
ON SUMSETS CONTAINING A PERFECT SQUARE

ZACHARY CHASE

Abstract. We show A+B contains a perfect square if A,B ⊆ {1, . . . , N} have
|A|, |B| ≥ ( 3

8 + ε)N . The constant 3
8 is optimal.

1. Introduction

Let A,B be subsets of the first N positive integers. What are the maximum
possible sizes of A and B if A+B does not contain a perfect square?

Let us first discuss the history of the related question of the largest size of a subset
A ⊆ {1, . . . , N} with A + A not containing a perfect square, originally raised by
Erdős and Silverman [2, p. 87, 107]. Erdős initially conjectured that the answer is
roughly 1

3
N , coming from

A := {n ≤ N : n ≡ 1 mod 3}.
However, Massias [9] noted that

A := {n ≤ N : n mod 32 ∈ {1, 5, 9, 13, 14, 17, 21, 25, 26, 29, 30}}
gives the larger size of roughly 11

32
N . The two mentioned sets A indeed have the

property that A + A does not contain a perfect square, since the sumset of {1} ⊆
Z/3Z with itself does not contain a quadratic residue (in Z/3Z), and the sumset of
{1, 5, 9, 13, 14, 17, 21, 25, 26, 29, 30} ⊆ Z/32Z with itself avoids quadratic residues.

Given that these two examples come from “lifting up” a set A ⊆ Z/qZ for some
q ∈ N, and that any perfect square must be a quadratic residue mod q, it is natural
to first solve the “modular” version of the problem: for given q ∈ N, what is the
largest size of a set A ⊆ Z/qZ such that A+A does not contain a quadratic residue?

In 1982, Lagarias, Odlyzko, and Shearer [6] showed the answer is 11
32
q (which is

tight if 32 | q). In 1983, they released a companion paper [7] proving that if A ⊆ [N ]
has |A| ≥ 0.475N then A+A contains a perfect square. Finally, in 2001, Khalfalah,
Lodha, and Szemerédi [5] resolved the Erdős-Silverman problem, by showing that
for all ε > 0, if N is sufficiently large, then any A ⊆ [N ] with A+A avoiding perfect
squares must have |A| ≤ (11

32
+ ε)N .

Date: January 11, 2022.
The author is partially supported by Ben Green’s Simons Investigator Grant 376201 and grate-

fully acknowledges the support of the Simons Foundation.

1



In this paper, we solve the aformentioned “bipartite” version of the Erdős-Silverman
question. Our result is asymptotically optimal.

Theorem 1. For any ε > 0, if N is sufficiently large and A,B ⊆ [N ] have |A|, |B| ≥
(3
8

+ ε)N , then A+B contains a perfect square.

An example achieving roughly 3
8
N is

A := {n ≤ N : n mod 8 ∈ {0, 1, 5}}
B := {n ≤ N : n mod 8 ∈ {2, 5, 6}},

which works since the Z/8Z-sumset {0, 1, 5}+ {2, 5, 6} avoids quadratic residues.

We prove Theorem 1 by first resolving the associated “modular” version of the
problem. While the methods of [6], solving the modular problem for A+A, are highly
graph-theoretic, our methods use Fourier analysis to reduce (in one direction) to
solving some optimization problem in 48 variables. Interestingly, the paper [6] also
involved solving some optimization problems, specifically various integer programs.
It is plausible our methods could solve the modular A + A problem, though the
number of variables in the obtained optimization problem would be significantly too
large.

We then obtain the result in the integers by basic Fourier-analytic arguments.
While [5], solving the A + A problem in the integers, introduced a novel “shifting
method” and a low-level strong arithmetic regularity lemma with tower-type bounds,
our Fourier arguments amount to a rather basic arithmetic regularity lemma with
only singly exponential bounds. In rough terms, we approximate the characteristic
function of A ⊆ [N ] (and of B) by its best modulo Q weight function approxima-
tion on η−1 intervals each of length ηN , where η−1 and logQ are polynomials of
ε−1. Counting the number of perfect squares “in” the convolution of these weight
functions essentially reduces to the modular problem. For details, see Section 4.

2. Notation

We use the standard [N ] := {1, . . . , N} and e(θ) := e2πiθ. Let 1
N := { 1

n
: n ≥ 1}.

Let T = R/Z. For f : [N ]→ C, define f̂ : T→ C by

f̂(θ) :=
∑
n≤N

f(n)e(−nθ).

For f : Z/qZ→ C, define f̂ : Z/qZ→ C by

f̂(r) :=
1

q

∑
x∈Z/qZ

f(x)e

(
−rx
q

)
.

Define the weighted indicator function of the quadratic residues fq : Z/qZ→ R by

fq(t) := |{x ∈ Z/qZ : x2 = t}|.
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For functions f, g : Z/qZ→ C, define the convolution of f, g as

(f ∗ g)(x) :=
1

q

∑
a∈Z/qZ

f(a)g(x− a),

while for finitely supported functions f, g : Z→ C, we define the convolution as

(f ∗ g)(x) :=
∑
n∈Z

f(n)g(x− n).

3. The Modular Problem

In this section, we prove the following, a (doubly) weighted, quantitative version
of the statement that A + B contains a quadratic residue if A,B ⊆ Z/qZ have
|A|, |B| > 3

8
q.

Theorem 2. For any ε > 0 there is some c(ε) > 0 so that for any q ≥ 1, if
wA, wB : Z/qZ→ [0, 1] have

∑
t∈Z/qZwA(t),

∑
t∈Z/qZwB(t) ≥ (3

8
+ ε)q, then∑

t∈Z/qZ

(wA ∗ wB)(t)fq(t) ≥ c(ε)q.

