tumours [36].  

 

These models have given us insights as to how various hypothesised mechanical 

interactions affect nutrient limited tumour growth. Comparing the predictions of such 

models to experimental growth profiles will help to determine what sort of 
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mechanical interactions we should be including. If this first hurdle is passed, to realise 

the models full predictive potential it needs to be carefully parameterised. While 

experimental values are available for several of the parameters, others are difficult to 

measure. For example, the in vivo measurement of a pressure that is probably very 

low (~10 mmHg) in a sample that is very small in size (max 1mm) is technically very 

difficult.  An important role of modelling in this respect is to determine, via sensitivity 

and/or bifurcation analysis, on which parameters the behaviour of the model crucially 

depends, thereby identifying which parameters need to be measured accurately. 

  

Whilst direct pressure measurements have yet to be performed, the landmark 

experiments conducted by Helmlinger et al. [103] mean that there is experimental 

evidence which could be used to test tumour tissue mechanics models. Helmlinger et 

al. [103] grew tumour spheroids in different stiffness agarose gels and saw that the 

strength of the agarose gel influences the growth of the tumour spheroid, i.e., the 

stiffer the gel the smaller the tumour radius during the plateau phase of growth. Since 

cells can neither attach themselves to agarose nor degrade the agarose,  Helmlinger et 

al. [103] concluded that solid stress inhibits tumour growth. More fundamentally, 

tumours in stiffer organs (bone for example) should grow slower than tumours in very 

soft organs (the breast for example), a concept that appears to make sense in the 

clinical setting. Helmlinger et al. [103] estimated the solid stress that might be 

generated during spheroid growth by measuring the mechanical properties of agarose 

gels, fitting a non-linear hyperelastic strain energy function to the experimental data 

and using this strain energy function to calculate the stress that is needed to move the 

tumour boundary from the initial one-cell radius to the final plateau-phase radius. 

However, as pointed out by Chen et al. [95], the strain energy function used by 
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Helmlinger et al. [103] does not satisfy the condition of no stress at no strain. 

Furthermore, reported values of the bulk modulus of LS174T tumour used by 

Helmlinger et al. [103] and measured by the same group of authors [104] are in the 

range of 30±10 mmHg. Thus, if the stress within the spheroid was of order of 100 

mmHg as claimed in [103], then upon the release of spheroid from the agarose, the 

spheroid should swell to two to three times of its pre-release size. This experiment of 

releasing the spheroid from the agarose confinement was actually carried out by the 

original authors and no large swelling was seen. Instead it was noted that the rate of 

spheroid growth was recovered after release, indicating that the solid stress actively 

influenced the cell cycle instead of passively compressing the tumour tissue. It is 

therefore likely that the stress in spheroids grown in agarose is actually lower than 

100 mmHg as reported in [103].  

 

Despite this controversy concerning the strain energy function, the paper by 

Helmlinger et al. [103] has motivated several researchers to model this experimental 

situation in more detail [91, 93, 95, 105]. Three of those papers are theoretical studies, 

while Roose et al. [91] presents a combined theoretical and experimental study with 

an aim to correct the quantitative estimate of the solid stress inside the tumour 

spheroids by considering a linear poroelasticity model where the tissue growth has 

been absorbed into the stress-strain relation in a similar manner to thermal elasticity as 

used in classical solid mechanics [106]. They used the following constitutive equation 

linking effective tissue stress to tissue strain and fluid pressure:  

 
σ ij = 2Gεij + (K −

2
3

G)εkkδij − pδij − Kηδij , ε ij =
1
2

(
∂ui

∂x j

+
∂uj

∂xi

), (17)



 28

where ijσ  is the effective stress in the tissue, ijε  is the strain tensor of the tumour 

tissue, ui are the displacement components,  ijδ  is the Kronecker delta, K is the 

drained bulk modulus of the tissue, G is the shear modulus of the tissue, p is the fluid 

pressure in the tissue, and η is the volume of new tissue created per unit volume of 

tissue which is given by ∂η /∂t = SC , where SC is the rate of  production of solid phase 

tumour tissue4. Thus, if there is no displacement of the tissue (i.e., εij=0) then the 

stress that builds up is proportional to the bulk modulus and the volume of material 

created per unit volume. 

