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Abstract. Given a base b, a “digit map” is a map f : Z≥0 → Z≥0 of the form
f(
∑n

i=0 aib
i) =

∑n
i=0 f∗(ai), 0 ≤ ai ≤ b − 1 for each i, where f∗ : {0, 1, . . . , b −

1} → Z≥0 satisfies f∗(0) = 0 and f∗(1) = 1. It has been proven for b = 10
and f∗(m) = m2, and various generalizations thereof, that there are arbitrarily
long sequences of consecutive positive integers that end up at 1 under repeated
application of f . In this paper, we significantly generalize these results, providing
a complete classification of digit maps for which, given any periodic point n, there
are arbitrarily long sequences of consecutive positive integers that end up n.

1. Introduction

In this paper, we look at functions that take in a positive integer and output the
sum of its values on the digits of that integer. Precisely, for a fixed base b, we start
with a function f∗ : {0, 1, . . . , b− 1} → Z≥0 and then obtain a map f : Z≥0 → Z≥0
given by f(

∑n
i=0 aib

i) =
∑n

i=0 f∗(ai), where 0 ≤ ai ≤ b − 1. We study long-term
iterates of the map f ; that is, we start with a positive integer n and repeatedly
apply f , to obtain the sequence n, f(n), f(f(n)), f(f(f(n))), . . . .

In Richard Guy’s book “Unsolved Problems in Number Theory”, Guy poses many
questions regarding (2, 10)-happy numbers [3]. An (e, b)-happy number is a number
that, under iterates of the digit map f induced by f∗(m) = me in base b, eventually
reaches 1. In [4], Pan proved that there exist arbitrarily long sequences of consecutive
(e, b)-happy numbers assuming that if a prime p divides b−1, then the integer p−1
does not divide e− 1.

A question appearing in Guy’s book [3] is that of gaps in the happy number se-
quence. It is easy to see that, for any digit map, every positive integer eventually
ends up in some finite cycle, i.e. a collection of positive integers {n1, . . . , nk} such
that f(ni) = ni+1 for 1 ≤ i ≤ k−1 and f(nk) = f(n1). For example, the cycles gener-
ated by the (2, 10)-happy number digit map are {1} and {4, 16, 37, 58, 89, 145, 42, 20}.
A gap in the happy number sequence, therefore, corresponds to consecutive numbers
that end up in the latter cycle. In this paper, a special case of what we prove is
that indeed for any u in an (e, b)-happy number cycle, we can find arbitrarily long
sequences of consecutive integers that end up in the same cycle as u. This answers
the question of Guy.
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Significantly more broadly, we provide a complete classification of digit maps for
which there are arbitrarily long sequences of consecutive integers ending up in any
prespecified cycle. To state our main theorem, we say that a digit map f with base
b has a modular obstruction if gcd (f∗(1)− 1, . . . , f∗(b− 1)− (b− 1), b− 1) > 1. We
call a positive integer u in some cycle a cycle number and any positive integer ending
up in that cycle a u-integer.

Theorem 1. Let f be a digit map. If f has a modular obstruction, then for any
cycle number u, there do not exist two consecutive u-integers. If f does not have a
modular obstruction, then for any cycle number u and any positive integer n, there
exist n consecutive u-integers.

For example, working in base 10, if we construct the digit map f∗ : {0, . . . , 9} →
Z≥0 by setting f∗(0) = 0, f∗(1) = 1, f∗(9) = 7, and choosing any values for
2, 3, 4, 5, 6, 7, and 8, then we are guaranteed that there will exist arbitrarily long
sequences of consecutive positive integers that end up at 1 under repeated applica-
tion of f . The result of Theorem 1 consumes the work of H. Pan [4], H. Grundman
and E. A. Teeple in [2], and E. El-Sedy and S. Siksek in [1].

2. Proof of Theorem 1

We first quickly prove the first part of Theorem 1. Suppose that f has a modular
obstruction: there is some g > 1 with g | b − 1 and f∗(m) ≡ m (mod g) for each
1 ≤ m ≤ b − 1. Then, for any n ∈ N, it holds that f(n) ≡ n (mod g); indeed, if

n =
∑k

j=0 ajb
j, then, since b ≡ 1 (mod g),

f(n) ≡
k∑

j=0

f∗(aj) ≡
k∑

j=0

aj ≡
k∑

j=0

ajb
j (mod g).

Therefore, for any n ∈ N and r ≥ 1, the iterate f r(n) is congruent to n mod g.
Consequently, if there were a cycle number u and corresponding n, r1, r2 ≥ 1 with
f r1(n) = f r2(n + 1) = u, we’d have n ≡ n + 1 (mod g), absurd.