In fact, one can take c(ε) = 1√
5
ε.

Our approach is Fourier-analytic. We start by noting the Fourier representation
of this weighted count of quadratic residues “in” the convolution of wA and wB.

Lemma 3.1. For any wA, wB : Z/qZ→ R, we have

1

q

∑
t∈Z/qZ

(wA ∗ wB)(t)fq(t) =
∑

m∈Z/qZ

ŵA(m)ŵB(m)f̂q(−m).

Proof. The right hand side is, by definition, equal to∑
m∈Z/qZ

1

q3

∑
x,y,z∈Z/qZ

wA(x)wB(y)fq(z)e

(
m(z − x− y)

q

)
.

Interchanging summations and using the orthogonality condition∑
m∈Z/qZ

e

(
mr

q

)
=

{
q if r ≡ 0 mod q

0 if r 6≡ 0 mod q

finishes the proof. �

Remark 3.2. Let us take a moment to motivate the arguments to come. Suppose
for now q is divisible by 8. We (a posteriori) expect

∑
t∈Z/qZ(wA ∗wB)(t)fq(t) to be

minimized by weights wA, wB that are “lift-ups” of weights wA, wB : Z/8Z→ [0, 1]
in the sense1 wA(t) = wA(t mod 8) and wB(t) = wB(t mod 8). If wA and wB were

1Note “mod 8” makes sense since 8 | q.
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indeed of this form, then, as one may easily check, we would have ŵA(m), ŵB(m) = 0
for each m ∈ Z/qZ with q

gcd(q,m)
- 8. Therefore, in our setting (in which wA, wB might

not be exactly of that form), it’s natural to separate2,∑
m∈Z/qZ

ŵA(m)ŵB(m)f̂q(−m) =
∑
q|8m

ŵA(m)ŵB(m)f̂q(−m)+
∑
q-8m

ŵA(m)ŵB(m)f̂q(−m).

The latter term we shall upper-bound in magnitude, using that f̂q(−m) is small for
all m with q - 8m (this follows from quadratic Gauss sum bounds). And the first
term actually turns out to be just the weighted count of mod 8 quadratic residues
in the weighted sumset of the mod 8 projections of the weight functions wA, wB.

For technical reasons, we work mod 24 instead of mod 8.

Lemma 3.3. Let q ∈ N be a multiple of 24. Let wA, wB : Z/qZ → [0, 1] be two
(weight) functions, and let a, b : Z/24Z→ [0, 1] be the mod 24-projections of wA, wB:

a(k) :=
1

q/24

∑
x∈Z/qZ

x≡k mod 24

wA(x)

b(k) :=
1

q/24

∑
x∈Z/qZ

x≡k mod 24

wB(x).

Then one has ∑
m∈Z/qZ
q|24m

ŵA(m)ŵB(m)f̂q(−m) =
1

24

∑
t∈Z/24Z

(a ∗ b)(t)f24(t).

Proof. Noting q | 24m if and only if m = rq
24

, we may write the LHS as

23∑
r=0

1

q3

∑
x,y,z∈Z/qZ

wA(x)wB(y)fq(z)e

(
rq

24

z − x− y
q

)
,

which by orthogonality (mod 24) is equal to

24

q3

∑
x,y,z∈Z/qZ

x+y≡z mod 24

wA(x)wB(y)fq(z).

Splitting into cases mod 24, we may write the above as

(1)
24

q3

∑
i,j∈Z/24Z

 ∑
x∈Z/qZ

x≡i mod 24

wA(x)


 ∑

y∈Z/qZ
y≡j mod 24

wB(y)


 ∑

z∈Z/qZ
z≡i+j mod 24

fq(z)

 .

2Note that q
gcd(q,m) - 8 is equivalent to q - 8m.
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Noting∑
z∈Z/qZ

z≡i+j mod 24

fq(z) =
∑

z∈Z/qZ
z≡i+j mod 24

∑
v∈Z/qZ

1v2≡z mod q =
∑

v∈Z/qZ

1v2≡i+j mod 24 =
q

24
f24(i+j),

and using the definitions of a, b, we may write (1) as

1

242

∑
i,j∈Z/24Z

a(i)b(j)f24(i+ j) =
1

24

∑
t∈Z/24Z

(a ∗ b)(t)f24(t),

as desired. �

We now go on to handle the other Fourier term,
∑

q - 24m ŵA(m)ŵB(m)f̂q(−m).

Lemma 3.4. Let q ∈ N be a multiple of 24. Then for any m ∈ Z with q - 24m, one
has ∣∣∣f̂q(−m)

∣∣∣ ≤ 1√
5
.

Proof. By definition,

f̂q(−m) =
1

q

∑
t∈Z/qZ

 ∑
x∈Z/qZ

1x2≡t

 e(
mt

q
) =

1

q

∑
x∈Z/qZ

e

(
mx2

q

)
=

1

q/g

∑
x∈Z/ q

g
Z

e

(
m
g
x2

q/g

)
,

where g := gcd(m, q). Thus, by standard quadratic Gauss sum estimates (e.g., [4]),

∣∣∣f̂q(−m)
∣∣∣ ≤


√

1
q/g

if q/g ∈ {1, 3} mod 4√
2
q/g

if q/g ≡ 0 mod 4

0 if q/g ≡ 2 mod 4.