 

The constitutive equation (17) is supplemented by the two phase tissue mass 

conservation equations  
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∂
∂

∂
∂  (18)

   

where CΦ  and FΦ are the tissue cell/matrix and fluid volume fractions respectively, 

vC is the cell/matrix velocity, vF is the fluid velocity, and SF is the 

creation/degradation of the fluid phase. Conservation of matter in the tissue, 

ΦC+ΦF=1, implies that .)( FCFFCC SSvv +=Φ+Φ⋅∇  Using Darcy’s flow for the 

fluid movement through the porous solid gives ΦF(v F −vC ) = −KH∇p,  where KH is 

the hydraulic conductivity, while the assumption that the tumour may be described by 

                                                 

4 This effective stress tensor can be derived by considering the solid phase  and fluid phase stresses 

separately ηδεεσ KGKGp ijkkij
ss

ij −−++Φ−= )
3
2(2  and ij

ff
ij pδσ Φ−= , thus the effective 

tissue stress f
ij

s
ij σσ +  will be given by equation (17) (see  [107] for reference). 
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two phases only implies that the new cell/matrix phase is formed from the fluid phase 

and vice versa, so that 0=+ FC SS . Finally the model is closed by a quasistatic force 

balance, 0=⋅∇ σ . The detailed biochemistry of tumour growth can be coupled into 

the model above through the growth term SC , with equations added for nutrient 

diffusion.  

We may combine the equations to find a single equation for the rate of solid phase 

dilatation [91, 108], Cve ⋅∇= , as 

 C
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∂
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Since the rate of dilatation of a spherically symmetric tumour is given by 

)(1 2
2

C
rvr
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e

∂
∂

= , equation (19) completely describes the cell velocity inside a 

spherically symmetric tumour, and is the analogue of (9) for a compressible material. 

In particular, note that if we take the limit of incompressibility so that K tends to 

infinity, then (19) reduces to (9). Note also that equation (19) needs to be solved both 

inside the tumour and in the gel, with different material constants in each, and no 

production term in the gel. Across the tumour/agarose gel boundary there is a 

discontinuity of material properties, and continuity of stress and velocity is used to 

match the two regions together. 

 

The model of Roose et al. [91] is very similar to earlier models of Jones et al. [105] 

and Chen et al. [95], which treat the tumour as elastic rather than poroelastic. It is 

important to note that while biological tissue is often assumed to be incompressible 

when modelled as elastic, in a poroelastic model the Poisson ratio corresponds to that 

of the drained tissue, and may be significantly less than ½ [109] (the effective 

incompressibility arising from the interstitial fluid). Roose et al. [91] measure K 
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directly in a confined compression experiment, and make quantitative predictions 

about the levels of stress and the volume of new tumour material created inside the 

multicell spheroids, estimating the level of stress to be about 10 mmHg. 

 

Although the model (17)-(19) is much more complicated than (15), it is still based on 

linear poroelasticity, with the corresponding assumption of small displacements, while   

biological tissue and gels such as agarose undergo large deformations and exhibit 

nonlinear material properties. Note, though, that in a radially symmetric deformation 

the dilatation of the surrounding material is zero, so that there is no compaction of the 

gel. In this case its nonlinearity is likely to be less severe and the linear approximation 

may not be too bad. 

 

In addition to the models mentioned above, there are several other models which 

consider the two phase nature of tumours [51, 62, 92] and the hyperelastic nature of 

tumour tissue [93]. For example, a recent paper by Landman and Please [51] presents 

a two phase (fluid and cell) model for tumour spheroid growth that aims to answer 

qualitative questions about the presence and size of the necrotic regions inside the 

tumour spheroid. The cell phase is considered to move in a Darcy-like fashion as in 

(5). It would be interesting to extend such models to see what effects the inclusion of 

cell traction forces [110-116] might have on the model predictions. 

 

Another model presented by Byrne et al. [94] considers a generic two phase model for 

avascular tumour growth using the theory of mixtures. They assume that the cell 

phase can be modelled as a viscous fluid, while the water phase can be modelled as an 
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inviscid fluid. This paper provides a basis for further developments by considering 

specific tumour lines for which this type of model might be appropriate. 