We now move on to the second part of Theorem 1. We first use a few short
results of Pan and introduce new techniques and results in Lemma 3 and Corollary
2.2. Specifically, the proofs of Lemma 1, Corollary 2.1, and Lemma 2 are basically
identical to the proofs given by Pan; we just fit them to our notation.

Lemma 1. Let x and m be arbitrary positive integers. Then for each r ≥ 1, there
exists a positive integer l such that

f r(l + y) = f r(l) + f r(y) = x + f r(y)

for each 1 ≤ y ≤ m.
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Proof. We use induction on r. When r = 1, choose a positive integer s such that
bs > m and let

l1 =
x−1∑
j=0

bs+j.

Clearly for any 1 ≤ y ≤ m,

f(l1 + y) = f(l1) + f(y) = x + f(y).

Now assume r > 1 and the assertion of Lemma 1 holds for the smaller values of r.
Note there exists an m′ such that f(y) ≤ m′ for 1 ≤ y ≤ m. Therefore, by induction
hypothesis, there exists an lr−1 such that

f r−1(lr−1 + f(y)) = f r−1(lr−1) + f r−1(f(y)) = x + f r(y)

for 1 ≤ y ≤ m. Let

lr =

lr−1−1∑
j=0

bs+j

where s satisfies bs > m. Then,

f r(lr) = f r−1(f(lr)) = f r−1(lr−1) = x

and for each 1 ≤ y ≤ m,

f r(lr + y) = f r−1(f(lr + y)) = f r−1(f(lr) + f(y))

= f r−1(lr−1 + f(y)) = f r−1(lr−1) + f r(y) = f r(lr) + f r(y).

�

Definition 2.1. Let D = D(f∗, b) be the set of all positive integers that are in some
cycle, that is u ∈ D if and only if f r(u) = u for some r ≥ 1. It is easy to see that
D is finite.

Definition 2.2. Take some u ∈ D. We say a positive integer n is a u-integer if
f r(n) = u for some r ≥ 1. We say two positive integers m,n are concurrently
u-integers if for some r ≥ 1, f r(m) = f r(n) = u.

Note that two u-integers m,n are not concurrently u-integers only if u belongs to
a cycle of length greater than 1 in D and m,n are at different places in the cycle
at a certain time. Note “concurrently u-integers” is a transitive relation. Now fix u
and we will prove that there are arbitrarily long sequences of consecutive u-integers.
First, we make a reduction.

Corollary 2.1. Assume that there exists h ∈ N such that h+x is a u-integer for all
x ∈ D. Then for arbitrary m ∈ N, there exists l ∈ N such that l + 1, l + 2, . . . , l +m
are u-integers.
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Proof. By the definition of D, there exists r ∈ N such that f r(y) ∈ D for all
1 ≤ y ≤ m. By Lemma 1, there exists l ∈ N so that

f r(l + y) = h + f r(y)

for 1 ≤ y ≤ m. Since f r(l+y) is then a u-integer, l+y is as well, for 1 ≤ y ≤ m. �

Lemma 2. Assume that for each x ∈ D there exists hx ∈ N such that hx + u and
hx + x are concurrently u-integers. Then there exists h ∈ N such that h + x is a
u-integer for each x ∈ D.

Proof. We shall prove that, under the assumption of Lemma 2, for each subset X of
D containing u, there exists hX ∈ N such that hX +x is a u-integer for each x ∈ X.

The cases |X| = 1 and |X| = 2 are clear. Assume |X| > 2 and that the assertion
holds for every smaller value of |X|. Take some x ∈ X, with x 6= u. Then hx+u and
hx + x are concurrently u-integers, so take r ∈ N large enough so that f r(hx + u) =
f r(hx + x) = u and f r(hx + y) ∈ D for all y ∈ X. Let X∗ = {f r(hx + y)|y ∈ X}.
Then, X∗ is clearly a subset of D containing u with |X∗| < |X|. Therefore, by
induction, there exists hX∗ ∈ N such that hX∗ + f r(hx + y) is a u-integer for each
y ∈ X. By Lemma 1, there exists l ∈ N satisfying

f r(l + hx + y) = hX∗ + f r(hx + y)

for every y ∈ X. Thus, hX := l + hx works. The induction is complete. �

We now proceed to prove the hypothesis of Lemma 2. Note it suffices to show
that for any fixed difference d, we can find two concurrent u-integers with difference
d. This is the statement of Corollary 2.2. We first need one more lemma.

Lemma 3. Let h be a u-integer. Then for every integer a, there exists a u-integer
l such that l ≡ a (mod f(b− 1)), and such that l and h are concurrently u-integers.