Now, q - 24m implies q
g
- 24. This implies, firstly, that q

g
≥ 5, giving

√
1
q/g
≤ 1√

5
,

and, secondly, that if q
g
≡ 0 mod 4, then q

g
≥ 16, giving

√
2
q/g
≤ 1√

8
≤ 1√

5
. �

Lemma 3.5. Let q ∈ N be a multiple of 24. Let wA, wB : Z/qZ → [0, 1] be two
(weight) functions, and let a, b : Z/24Z→ [0, 1] be the projections of wA, wB mod 24
as in Lemma 3.3. Then,∣∣∣∣∣∣∣∣
∑

m∈Z/qZ
q - 24m

ŵA(m)ŵB(m)f̂q(−m)

∣∣∣∣∣∣∣∣ ≤
1

24
√

5

√ ∑
k∈Z/24Z

(a(k)− a(k)2)

√ ∑
k∈Z/24Z

(b(k)− b(k)2).
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Proof. By Lemma 3.4 and Cauchy-Schwarz, we have∣∣∣∣∣∣∣∣
∑

m∈Z/qZ
q - 24m

ŵA(m)ŵB(m)f̂q(−m)

∣∣∣∣∣∣∣∣ ≤
 sup
m∈Z/qZ
q - 24m

|f̂q(−m)|


 ∑
m∈Z/qZ
q - 24m

|ŵA(m)| |ŵB(m)|


≤ 1√

5

√√√√ ∑
m∈Z/qZ
q - 24m

|ŵA(m)|2
√√√√ ∑

m∈Z/qZ
q - 24m

|ŵB(m)|2.

The following two (in)equalities (and their analogues for B) finish the proof:∑
m∈Z/qZ
q|24m

|ŵA(m)|2 =
23∑
r=0

1

q2

∑
x,y∈Z/qZ

wA(x)wA(y)e

(
r(x− y)

24

)

=
24

q2

∑
i∈Z/24Z

 ∑
x∈Z/qZ

x≡i mod 24

wA(x)


2

=
1

24

∑
k∈Z/24Z

a(k)2.

∑
m∈Z/qZ

|ŵA(m)|2 =
∑

m∈Z/qZ

1

q2

∑
x,y∈Z/qZ

wA(x)wA(y)e

(
m(x− y)

q

)
=

1

q

∑
x∈Z/qZ

wA(x)2 ≤ 1

q

∑
x∈Z/qZ

wA(x) =
1

24

∑
k∈Z/24Z

a(k).

�

Combining Lemmas 3.1, 3.3, and 3.5 (and multiplying through by 24) yields

(2)
24

q

∑
t∈Z/qZ

(wA ∗ wB)(t)fq(t) ≥
∑

t∈Z/24Z

(a ∗ b)(t)f24(t)

− 1√
5

√ ∑
k∈Z/24Z

(a(k)− a(k)2)

√ ∑
k∈Z/24Z

(b(k)− b(k)2).

Note that a(k) ∈ [0, 1] for each k and that∑
k∈Z/24Z

a(k) = 24 · 1

q

∑
x∈Z/qZ

wA(x),

implying
∑

k∈Z/24Z a(k) ≥ 9 + 24ε if
∑

x∈Z/qZwA(x) ≥ (3
8

+ ε)q. We prove the
following proposition in Section 5. We assume it to be true for the rest of this
section. In it, we use the notation a(i) := ai, b(i) := bi. We emphasize that it is
“merely” a (quadratic) optimization problem in 48 variables.
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Proposition 3.6. For any ε > 0, there is some c′(ε) > 0 so that the following holds.
For all a0, . . . , a23, b0, . . . , b23 ∈ [0, 1] with

∑23
i=0 ai ≥ 9 + ε,

∑23
i=0 bi ≥ 9 + ε, one has∑

t∈Z/24Z

(a ∗ b)(t)f24(t) ≥ c′(ε) +
1√
5

√∑
i

ai −
∑
i

a2i

√∑
i

bi −
∑
i

b2i .

In fact, one can take c′(ε) = 1√
5
ε.

Proof of Theorem 2. If 24 | q, then Theorem 2 follows immediately from (2) and
Proposition 3.6 (with c(ε) = c′(24ε)/24). Otherwise, we use a simple “lift-up”
argument to reduce to the case q | 24. Define w̃A, w̃B : Z/24qZ→ [0, 1] by w̃A(x) :=
1
24

∑
y∈Z/24Z
y≡x mod q

wA(y), w̃B(x) := 1
24

∑
y∈Z/24Z
y≡x mod q

wB(y). Then

1

q

∑
t∈Z/qZ

(wA ∗ wB)(t)fq(t) =
1

24q

∑
t∈Z/24qZ

(w̃A ∗ w̃B)(t)f24q(t)

and
1

24q

∑
x∈Z/24qZ

w̃A(x) =
1

q

∑
x∈Z/qZ

wA(x)

1

24q

∑
x∈Z/24qZ

w̃B(x) =
1

q

∑
x∈Z/qZ

wB(x).

�

4. Converting to Integers

In this section, we “boost” the solution to the modular problem (Theorem 2) to
the integers to establish our main theorem (Theorem 1). For subsets A,B ⊆ [N ]
with |A|, |B| ≥ (3

8
+ ε)N we shall, as in the modular problem, look at the number

of squares in the weighted sumset of A and B:∑
n≥1

(1A ∗ 1B)(n)1S(n),

where S ⊆ N is the set of perfect squares, S := {m2 : m ∈ N}. Our approach is
inspired by the arithmetic regularity lemma (see, e.g., [1, 3]), though a much lower-
tech version suffices for our purposes; the dependence on the relevant parameters
will be singly-exponential rather than tower-type.

Definition 4.1. Fix (parameters) Q ∈ N and η ∈ 1
N . For k ∈ {0, 1, . . . , η−1 − 1},

let

Iη,k =
(
kηN, (k + 1)ηN

]
∩ N.
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For N ∈ N (large) and A ⊆ [N ], define3 the function wAQ;η,k : Iη,k → [0, 1] by

wAQ;η,k(n) :=
#{m ∈ Iη,k : m ∈ A and m ≡ nmod Q}

#{m ∈ Iη,k : m ≡ nmod Q}
.