 

In conclusion of the continuum modelling section of this review, we point out the dual 

role of modelling. We focused initially on a specific model that was well-

parametrized, and which allowed detailed experimental predictions to be tested. 

However, in other situations we are not in a position to do such detailed modelling. In 

these cases, the role of modelling is in hypothesis-testing and in helping to direct and 

formulate experiments. Such, more basic, conceptual models can also lead to 

experimental predictions, an example of which is the aforementioned discovery of an 

interstitial gap between advancing tumour cells and regressing normal cells [89]. 

 

3. Discrete Cell Population Models 

 

With the huge advances in biotechnology, large amounts of data on phenomena 

occurring on a single cell scale are now available. This, combined with in vitro 

experiments using tumour spheroids, sandwich culture, etc., and high power confocal 

or multi-photon laser microscopy that enables tracking of individual cells in space and 

time, has brought about the possibility of modelling single-cell-scale phenomena and 

then using the techniques of upscaling to obtain information about the large-scale 

phenomena of tumour growth. There are several upscaling techniques; the most 

popular ones are cellular automata [30, 117-130], lattice Boltzmann methods [8, 131], 

agent based [127, 132], extended Potts [133] and the stochastic (Markov chain 

combined to Fokker-Planck equations) approach [95, 132, 134-136]. As in the case of 

phase-averaged continuum models discussed in the previous section, the main 
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difficulty with the discrete cell-based models lies in their parameterisation, and thus 

these models are more appropriate for giving qualitative insights, instead of detailed 

quantitative predictions. 

 

In this section we will outline the main ideas behind the discrete approach for 

modelling cell populations in cancer. All of the main approaches (cellular automata, 

lattice Boltzmann, agent based, extended Potts etc.) consider the state of each cell or 

population of cells inside the tumour to be characterised by the vector variable 

 },,,{ uvxw =   

where  x  is the position of the cell, v  is its velocity, and u  is a vector characterising 

the cell’s internal biological state, which may incorporate its position in the cell cycle, 

its interaction with the local biochemical environment, etc. The mechanical 

interactions between the cells depend on their position x and velocity v. This type of 

state vector has its origins in lattice Bolzmann and other statistical mechanics models, 

but we expect that the cell velocity plays a lesser role in tumour biology since 

“collision effects” between tumour cells are not comparable to those between gas 

molecules, for example. Whilst it is in principle possible to write down a set of 

mechanical interactions between cells using statistical mechanics or Newton’s laws of 

motion, this is not usually done since the resulting system is large and complicated 

and extremely computationally expensive, while at the same time many assumptions 

have to be made about the way cells interact so that its realism is not guaranteed. Thus 

it is more common to replace physical laws of cell motion such as force and mass 

balances with cell movement rules. Some general principles for these cell movement 

rules are described below.  
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Since the cells of an automaton model correspond to biological cells (or collections of 

cells), it is easy and natural to incorporate the internal biochemical machinery of the 

biological cell into the internal state variables of the automaton cell. This is one of the 

main advantages of automaton models, and it makes it easy to consider heterogeneous 

populations of cells.  

 

The difficulty with automaton models is realistically modelling cell motion. The first 

step in setting up the rules for cell motion is to partition the physical space into 

automaton cells. The simplest partition is to discretise into a regular lattice; 

rectangular lattices are usually chosen for simplicity. An alternative partition used by  

Kansal et al. [119] distributes the centres of automaton cells randomly and then uses a 

Voronoi tessellation to divide space up into cells.  

 

The second modelling decision is whether the lattice is fixed in time or varies as the 

elements move. It is far simpler to consider a fixed lattice, with each automaton cell 

corresponding to either a biological cell or a vacant site, and cells able to move into a 

nearby lattice site containing a vacant site. Of course, it is much more realistic to have 

lattice cells growing and moving, with the lattice evolving as the tumour grows, but 

such models are much harder to formulate and are therefore much rarer. In particular, 

while the rules of motion for fixed lattices can be formulated simply in terms of cells 

moving between lattice sites, if the lattice is free to move and the cells can grow, we 

are back into the territory of mass conservation and continuum mechanics to 

determine the rules for the motion of the cells. 
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To determine the rule for cell motion in a fixed lattice, most models assume that the 

