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Abstract. For the problem of prediction with expert advice in the adversarial
setting with finite stopping time, we give strong computer evidence that the comb
strategy for k = 5 experts is not asymptotically optimal, thereby giving strong
evidence against a conjecture of Gravin, Peres, and Sivan.

1. Introduction

Prediction with expert advice is a classic setup in learning theory. Fix positive
integers k ≥ 2 and T ≥ 1. On each of T consecutive days, an adversary assigns
gains — 0 or 1 — to each of k experts, and a player who does not know the assigned
gains for that day must choose an expert. The player receives the gain assigned to
the chosen expert and then sees the gains all the experts were assigned that day.
After T days, each expert has a total gain, namely, the sum of the gains assigned to
her each day, and the player similarly has a total gain. The regret that the player
has after T days is the difference between the biggest total gain that an expert has
and the total gain of the player. For a more formal problem statement, see [4].

With the adversary wishing to maximize the regret of the player and the player
wishing to minimize his regret, we seek to find the minimax value of the game.
Allowing the adversary and player to randomize their strategies, one can see that von
Neumann’s minimax theorem applies and confirms that there is indeed a minimax
value of the game. The regime we will discuss is k fixed (and small) and T → ∞.

It is well-known that the minimax regret value is given as ck
√
T + o(

√
T ) for some

constant ck depending only on k. The value c2 was found in 1965 by Cover [3]. In
[4], Gravin, Peres, and Sivan gave another derivation of c2 by finding a connection
to random walks. In [1], Abbasi-Yadkori, Bartlett, and Gabillon found c3.

Another setting to consider the prediction with expert advice problem in is the
“geometric horizon model”, in which, instead of having a known number T days
(“finite horizon model”), there is a (stopping) parameter δ such that the game ends
independently each day with probability δ. This setting is easier to analyze and
is believed to be equivalent to the finite horizon model (see section 7 of version 4
of the arXiv version of [4]). In this setting, the minimax regret value is given as
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c̃k
1√
2δ

+ o( 1√
2δ

) as δ → 0 with k fixed. In [4], Gravin et. al. obtained c̃k for k = 2, 3,

and in [2], Bayraktar, Ekren, and Zhang obtained c̃4 using PDE methods.

Gravin et. al. found a convex polytope with a small number of vertices such that
a (minimax) optimal adversary strategy lies in this convex polytope. Essentially,
determining the optimal adversary strategy comes down to determining the best
way to locally couple k random walks of fixed drift to maximize how far the farthest
walk is away from the origin. They defined the “comb strategy” as follows. At any
given day t, the experts are ranked 1, 2, . . . , k based on their current total gain, with
1 having the highest current total gain. The adversary, with probability 1

2
, assigns

a gain of 1 to all odd ranked experts and a gain of 0 to all even ranked experts, and
with probability 1

2
, assigns a gain of 1 to all even ranked experts and a gain of 0 to

all odd ranked experts. Gravin et. al. made the following conjecture.

Conjecture 1. For any k ≥ 2, the comb strategy is asymptotically optimal, i.e.,
the (expected) regret resulting from the adversary employing the comb strategy has

growth rate ck
√
T + o(

√
T ) as T →∞.

That the comb strategy is asymptotically optimal was proven for k = 2 in [4] and
k = 3 in [1] for the finite horizon model, and for k = 2, 3 in [4] and k = 4 in [2] in
the geometric horizon model.

In thise short note, we give strong computer evidence that the comb strategy is
not asymptotically optimal for k = 5 in the finite horizon model. As mentioned
previously, it is believed that this is then strong computer evidence that the comb
strategy is not asymptotically optimal for k = 5 in the geometric horizon model.

We compare the comb strategy, denoted [1, 3, 5], to the following strategy, denoted
[1, 3]. The adversary, with probability 1

2
, assigns a gain of 1 to experts 1 and 3 and

a gain of 0 to experts 2, 4, 5, and with probability 1
2
, assigns a gain of 1 to experts

2, 4, 5 and a gain of 0 to experts 1, 3, where, to reiterate, the labels of the experts
are their rankings for the current day, based on total gain.

2. Computer Evidence

For values of T up to 350, we compute exactly the expected regret from following
the strategies [1, 3] and [1, 3, 5], by using a simple dynamic program. If the comb
strategy, [1, 3, 5] were asymptotically optimal, then it would not be the case that
R1,3(T )2−R1,3,5(T )2

T
is positive and bounded away from 0, where R1,3(T ) denotes the

expected regret of the adversary employing strategy [1, 3] on day T (and R1,3,5(T )

is similarly defined). However, the extreme constancy of R1,3(T )2−R1,3,5(T )2

T
above 0

suggests that it is. See figure 1 below.
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Figure 1 : Difference in 1000 times the normalized regret squared between the comb strategy [1, 3, 5] and the strategy [1, 3].

It is straightforward to compute that for T = 5, stategy [1, 3] is strictly better
than strategy [1, 3, 5]. This is in contrast to the cases of k = 2, 3, 4 in which doing
comb appears by code to be always exactly optimal (for any T ). It does appear from
code that, for k = 5, doing [1, 3] is always exactly optimal (for any T ). However, it’s
not the case that, for k = 6, there is one subset A ⊆ {1, 2, 3, 4, 5, 6} such that doing
the strategy of giving a gain of 1 to the experts ranked in A and 0 to the rest with
probability 1

2
, and doing the opposite with probability 1

2
, is always exactly optimal.

Indeed, one can run a dynamic program to see that, for T = 13, if the strategies
[1, 3, 6] and [1, 4, 6] are available on each day, then an expected regret of 9.14453125
can be achieved, whereas the largest expected regret when just using one subset
A (such as [1, 3, 6]) that can be achieved is 9.143310546875. This leads the author
to believe that any asymptotically optimal strategy for k = 6 experts will be quite
complicated and in particular be heavily dependent on the particular current total
gains, rather than just on their ordering.
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