Finally, define the function wAQ;η : N→ [0, 1] by

wAQ;η :=

η−1−1∑
k=0

wAQ;η,k1Iη,k .

Remark 4.2. One should think of the function wAQ;η,k as the best mod Q approx-
imation to A, or as a “smoothed out” version of A modulo Q, on Iη,k. Indeed, for
n ∈ Iη,k, the function wAQ;η,k(n) just depends on the residue of n modulo Q, and,
immediately from the definition, for any r ∈ {0, . . . , Q− 1}, one has

(3)
∑
n∈Iη,k

n≡r mod Q

wAQ;η,k(n) =
∑
n∈Iη,k

n≡r mod Q

1A(n).

The use of wAQ;η comes from the fact that its Fourier transform models that of
A nearly perfectly on rationals with denominator dividing Q. As long as Q is
sufficiently composite (which we will choose it to be), we don’t need to care much
about other rationals, since the Fourier transform of the indicator function of the
squares will be sufficiently small there.

For the following lemma, fix Q,N ∈ N, η ∈ 1
N , and A ⊆ [N ].

Definition 4.3. Define the balanced function fAQ;η : N→ R by fAQ;η := 1A − wAQ;η.

Lemma 4.4. Take some a, q ∈ N with q | Q. Then, for any β ∈ R, it holds that∣∣∣∣f̂AQ;η

(
a

q
+ β

)∣∣∣∣ ≤ 2|β|ηN2.

Proof. For k ∈ {0, . . . , η−1 − 1}, define fAQ;η,k := fAQ;η1Iη,k = 1Iη,k1A − wAQ;η,k so that

(4) fAQ;η =

η−1−1∑
k=0

fAQ;η,k.

Fix a, q ∈ N with q | Q, and fix β ∈ R. By (4), linearity of the fourier transform,
and the triangle inequality, to prove Lemma 4.4 it suffices to show∣∣∣∣f̂AQ;η,k(

a

q
+ β)

∣∣∣∣ ≤ 2|β|ηN |Iη,k|

3Extend (the domain of) wAQ;η,k to N by setting wAQ;η,k = 0 outside Iη,k.
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for each k ∈ {0, . . . , η−1 − 1}. So fix some such k. By definition,

(5) f̂AQ;η,k(
a

q
+ β) =

∑
n∈Iη,k

1A(n)e

(
(
a

q
+ β)n

)
−
∑
n∈Iη,k

wAQ;k(n)e

(
(
a

q
+ β)n

)
.

Letting L = bkηNc+ 1 denote the left endpoint of Iη,k, we trivially from (5) have∣∣∣∣f̂AQ;η,k(
a

q
+ β)

∣∣∣∣ =

∣∣∣∣∣∣
∑
n∈Iη,k

1A(n)e

(
(
a

q
+ β)(n− L)

)
−
∑
n∈Iη,k

wAQ;η,k(n)e

(
(
a

q
+ β)(n− L)

)∣∣∣∣∣∣ .
The reason for shifting the phase by L is that if we now use∑

n∈Iη,k

1A(n)e

(
a(n− L)

q

)
−
∑
n∈Iη,k

wAQ;η,k(n)e

(
a(n− L)

q

)
= 0

(which follows from (3) and that q | Q) to write∣∣∣∣f̂AQ;η,k(
a

q
+ β)

∣∣∣∣ =

∣∣∣∣∣ ∑
n∈Iη,k

1A(n)

[
e

(
(
a

q
+ β)(n− L)

)
− e

(
a(n− L)

q

)]

−
∑
n∈Iη,k

wAQ;η,k(n)

[
e

(
(
a

q
+ β)(n− L)

)
− e

(
a(n− L)

q

)] ∣∣∣∣∣,
then the trivial |e(x)− e(y)| ≤ |x− y| is strong enough to give the sufficient bound∣∣∣∣f̂AQ;η,k(

a

q
+ β)

∣∣∣∣ ≤ ∑
n∈Iη,k

1A(n)|β|(n− L) +
∑
n∈Iη,k

|wAQ;η,k(n)| |β| (n− L)

≤ 2|β|ηN |Iη,k|,
the last inequality using that n− L ≤ ηN for each n ∈ Iη,k. �

Remark 4.5. The plan to prove Theorem 1 is to decompose

1A ∗ 1B = wAQ;η ∗ wBQ;η + fAQ;η ∗ wBQ;η + wAQ;η ∗ fBQ;η + fAQ;η ∗ fBQ;η

and use Lemma 4.4 to argue that the “number” of squares “in” 1A ∗ 1B is approx-
imately the same as that in wAQ;η ∗ wBQ;η. The latter, involving the convolution of
two functions constant on residues modulo Q, is more easily calculable and comes
down to the weighted number of mod Q quadratic residues in the convolution of the
natural mod Q projections of wAQ;η, w

B
Q;η. The following (with Lemma 4.4) will be

used to prove the validity of the approximation.
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Proposition 4.6. Let f, g : [N ]→ [−1, 1] be (1-bounded) functions. Suppose δ > 0

is such that
∣∣∣f̂(a

q
+ β)

∣∣∣ ≤ δ|β|N2 for each a, q ≤ λ−2 and4 β ∈ R. Then we have∣∣∣∣∣∑
n≥1

(f ∗ g)(n)1S(n)

∣∣∣∣∣ ≤ 10(δλ−8 + λ)N3/2.