interactions between an individual cell and the cells surrounding it are localised in 

space and occur only with cells inside a certain neighbourhood Ω, which is often the 

cell’s nearest neighbours, but may extend further than this. A typical cellular 

automaton rule will say that if a location x is occupied by a cancer cell, this cell might 

proliferate with probability k1, it might bind to an effector chemical, such as a growth 

factor or a factor causing the cell to die or become quiescent with probability k2, or the 

cell might move to a neighbouring site with probability k3. The proliferation of cells 

depends on the levels of nutrients and waste products at any given point, and should 

ideally be derived from the biochemical pathways affecting the cell cycle. A relatively 

simple example would be an expression similar to equation (10) in Section 2, where 

the levels of glucose, oxygen and pH are considered to be influencing cell 

proliferation. In more sophisticated models cell proliferation may be the result of a 

network of ordinary differential equations modelling the internal cell machinery and 

signal transduction pathways. The probabilities k1, k2, and k3 are usually taken to be 

independent of geometry and the mechanical environment of the cell, but these effects 

could in principle be incorporated also.  

 

Once the decision has been taken to proliferate, the cell will divide into two daughter 

cells. On a deformable lattice this presents no problem, since the cell simply grows to 

be twice its normal size, and then splits into two, each of which is the same size as the 

original. However, on a fixed lattice this growth is taken to occur instantaneously, and 

the new cells immediately occupy two sites. One of these cells is usually assumed to 

occupy the original site of the dividing cell, but the other requires an extra space. 

There are several ways to determine where to put this new cell. Usually it is taken to 
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move to a neighbouring site, but we have to decide whether the surrounding cells 

should be pushed away to make space (and if so, to where should they be pushed?), or 

whether the cell can only move to a “vacant” site? Determining where to put the extra 

cell is one of the main problems with the fixed lattice approach. Because of the 

restrictions the fixed lattice imposes, it is extremely difficult to incorporate realistic 

physics or biology into such a movement rule. In addition, the particular lattice 

structure chosen may artificially influence the global behaviour, in a similar manner to 

the grid effects which may be observed when numerically approximating solutions to 

partial differential equations. In the latter case it is possible to quantify this effect 

through mathematical analysis, but such a quantification is extremely difficult in 

cellular automata models. A similar dilemma is presented by a cell that does not 

proliferate but is highly motile. The movement of a cell to a neighbouring site could 

depend on (a) number of vacant neighbouring sites, (b) the nutrient concentration 

gradient, (c) levels of matrix molecules in neighbouring sites, (d) the mechanical 

environment of the cell and cells in neighbouring sites, and so on. Any number of 

these factors could be combined with a random motility assigned to each cell.  

 

Different cellular automata models incorporate different levels of complexity into cell 

movement, birth and death laws. Having described their general formulation we will 

now describe one or two specific examples of automaton models that have appeared 

in the literature. One of the first models considering discrete cell population migration 

using a complex cell cycle model, which is still considered to be sophisticated, was 

that by Duchting and Vogelsaenger [117], who conducted a series of three-

dimensional simulations using the model in order to determine the effect of 

radiotherapy on tumours in a quantitative, well-parameterised manner (see Figure 6 
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for the description of their model). Another of the early models that appears to be 

reasonably well parameterised is that by Qi et al. [118], which is one of the least 

complicated models of its type, and describes the minimal cellular automata rules that 

would reproduce the Gompertz law of cancer growth5. See Figure 5 for sample result 

from single cell based modelling reproduced from [137]. 

 

A recent three-dimensional cellular automaton model which does not use a regular 

lattice is that of Kansal et al. [119]. The model does not include nutrients or 

mechanical interaction between cells explicitly, but mimics the effect of both in a 

phenomenological way. The authors use a random fixed lattice and Voronoi 

tessellation, with the space that “belongs” to a single lattice site consisting of points 

that are nearer to this site than any other lattice site. Note though that the “cells” of the 

automaton each correspond to between 103 and 106 biological cells. A Delaunay 

triangulation is performed to connect the sites which share a common face, thus 

determining the neighbours of each of the lattice points. Having generated the lattice 

and determined the neighbours Kansal et al. [119] run a cell proliferation algorithm 

that determines the behaviour of each lattice point at every time increment. In this 

model, the proliferation is determined by the distance of the cell from the tumour 

boundary to mimic the effects of nutrient diffusion and consumption; only cells within 

a certain distance from the boundary can proliferate. Similarly, cells a certain distance 

from the boundary become necrotic. An ad-hoc scaling of (tumour radius)2/3 is chosen 

for these distances. Mechanical pressure effects on cell proliferation are mimicked by 
                                                 