Proof. Let l1 be a u-integer such that

l1 > f(a) + (b− 1)f(b− 1) max
1≤m≤b−1

f(m).

We now find some l2 with f(l2) = l1 and l2 ≡ a (mod f(b− 1)). Since

gcd(f(1)− 1, . . . , f(b− 1)− (b− 1), f(b− 1)) = 1,

we may take r1, . . . , rb−1 ∈ {0, . . . , f(b− 1)} so that

r1(1− f(1)) + · · ·+ rb−1(b− 1− f(b− 1)) ≡ f(a)− l1 (mod f(b− 1)).

Note that
L := l1 − f(a)− r1f(1)− · · · − rb−1f(b− 1)

satisfies L ≥ 1. By the pigeonhole principle, there is some b′ ∈ {0, . . . , b − 1} such

that bj ≡ b′ (mod f(b − 1)) for infinitely many j. Let j1 < j2 < · · · < jL < t
(1)
1 <
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· · · < t
(1)
r1 < · · · < t

(b−1)
1 < · · · < t

(b−1)
rb−1 satisfy bji ≡ bt

(k)
s ≡ b′ (mod f(b− 1)) for each

i, s, and k, and satisfy bj1 > a.
Let

l2 = a +
L∑

n=1

bjn +
b−1∑
m=1

rm∑
j=1

mbt
(m)
j .

Due to the inequality bj1 > a, we have

f(l2) = f(a) + L + r1f(1) + · · ·+ rb−1f(b− 1) = l1,

and due to the choice of ri’s, we have

l2 ≡ a + b′ [L + r1 + 2r2 + · · ·+ (b− 1)rb−1] ≡ a (mod f(b− 1)).

Now we generate l3, l4, . . . inductively by choosing ln+1 so that ln+1 ≡ a (mod f(b−
1)) and f(ln+1) = ln. Note that since the cycle that u is in is finite, it must be that
one of the ln’s is concurrently a u-integer with h. �

Corollary 2.2. For each x ∈ N, there is a u-integer l such that l and l + x are
concurrently u-integers.

Proof. Fix x ∈ N. Take s ∈ N such that bs > x. Let x1 = bs − x. Take a u-integer
h′ such that

h′ ≡ f(x1) (mod f(b− 1)).

Let V be the cycle set that u is in. By Lemma 3, for each v′ ∈ V , there exists lv′
such that lv′ ≡ 1 (mod f(b− 1)), and lv′ and v′ are concurrently u-integers. Fixing
an lv′ for each v′ ∈ V , let M = maxv′∈V lv′ .

Since the proof of Lemma 3 guarantees infinitely many u-integers in a given
residue, we may (and do) fix h > f(x1) + M to be a u-integer with h ≡ f(x1)
(mod f(b − 1)). Let v be in the cycle of u so that h and v are concurrently u-
integers. Now take the u-integer N = lv so that N ≡ 1 (mod f(b− 1)), and N and

v are concurrently u-integers. Take a positive integer t so that bt > bs+b
h

f(b−1)
c+1.

Let x2 = x1 + bt
∑N−1

j=1 bj. Note f(x2) = f(x1) + (N − 1) since bt > bs > x1. Thus,

f(x2) ≡ f(x1) ≡ h (mod f(b− 1)).

Also, f(x2) = f(x1) + (N − 1) ≤ f(x1) + M − 1 < h. Write h = f(b− 1)k + f(x2)
and note that we have k > 0. Also note k ≤ b h

f(b−1)c+ 1 < t− s. Let

l = x2 +
k−1∑
j=0

(b− 1)bs+j.

Then,
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f(l) = f

(
x1 + bt

N−1∑
j=1

bj + bs
k−1∑
j=0

(b− 1)bj

)

= f

(
x1 + bs[bt−s

N−1∑
j=1

bj +
k−1∑
j=0

(b− 1)bj]

)

= f(x1) + f(bt−s
N−1∑
j=1

bj +
k−1∑
j=0

(b− 1)bj),

and since
∑k−1

j=0(b− 1)bj = bk − 1 < bt−s, we have

f(l) = f(x1) + (N − 1) + kf(b− 1) = f(x2) + kf(b− 1) = h.

Further,

f(l + x) = f

(
bs +

k−1∑
j=0

(b− 1)bs+j + bt
N−1∑
j=1

bj

)
= f

(
bs+k + bt

N−1∑
j=1

bj

)
,

which is equal to N . Since h and N are concurrently u-integers, it follows that l
and l + x are concurrently u-integers, as desired. �

Theorem 1.1 now follows from Corollary 2.1, Lemma 2, and Corollary 2.2.
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