Proof. We may replace S by S2N := {m2 : m ∈ N,m2 ≤ 2N} and write

(6)
∑
n≥1

(f ∗ g)(n)1S2N
(n) =

∫
T
f̂(θ)ĝ(θ)1̂S2N

(−θ)dθ.

We import the needed “minor arc” estimate from [8]:

Lemma 4.7 ([8], Proposition 1). For any λ > 0, if N ∈ N is sufficiently large and

θ ∈ T is such that |θ − a
q
| > λ−2

N
for each a, q ≤ λ−2, then |1̂SN (θ)| ≤ 5λN1/2.

This lemma together with Cauchy-Schwarz and Plancherel immediately gives∣∣∣∣∫
m

f̂(θ)ĝ(θ)1̂S2N
(−θ)dθ

∣∣∣∣ ≤ 5λ
√

2N

∫
m

|f̂(θ)||ĝ(θ)|dθ

≤ 10λN1/2

(∫
T
|f̂(θ)|2dθ

)1/2(∫
T
|ĝ(θ)|2dθ

)1/2

= 10λN1/2

(∑
n≤N

f(n)2

)1/2(∑
n≤N

g(n)2

)1/2

≤ 10λN3/2,

where m is defined so that

T \m :=
λ−2⋃
q=1

⋃
1≤a≤q
(a,q)=1

{
θ ∈ T :

∣∣∣∣θ − a

q

∣∣∣∣ ≤ λ−2

2N

}
.

Letting β∗ = λ−2

2N
for notational ease, we handle the “major arc” as follows:∣∣∣∣∫

T\m
f̂(θ)ĝ(θ)1̂S2N

(−θ)dθ
∣∣∣∣ ≤ λ−2∑

q=1

∑
1≤a≤q

∣∣∣∣∣
∫ a

q
+β∗

a
q
−β∗

f̂(θ)ĝ(θ)1̂S2N
(−θ)dθ

∣∣∣∣∣
≤

λ−2∑
q=1

∑
1≤a≤q

∫ β∗

−β∗
δ|β|N2N

√
2Ndβ

≤
√

2δN7/2

λ−2∑
q=1

∑
1≤a≤q

2β2
∗

≤ 10δλ−8N3/2.

4We will only need the condition for |β| ≤ λ−2

2N .
10



(The bound “10” here is loose and used for simplicity.) We’re done by (6). �

To complete the plan outlined in Remark 4.5, we need to argue that wAQ;η ∗ wBQ;η

“contains” many squares. We start by focusing on particular intervals. We abstract
out from our exact the situation the relevant property of wAQ;η,k and wBQ;η,k.

Proposition 4.8. Fix ε > 0 and Q ≥ 1. Let functions w1, w2 : Z/QZ → [0, 1]
satisfy ∑

t∈Z/QZ

wi(t) ≥
(

3

8
+ ε

)
Q

for i = 1, 2. For large M ∈ N and intervals Ii = [kiM, (ki + 1)M ], i = 1, 2, define

wi(n) := 1Ii(n)wi(n mod Q)

for i = 1, 2. Then we have the lower bound∑
n≥1

(w1 ∗ w2)(n)1S(n) ≥ 1

200
c(ε)

M3/2

√
k1 + k2

,

where c(ε) > 0 is the constant guaranteed by Theorem 2.

Proof. Let

J =

[
(k1 + k2 + 1)M − 1

10
M, (k1 + k2 + 1)M +

1

10
M

]
so that for any n ∈ J and a ∈ {0, . . . , Q− 1}, it holds that

# {m ∈ I1 : m ≡ a mod Q and n−m ∈ I2} ≥
1

10

M

Q

(provided M is large enough). Therefore,∑
n≥1

(w1 ∗ w2)(n)1S(n) ≥
∑
n∈J

∑
m∈I1

n−m∈I2

w1(m)w2(n−m)1S(n)

=
∑
n∈J
n∈S

Q−1∑
a=0

w1(a)w2(n− a mod Q)
∑

m≡a mod Q
m∈I1

n−m∈I2

1

≥ M

10Q
Q
∑
n∈J
n∈S

(w1 ∗ w2)(n mod Q)

=
M

10

Q−1∑
t=0

(w1 ∗ w2)(t) ·#{m ∈ N : m2 ∈ J , m2 ≡ t mod Q}.

11



Note that, for J := {m ∈ N : m2 ∈ J}, we have as M →∞ that

#{m ∈ N : m2 ∈ J , m2 ≡ t mod Q} = (1 + o(1)) fQ(t)

∣∣J∣∣
Q
.

We lower-bound∣∣J∣∣ ≥ 1

2

(√
(k1 + k2 + 1)M +

1

10
M −

√
(k1 + k2 + 1)M − 1

10
M

)

=
1

2

2
10
M√

(k1 + k2 + 1)M + 1
10
M +

√
(k1 + k2 + 1)M − 1

10
M

≥ 1

2

1
10
M√

(k1 + k2)M
.

Combining everything, we obtain∑
n≥1

(w1 ∗ w2)(n)1S(n) ≥ M

10Q

√
M

20
√
k1 + k2

Q−1∑
t=0

(w1 ∗ w2)(t)fQ(t).

By the assumptions of the current theorem, Theorem 2 finishes the proof. �

Back to our specific setting, we can now handle wAQ;η ∗ wBQ;η.

Proposition 4.9. Fix ε > 0, Q ∈ N, and η ∈ 1
N . Then for all large N ∈ N and any

A,B ⊆ [N ] with |A|, |B| ≥ (3
8

+ ε)N , we have∑
n≥1

(wAQ;η ∗ wBQ;η)(n)1S(n) ≥ ε2

5000
c
( ε

2

)
N3/2,

where c(ε) > 0 is the constant guaranteed by Theorem 2.