5 Gompertz law states that the volume of the tumour V(t) at time t is given by K
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where V0 is the initial size of the tumour, K is the equilibrium size, and r is a positive constant. 
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reducing the probability of cell proliferation with the function (1-r/Rmax), where r is 

the radial position of the cell within the tumour and Rmax is the maximum tumour 

radius. With these simple interaction rules, Kansal, Cule et al. [120] and Kansal, 

Torquato et al. [119] produce three-dimensional structures resembling tumours with 

different clonal tumour cell sub-populations. 

 

Kansal, Cule et al. [120] and Kansal, Torquato et al. [119] include nutrient and cell 

mechanics effects into the model in a highly phenomenological manner, by simply 

setting the proliferation and death rates to be known functions of position. To make 

the model more biologically realistic, an obvious first extension would be to include 

the effects of nutrient and other chemicals explicitly in the model. One could start by 

using continuum equations for nutrient concentration and link this up to cellular 

automata models of the cell cycle and cell migration. Such an extension would lead to 

a hybrid model combining phenomena at the single cell level with continuum 

equations for macromolecular transport and comprising coupled discrete and 

continuum equations. A similar approach has been considered by Ferreira and 

coworkers [138, 139], who use a two-dimensional hybrid cellular automaton to model 

a population of cancer and normal cells. Growth factor concentrations are calculated 

from a continuous model with the cells acting as delta function source/sink terms, 

while the average nutrient levels (where averaging is performed over the domain of a 

cell and its von Neumann neighbourhood of 5 cells in total) influence the probability 

of cell proliferation. 

 

Whereas in most cellular automata models each lattice point consists of one or more 

biological cells, in the Potts model approach [133] each biological cell is made up of 
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several lattice points and the movement of each individual cell is determined by some 

form of energy minimisation. This formulation can take into account cell membrane 

tension, cell-cell and cell-matrix adhesion, chemotaxis etc. Such an approach is more 

computationally intensive than automaton models, and is suitable for the detailed 

modelling of small populations of cells. 

 

A purely theoretical framework for dealing with the interaction of the immune system 

with  discrete tumour cell populations using a lattice Boltzmann approach is presented 

in a recent review by Bellomo et al. [131]. This approach utilises the single molecule 

scale computational machinery known from fluid and gas dynamics to consider 

collective phenomena of tumour cells. Care must be taken when applying this type of 

statistical physics approach to cancer cells as they are much less mobile physically, 

but their behaviour is significantly altered by changes in the intracellular and 

intercellular biochemical signalling networks. However, the benefit of lattice 

Boltzmann models, Markov chain, Fokker-Planck etc. approaches originating from 

statistical mechanics, is in the fact that there is already an existing framework from 

physics and fluid dynamics that deals with formalising particle-particle, or, in the case 

of cancer, cell-cell, interactions. Using this theoretical framework, one can also 

recover the mean field continuum cell population models from the cellular automata 

type particle interaction rules.  
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4. Discussion 

 

Whilst there have been some notable success stories of the application of 

mathematical models to cancer biology (a few of which have been discussed above), 

mathematics has much more to offer and there is still a long way to go. Since the 

biology and biochemistry of avascular tumour growth is highly complex and not 

completely understood, models have so far tended to be relatively simple, focussing 

on the interaction of certain generic processes. This is a necessary step as we extend 

our intuition and understanding of the novel types of interaction thrown up when 

modelling in the life sciences.  

 

We see the role of mathematical modelling in cancer biology as twofold. On the one 

hand, mathematical models are able to verify (or dispute) hypothetical word models 

suggested by experimentalists. In this case the conclusion that a model is wrong can 

actually be more helpful, because it shows that the biologists should be looking for 

something else. Models can also help our intuition, provide a framework for thinking 

about a problem, and make predictions. If a model is well parameterised then these 

predictions can be quantitative, but even qualitative predictions can be significant. 