Proof. It is easy to see that |A| ≥ (3
8

+ ε)N implies there are at least ε
3
η−1 values of

k ∈ {0, . . . , η−1 − 1} with |A ∩ Iη,k| ≥ (3
8

+ 3ε
4

)|Iη,k|. Therefore, by taking N large
enough, if we let5

JA :=

k ∈ {0, . . . , η−1 − 1} :

bkηNc+Q∑
n=bkηNc+1

wAQ;η,k(n) ≥
(

3

8
+
ε

2

)
Q

 ,

5The choice of summing n over [bkηNc+ 1, bkηNc+Q] is arbitrary; any Q numbers in Iη,k, all
distinct modulo Q, would of course be equivalent.
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then we have |JA| ≥ ε
4
η−1. Defining JB in the analogous way, we by symmetry have

|JB| ≥ ε
4
η−1. The point is that Proposition 4.8 (with M = ηN) then lets us bound∑
n≥1

(wAQ;η ∗ wBQ;η)(n)1S(n) =

η−1−1∑
k1,k2=0

∑
n≥1

(wAQ;η,k1
∗ wBQ;η,k2

)(n)1S(n)

≥
∑
k1∈JA
k2∈JB

∑
n≥1

(wAQ;η,k1
∗ wBQ;η,k2

)(n)1S(n)

≥
∑
k1∈JA
k2∈JB

1

200
c
( ε

2

) (ηN)3/2√
k1 + k2

≥ 1

200
c
( ε

2

) (ηN)3/2√
2η−1

|JA| |JB|.

The proof is complete by inserting the lower bounds |JA|, |JB| ≥ ε
4
η−1. �

We now put everything together to obtain (a more quantitative version of) our
main theorem.

Theorem 1. For any ε > 0, if N is sufficiently large and A,B ⊆ [N ] have |A|, |B| ≥
(3
8

+ ε)N , then A+B contains a perfect square. In fact, we have the quantitative

#{(a, b) ∈ A×B : a+ b ∈ S} ≥ 10−6ε3N3/2.

Proof. Let η ∈ 1
N , Q ∈ N be parameters (based on ε) to be determined, and set Q :=

lcm(1, . . . , Q). Take N sufficiently large and A,B ⊆ [N ] with |A|, |B| ≥ (3
8

+ ε)N .
As remarked earlier, we decompose

1A ∗ 1B = wAQ;η ∗ wBQ;η + fAQ;η ∗ wBQ;η + wAQ;η ∗ fBQ;η + fAQ;η ∗ fBQ;η.

Proposition 4.9 gives∑
n≥1

(wAQ;η ∗ wBQ;η)(n)1S(n) ≥ ε2

5000
c
( ε

2

)
N3/2,

and Proposition 4.6 together with Lemma 4.4 gives∣∣∣∣∣∑
n≥1

(fAQ;η ∗ wBQ;η)(n)1S(n)

∣∣∣∣∣ ≤ 10
(

2ηQ
4

+Q
−1/2

)
N3/2,

and the same bound for the analogous inequalities involving wAQ;η∗fBQ;η and fAQ;η∗fBQ;η.
Therefore,∑

n≥1

(1A ∗ 1B)(n)1S(n) ≥ ε2

5000
c
( ε

2

)
N3/2 − 30

(
2ηQ

4
+Q

−1/2
)
N3/2.

13



Setting η = Q
−9/2

and using c(ε) ≥ ε/3, we obtain∑
n≥1

(1A ∗ 1B)(n)1S(n) ≥
(

ε3

30000
− 90Q

−1/2
)
N3/2.

Choosing Q a perfect square (merely so that η ∈ 1
N) with Q

−1/2 ≤ 10−7ε3, say,
finishes the proof. �

5. Solving the Optimization Problem

We finish the paper by proving the inequality that Theorem 2 relied upon. It
could be verified directly by a computer but would take quite a bit of time.

For a0, . . . , a23 ∈ [0, 1], we let a : Z/24Z→ [0, 1] be given by a(i) = ai. Recall, for
a, b ∈ Z/24Z and t ∈ Z/24Z, we define

(a ∗ b)(t) :=
1

24

∑
i∈Z/24Z

a(i)b(t− i)

f24(t) := #{j ∈ Z/24Z : j2 ≡ t mod 24}.

In this section, we prove the following, stated previously in Section 3.

Proposition 3.6. For any ε > 0, there is some c′(ε) > 0 so that the following holds.
For all a0, . . . , a23, b0, . . . , b23 ∈ [0, 1] with

∑23
i=0 ai ≥ 9 + ε,

∑23
i=0 bi ≥ 9 + ε, we have∑

t∈Z/24Z

(a ∗ b)(t)f24(t) ≥ c′(ε) +
1√
5

√∑
i

ai −
∑
i

a2i

√∑
i

bi −
∑
i

b2i .

In fact, one can take c′(ε) = 1√
5
ε.

The proof, with c′(ε) = 1√
5
ε, will follow from the proof of the “ε = 0” case, in

which we also identify the extremizers. We say a is a lift-up of a subset A of Z/8Z
if: ai = 1 if and only if i mod 8 ∈ A, and ai = 0 otherwise.

Proposition 5.1. For all a0, . . . , a23, b0, . . . , b23 ∈ [0, 1] with
∑23

i=0 ai ≥ 9,
∑23

i=0 bi ≥
9, we have ∑

t∈Z/24Z

(a ∗ b)(t)f24(t) ≥
1√
5

√∑
i

ai −
∑
i

a2i

√∑
i

bi −
∑
i

b2i

with equality if and only if there is some x ∈ Z/8Z so that a, b are lift-ups of
{0, 1, 5}+ x, {2, 5, 6} − x ⊆ Z/8Z.

14



We prove Proposition 5.1 by first massaging the desired inequality into a homo-
geneous quadratic form. It is of course easy to check the “if” implication of the
equality part of Proposition 5.1; the “only if” direction will follow from equality
needing to hold at each step of the proof and equality holding only for the claimed
extremizers at the end of the proof.

By the arithmetic-geometric inequality, it suffices to show∑
t∈Z/24Z

(a ∗ b)(t)f24(t) ≥
1

2
√

5

(∑
i

ai −
∑
i

a2i +
∑
i

bi −
∑
i

b2i

)
for all ai, bi ∈ [0, 1] with

∑
i ai,

∑
i bi ≥ 9. Since6 2

9
xy ≥ x + y if x, y ≥ 9, it suffices

to show ∑
t∈Z/24Z

(a ∗ b)(t)f24(t) ≥
1

2
√

5

(
2

9
(
∑
i

ai)(
∑
i

bi)−
∑
i

a2i −
∑
i

b2i

)
for all ai, bi ∈ [0, 1] with

∑
i ai,

∑
i bi ≥ 9. Of course it then suffices to prove the

inequality for any non-negative reals ai, bi.

Proposition 5.2. For any a0, b0, . . . , a23, b23 ∈ [0,∞) one has∑
t∈Z/24Z

(a ∗ b)(t)f24(t) ≥
1

2
√

5

(
2

9
(
∑
i

ai)(
∑
i

bi)−
∑
i

a2i −
∑
i

b2i

)
.

We will present a proof of Proposition 5.2 due to Fedor Nazarov. The (quite
ingenious) proof significantly reduces the computational power needed.

Proof.

Step 1: Reduction to a norm inequality in a single (non-negative) variable.

Using that ∑
t∈Z/24Z

(a ∗ b)(t)f24(t) =
∑

t∈Z/24Z

(ã ∗ f24)(t)b(t),

where ã(i) := a(−i) and(∑
i

ai

)(∑
i

bi

)
= 24

∑
t∈Z/24Z

(ã ∗ 1)(t)b(t),

where 1 : Z/24Z→ [0, 1] is the constant function ≡ 1, we wish to prove∑
t∈Z/24Z

(
ã ∗ (

16

3
1− 2

√
5f24)

)
(t) b(t) ≤

∑
t∈Z/24Z

[
a(t)2 + b(t)2

]
.

6If x, y ≥ 9 + ε, then 2
9xy ≥ x+ y + 2ε, which is why c′(ε) := 1√

5
ε suffices.
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We may, of course, ignore the distinction between a and ã, so we drop the ˜ from
here on7. Since 2xy ≤ x2 + y2 for all x, y ∈ R, it suffices to show

∑
t∈Z/24Z

(
a ∗ (

16

3
1− 2

√
5f24)

)
(t) b(t) ≤ 2

 ∑
t∈Z/24Z

a(t)2

1/2 ∑
t∈Z/24Z

b(t)2

1/2

,

which we write more compactly as

〈a ∗ ϕ, b〉 ≤ 2‖a‖2‖b‖2,
with ϕ := 16

3
1− 2

√
5f24. Since b(t) ≥ 0 for each t, it suffices to prove〈

(a ∗ ϕ)+, b
〉
≤ 2‖a‖2‖b‖2.

By Cauchy-Schwarz, it then suffices to prove

‖(a ∗ ϕ)+‖2 ≤ 2‖a‖2
for each a : Z/24Z→ [0,∞).

Step 2: Showing the maximizer is an eigenvector of a related operator.

By compactness, let a = â be a maximizer of ‖(a ∗ ϕ)+‖2 subject to ‖a‖2 = 1 and
a ≥ 0 (pointwise). Let σ̂ : Z/24Z → R satisfy |σ̂(t)| < â(t) whenever â(t) > 0
(think σ̂ → 0). Then∥∥((â+ σ̂) ∗ ϕ)+

∥∥2
2
− ‖(â ∗ ϕ)+‖22 =

∑
t∈Z/24Z

[(
(â ∗ ϕ)(t) + (σ̂ ∗ ϕ)(t)

)2
+
−
(

(â ∗ ϕ)(t)
)2
+

]

= 2
∑

t∈Z/24Z

(
(â ∗ ϕ)(t)

)
+

(σ̂ ∗ ϕ)(t) +O
(
‖σ̂‖2

)
= 2
〈

(â ∗ ϕ)+ , σ̂ ∗ ϕ
〉

+O
(
‖σ̂‖2

)
= 2
〈

(â ∗ ϕ)+ ∗ ϕ̃ , σ̂
〉

+O
(
‖σ̂‖2

)
,

where the second equality used the fact that (x + y)2+ − x2+ = 2yx+ + O(y2) for
any reals x, y with |y| < |x|, and in the last equality, we again use the notation
ϕ̃(·) := ϕ(−·). Let v̂ : Z/24Z→ R be v̂ := (â ∗ ϕ)+ ∗ ϕ̃ so that∥∥((â+ σ̂) ∗ ϕ)+

∥∥2
2
− ‖(â ∗ ϕ)+‖22 = 2〈v̂, σ̂〉+O

(
‖σ̂‖2

)
.