Gatenby and Gawlinski’s work [89] is an example in which a simple three-equation 

model was able to explain a phenomenon that was previously thought to be influenced 

by many factors, with qualitative predictions that were largely independent of the 

specific parameter values.  

 

In this respect, even purely theoretical studies of mathematical models have value, not 

just to mathematics (such as new mathematical challenges and the  development of 
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new techniques), but also to biology (such as providing generic insight into how 

different mechanisms may interact, or whether different modelling assumptions are 

likely to lead to qualitatively different behaviour). 

 

Having said this, we feel that the field of cancer biology is now reaching a stage of 

maturity at which the next step in the modelling process must be the careful 

parameterisation of some of the models so that specific experimental predictions can 

be made and tested in close collaboration between experimentalists and theoreticians.  

As more and more biological details become available, particularly on the subcellular 

level as signal transduction pathways and biochemical networks are uncovered, these 

models are likely to become more and more complex. However, we need to guard 

against building overly complicated models which are poorly parameterised. While 

such models appear realistic, they may be little more than curve fitting, and may not 

give as much insight as simpler better-parameterised models.  

 

In the future, large multiscale models are likely to be needed, as researchers attempt to 

integrate detailed subcellular information to make predictions on the tumour scale. It 

is not clear at present whether these models will be continuum or discrete, or a hybrid 

of the two, since there are problems associated with each approach. 

 

Continuum models have the advantage of being more amenable to mathematical 

analysis and understanding, and are thus better able to aid intuition and give insight 

into underlying physical and biological principles. In addition they are likely to 

contain fewer parameters, and can build on existing bodies of knowledge on 

continuum mechanics in other fields. On the other hand, the validity of the averaging 
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over cells implicit in writing down a continuum model is questionable, especially 

when cells of more than one type are considered (in the final stages of development an 

avascular tumour spheroid is about 50 cells in diameter). It is also difficult to build in 

the active nature of cells into mechanical laws for the tissue. 

 

Discrete models have the advantage that they are perfectly adapted to modelling 

internal signalling networks within each cell (see the typical result of discrete model 

on Figure 7 reproduced from [137]). There is in addition no requirement that all cells 

are the same; indeed, each can behave differently with no extra complication. The 

main problem with discrete models is that it is very difficult to build in realistic 

movement and growth laws based on biology and physics. In addition, they usually 

contain many more parameters, and can only be analysed computationally. Thus, 

while they can aid intuition through numerical experiments, they do not give as much 

insight. 

 

In purely discrete models it is also difficult to build in interactions with diffusible 

chemicals. These are much easier to treat as a continuum, which has led to an 

emerging field of hybrid models in which individual cells are treated discretely but 

interact with other continuum fields. Such hybrid models are likely to develop further. 

An extension of this type of modelling which is likely to be significant in the future is 

multiscale models in which cells are treated both discretely and as a continuum, with 

key pieces of information passed between the two scales.  

 

One area where mathematics can be of assistance is in providing a bridge between 

discrete and continuum models through homogenisation. This can be either what we 
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might call static, in which a discrete model is homogenised to give its continuum 

counterpart, or what we might call dynamic, in which  key pieces of information from 

the discrete model are needed at the continuum level and vice versa, so that the two 

models are coupled.  

 

Finally, we are beginning to observe closer collaboration between mathematicians and 

experimentalists so that the pathway from model hypothesis and parameterisation to 

testing of model predictions should become more rigorous in future. It is clear that 

whilst the large number of parameters needed to build the models cannot all be 

measured directly for every single specific experimental condition, much progress 

could be made using standard techniques from physics and chemistry. For example, 

the motilities of biomolecules could be estimated using either the molecular weight of 

the molecule or its hydrodynamic radius and estimating the diffusion coefficient using 

the Stokes-Einstein relation. However, this type of parameter estimation is rarely done 

in the papers that are in the mathematics literature and thus some models appear to be 

less useful to experimentalists than they actually could be.  