We see that no t ∈ Z/24Z can satisfy â(t) = 0 and v̂(t) > 0, for otherwise we could
let σ̂(t) = +α for some (very) small α > 0, σ̂(t′) = −δ for some t′ with â(t′) > 0
and appropriate δ > 0 (which will be O(α2)), and σ̂ = 0 elsewhere, to have

||â+ σ̂||2 = 1 and
∥∥((â+ σ̂) ∗ ϕ)+

∥∥ > ∥∥(â ∗ ϕ)+
∥∥ ,

7However, the reader should keep in mind that we are “mirroring” the extremizers.
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contradicting the maximality of â. And similarly no t ∈ Z/24Z can satisfy â(t) > 0
and v̂(t) ≤ 0. Therefore, v̂+ is positive exactly when â is, and each are 0 otherwise.
This implies

v̂+ ≡ λâ

for some λ > 0, for otherwise one could make 2〈v̂, σ̂〉+O(‖σ̂‖2) negative for suitable
small σ̂, contradicting the maximality of â. To end this step, quickly note

‖(â ∗ ϕ)+‖22 =
〈

(â ∗ ϕ)+, (â ∗ ϕ)+

〉
(7)

=
〈

(â ∗ ϕ)+, â ∗ ϕ
〉

= 〈v̂, â〉
= 〈v̂+, â〉
= λ.

Step 3: Choosing a convenient norm.

We are given â : Z/24Z→ [0,∞) satisfying

((â ∗ ϕ)+ ∗ ϕ̃)+ ≡ λâ

and, by (7), we wish to show λ ≤ 4. It suffices to find a function (“norm”) N :
[0,∞)Z/24Z → [0,∞) satisfying the multiplicativity condition

(8) N(γa) = γN(a)

for all γ ∈ [0,∞) and a : Z/24Z→ [0,∞), and the two (dual) norm bounds

(9) N ((a ∗ ϕ)+) ≤ 2N(a)

(10) N ((a ∗ ϕ̃)+) ≤ 2N(a)

for all a : Z/24Z→ [0,∞). Indeed, with such a norm N , we have

λN(â) = N(λâ) = N
(

((â ∗ ϕ)+ ∗ ϕ̃)+

)
≤ 2N

(
(â ∗ ϕ)+

)
≤ 4N(â).

Motivated by the (conjectured) extremizers, we use the norm

N(a) := max (9‖a‖∞, ‖a‖1) .

Step 4: Showing the desired norm bounds.

It is clear that N satisfies condition (8). To prove (9), we may normalize to N(a) = 9
so that it suffices to show{ ‖a‖∞ ≤ 1

‖a‖1 ≤ 9

}
=⇒

{ ‖(a ∗ ϕ)+‖∞ ≤ 2

‖(a ∗ ϕ)+‖1 ≤ 18

}
,

where, to recall,

ϕ =
16

3
1− 2

√
5f24.
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So take a : Z/24Z→ [0,∞) with ‖a‖∞ ≤ 1 and ‖a‖1 ≤ 9. Then we easily have

‖(a ∗ ϕ)+‖∞ ≤ max
t∈Z/24Z

1

24

∑
j∈Z/24Z

a(j)ϕ(t− j) ≤ 1

24
· 16

3
· 9 = 2.

As a 7→ ‖(a ∗ ϕ)+‖1 is convex, it simply suffices to check that ‖(a ∗ ϕ)+‖1 ≤ 18 for
all a ∈ {0, 1}24 ⊆ [0, 1]Z/24Z. We may assume WLOG that a0 = 1, so that there are
only

∑8
k=0

(
23
k

)
< 106 cases to check, which is easily handled by a computer.

We do everything analogous to establish (10) as well.

Below is the python code, presented in two columns to save space.

import math

import itertools

f = []

for t in range(0,24):

sum1 = 0

for j in range(0,24):

if ((j*j)%24 == t):

sum1 = sum1+1

f.append(sum1)

phi = []

for t in range(0,24):

phi.append(16/3-2*math.sqrt(5)*f[t])

phit = []

for t in range(0,24):

phit.append(phi[23-t])

def h(a,psi):

sum1 = 0

for t in range(0,24):

sum2 = 0

for j in range(0,24):

sum2=sum2+a[j]*psi[(t-j)%24]

sum2 = sum2/24

sum2 = max(sum2,0)

sum1 = sum1+sum2

return sum1

c = []

for j in range(1,24):

c.append(j)

max1 = 0

max2 = 0

for k in range(0,9):

for A in itertools.combinations(c,k):

A = list(A)

A.insert(0,0)

a = []

for j in range(0,24):

if (j in A):

a.append(1)

else:

a.append(0)

v1 = h(a,phi)

v2 = h(a,phit)

max1 = max(max1,v1)

max2 = max(max2,v2)

if (v1 >= 17.99):

print ("extremizer - "+str(a))

if (v2 >= 17.99):

print ("extremizer for dual - "+str(a))

print (max1)

print (max2)

The output of the python code is as follows.

extremizer - [1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0]

extremizer for dual - [1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0]

extremizer for dual - [1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0]

extremizer - [1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1]

extremizer - [1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0]

extremizer for dual - [1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1]

18.000000000000004

18.000000000000004

Since we printed all a for which ‖(a ∗ ϕ)+‖1, ‖(a ∗ ϕ̃)+|1 ≥ 17.99 and the ones
printed have ‖(a ∗ ϕ)+‖1, ‖(a ∗ ϕ̃)+‖1 = 18, the +4 · 10−15 (added to 18) is merely a
computer-induced rounding error.
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We finish by analyzing the extremizers. We obtained only 3 of the 8 conjectured
extremizers; however, we assumed WLOG that a0 = 1. Translating the outputted
extremizers indeed recovers all 8 conjectured extremizers for a. Since such a have∑

i ai −
∑

i a
2
i = 0, the only extremizing b, for a given a, must satisfy

∑
t(a ∗

b)(t)f24(t) = 0, i.e., a+b “contains” no squares. Since all extremizers a are translates
of one another, we may focus on a particular extremizer a. Then, as is easily checked,
b is uniquely determined merely by “process of elimination”. �
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