 

While we have stressed the need for interdisciplinary collaboration between 

theoreticians and experimentalists, we also point out the need for interdisciplinary 

collaboration between theoreticians. For example, proper validation of the above 

models will require input from statisticians. The models above are all deterministic 

and ignore stochastic effects. It is important to study how such effects could change 

the behaviour of the models.  Modelling is part of the arsenal of tools a biologist has 

at their disposal. As such, it must be used appropriately to answer the questions that it 

is good at answering (focussed scientific questions which aim to address a specific 
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biological aspect), and in conjunction with other biological tools that can address 

issues that modelling cannot. 
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List of Figures 

Figure 1.  

Schematic illustration showing tumour spheroid growth (left panel). 1 micron of 

spheroid section showing the proliferative rim and the necrotic core. Source: 

http://www.vet.purdue.edu/cristal/oci-info.htm (right panel) 

 

Figure 2.  

A model for pH regulation, oxygen and glucose regulation within the cell and its 

surroundings, after Casciari et al. [23]. 

 

Figure 3. 

Comparison between Casciari et al. [23] model prediction (lines) and the 

experimentally measured (symbols) values for glucose (squares and dotted line) and 

oxygen (circles and solid line). 

 

Figure 4.  

A: experimental data showing pH gradients as a distance from the tumour edge. Data 

shown for different angles drawn from tumour centre. B: mathematical modelling 

results showing intratumoural acid gradients and acid mediated acellular gap at the 

tumour host interface. C: Histopathological image of a cellular gap at the tumour-host 

interface in the head and neck cancer. All figures courtesy of Dr. R. A. Gatenby. 

 

Figure 5. 

Tensegrity structures from Ingber [140] (A,B) and Huang and Ingber [141] (C). 
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Figure 6.  

Cellular automata rules after Duchting et al. [117].  

 

Figure 7.  

Simulation results with an agent based model for two different cell anchorage 

strengths (reproduced from Galle et al. [137]). Green cells have contact with substrate 

and blue do not have contact with substrate.  
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Figure 1.  

Schematic illustration showing the spheroid growth (left panel). 1 micron section of 

the tumour spheroid showing the proliferative rim and the necrotic core. Source: 

http://www.vet.purdue.edu/cristal/oci-info.htm (right panel). 
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Figure 2 

A model for pH regulation, oxygen and glucose regulation within the cell and its 

surroundings, after [23]. 
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Figure 3. 

Comparison between Casciari et al. [23] model prediction (lines) and the 

experimentally measured (symbols) values for glucose (squares and dotted line) and 

oxygen (circles and solid line). 
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Figure 4. A: experimental data showing pH gradients as a distance from the tumour 

edge. Data shown for different angles drawn from tumour centre. B: mathematical 

modelling results showing intratumoural acid gradients and acid mediated acellular 

gap at the tumour host interface. C: Histopathological image of a cellular gap at the 

tumour-host interface in the head and neck cancer. All figures courtesy of Dr. R. A. 

Gatenby. 
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Figure 5. Tensegrity structures from Ingber [140] (A,B artificial structures) and 

Huang and Ingber [141] (C cells).  
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Figure 6. Cellular automata rule Figure/Box after Duchting et al. [117]. 

Cell Cycle Rules.  

Each cell can stay in each stage for a given amount of time before moving to the next 

stage. The time it sits in each stage is drawn from a different normal distribution for 

different cell cycle phases. The difference between normal and tumour cells is that 

whilst normal cells can go around the cell cycle for a number of times before arresting 

themselves in a stable state, tumour cells can go around the cell cycle many times 

resulting in many new daughter cells being created.  

 

 

Cell Movement Rules 

Normal cell movement rules: before entering mitosis, a cell checks if there is a free 

position nearby; if so, then division takes place and the new normal cell occupies the 

empty space. If there is no free space then the normal cell will move to the resting 

phase. 

 

Cancer cell movement rules: tumour cells can divide even when there is no free space 

around. Uniform random variables determine the direction where the new cancer cell 

will be created. All other cells will be shifted accordingly.  
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Figure 7.  

Simulation results with agent based model for two different cell anchorage strengths 

(reproduced from Galle et al. [137]). Green cells have contact with substrate and blue 

do not have contact with substrate.  

 

 


